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ABSTRACT 
Does the advent of flash devices constitute a radical change for 
secondary storage? How should database systems adapt to this 
new form of secondary storage? Before we can answer these 
questions, we need to fully understand the performance 
characteristics of flash devices. More specifically, we want to 
establish what kind of IOs should be favored (or avoided) when 
designing algorithms and architectures for flash-based systems. In 
this paper, we focus on flash IO patterns, that capture relevant 
distribution of IOs in time and space, and our goal is to quantify 
their performance. We define uFLIP, a benchmark for measuring 
the response time of flash IO patterns. We also present a 
benchmarking methodology which takes into account the particular 
characteristics of flash devices. Finally, we present the results 
obtained by measuring eleven flash devices, and derive a set of 
design hints that should drive the development of flash-based 
systems on current devices. 

Categories and Subject Descriptors 
B.3.2 [Memory Structures]: Design Styles – mass storage (flash 
devices); B.8.2 [Performance and Reliability]: Performance 
Analysis and Design Aids  

General Terms 
Measurement, Performance, Experimentation 

Keywords 
Flash devices, benchmarking, methodology, uFLIP 

1. INTRODUCTION 
Tape is dead, disk is tape, flash is disk [5]. The flash devices that 
now emerge as a replacement for mechanical disks are complex 
devices composed of flash chip(s), controller hardware, and 
proprietary software that together provide a block device interface 
via a standard interconnect (e.g., USB, IDE, SATA). Does the 
advent of such flash devices constitute a radical departure from 
hard drives? Should the design of database systems be revisited to 
accommodate flash devices? Must new systems be designed 
differently to take full advantage of flash device characteristics? 

In trying to answer these questions, a tempting short-cut is to 
assume that flash devices behave as the flash chips they contain. 
Flash chips are indeed very precisely specified, they have 
interesting properties (e.g., read/program/erase operations, no 
updates in-place, random reads equivalent to sequential reads), 
and many researchers have used their characteristics to design 
new algorithms [8][11][14]. The problem is, however, that 
commercially available flash devices do not behave as flash chips. 
They provide a block interface, where data is read and written in 
fixed sized blocks and integrate layers of software that manage 
block mapping, wear-leveling and error correction. As a 
consequence, flash devices do not provide explicit erase 
operations, and there is, a priori, no reason to avoid in-place 
updates. In terms of performance, flash devices are also much 
more complex than flash chips. For instance, block writes directed 
to the flash devices are mapped to program and erase operations at 
different granularities and as a result the performance of writes is 
not uniform in time. It would therefore be a mistake to model 
flash devices as flash chips.  

So, how can we model flash devices? The answer is not 
straightforward because flash devices are both complex and 
undocumented. They are black boxes from a system's point of view. 

1.1 Understanding Flash Devices 
A first step towards the modeling of flash devices is to have a 
clear and comprehensive understanding of their performance. The 
key issue is to determine the kinds of IOs (or IO sequences) that 
should be favored (or avoided) when designing algorithms and 
architectures for flash-based systems.  

In order to study this issue, we need a benchmark that quantifies 
the performance of flash devices. By applying such a benchmark 
to current and future devices, we can start making progress 
towards a comprehensive understanding. While individual devices 
are likely to differ to some extent, the benchmark should reveal 
common behaviors that will form a solid foundation for algorithm 
and system design. In this paper, we propose such a benchmark. 

Defining a benchmark for flash devices is not a trivial task, 
however. Since the behavior of flash devices is determined by 
layers of undocumented software, we cannot make any safe 
assumptions. This has three main consequences. First, to capture 
the performance characteristics we must define a broad bench-
mark that casts light on all relevant usage patterns. Second, since 
the space of relevant usage patterns is large, we must focus on 
simple measurements that are easily analyzed. Last, the complex 
behavior calls for sound benchmarking methodology. 
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Recently, there has been increasing awareness of the importance 
of benchmarking activities in general, and benchmarking 
methodologies in particular (e.g., see [2][13]). For example, it has 
been demonstrated that incorrect benchmarking methodology may 
lead to distorted benchmark results [2][13]. In this paper, we 
therefore put significant emphasis on devising a sound 
benchmarking methodology for flash devices. 

1.2 Related Work 
So far, only a handful of papers have attempted to understand the 
overall performance of flash devices. Lee et al. focused on 
benchmarking SSD performance for typical database access 
patterns, but used only a single device for their measurements [9]. 
Myers measured the performance of database workloads over two 
flash devices [10]. In comparison, our benchmark is not specific 
to database systems. We study a variety of IO patterns, defined as 
the distribution of IOs in time and space.  

Ajwani et al. analyzed the performance of a large number of flash 
devices, but using ad-hoc methodology [1]. By contrast, we 
identify benchmarking methodology as a major challenge. It is 
indeed very easy to get meaningless results when measuring a 
flash device because of the non-uniform nature of writes. Huang 
et al. attempted an analysis of flash device behavior, but neither 
proposed a complete methodology nor made measurements [7]. 
There are thus no relevant flash device benchmarks. 

Many existing benchmarks aim to measure disk performance 
(see [13] for an excellent survey and critique). None of those 
benchmarks, however, accounts for the non-uniform performance 
of writes that characterizes flash devices. 

1.3 Contributions of the Paper 
This paper makes the following three major contributions: 

1. We define the uFLIP benchmark (Section 3), a component 
benchmark for understanding flash device performance. 
uFLIP is a collection of nine micro-benchmarks defined over 
IO patterns. 

2. We define a benchmarking methodology (Section 4) that 
accounts for the complex and non-uniform performance of 
flash devices. 

3. We apply the uFLIP benchmark to a set of eleven flash 
devices (Section 5), ranging from low-end to high-end 
devices. Based on our results, we discuss a set of design hints 
that should drive the development of flash-based systems on 
current devices. 

We believe that the investigation of flash device behavior 
deserves strong and continuous effort from the research 
community; an effort that we instigate in this paper. Therefore, the 
uFLIP software and the detailed results (tens of millions of data 
points) are available on a web site (www.uflip.org) that we expect 
to be used and completed by the community. 

2. FLASH DEVICES 
The uFLIP benchmark is focused on flash devices—such as solid 
state disks (SSDs), USB flash drives, or SD cards—which are 
packaged as block devices. As Figure 1 below illustrates, flash 
devices contain flash chips and controllers whose role is to 
provide the block abstraction at the flash device interface. 

 
 

Figure 1: Internal view of the Memoright 32 GB SSD 

While the details of flash devices vary significantly, there are 
certain common traits in the architecture of the flash chips and of 
the block manager that impact their performance and justify our 
focus on IO patterns [3]. In this section we review those common 
traits. 

2.1 Flash Chips 
A flash chip is a form of EEPROM (Electrically Erasable 
Programmable Read-Only Memory), where data is stored in 
independent arrays of memory cells. Each array is a flash block, 
and rows of memory cells are flash pages. Flash pages may 
furthermore be broken up into flash sectors. 

Each memory cell stores 1 bit in single-level cell (SLC) chips, or 
2 or more bits in multi-level cell (MLC) chips. MLC chips are 
both smaller and cheaper, but they are slower and have a shorter 
expected life span. By default each bit has the value 1. It must be 
programmed to take the value 0 and erased to go back to value 1. 
Thus, the basic operations on a flash chip are read, program and 
erase, rather than read and write. 

Flash devices designed for secondary storage are all based on 
NAND flash, where the rows of cells are coupled serially, 
meaning that data can only be read and programmed at the 
granularity of flash pages (or flash sectors).Writes are performed 
one page (or sector) at a time, and sequentially within a flash 
block in order to minimize write errors resulting from the 
electrical side effects of writing a series of cells. 

Erase operations are only performed at the granularity of a flash 
block (typically 64 flash pages). This is a major constraint that the 
block manager must take into account when mapping writes onto 
program and erase commands. Most flash chips can only support 
up to 105 erase operations per flash block for MLC chips, and up 
to 106 in the case of SLC chips. As a result, the block manager 
must implement some form of wear-leveling to distribute the 
erase operations across blocks and increase the life span of the 
device. To maintain data integrity, bad cells and worn-out cells 
are tracked and accounted for. Typically, flash pages contain 2KB 
of data and a 64 byte area for error correcting code and other 
bookkeeping information. 

Modern flash chips can be composed of two planes, one for even 
blocks, the other for odd blocks. Each flash chip may contain a 
page cache. The block manager should leverage these forms of 
parallelism to improve performance. 



2.2 Block Manager 
In all flash devices, the core data structures of the block manager are 
two maps between blocks, represented by their logical block 
addresses (LBAs), and flash pages. A direct map from LBAs to 
flash pages is stored on flash and in RAM to speed up reads, and an 
inverse map is stored on flash, to re-build the direct map during 
recovery. There is a trade-off between the improved read 
performance due to the direct map and degraded write performance 
due to the update of the inverse map (updates of bookkeeping 
information for a page may cause an erase of an entire block). 

The software layer responsible for managing these maps both in 
RAM (inside the micro-controller that runs the block manager) 
and on flash is called flash translation layer (FTL). Using the 
direct map, the FTL introduces a level of indirection that allows 
trading expensive writes-in-place (with the erase they incur) for 
cheaper writes onto free flash pages. 

Each update on a free flash page, however, leaves an obsolete 
flash page (that contains the before image). Over time such 
obsolete flash pages accumulate, and must subsequently be 
reclaimed synchronously or asynchronously. As a result, we must 
assume that the cost of writes is not homogeneous in time 
(regardless of the actual reclamation policy). Some block writes 
will result in flash page writes with a minimum bookkeeping 
overhead, while other block writes will trigger some form of page 
reclamation and the associated erase. Assuming a flash device 
contains enough RAM and autonomous power, the flash 
translation layer might be able to cache and destage both data and 
bookkeeping information. 

The density of NAND flash chips is doubling every year [12]. As 
a result, the capacity of flash devices increases exponentially. This 
has a direct impact on the size of the direct map from LBAs to 
flash pages. If the direct map does not fit in RAM, then the cost of 
reads will also become non-uniform in time as portions of the map 
will need to be swapped in to complete a look-up. Conversely, the 
increase in storage capacity has no direct impact on the distribution 
of expensive writes as obsolete pages still must be reclaimed to 
guarantee constant flash capacity. Flash device constructors might 
be able to use a larger fraction of the storage space for bookkeeping, 
which can mitigate the need to reclaim pages. 

2.3 Device State and IO Patterns 
While the principles of the flash translation layer described above 
are well known, the details of the design decisions made for a 
given flash device, and the associated performance trade-offs, are 
typically not documented: Flash devices are black-boxes. 

Since the physical layout of data on flash devices is stored and 
manipulated via the direct map data structure, which manages the 
devices at some fixed granularity, there is no direct 
correspondence between an arbitrary IO request to the flash 
device and its translation to a physical request to a flash chip. 
Instead, the physical request is based in a complex manner on the 
current state of the direct map, which in turn is based on the entire 
history of previous IO requests.  

This circular dependency makes benchmarking flash devices 
particularly hard. The main factors that impact performance are 
thus the device state and the distribution of incoming IO requests 
in space (i.e., their LBA) and time, or IO patterns. The goal of the 
uFLIP benchmark is to characterize the relevant IO patterns and, 
given a well defined device state, how they impact performance. 

3. THE uFLIP BENCHMARK 
In this section we propose uFLIP, a new benchmark for observing 
and understanding the performance of flash devices.  

The uFLIP benchmark is a set of micro-benchmarks based on IO 
patterns. In theory, IO patterns can be arbitrarily complex. In 
uFLIP, we focus on a set of potentially relevant IO patterns 
defined through a small set of baseline patterns, functions and 
parameters. These IO patterns are described in Section 3.1. 

The IO patterns thus defined still cover a very large design space, 
some of which is not useful for analysis. We have therefore used 
three design principles to further narrow the uFLIP benchmark to 
a set of nine micro-benchmarks. The details of these nine micro-
benchmarks are given in Section 3.2. 

We believe that the nine uFLIP micro-benchmarks together 
capture the characteristics of flash devices quite well. In 
Section 3.3 we further argue that they form a benchmark that 
fulfils key quality criteria defined in the literature. 

3.1 Defining IO Patterns 
The basic construct of uFLIP is an IO pattern, which is simply a 
sequence of IOs. In each pattern, we refer to the ith submitted IO 
as IOi. Each IO is (as usual) defined by four attributes:  

1. t(IOi): the time at which the IO is submitted; 
2. IOSize(IOi): the IO size; 
3. LBA(IOi): the IO location or logical block address; 
4. Mode(IOi): the IO mode, which is either read or write.  

In theory, IO patterns can be arbitrarily complex, as arbitrary 
functions can be used to generate the four attributes. We define 
four baseline patterns as sequential reads, sequential writes, 
random reads, and random writes for consecutive IOs of a given 
size; these are the patterns typically used in practice. In order to 
increase the range of relevant patterns for our benchmark, 
however, we introduce a few simple parameterized functions: 

• The time, t(IOi), is defined through one of three different 
functions: a) consecutive, where IOi+1 starts as soon as IOi 
finishes, as in the baseline patterns; b) pause(Pause), where a 
pause of length Pause is introduced in between all IOs; or 
c) burst(Pause, Burst), where a pause of length Pause is 
introduced between groups of Burst IOs.  

Note that both the pause and consecutive functions can be 
defined using the burst function, as pause(p) = burst(1, p) 
and consecutive = burst(0, –). We feel, however, that the 
pause and consecutive functions are important enough to be 
considered separately. 

• IOSize(IOi) is simply defined as the identity function over the 
parameter IOSize. 

• The location of the IO, LBA(IOi) is defined through one of 
four different functions: a) sequential; b) random; 
c) ordered(Incr), where a linear increment (or decrement) is 
applied to each LBA in the pattern, determined by the linear 
coefficient Incr; or d) partitioned(Partitions), where we 
divide the target space into Partitions partitions which are 
considered in a round robin fashion; within each partition 
IOs are sequential.  



For each of these functions, the address is first computed 
assuming an alignment to IOSize boundaries, and relative to 
a specified target location on the flash device (TargetOffset). 
Additionally, we must specify the size of the target space of 
the IO pattern (TargetSize) and whether the IO is indeed 
aligned or not (IOShift). 

• Lastly, Mode(IOi) is a constant function yielding two values, 
read or write. 

Figure 2 illustrates the use of many of these functions and 
parameters. Figure 2.a illustrates the alignment of the LBA 
function, the impact of the IOSize and IOShift parameters, and the 
response time of the IO, rt(IOi). Figure 2.b illustrates the impact 
of the TargetOffset and TargetSize parameters, as well as the 
Partitions parameter. Figure 2.c, on the other hand, illustrates the 
impact of the Incr, Pause, and Burst parameters for a sequential 
pattern. Note that for each pattern, we must also specify its length 
(IOCount) and warm-up period (IOIgnore). Setting the 
TargetOffset, IOIgnore, and IOCount parameters is part of the 
benchmarking methodology described in Section 4. 
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Figure 2: Parameters and functions 

Based on these functions, we consider three different types of 
potentially relevant IO patterns: 
• Basic patterns obtained by selecting one function for each 

of the four dimensions, assigning values to all the 
parameters. To give an idea of the size of the pattern space 
covered, there are 3×1×4×2 =24 basic IO patterns. 

• Mixed patterns obtained by combining basic patterns. 
Additional parameters are then required to control the mix of 
patterns. Even considering only combinations of two basic 
patterns results in a very large space of IO patterns, with one 
additional parameter required to control the mix. 

• Parallel patterns obtained by replicating a single basic 
pattern with a given degree of parallelism (ParallelDegree) 
or by mixing, in parallel, different basic patterns. 

3.2 The uFLIP Micro-Benchmarks 
Even with the restrictions that we have introduced, the space of 
potentially relevant IO patterns is far too large to be explored 
exhaustively. To further reduce the complexity of the benchmark, 
we adopt the following design principles: 
1. An execution of a reference pattern against a device is called 

a run. For each run, we measure and record the response time 
for individual IOs1 and compute statistics (min, max, mean, 
standard deviation) to summarize it.  
A collection of runs of the same reference pattern is called an 
experiment. To enable sound analysis of an experiment’s 
results (set of computed statistics), we design each 
experiment around a single varying parameter.2 

2. We then define a micro-benchmark as a collection of related 
experiments over the baseline patterns. The experiments of the 
same micro-benchmark thus have the same varying parameter, 
and the same value for all other functions and parameters. This 
gives a total of nine micro-benchmarks, as follows: 
Considering the basic pattern parameters (one of IOSize, 
IOShift, TargetSize, Partitions, Incr, Pause, or Burst) yields 
seven micro-benchmarks. 
Since mixed patterns need parameters to control the mix, 
restricting to varying a single parameter allows us to mix 
only the baseline patterns. This leads to one more micro-
benchmark with six combinations of baseline patterns, 
controlled by a Ratio parameter.  
Similarly, in order to focus only on one parameter, 
ParallelDegree, for parallel patterns, we choose to replicate 
only the four baseline patterns to implement parallelism. 

3. Each micro-benchmark is based on the four baseline patterns, 
departing from the baseline patterns only to accommodate 
the particular parameter being varied. 

We now define the nine uFLIP micro-benchmarks by describing 
informally the sets of reference patterns and the parameter that is 
varied. Table 1 fully specifies every micro-benchmark with a 
formula for the four IO attributes, as well as the name and range 
of the relevant parameters. In the table, we first give the formulas 
for the baseline patterns and then focus on the changes required to 
accommodate the varying parameter in each case. We present the 
micro-benchmarks by first considering location parameters, then 
parallel and mixed patterns, and end with the timing parameters. 

1. Granularity (IOSize): The flash translation layer manages a 
direct map between blocks and flash pages, but the 
granularity at which this mapping takes place is not 
documented. The IOSize parameter allows determining 
whether a flash device favors a given granularity of IOs.  

2. Alignment (IOShift): Using a fixed IOSize (e.g., chosen 
based on the first micro-benchmark), we study the impact of 
alignment on the baseline patterns by introducing the IOShift 
parameter and varying it from 0 to IOSize. 

                                                                 
1 One could consider other metrics such as space occupation or aging. Given 

the block abstraction the only way to measure space occupation is indirectly 
through write performance measurements. Measuring aging is difficult since 
reaching the erase limit (with wear leveling) may take years. Measuring 
power consumption, however, should be considered in future work. 

2 Considering more than one varying parameter would lead to multi-
dimensional graphs, which are too complex to analyze. 



Table 1: Micro-Benchmark definitions 
Micro-benchmark Attribute Pattern Definitions   Examples 
Baseline patterns t(IOi) 

IOSize(IOi) 
LBA(IOi) 
 
Mode(IOi) 

consecutive:  t(IOi-1) +  rt(IOi-1) 
constant (32 KB in our experiments) 
Rnd: TargetOffset +  random(TargetSize/IOSize) × IOSize
Seq: TargetOffset + i × IOSize 
read | write 

IOSize(IOi) IOSize Granularity 
IOSize [20, …, 29] × 512B (plus some non-powers of 2)  

SW (IOSize = 8 KB)                     SW (IOSize = 32 KB)                     RR (IOSize = 8 KB) 
LBA(IOi) Rnd: TargetOffset + IOShift + 

         random(TargetSize/IOSize) × IOSize 
Seq: TargetOffset + IOShift + i × IOSize 

Alignment 

IOShift [20, …,  IOSize/512] × 512B 

 
SW (IOShift = 512 B)                   SW (IOShift = 16 KB)                   RR (IOShift = 16 KB) 

LBA(IOi) Rnd: Unchanged 
Seq: TargetOffset + (i × IOSize) mod TargetSize 

Locality 
 

TargetSize Rnd: [20, …, 216] × IOSize 
Seq: [20, …, 28] × IOSize 

 
 RR (Target Size = 4×IO Size)           SW (Target Size = 8×IO Size )         RR (Target Size = 32×IO Size) 

LBA(IOi) Sequential patterns only 
Seq: Pi × PS + Oi  where 
PS = TargetSize/Partitions  
Pi = i mod Partitions 
Oi = ⎣(i/Partitions) × IOSize⎦ mod PS 

Partitioning 

Partitions [20, …, 28]   
   SR (Partitions = 1)                       SR (Partitions = 2)                       SW (Partitions = 4) 

LBA(IOi) Sequential patterns only 
Seq: TargetOffset + (Incr × i × IOSize) 

Order 

Incr [-1, 0, 20, …, 28] 

  
SR (Incr = –1 )                               SW (Incr = 0)                                SR (Incr = 4) 

LBA(IOi) ParallelDegree concurrent processes. For process p,  
TargetOffsetp = p × TargetSize / ParallelDegree 
TargetSizep   = TargetSize / ParallelDegree 

Parallelism 

ParallelDegree [20, …, 24] 

  
  SR (ParallelDegree = 2)               SW (ParallelDegree = 4)              RW (ParallelDegree = 4) 

Pattern #1 
Pattern #2 

SR 
RR 

SR 
RW 

SR 
SW 

RR 
SW 

RR 
RW 

SW 
RW 

  
2 SR / 1 RR                                   3 SR / 1 RW                                   4 SR / 1 SW 

Mix 

Ratio (#1/#2) [20, …, 26] 

 
1 RR / 1 SW                                   2 RR / 1 RW                                   4 SW / 1 RW

t(IOi) t(IOi-1) + rt(IOi-1) + Pause Pause 
Pause [20, …, 28] × 0.1 msec 

  
SR (Pause = 0.1 ms)                     SW (Pause = 0.5 ms)                     RR (Pause = 0.5 ms) 

t(IOi) t(IOi-1) + rt(IOi-1) + (i mod Burst) × Pause Bursts 
Pause 
Burst 

e.g., 100 ms 
[20, …, 26] × 10 

  
   SR (Burst = 6, Pause = 0.1 s)            SW (Burst = 3, Pause = 0.1 s)            RR (Burst = 6, Pause = 0.1 s)



3. Locality (TargetSize): We study the impact of locality of the 
baseline patterns, by varying TargetSize down to IOSize. 

4. Partitioning (Partitions): The partitioned patterns are a 
variation of the sequential baseline patterns. We divide the 
target space into Partitions partitions which are considered in 
a round robin fashion; within each partition IOs are 
performed sequentially. This pattern represents, for instance, 
a merge operation of several buckets during external sort. 

5. Order (Incr): The order patterns are another variation on the 
sequential patterns, where logical blocks are addressed in a 
given order. For the sake of simplicity, we consider a linear 
increase (or decrease) in the LBAs addressed in the pattern, 
determined by a linear coefficient Incr. We can thus define 
a) patterns with increasing LBAs (Incr > 1) or decreasing 
LBAs (Incr < 0), or b) in-place patterns (Incr = 0) where the 
LBA remains the same throughout the pattern.  

 These mapping are simple, yet important and representative 
of different algorithmic choices: for example, a reverse 
pattern (Incr = –1) represents a data structure accessed in 
reverse order when reading or writing, the in-place pattern is 
a pathological pattern for flash chips, while an increasing 
LBA pattern represents the manipulation of a pre-allocated 
array, filled by columns or lines. 

6. Parallelism (ParallelDegree): Since flash devices include 
many flash chips (even USB flash drives typically contain two 
flash chips), we want to study how they support overlapping 
IOs. We divide the target space into ParallelDegree subsets, 
each one accessed by a process executing the same baseline 
pattern. We vary the parameter ParallelDegree to study how 
well the flash device supports parallelism, and thus how 
asynchronous IO should be scheduled and how parallelism 
should be managed. 

7. Mix (Ratio): We compose any two baseline patterns, for a 
total of six combinations. We vary the ratio to study how 
such mixes differ from the baselines.  

8. Pause (Pause): This is a variation of the baseline patterns, 
where IOs are not contiguous in time. We use the pause 
function and vary the Pause parameter to observe whether 
potential asynchronous operations from the flash device 
block manager impact performance. 

9. Bursts (Burst): This is a variation of the previous micro-
benchmark, where the Pause parameter is set to a fixed 
length (e.g. 100 msec). The Burst parameter is then varied to 
study how potential asynchronous overhead accumulates in 
time. 

3.3 Discussion 
Even though uFLIP is not a domain-specific benchmark, it should 
still fulfill the four key criteria defined in the Benchmarking 
Handbook: portability, scalability, relevance and simplicity [6].  

Because uFLIP defines how IOs should be submitted, uFLIP has 
no adherence to any machine architecture, operating system or 
programming language: uFLIP is portable.  

Also, uFLIP does not depend on the form factor of flash device 
being studied, and we have indeed run uFLIP on USB flash 
drives, SD cards, IDE flashes and SSD drives: uFLIP is scalable.  

We believe uFLIP is relevant for algorithm, system and flash 
designers because the nine micro-benchmarks reflect flash device 
characteristics as well as the characteristics of the software that 
generates IOs. It is neither designed to support decision making 
nor to reverse engineer flash devices.  

Whether uFLIP satisfies the criteria of simplicity is debatable. The 
benchmark definition itself is quite simple, and indeed we have 
reduced an infinite space of IO patterns down to nine micro-
benchmarks that define how IOs are submitted using very simple 
formulas and parameters.  

On the other hand, our decision to measure response time for each 
submitted IO means that the benchmark results are very large and 
analyzing those results is not straightforward. We felt, however, 
that requiring such analysis is fundamental to achieving our goal 
of understanding the flash device performance. We have therefore 
designed a visualization tool that facilitates interactive result 
analysis.  

Furthermore, benchmarking flash devices is inherently far from 
simple, e.g., due to the impact of the device state on the 
performance of individual operations. The methodology we 
present in the next section addresses this issue.  

In summary, we believe that uFLIP is as simple as possible, given 
the complexities of flash device benchmarking, and that further 
simplifications would lead to loss of understanding. We note that 
we have achieved this simplicity by following strictly the three 
design principles outlined in Section 3.2. 

4. BENCHMARKING METHODOLOGY 
Measuring flash device performance is very challenging. First, as 
discussed in Section 2, the state of the device impacts its 
performance. Second, because response time is not uniform, each 
experiment must be long enough to capture the performance 
variations of the device under study. Third, consecutive micro-
benchmark runs should not interfere with each other. In the 
remainder of this section, we discuss these challenges in detail. 

4.1 Device State 
In our experiments, we have observed that ignoring the state of a 
flash device can lead to meaningless performance measurements; 
we now describe the most striking example. Out-of-the-box, the 
Samsung SSD (see Section 5 for details) had excellent random 
write performance (around 1 msec for a 16KB random write, 
compared to around 8 msec for other SSDs). After randomly 
writing the entire 32GB of flash, however, the write performance 
decreased by almost an order of magnitude and became 
comparable to the other SSDs.  

In order to obtain repeatable results we should run the micro-
benchmarks from a well-defined initial state, which is 
independent of the complete IO history. Since flash devices only 
expose a block device API, however, we cannot erase all blocks 
and get back to factory settings. And, because flash devices are 
black boxes, we cannot know their exact state. We therefore make 
the following assumption for the uFLIP benchmark: Writing the 
whole flash device completely yields a well-defined state. The 
rationale is that following a complete write of the whole flash 
device, both the direct and indirect maps managed by the FTL are 
filled and well-defined. 



We therefore propose to enforce an initial state for the benchmark 
by performing random IOs of random size (ranging from 0.5KB 
to the flash block size, 128 KB) on the whole device. The 
advantage of this method is that it is quite stable, as only 
sequential writes disturb the state significantly. In order to limit 
the impact of sequential writes, we direct them to distinct target 
spaces (specified by TargetOffset) when running the micro-
benchmarks. The main disadvantage of our method is that it is 
slow, but since it is typically only done once this is acceptable. 

The alternative, performing a complete rewrite of the device using 
sequential IOs of a given size, is faster but may be less stable for 
many devices. The reason for the increased instability is that 
random writes, badly aligned IOs, or IOs of different sizes, impact 
a sequential state much more significantly than a random state. 
Studying in detail the impact of the initial state on performance is, 
however, a topic for future work. 

4.2 Start-up and Running Phases 
Consider a device where the first 128 random writes are very 
cheap (400 µsec), and where the subsequent random writes 
oscillate between very cheap (400 µsec) and very expensive 
(27 msec). Now, say that we run the random write baseline pattern 
with IOCount = 512, which would seem to be long enough. In this 
case, the measured time will be about 25% lower than it should 
be; with shorter experiments the difference is even more 
pronounced. As another example, running the Mix micro-
benchmark on Random Read and Write patterns with an IOCount 
of 512 will lead to entirely meaningless results when Ratio is 
higher than 4 (more than 4 reads for every write), as then our 
measurements only capture the initial, very cheap random writes. 
If we are not careful, in fact, we might even conclude that a read-
mostly workload can absorb the cost of the random writes. 

We propose a two-phase model to capture response time 
variations within the course of a micro-benchmark run. In the first 
phase, which we call start-up phase, response time is cheap. Such 
a start-up phase can occur when expensive operations are delayed, 
e.g., due to buffering or lazy garbage collection. In the second 
phase, which we call running phase, response time is typically 
oscillating between two or more values.  

We thus characterize each device by two parameters: start-up, 
which defines the number of IOs for the start-up phase, and 
period, which defines the number of IOs in one oscillation in the 
running phase. In order to measure start-up and period, we run all 
four baseline patterns (SR, RR, SW and RW) with a very large 
IOCount. By plotting the IO costs, we can then identify the two 
phases for each pattern and derive upper bounds across the patterns 
for start-up and period (note that the start-up phase may not be 
present, in which case start-up = 0). Furthermore, we can determine 
the variability in the IO times. 

The impact of this two-phase model on the benchmarking 
methodology is twofold. First, for each experiment we must adjust 
IOCount to capture both the start-up phase and the running phase 
(a sufficiently large number of periods). Second, we must ignore 
the start-up phase when summarizing the results of each run, so 
that we can use a statistical representation (min, max, mean, 
standard variation) to represent the response times obtained during 
the running phase. We therefore select IOIgnore as long enough to 
cover the start-up phase and IOCount as long enough to cover a 
sufficient number of periods to allow for convergence to the correct 
average response times. 

Note that the value of IOCount has a direct impact on the time it 
takes to run an experiment and on the flash size involved in this 
experiment. As we saw in the previous sub-section, we must limit 
the portion of flash impacted by each experiment in order to avoid 
resetting the initial state too often during the course of 
benchmarking. Overestimating IOCount thus leads to a waste of 
time. Underestimating IOCount, on the other hand, leads to 
decreased precision and possibly incorrect results. Defining a 
method for automatically finding an appropriate IOCount value is 
a topic for future work.  

Once IOCount is set to an appropriate value for each experiment, 
we define a benchmark plan that defines a sequence of state resets 
and micro-benchmarks, where those experiments involving 
sequential writes are delayed and grouped together in such a way 
that their allocated target space does not overlap, meaning that 
state resets are inserted only when the size of the accumulated 
target space involved in sequential write patterns is larger than the 
size of the flash device. Note that for the large flash devices 
(32 GB) the state is in fact never reset. 

4.3 No Interference  
Consecutive benchmark runs should not interfere with each other. 
Consider a device that implements an asynchronous page 
reclamation policy. Its effects should be captured in the running 
phase defined above. We must make sure, however, that the effect 
of the page reclamation triggered by a given run has no impact on 
subsequent, unrelated runs.  

To evaluate the length of the pause between runs, we rely on the 
following experiment. We submit sequential reads, followed by a 
batch of random writes, and sequential reads again. We count the 
number of sequential reads in the second batch which are affected 
by the random writes. We then use this value as a lower bound on 
the pause between consecutive runs. Note that when 
benchmarking a device with unknown properties, this is only an 
educated guess, and therefore we propose to significantly 
overestimate the length of the pause. 

Another type of potential interference is due to the file system, the 
operating system and the device drivers on the server hosting the 
flash device under study. Those layers of software introduce 
complexity and thus tend to complicate the analysis of the 
benchmark results. We thus use direct IO in order to bypass the 
host file system and synchronous IO to avoid the parallelism 
features of the operating system and device drivers.3 

5. FLASH DEVICE EVALUATION 
In this section, we report on our experimental evaluation of a 
range of flash devices, using the uFLIP benchmark. In Section 5.1 
we describe our benchmark preparation following our 
methodology laid out in Section 4. In Section 5.2 we present and 
analyze the benchmark results. Finally, in Section 5.3, we discuss 
a set of design hints that can be drawn from our results. 

                                                                 
3 The lowest layer of the file system is the disk scheduler, which actually 

submits IO operations to the device driver. The disk scheduler is, as its 
name indicates, designed to optimize submission of IOs to disk. 
Whether disk schedulers should be redesigned for flash devices is an 
open question; the uFLIP benchmark should help in determining the 
answer. 



5.1 Benchmark Preparation 
We ran the uFLIP benchmark on an Intel Celeron 2.5GHz 
processor with 2GB of RAM running Windows XP. We ran each 
micro-benchmark using our own FlashIO software package 
(available at http://www.uflip.org/flashio.html). Each experiment 
was run three times. As the differences in performance were 
typically within 5%, we report the average of the three runs. 

It was quite difficult to select a representative and diverse set of 
flash devices, as a) the flash device market is very active, 
b) products are not well documented (typically, random write 
performance is not provided!), and c) in fact, several products 
differ only by their packaging. We eventually selected the eleven 
different devices listed in Table 2, ranging from low-end USB 
flash drives or SD cards to high-end SSDs4. While we ran the 
entire uFLIP benchmark for all the devices, we only present 
results for seven representative devices indicated with an arrow in 
Table 1. Detailed information and measurements for all eleven 
flash devices can be found at http://www.uflip.org/results.html. 

Table 2: Selected flash devices 
 Brand Model Type Size Price 

Memoright MR25.2-032S SSD 32 GB $943 
 GSKILL FS-25S2-32GB SSD 32 GB $694 

Samsung  MCBQE32G5MPP SSD 32 GB $517 
Mtron SATA7035-016 SSD 16 GB $407 

 Transcend TS16GSSD25S-S SSD 16 GB $250 
Transcend TS32GSSD25S-M SSD 32 GB $199 
Kingston DT hyper X USB drive   8 GB $153 

 Corsair Flash Voyager GT USB drive 16 GB $110 
Transcend TS4GDOM40V-S IDE module   4 GB $62 
Kingston DTI 4GB USB drive   4 GB $17 

 Kingston SD 4GB SD card   2 GB $12 
 

Random State Enforcement: As prescribed in Section 4, we first 
filled each device with random writes of random size to enforce a 
random state. The time required for this varied significantly, 
ranging from 5 hours for the Memoright SSD to 35 days for the 
Corsair USB flash drive! 
Although this is a significant time, it is still more efficient than 
enforcing a sequential state. Indeed, state enforcement is much 
faster with sequential state but the state also deteriorates faster as 
more workloads impact the state. Thus, the overall running time is 
longer with sequential state enforcement. In fact, sequential state 
enforcement on the Memoright SSD required a total formatting 
time of 17 hours, while a single format of 5 hours was sufficient 
for random state enforcement. 

Start-up and Running Phases: As also prescribed in Section 4, 
we then ran the baseline patterns with large IOCount to measure 
start-up and period for each device. Figures 3 and 4 show two 
very representative traces from these measurements. In both 
figures, the x-axis shows the time in units of IO operations, while 
the y-axis shows the cost of each operation in msec (in 
logarithmic scale).  

 

                                                                 
4 At the time of writing, we were still waiting for the twelfth device, the 

recently released Flash PCI card from Fusion-IO, advertised as reaching 
throughput of 600MB/s for random writes. The benchmarking results 
will be published on uFLIP web-site.  
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Figure 3: Starting and running phase for Mtron SSD(RW) 

In Figure 3, which presents the RW baseline pattern for the Mtron 
SSD, we can easily distinguish between the start-up phase and the 
running phase. The start-up phase is about 125 IOs, while the 
period is quite short (tens of IOs). The dashed line represents the 
running average of response time, including the startup phase 
measurements, while the solid line represents the running average 
of response time, excluding the start-up phase measurements. As 
expected, excluding the start-up phase measurements resulted in a 
faster and more accurate representation of response time. In 
Figure 4, on the other hand, which presents the SW baseline 
pattern for the Kingston DTI USB flash drive, there is no startup 
phase and the period is about 128 operations. 

With respect to start-up and running phases, we can basically 
divide the set of tested devices into two classes. The Memoright 
and Mtron SSDs both have a startup phase for random writes 
followed by oscillations with a very small period. They do not 
show startup for SR, RR and SW. For these devices, care should 
be taken when running experiments that involve a small number 
of RW, especially Mix patterns, since the startup phase should be 
scaled-up according to the number of RW IOs.  

The other nine devices have no startup phase but show small 
oscillations for RR, larger ones for SW and sometimes large 
oscillations for RW (with some impressive variations between 
0.25 and 300 msec).  
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Figure 4: Running phase for Kingston DTI 
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Figure 5: Pause determination for Mtron 

For simplicity, we used the following rules for setting IOIgnore 
and IOCount. We set IOIgnore = 0 for all devices (no start-up) 
except the Memoright and Mtron SSDs. For the latter, we used the 
values 30 and 128, respectively, for experiments involving 
random writes and 0 for all other experiments. For the SSDs, we 
set IOCount to 1,024 for SR, RR and SW (very small oscillations) 
and to 5,120 for RW (large oscillations). We set the IOCount to 
512 in all cases for slow and/or small devices (USB drives, IDE 
module, and SD card). Note that the values of IOIgnore and 
IOCount are automatically scaled by the FlashIO tool when 
considering mixed workloads.  
Pause between Experiments: Finally, we must measure the 
pause required between experiments, by running a pattern of 
sequential reads, followed by random writes, and sequential reads 
again. Figure 5 shows the result of this experiment for the Mtron 
SSD. As before, the x-axis shows the time in units of IO 
operations, while the y-axis shows the cost of each operation. 
As Figure 5 shows, the lingering effect of the random writes lasts 
for about 3,000 sequential reads, corresponding to about 2.5 
seconds. For this device, we therefore overestimate the pause to 
5 seconds. 
For all the other devices, including the other SSDs, there was no 
lingering impact from the random writes. The sequential reads 
immediately performed as well after the batch of writes as they 
did before the batch of writes; we therefore set the pause to 1 s (to 
be conservative). 

5.2  Benchmark Results 
Having set the stage for our benchmarking effort, we now turn to 
the results of the actual uFLIP micro-benchmarks. As mentioned 
above, we focus on the results from the seven flash devices 
indicated in Table 2, as they are very representative for the set. In 
this section, we cover the most interesting results of our analysis. 
Effect of Granularity: We first consider the performance on the 
Granularity micro-benchmark where IOSize is varied. We 
generally expect reads to be cheaper than writes because some 
writes will generate erase operations, and we also expect random 
writes to be more expensive than sequential writes as they should 
generate more erases.  

Figure 6 shows the response time (in msec) of each IO operation 
for the Memoright SSD. Three observations can be made about 
this figure. First, all reads and sequential writes are very efficient; 
their  response time is linear  with a  small latency  (about 70 µsec 
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Figure 6: Granularity for Memo  

for SR/SW and 115 µsec for RR). Second, for rather large random 
writes, the response time is much higher, at least 5 msec; note 
that, similar to Figure 3, the cost of random writes alternates 
between cheap writes (of similar cost to sequential writes) and 
extremely expensive erase operations (tens of ms). Third, small 
random writes are serviced much faster; apparently due to caching 
as four writes of 4KB take about as much time as two writes of 
8KB and one write of 16KB. 

In comparison, Figure 7 shows the response time for the Kingston 
DTI USB flash drive. In this figure, the response time of random 
writes is omitted, as it is a rather constant value around 260 msec. 
As the figure shows, for this device the cost of sequential writes is 
affected strongly by the IO granularity, as smaller writes incur a 
significantly higher cost than writes of 32KB. Comparing the two 
devices, we observe that while random writes are up to a factor of 
five times slower than the other operations on the Memoright 
SSD, they are one or two orders of magnitude slower for the 
Kingston DTI USB flash drive. This is undoubtedly due to more 
advanced hardware and FTL on the Memoright SSD (Figure 1 
shows that the Memoright SSD includes an FGPA, 16 MB of 
RAM and a condenser!).  

The remaining experiments were run with IO sizes of 32KB. 
Furthermore, since the performance of reads is excellent, we focus 
largely on the performance of (random) writes. 
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Figure 7: Granularity for Kingston DTI (SR,RR,SW) 
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Figure 8: Locality for Samsung, Memoright and Mtron  

Effect of Locality: Figure 8 shows the response time of random 
writes (relative to sequential writes) as the target size grows from 
very small (local) to very large (note the logarithmic x-axis). Our 
expectation was that doing random writes within a small area 
might improve their performance. The figure verifies this 
intuition, as random writes within a small area have nearly the 
same response time as sequential writes. The figure shows, 
however, that the exact effect of locality varies between devices, 
both in terms of the area that the random writes can cover, and in 
terms of their relative performance. Note that some low end USB 
devices (e.g., Kingston DTI) do not show any benefit by focusing 
random IOs in a reduced area. 

Locality does not affect performance of sequential writes, until the 
area becomes so small that the writes become in-place writes (see 
below for the effect of in-place writes). 
Key Characteristics: We now turn our attention to Table 3, 
which succinctly summarizes some key results from several 
experiments. In fact, it can be argued that the results in the table 
describe the key characteristics of the devices, and could be used 
as the basis for a course classification or categorization. In the 
following, we will discuss the result columns from left to right. 

First, SR, RR, SW, RW indicate the cost of a corresponding IO 
operation of 32KB. These columns show that there is a large 
difference in performance between the USB flash drives and the 
other devices, but also between low-end and high-end SSDs. For 

the high-end SSDs, even the random write performance is quite 
good. In fact, as we explore more results, the high-end SSDs 
distinguish themselves further from the rest. 
The fifth column of Table 3 indicates the effect of the Pause 
micro-benchmark on the random write baseline pattern. No value 
indicates that this had no effect, which in turn indicates that no 
asynchronous page reclamation is taking place. For the high-end 
SSDs, however, inserting a pause improves the performance of 
the random writes to the point where they behave like sequential 
writes. Interestingly, however, the length of the pause when that 
happens is precisely the time required on average for a random 
write. Thus, no true response time savings are seen by inserting this 
pause, as the total workload takes the same overall time regardless 
of the length of the pause. A similar effect is seen with the Burst 
micro-benchmark. 
The sixth column of Table 3 summarizes the effect of Locality on 
random writes, which we already explored with Figure 8; it shows 
the size of “locality area” for random writes in MB and, in 
parentheses, the maximum cost of random writes within that area 
relative to the average cost for sequential writes.  

The seventh column of Table 3 summarizes a similar effect for the 
Partitioning micro-benchmark. The goal of that experiment was to 
study whether concurrent sequential write patterns over many 
partitions degrade the performance of the sequential writes. The 
column shows the number of concurrent partitions that can be 
written to without significant degradation of the performance, as 
well as the cost of the writes relative to sequential writes to a 
single partition. Note that when writing to more partitions than 
indicated in this column, the write performance degrades 
significantly.  

The last three columns of Table 3 investigate the Order micro-
benchmark. The eighth and ninth columns show the cost of the 
reverse (Incr = –1) and in-place (Incr = 0) patterns, respectively, 
compared to the cost of sequential writes. As the columns show, the 
effect of the in-place pattern, in particular, varies significantly 
between devices, ranging from time savings of about 40% for the 
Samsung SSD, to important performance degradation for the 
Kingston DTI USB flash drive. The final column shows the impact 
of large increments (gaps from one 1 MB to 8 MB) compared to the 
cost of random writes. As the column shows, for high end SSDs 
and for the Transcend IDE Module, the cost is twice or four times 
the cost of a random writes. 

Table 3: Result summary 

Basic patterns Pause Locality Partitioning Ordered 
SR RR SW RW RW RW RW Reverse In-Place Large 

Device (ms) (ms) (ms) (ms) (ms) (MB) (Partitions) (Incr = -1) (Incr = 0) Incr 
Memoright 0.3 0.4 0.3 5 5 8 (=) 8 (=) = = x4 
Mtron 0.4 0.5 0.4 9 9 8 (x2) 4 (x1.5) = = x2 
Samsung 0.5 0,5 0.6 18   16 (x1.5) 4 (x2) x1.5 x0.6 x2 
Transcend Module 1.2 1.3 1.7 18   4 (x2) 4 (x2) x3  x2 x2 
Transcend MLC 1.4 3.0 2.6 233   4 (=) 4 (x2) x2 x2 x1 
Kingston DTHX 1.3 1.5 1.8 270   16 (x20) 8 (x20) x7 x6 x1 
Kingston DTI 1.9 2.2 2.9 256   No 4 (x5) x8 x40 x1 

 

 

 



Other Results: To give a short outline of the results of the 
remaining micro-benchmarks, which we have not covered in 
detail, we observed the following:  
• Unaligned IO requests result in significant performance 

degradation for some devices. For instance, on the Samsung 
SSD, random IOs should be aligned to 16 KB, as otherwise 
the response time increases from 18 msec to 32 msec.  

• The Mix patterns did not affect significantly the overall cost 
of the workloads. This behavior is very different from hard 
disks, where combinations of workloads significantly affect 
their performance. 

• Finally, we did not observe any performance improvements 
from submitting IOs in parallel. In fact, parallel execution 
with a high degree can cause multiple sequential write 
patterns to degenerate to random write patterns (more 
precisely to partitioned write patterns), with the 
corresponding increase in cost. 

5.3 Discussion 
The goal of the uFLIP benchmark is to facilitate understanding of 
the behavior of flash devices, in order to improve algorithm and 
system design against such devices. In this section we have used 
the uFLIP benchmark to explore the characteristics of a large set 
of representative devices. From our results, we draw three major 
conclusions. 

First, we have found that with the current crop of flash devices, 
their performance characteristics can be captured quite succinctly 
with a small number of performance indicators shown in Table 3. 

Second, we observe that the performance difference between the 
high-end SSDs and the remainder of the devices, including low-
end SSDs, is very significant. Not only is their performance better 
with the basic IO patterns, but they also cope better with unusual 
patterns, such as the reverse and in-place patterns. Unfortunately, 
the price label is not always indicative of relative performance, 
and therefore designers of high-performance systems should 
carefully choose their flash devices. 

Finally, based on our results, we are able give the following 
design hints for algorithm and system designers: 

Hint 1: Flash devices do incur latency. Despite the absence of 
mechanical parts, the software layers incur some overhead per IO 
operation. Therefore, larger IOs are generally beneficial, even for 
read operations.  
Hint 2: Block size should (currently) be 32KB. Based on the first 
hint, large block sizes are beneficial for writes, while an 
application of the famed five minute rule [4] says 4KB pages are 
beneficial for reads, based on prices and capacities of the high-end 
devices we studied. We therefore believe that 32BK is a good 
trade-off for those high-end devices. 
Hint 3: Blocks should be aligned to flash pages. This is not 
unexpected, based on flash characteristics, but we have observed 
that the penalty paid for lack of alignment is quite severe. 
Hint 4: Random writes should be limited to a focused area. Our 
experiments show that, for most devices, random writes to an area 
of 4–16MB perform nearly as well as sequential writes. Random 
writes to larger areas are typically expensive and should be 
avoided; again, however, the high-end SSDs perform much better 
in this regard. 

Hint 5: Sequential writes should be limited to a few partitions. 
Concurrent sequential writes to 4–8 different partitions are 
acceptable; beyond that performance degrades to random writes.  
Hint 6: Combining a limited number of patterns is acceptable. In 
the same vein, concurrent access from a few patterns does not 
appear to affect the performance of the individual patterns.  
Hint 7: Neither concurrent nor delayed IOs improve the 
performance. Due to the absence of mechanical components, IO 
scheduling is not improved through abundance of pending 
asynchronous IOs. Furthermore, introducing pauses does not 
affect total response time. 

6. CONCLUSION 
The design of algorithms and systems using flash devices as 
secondary storage should be grounded in a comprehensive 
understanding of their performance characteristics. We believe 
that the investigation of flash device behavior deserves strong and 
continuous effort from the community: uFLIP and its associated 
benchmarking methodology should help define a stable 
foundation for measuring flash device performance. By making 
available online (at www.uflip.org) the benchmark specification, 
the software we developed to run the benchmark, and the results 
we obtained on eleven devices, our plan is to gather comments 
and feedback from researchers and practitioners interested in the 
potential of flash devices.  

There are many avenues for future work. First, we would like to 
facilitate benchmarking efforts, e.g., through (semi-)automatic 
tuning of experiment length to ensure that the start-up period is 
omitted and the running phase captured sufficiently well to 
guarantee given bounds for the confidence interval, while 
minimizing the IOs issued. Similarly, (semi-)automatic methods 
for generating benchmark plans would be useful. Second, we are 
already working on a visualization interface to facilitate the 
analysis of benchmark results. Third, we plan to improve the 
uFLIP web-site, to allow the research community to submit 
benchmark results. And last, but not least, there are many 
opportunities for using the knowledge gained from the uFLIP 
benchmark for algorithm and system design for flash devices. 
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