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Abstract. While most of the work done in Privacy-Preserving Data
Publishing does the assumption of a trusted central publisher, this paper
advocates a fully decentralized way of publishing anonymized datasets.
It capitalizes on the emergence of more and more powerful and versatile
Secure Portable Tokens raising new alternatives to manage and protect
personal data. The proposed approach allows the delivery of sanitized
datasets extracted from personal data hosted by a large population of
Secure Portable Tokens. The central idea lies in distributing the trust
among the data owners while deterring dishonest participants to cheat
with the protocols. Deviant behaviors are deterred thanks to a combina-
tion of preventive and curative measures. Experimental results confirm
the effectiveness of the solution.

1 Introduction

Privacy-Preserving Data Publishing (PPDP) attempts to deliver useful micro-
data sets for knowledge-based decision making without revealing the identity
of individuals. A typical PPDP scenario starts by a collection phase where the
data publisher (e.g., a hospital) collects data from data owners (e.g., patients).
It is followed by a construction phase during which the sanitization rules are
computed, and an anonymization phase where the publisher applies these rules
to the data. The data can finally be released to a set of data recipients (e.g., a
drug company or a public agency) for data mining or inquiry purposes.

Most research in the PPDP area considers a trusted model: the data pub-
lisher is trustworthy, therefore data owners easily consent providing it with their
personal information [3]. The advantage is that all the complex computing can
be done on the central server. In this article, we get rid of the need of trusting
central servers whose vulnerabilities to both negligences and internal/external
attacks are frequently spotted 1. This approach is possible thanks to the emer-
gence of new hardware protected devices called Secure Portable Tokens (SPTs),
on which a user can securely store personal data. This raises a natural ques-
tion “How can we sanitize personal data embedded in Secure Portable Tokens
without reintroducing a leak in the architecture?”.

1 http://datalossdb.org



Answering this question means designing a protocol which produces an ano-
nymized version of a database horizontally split among a population of trusted
SPTs, such that the untrusted environment surrounding the SPTs can never
learn more than the final result. This concern has been partially addressed by a
limited number of works so far, in a way which unfortunately severely limits their
practical scope. The generic Secure Multi-party Computation (SMC) construct
allows several parties to jointly compute a function without revealing their input
to one another [9], but its cost grows exponentially with the input size [4].
This disqualifies it for sanitizing widely distributed datasets. More efficient SMC
constructs have been proposed to implement specific distributed PPDP protocols
[11, 12, 6]. However, strong assumptions are made concerning the attack model.

The approach promoted in this paper makes a novel assumption: it distributes
trust among all data owners while deterring dishonest data owners to cheat with
the protocols. Two ways of deterring deviant behaviors of parties are combined.
The first way is preventive and relies on the tamper-resistance of the SPTs. We
have previously shown in [1] that simple and secure PPDP protocols can be
devised under the assumption that SPTs cannot be broken by any attacker. The
second way is curative and relies on a mechanism detecting cheating parties, i.e.
an attacker having broken one or more SPT. This paper focuses on this second
aspect.

Hence, this paper makes the following contributions. First, it proposes a
probabilistic approach to detect compromized participants and shows the ef-
fectiveness of this approach. Second, it builds on this result to propose a new
distributed PPDP computing model combining preventive and curative security
measures. While the level of security reached by a probabilistic approach cannot
be compared to SMC, we argue that it is high enough to meet the requirements
of a broad set of applications, and notably Privacy-Preserving Data Publishing.

The rest of this paper is organized as follows. Section 2 details the problem
statement through a motivating scenario, illustrating the assumptions made on
the architecture, anonymization technique, and considered attack model. Section
3 briefly recalls the preventive way of deterring attacks. Section 4 introduces the
curative way of deterring attacks and Section 5 evaluates its effectiveness. Finally,
Section 6 concludes.

2 Problem Statement

Motivating example: The motivating example presented below capitalizes
on a real experiment conducted in the field called PlugDB2. PlugDB aims at
improving the coordination of medical and social care for elderly people while
giving the control back to the patient over how her data is accessed and shared.
The ageing of population makes the organization of home care a crucial issue and
requires sharing medical and social information between different participants
(doctors, nurses, social workers, home helpers and family circle). Server-based

2 http://www-smis.inria.fr/~DMSP/home.php



Electronic Health Record solutions are inadequate because (1) the access to the
folder is conditioned by the existence of a high speed and secure internet connec-
tion at any place and any time; and (2) they fail in providing ultimate security
guarantees to the patients, a fundamental concern for patients facing complex
human situations (diagnosis of terminal illness, addictions, financial difficulties,
etc). This experimental project addresses these concerns as follows. Each patient
is equipped with a SPT embedding a personal server managing her medical-social
folder. As pictured in Figure 1, the form factor of patient’s SPT is a USB to-
ken. A central server achieves the data durability by maintaining an encrypted
archive of each patient’s folder. The patient’s folder includes social information
such as financial resources or scores measuring possible lack of autonomy, as
well as medical data like diagnosis, treatments, and evolution of medical metrics
(e.g., weight, blood pressure, cholesterol, etc.). This mix of medical and social
information is of utmost interest for statistical studies.

When a practitioner visits a patient, the patient is free to provide her SPT
or not, depending on her willingness to let the practitioner physically access it.
In the positive case, the practitioner plugs the patient’s SPT into his terminal,
authenticates to the SPT server and can query and update the patient’s folder
according to his access rights, through a simple web browser. The patient’s data
never appears on any central server and no trace of interaction is ever stored in
any terminal. If the patient looses her SPT, the SPT tamper-resistance renders
potential attacks harmless. The folder can then be recovered from the encrypted
archive maintained by the central server.

Now, let us assume that a health agency decides to collect sensitive data
to perform an epidemiological study. Even paranoid patients will be disposed to
consent participating in the study because: (1) they have the guarantee that their
data will never be exposed on any server before being accurately anonymized,
(2) they trust other patient’s SPT to obey the protocol, knowing that tampering
a SPT even by its owner is very difficult and (3) even in the improbable situation
where a SPT is cracked, the cheater will be detected with a probability close to
1. When they are receiving care, their SPT does not remain idle but receives
anonymization tasks from the agency and performs them in the background.
Data used by these tasks is protected from prying eyes because it is kept confined
in the SPT’s secure environment. So, patients can enjoy their healthcare folder
with full confidence without compromising neither their own rights to privacy
nor any collective healthcare benefits.

Encrypted Personal Data
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Fig. 1. Anonymous release of data stored on SPTs



Let us stress that the challenge tackled by this paper is not restricted to the
healthcare domain. More generally, similar scenarios can be envisioned each time
the legislation recognizes the right of the record owner to control under which
conditions her personal data is stored.

Functional Architecture: Figure 1 illustrates the functional architecture
and modus operandi considered in the paper. The architecture is composed of
two parts. The Trusted Environment (TE) is constituted by the set of SPTs
participating in the infrastructure. Each SPT hosts the personal data of a single
record owner. However, it can take part in a distributed computation involving
data issued from multiple record owners since all the SPTs a priori trust each
other. The number of participating SPTs is application dependent and may vary
from tens of thousands in a small environment (e.g., a specific clinical study over
a selected cohort) to millions in a region-wide or nation-wide initiative (e.g., an
epidemiological study for a nation-wide health research program). The Untrusted
Environment (UE) encompasses the rest of the computing infrastructure, in
particular the data publisher and the data recipients. In the following, we make
the simplifying assumption that UE has unlimited computing power and storage
capacity, and is available 24/7.

The trustworthiness of SPTs lies in two factors: (1) the embedded software
inherits the tamper resistance of the microcontroller making hardware and side-
channel attacks highly difficult, (2) this software is itself certified according to the
Common Criteria 3, making software attacks also highly difficult. This strongly
increases the Cost

Benefit
ratio of an attack compared to a traditional server, con-

sidering also that a successful attack compromises only the data of a single
individual. Note finally that the SPT owner herself cannot directly access the
data stored locally; she must authenticate, thanks to a PIN code or a certifi-
cate, and only gets data according to her own privileges. In summary, a SPT
can be seen as a very cheap (a few dollars today), highly portable, highly secure
computer with reasonable storage and computing capacity for personal use.

Privacy Model: The core idea of the approach proposed in this paper is in-
dependent of any privacy model. However, in order to favor a firm understanding
we use the illustrative and popular k-anonymity privacy model [8].

We model the dataset to be anonymized as a single table T (ID, QID, SD)
where each tuple represents the information related to an individual hosted by
a given SPT. ID is a set of attributes uniquely identifying an individual (e.g.,
a social security number). QID is a set of attributes, called quasi-identifiers,
that could potentially identify an individual depending on the data distribution
(e.g., a combination of Birthdate, Sex and Zipcode). The SD attributes contain
sensitive data, such as an illness in the case of medical records. The table schema,
and more precisely the composition of QID and SD, is application dependent.
It is assumed to be defined before the collection phase starts, and is shared by
UE and all SPTs participating in the same application (e.g., the same healthcare
network).

3 http://www.commoncriteriaportal.org/



The first anonymization action is to drop ID attributes. However, QID at-
tributes can be used to join different data sources in order to link back an
individual to his own sensitive data with high probability. k-anonymity proposes
to make such linkages ambiguous by hiding individuals into a crowd. It is often
achieved through a mechanism called generalization (see [3] for a good overview).
Generalization based algorithms (e.g., [7, 5]) partition tuples into equivalence
classes containing at least k tuples with similar QID, and for each class release
a single coarsened QID′ together with the tuples’s SDs. Figure 2 shows an ex-
ample of raw data, a possible partitioning into equivalence classes containing
k ≥ 2 tuples, and the resulting 2-anonymous dataset. Anonymizing the tuples
whose QIDs are in the equivalence class EC1 simply means replacing their QID

values by the range 〈[75001, 75002], [22, 31]〉.

Attack Model: As stated in the introduction, most research in the PPDP
area considers a trusted model. We could go one step further and consider the
well-known Honest-but-Curious adversary model. In this model, an attacker
obeys the protocol it is participating in but tries to infer confidential data by
any indirect way. In this paper, we devise solutions acceptable by users who di-
rectly question the honesty of servers, either because these latter delegate part
of their work to - potentially untrusted - subcontractors or because they are
themselves vulnerable to internal and external attacks. So, we consider in this
study a stronger adversary model called Weakly-Malicious [10]. In this model,
an attacker cheats the protocol he is involved in only if (1) he is not detected as
an adversary and (2) the final result is correct.

The weakly-malicious attack model fits particularly well the PPDP context.
First, the longer an attack remains undetected, the bigger the benefit for the
attacker. Second, the detection of an attack puts the attacker in an awkward po-
sition. This is true in all practical PPDP situations, whoever the attacker: (1) an
insider within the PPDP organization, (2) the PPDP organization itself or (3) a
subcontractor implementing the PPDP protocol on the organization behalf. In-
deed, if the data leak is revealed in a public place, participants are likely to refuse
to participate in further studies with an irreversible political/financial/public
health damage (the halt of the Dutch EHR is an illustrative example) and they
can even engage a class action.

The use of secure hardware in our solution leads us to slightly enrich the
weakly-malicious attack model depending on the ability of the attacker to break
one or more SPTs or not. Although breaking one SPT requires significant re-
sources due to their proven high tamper-resistance, the attack could be launched
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if its benefits outweigh its cost. Hence we distinguish two variants of the weakly-
malicious attack model:

– Weakly-MaliciousSoft: the attacker has weakly-malicious intent and the abil-
ities of the attacker are said Soft in that it is unable to breach the hardware
security of any SPT.

– Weakly-MaliciousHard: the attacker has weakly-malicious intent and the abil-
ities of the attacker are said Hard because it is able to break at least one
SPTs and disclose its internal cryptographic material.

3 Weakly-MaliciousSoft UE

In the traditional (trusted) PPDP context, the publisher collects raw tuples of
the form 〈QID, SD〉 during the Collection phase, computes equivalence classes
during the Construction phase, and coarsens the QID of each tuple according
to the class it belongs to during the Anonymization phase. To defeat weakly-
malicious attacks, the link between each QID and its related SD must be kept
hidden throughout all the phases, while still allowing the publisher to compute
and release k-anonymous classes. This leads to adapt the three phases of the
protocol as follows.

During the Collection phase, each connecting SPT (that agrees to partici-
pate in the study) sends the publisher its QID in clear and its SD encrypted by
a symmetric encryption scheme (e.g., based on the AES encryption function).
The encryption scheme takes as parameter a secret key shared by all SPTs (key
management is discussed in the next paragraph). The publisher decides to stop
collecting tuples and to launch the Construction phase when it has received
enough QIDs to build equivalence classes precise enough for its application-
dependent requirements. During the Anonymization phase, any SPT that
connects downloads a class (or more if its connection duration allows), and re-
turns to UE the decrypted SDs it contains (in random order). The returned
SDs are k-anonymous with certainty because the partial states observed by UE
give no information allowing it to infer the association between a given SD and
QID in clear with more precision than k.

Sharing cryptographic material among all SPTs does not hurt the Weakly-
MaliciousSoft assumptions since SPTs are considered unbreakable. We will relax
this assumption in Section 4 when considering the Weakly-MaliciousHard attack
model. We do the simplifying assumption that the SPT provider pre-installs the
cryptographic materials inside the SPT’s secured chip, though more dynamic
protocols could easily be devised. Let us stress that even the SPT’s owner cannot
spy the hidden content or the computation made by her own SPT (in the same
way as a banking card owner cannot gain access to the encryption keys pre-
installed in her smart card microcontroller).

We identified in [1] the Weakly-Malicious tampering actions over the dataset
that lead to disclosures. To prevent any tampering, the trusted environment, i.e.,
the SPTs, is in charge of enforcing a (small) set of properties over the dataset.
For space reasons we do not detail them but refer the interested reader to [1].



4 Weakly-MaliciousHard UE

In the previous Weakly-MaliciousSoft protocol, if UE succeeds in breaking at
least one SPT, it unveils not only the SPT’s tuple but also its cryptographic
materials which can in turn be used to decrypt the contents of all equivalence
classes. To limit the scope of such attacks, the traditional solution is to use n

different keys and organize the encryption process so that the impact of com-
promising one key is divided by n. Consequently, we partition SPTs into a set of
clusters, denoted C, randomly and evenly, such that SPTs belonging to different
clusters are equipped with distinct cryptographic materials. Therefore breaking
a SPT amounts to breaking a single cluster, and not the complete system any-
more. However, it gives to the attacker the ability not only to decrypt data sent
by SPTs that are members of the broken cluster, but also to encrypt data that
originates from the broken cluster. This is clearly undesirable because creating
t fake tuples and adding them to (k − t) collected tuples will eventually result
in a (k − t)-anonymous class.

Clustered SPTs: Clustering cryptographic materials limits the decryption
ability of SPTs to tuples originating from their own clusters. To tackle this
limitation, SPTs participating in the Collection phase append the identifier of
their cluster (CID) to the tuples sent to UE. Hence, each SPT participating
in the Anonymization phase can ask to UE to send it a class into which its
CID appears. However, a side effect of communicating to UE the CID of the
connecting SPT is to reveal the CID of the returned anonymized tuples. UE
would thus be able to link the returned tuples to the subgroup of collected tuples
having the same CID. Since the subgroup’s cardinality is most likely less than
k, the returned tuples would be (less-than-k)-anonymous. To avoid this linking
attack, the choice of the downloaded class must be made in stand alone by the
connecting SPT, to which UE has previously sent the list of CIDs appearing in
every class.

Special care must also be taken about the number of anonymized tuples re-
turned by a SPT. Indeed, a similar inference can be made by comparing this
number to the cardinality of each subgroup of collected tuples sharing the same
CID in the concerned class. To avoid this inference, SPTs downloading a same
class must equalize the number of tuples they return; whatever their cluster,
they must return at most GCD tuples, GCD being the greatest common divisor
of the cardinalities of the subgroups inside the given class. The collected tuples
already contain their originating CID so SPTs participating in the Anonymiza-
tion can easily count the number of tuples per cluster. However, they must also
check that each tuple is legitimately bound to the good CID. To this end, each
SPT participating in the collection phase signs his tuple using his cluster’s cryp-
tographic material and sends to UE the tuple with its signature. Signatures are
then checked by SPTs participating in the Anonymization phase.

Transferring the complete list of CIDs per class between UE and a SPT can
incur a significant network overhead. This overhead can be reduced by represent-
ing the list of CIDs of each class by a bitmap such that for all CIDs appearing
in the class, the bit at index CID is set to 1. Each list is thus made of |C| bits



and there are |EC| lists. The total overhead amounts to transferring |C| × |EC|
bits. At the rate of 8Mbps (i.e., the current effective throughput measured on
the hardware platform shown in Fig. 1), this does not present any bottleneck.
Finding a class into which the SPT’s CID appears has a negligible cost since it
consists in checking a single bit per class bitmap.

Defeating Weakly-Malicious Creations: Weakly-malicious tuples cre-
ations reduce the effective k-anonymity of a class by mixing j collected tuples,
j < k, and injecting (k−j) fake tuples forged thanks to the cryptographic mate-
rials of the broken cluster (let us assume for the moment that a single cluster is
broken). The tampered class can contain far more forged tuples than legitimate
ones. This is both the strength of the attack (it reduces the effective k in the
same proportion) and its weakness (it is easier to detect). Indeed, since SPTs
are randomly and evenly partitioned into clusters, UE should receive roughly
the same number of tuples per cluster, scattered uniformly into the equivalence
classes. Inside a class infected by weakly-malicious created tuples, all clusters
participate roughly with the same number of tuples, except the broken one that
participates more than the others. We define the Typicality property based on
this observation. The Typicality property states that the participation of each
cluster within a given class must be typical with respect to the participation of
all other clusters. The above discussion can be generalized to an arbitrary num-
ber of broken clusters. Obviously, the more clusters are broken, the less atypical
they are. However, breaking the hardware security of a single SPT is already
a rather difficult task, making a massive weakly-malicious attack unrealistic.
The Typicality property can be straightforwardly enforced at the reception of a
class, by analyzing statistical properties of the participation of clusters within
the class.

5 Detection Probability

We consider a population under study of N = 106 individuals, randomly parti-
tioned in |C| = 5×102 clusters. In our experiments, all clusters are of equal size,
but comparable results would be achieved with a normal distribution of individ-
uals in clusters. The anonymization algorithm that we implemented divided the
dataset into |EC| = 8 × 103 classes of at least k = 102 tuples each. Increasing
the size of the population yields similar results in terms of detection. Since the
distribution of SPTs to clusters is random, the clusters participation in a given
class follows a normal distribution. To test the typicality of a cluster Cj ∈ C
participating in the class ECi ∈ EC, we compute σ the standard deviation (ex-
cluding non-participating clusters). In the general case, where |C| ≥ k and there
are no fake tuples created by UE, σ is very small (in our experiment, its average
value was σavg ≈ 0.36 and its largest observed value was σmax ≈ 0.62).

Figure 3(a) shows the evolution of σ function of the number of tuples forged
by a UE having broken a single SPT (then a single cluster). For instance, if
UE creates t tuples, then the class will contain only k − t collected tuples. In
order to achieve perfect knowledge of a target tuple (e.g., the tuple of a target
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individual identified by its QID), UE would need to inject k − 1 tuples (in our
example, 99 tuples) in the class of the target tuple. As shown in Figure 3(a), a
cluster participating more than 5 tuples leads to a statistically improbable value
(i.e., σ > σmax). Note that Figure 3(a) is a zoom: evolution is not linear but
polynomial. If UE succeeds in breaking several clusters (meaning breaking SPTs
from different clusters), fake tuples have less impact on the standard deviation
because UE can distribute the participation over them. Figure 3(b) illustrates the
value of σ function of the number of broken clusters b over which UE distributed
evenly k − 1 = 99 created tuples (which means identifying the value of the only
one that was not forged): at least 31 different clusters need to be broken to have
σ < σmax and 43 to have σ < σavg. Situations that demand stronger detection
levels can be satisfied simply by increasing the number of clusters. Indeed, it is
obvious that the values of the standard deviations (average and maximal) are
inversely proportional to the number of clusters.

Although more complex statistical analysis could be used (e.g., traditional
outlier detection measures [2], combining several statistical measures, chosing
the measure according to the participations distribution), the above experimen-
tal results show that even a simple analysis of the standard deviation already
makes weakly-malicioushard attacks harmless. Indeed, launching a successful at-
tack would require breaking a large number of clusters, which is unrealistic be-
cause of the added costs of physically being in possession of a large number of
SPTs and compromizing their hardware protections.

6 Concluding remarks

The increasing suspicion of individuals towards the centralization of their sensi-
tive data on servers is established. This urges the scientific community to find
credible distributed alternatives to the usual PPDP computing model based on
a trusted central publisher. Secure Multi-party Computation techniques fail in



providing a generic solution with an affordable cost. This is partly due to the
strong “no-one-trusts-anyone” assumption. This paper promotes an approach
based on the opposite assumption: all participants a priori trust each other.
This approach deters participants to adopt deviant behaviors (1) preventively
by equipping them with secure hardware and (2) curatively by detecting cheat-
ing parties. We have shown that the detection probability of attacks is close to
1 making the solution well adapted to a Weakly-Malicious adversary model, a
model capturing well the security requirement of a PPDP framework.

Our future work is twofold. First, we must validate the adequacy and prac-
tical interest of the solution through the forthcoming experiment in the field
sketched in this paper. Second, we believe that this approach, illustrated in this
paper by the well-known k-anonymity privacy model, can be generalized to many
other distributed computing problems. Indeed, the distinction introduced in this
paper between Weakly-MaliciousSoft and Weakly-MaliciousHard attacks charac-
terizes a security model based on (1) a priori trust and (2) detection of cheating
party, independently from the underlying protocol. The Weakly-MaliciousHard

definition could be easily reformulated to embrace situations where a priori trust
is broken with no explicit reference to any secure hardware device.
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