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Abstract—An increasing number of surveys and articles high-
light the failure of database servers to keep confidential data
really private. Even without considering their vulnerability against
external or internal attacks, mere negligences often lead to pri-
vacy disasters. The advent of powerful smart portable tokens,
combining the security of smart card microcontrollers with the
storage capacity of NAND Flash chips, introduces today credible
alternatives to the systematic centralization of personal data
on servers. Individuals can now store their personal data (e.g.,
their medical folder) in their own smart tokens, kept under
their control, and never disclose in clear their private data to
the outside untrusted world. However, this new opportunity of
managing and protecting personal data conflicts with the objective
of implementing knowledge-based decision making tools on top
of centralized data. This paper precisely addresses this issue and
proposes to adapt the traditional Generalization privacy mechanism
to an environment composed of a large set of tamper-resistant
smart portable tokens seldom connected to a highly available but
untrusted infrastructure. This combination of hypothesis makes
the problem fundamentally different from any previously studied
privacy-preserving data publishing problem we are aware of.

I. INTRODUCTION

The Smart Token: an alternative to personal data cen-

tralization: Individuals are more and more reluctant to entrust

their sensitive data to any data server. This suspicion is fueled

by security surveys pointing out the vulnerability of database

servers against external and internal attacks [13] and by many

examples where negligence leads to personal data leaks (e.g.,

[4], [3]). This growing suspicion sometimes compromises na-

tionwide projects: for instance, the Dutch Electronic Health

Record program was canceled due to privacy concerns expressed

by citizens [5].

In the meantime, credible alternatives to a systematic central-

ization of personal data on servers are arising. These alternatives

build upon the emergence of new hardware devices called

Secure Portable Tokens (SPTs for short). Whatever their form

factor (SIM card, secure USB stick, wireless secure dongle),

SPTs combine the tamper resistance of smart card micro-

controllers with the storage capacity of NAND Flash chips.

This unprecedented conjunction of portability, secure processing

and Gigabytes-sized storage constitutes a real breakthrough

in the secure management of personal data. Thanks to SPTs,

personal records can be easily managed under the control of

the record owner herself with security guarantees stronger than

those provided by any central server. Today, the use of SPTs

for e-governance (citizen card, driving license, passport, social

security, transportation, education, etc) is actively investigated

by many countries, and personal healthcare folders embedded

* This paper is an extended version of [9].

in SPTs receive a growing interest, e.g., the Health eCard1 in

UK, the eGK card2 in Germany, the LifeMed card3 in the USA.

As suggested in [6], SPTs can even embed highly versatile full-

fledged personal data servers.

Reconciliation of Privacy with Knowledge-Based Decision

Making: The counterpart of the privacy risks incurred by

centralizing personal data on servers is the opportunity it offers

for knowledge-based decision making and typically privacy-

preserving data publishing (PPDP). A typical PPDP scenario

starts by a collection phase where the data publisher (e.g.,

a hospital) collects data from record owners (e.g., patients),

followed by a construction phase where the publisher computes

the anonymization rules defining the transformations to apply

to the collected data in order to anonymize it, and ends with an

anonymization phase where the publisher effectively applies

these rules to the data. The sanitized data thus produced can

be released to a set of data recipients (e.g., a drug company, a

public agency, or the public) for inquiry purposes. Most research

in the PPDP area considers a model where the data publisher is

trustworthy, so that record owners are assumed to easily consent

providing it with their personal information [11]. As pointed out

above, convincing record owners about the legitimacy of this

trust assumption is difficult in practice.

Hence, governments and public agencies are faced today

with two conflicting objectives: (1) the need for decision

making tools, usually to increase a collective benefit (e.g., to

prevent a pandemic thanks to an epidemiological study), (2)

the obligation to get the consent of individuals to process

their data electronically [1], pushing them to find alternatives

to a systematic centralization of personal data (i.e., by using

SPTs). In addition, the legislation in several countries authorizes

statistical treatments of individuals’ personal data without their

explicit consent (assuming this consent has been given for the

initial purpose of the data collection), provided that the data

is adequately anonymized [1], [2]. While the spirit of the law

is to protect the individuals’ privacy better, the side effect is

a new incentive for individuals to refuse their consent for the

initial data collection if they distrust the way their data will be

anonymized. Indeed, it does not make sense for an individual

to consent to the management of her healthcare data to a SPT

(because she distrusts central servers) while accepting that this

same data will end up in a central server for anonymization

purposes. The objective of this paper is precisely to address this

1http://www.healthecard.co.uk
2http://www.gematik.de
3http://www.lifemedid.com/
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issue, that is to safely (i.e., without privacy breaches) anonymize

personal data hosted in SPTs while considering an untrusted

PPDP model.

Motivating Scenario: Imagine a scenario where Alice

carries her electronic healthcare folder on such an SPT. Alice’s

folder is then always available (accessible at any time, from

any place and terminal, even in disconnected mode) and kept

under Alice’s control. Alices data never appears on any central

server and no trace of interaction is ever stored in any terminal.

If Alice loses her SPT, the SPT’s tamper resistance renders

potential attacks harmless. She can recover her folder from an

encrypted archive stored by a trusted third party or managed

by herself. If the health agency of Alice’s country decides to

collect sensitive data to perform an epidemiological study, Alice

has no reason to be anxious because she has the assurance

that (1) during the collection phase, her data will be exported

only after having been encrypted by her SPT, and (2) during

the anonymization phase, her data will be safely anonymized

before being available in clear. Hence, no identifying data will

be exposed with sensitive data on any central server. So, Alice

can enjoy her healthcare folder with full confidence without

compromising a collective healthcare benefit.

The above scenario is not futuristic. Medical-social folders

embedded on SPTs are currently experimented in the Yvelines,

a district of France, to provide care and social services at home

to elderly people (PlugDB4). The folders mix medical and social

data (income, dependent’s allowance, marital status, entourage,

food habits, etc) to the highest benefit of statistical studies.

Being able to publish anonymized data from these folders is

therefore a very important challenge. This challenge is however

not restricted to the healthcare domain. Similar scenarios can

be envisioned each time the legislation recognizes the right of

the record owner to control under which conditions her personal

data is stored and accessed.

Problem Positioning: Most PPDP research considers a

trusted data publisher [11]. The untrusted case has been in-

vestigated in the context of Secure Multi-party Computation

protocols (SMC) which allow several parties to jointly compute

a function without revealing their input to one another. [21]

presents a generic SMC approach, but unfortunately whose cost

is exponential in the input size [12]. It is unusable for large

datasets. Specific PPDP SMC protocols have been proposed

[23], [24], [16]. However, they make strong assumptions on

the attack model (e.g., introduction of a Trusted Third Party in

[16], absence of collusion between the Publisher and a Helper

Third Party in [23]) and on the communication model, requiring

broadcasting messages among all parties. To the best of our

knowledge, no previous work has ever considered the conjunc-

4http://www-smis.inria.fr/∼DMSP/home.php
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tion of hypothesis made in this paper: the tamper-resistance of

the SPTs, their low availability and the untrustworthiness of the

publisher.

Outline: The paper is organized as follows. Section II

introduces the hypothesis our study relies on and states the

problem. Sections III and IV discuss respectively the two

attack models we must consider in our context, and propose

data publishing protocols resistant to these attacks. Section

V describes trivial alternatives to the proposed protocols and

explains why they are inadequate. Section VI presents our

experiments and demonstrates the practicability of the approach.

Section VII intuitively explains why the techniques designed in

this paper could be used to enforce privacy models other than k-

anonymity. Finally, section VIII concludes by opening exciting

research directions.

II. PROBLEM STATEMENT

This paper focuses on the organization of the collection and

anonymization phases at the data source (i.e., at each SPT) while

compromising neither privacy nor data utility compared to a

trusted central server approach. The problem is difficult due to

three assumptions: (1) the data publisher and the data recipients

are untrusted, (2) the SPTs are trusted but there is no direct

communication between them and (3) there is no certainty about

the connection frequency and duration of each SPT connection.

Figure 1 illustrates the functional architecture and modus

operandi. The Trusted Environment (TE) is constituted by the

(possibly very large) set of SPTs. Each SPT hosts the personal

data of a single record owner. It can take part in a distributed

computation involving data issued from multiple record owners

since all the SPTs trust each other. The Untrusted Environment

(UE) encompasses the rest of the computing infrastructure, in

particular the data publisher and the data recipients.

Hypothesis on TE: Regardless of their form factor (SIM

card, secure USB stick, wireless secure dongle), SPTs are

commonly made of a tamper-resistant microcontroller connected

by a bus to a large external mass storage (Gigabytes of NAND

Flash). A SPT can be seen as a basic but very cheap (today

only a few dollars), highly portable, highly secure computer

with reasonable storage and computing capacity for personal

use. The trustworthiness of SPTs lies in the following factors:

• the SPT’s embedded software inherits the tamper resistance

of the microcontroller making hardware and side-channel

attacks highly difficult,

• this software is certified according to the Common Crite-

ria5, making software attacks also highly difficult,

5http://www.commoncriteriaportal.org/



• this software can be made auto-administered thanks to

its simplicity, contrary to its traditional multi-user server

counterpart, thereby precluding DBA attacks,

• even the SPT owner cannot directly access the data stored

locally; she must authenticate, thanks to a PIN code or a

certificate, and only gets data according to her privileges.

For illustration purposes, Fig. 2 depicts the SPT used in the

PlugDB project and in our experiments.

Hypothesis on UE: UE has unlimited computing power

and storage capacity, and is available 24/7. The UE may have

deviant behavior of two types:

• Honest− but−Curious: the attacker obeys the protocol

it is participating in but tries to infer confidential data;

• Weakly −Malicious: the attacker has weakly-malicious

intent [22] in that it cheats the protocol to disclose confi-

dential data only if (1) the TE does not detect it and (2)

the final result is correct.

Honest-but-Curious is an appropriate attack model for a well

established data publisher (e.g., a government agency). The

Weakly-Malicious model is better adapted to situations where

the anonymization process is delegated to a third-party provid-

ing less guarantees. We do not consider Strongly Malicious at-

tackers because the context of the study is such that the publisher

is always liable of its actions and cannot take the risk of being

detected. We assume in this paper that the SPT is not attacked.

We show in [8] that, though highly improbable, hardware attacks

can also be defeated by a mechanism guaranteeing a detection

probability defeating weakly-malicious intent.

Hypothesis on the anonymization algorithm: We model

the dataset to be anonymized as a single table T (ID,QID, SD)
where each tuple represents the information related to an

individual hosted by a given SPT. ID is a set of attributes

uniquely identifying an individual (e.g., a social security num-

ber). QID is a set of attributes, called quasi-identifiers, that

could potentially identify an individual (e.g., a combination of

Birthdate, Sex and Zipcode). The SD attributes contain sensitive

data such as an illness in the case of medical records. The table

schema, and more precisely the composition of QID and SD
is application dependent.

In this article, for simplicity’s sake, we consider the well

studied generalization mechanism that drops ID and coarsens

QID. This mechanism is used to enforce the k-anonymity pri-

vacy model [20], which consists in building equivalence classes

of at least k tuples indistinguishable wrt their (generalized)

QID. The tuples contained in an equivalence class are defined

by the class’s generalization node, that specifies an interval

(numerical or categorical) for each dimension of the QID.

Following the litterature’s convention, we denote by � (resp.

�) the generalization (resp. specialization) relationship between

a node and a QID (resp. a QID and a node). Figure 3 shows

an example depicting raw data, their corresponding equivalence

classes plotted in a 2D space, and the 2-anonymous dataset even-

tually delivered. Anonymizing the tuples whose QIDs are in the

equivalence class EC1 simply means replacing their QIDs by

EC1’s generalization node, i.e., ([75001, 75002], [22, 31]).
The approach proposed in this paper can work with any algo-

rithm that keeps close semantics between an equivalence class
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and the values of the QIDs it contains. Most generalization-

based algorithms fall into this category (e.g., [19], [15]). Ex-

tensions to other anonymization models is discussed in Section

VII.

Problem Statement: We address in this paper the problem

of producing a k-anonymous version of a dataset defined by the

union of the data hosted by a collection of SPTs (a subset of

interest in TE) such that:

1) UE gets the final anonymized result but cannot learn

anything else about individual’s data;

2) The anonymized result is as useful (i.e., has the same qual-

ity) as if it had been computed by the same anonymization

algorithm run by a traditional publisher on a central server.

The next sections tackle this problem for each of the Honest-

but-Curious and Weakly-Malicious attack models.

III. HONEST-BUT-CURIOUS UE

Let us first consider the simplest attack model, namely

Honest-but-Curious, where UE is assumed to fully respect

the protocols defined but can make any inference or offline

calculation in order to disclose the association between QIDs

and SDs. We present below the proposed algorithm, called

Robust, and defer to section V the discussion explaining the

inadequacy of trivial solutions.

Robust’s Phases: The Robust algorithm, shown in Alg.1,

guarantees that the association 〈QIDi, SDi〉, where i denotes

an individual, remains hidden to UE while still allowing it

to compute the equivalence classes. During the collection

phase, the SPTs that connect send to UE tuples of the form

〈QIDi, Eκ(SDi)〉, where E denotes a symmetric encryption

scheme (e.g., based on the AES encryption function) taking

a secret key κ as a parameter shared by all SPTs (key man-

agement is discussed next). When the UE decides that the

collected sample of QIDs fits its needs (e.g., the size of the

sample has reached a predefined threshold in the same way

as traditional sampling in a centralized context), it stops the

collection phase and launches the construction phase, during

which it computes the equivalence classes based on the QIDs

collected previously6. During the anonymization phase, any

SPT that connects downloads a class (or more if its connection

duration allows it), shuffles the class’s tuples, and returns to UE

anonymized tuples of the form 〈E−1

κ (Eκ(SDi))〉. The shuffling

step avoids UE to link a decrypted SD to its encrypted version

based on its position in the returned result.

The Robust algorithm, summarized in Alg. 1, does not

place any constraint on the availability of each SPT. First,

6Similarly to a central server context, the availability of data depends on the
availability of their holders (e.g., the patients). Whether they are equipped with
SPTs or not has no negative impact on data availability.



downloading and decrypting between k and (2k − 1) tuples

does not present any bottleneck (in practice, k remains low - in

the order of 102). Second, extending Robust to handle SPTs that

get disconnected when they are treating a class (SPTs primarily

serve other purposes than PPDP) is straightforward. We do not

detail this extension here because it does not impact the core of

the algorithm.

Algorithm 1 Robust Algorithm

Require: The k-anonymity level, the number s of QIDs

required by the class construction phase, the encryption

function Eκ parameterized by secret key κ shared among

the SPTs.

1: Collection phase: For i = 1,. . . ,s, each SPTi that connects

sends its encrypted tuple 〈QIDi, Eκ(SDi)〉 to UE.

2: Construction phase: UE computes EC, the set of equiva-

lence classes respecting the k-anonymity privacy criterion.

3: Let ECj .T = {〈Eκ(SDi)〉} s.t. QIDi � ECj .η represent

the set of tuples of the class ECj ∈ EC.

4: Anonymization phase:

5: UE picks ECj ,a class not anonymized yet, and sends

ECj .T to a connecting SPTm.

6: SPTm shuffles the tuples of ECj .T .

7: for all 〈Eκ(SDi)〉 ∈ ECj .T do

8: SPTm sends 〈E−1

κ (Eκ(SD))〉 to UE
9: end for

Key management: The security of the Robust algorithm

relies on the use of the secret key κ shared by all SPTs. We

do the simplifying assumption that these keys are pre-installed

by the SPT provider, though more dynamic protocols could

be easily devised. Let us stress that even the SPT’s owner

cannot spy the hidden content and the computation made by

her own SPT (in the same way as a banking card owner cannot

gain access to the encryption keys pre-installed in his smart

card microcontroller). Sharing secrets among all SPTs makes

sense given the provable security guarantees they provide (see

section II).

Correctness: k-anonymity is guaranteed by the fact that UE

never gets access to a 〈QIDi, SDi〉 tuple. During the collection

phase, the only tuples it has at its disposal are in the form

〈QIDi, Eκ(SDi)〉, with no way to decrypt SDi. During the

anonymization phase, UE learns the mapping between the set of

tuples of each equivalence class, i.e., {〈QIDi, Eκ(SDi)〉}, and

its corresponding set of returned sensitive data, i.e., {〈SDi〉}.
Any QID in the former can correspond to any SD in the latter.

Since each class contains at least k tuples, k-anonymity is safe.

IV. WEAKLY-MALICIOUS UE

This section starts with an exhaustive list of the malicious

actions upon which a Weakly-Malicious UE can base its attacks.

The possible actions lie in tampering the data sent to the SPTs

during the Anonymization phase in order to infer the links

between QIDs and clear text decrypted SD values. Second,

it upgrades the Robust algorithm with a set of safety properties

preventing the weakly-malicious UE from acting maliciously.

A. Malicious Actions

Without loss of generality, any malicious action is either a

Destroy, Create, or Copy action. The data upon which UE can

apply these actions is the collected tuples.

Destroy and Create Actions: Destroying t tuple(s) in an

equivalence class that contained k tuples leads to a (k − t)-
anonymous class. For the same reason, creating t false tuples

and adding them to (k − t) collected tuples results in a class

containing k tuples but that is in fact (k− t)-anonymous. In the

following, we denote these actions A1 and A2 respectively.

Copy Actions: Tuples can be copied in two ways: either

the UE produces a class that contains copies of the same set

of tuples (intra-class copy, denoted A3), or it produces two

classes, one containing a subset of tuples from the other (inter-

class copy, denoted A4). Intra-class copies lead to a direct

reduction of the k-anonymity level of the class, as previous

actions do. Inter-class copies lead to inferences that are based

on computing the differences between their respective SDs and

QIDs. Indeed, (1) the SDs returned for both classes correspond

to the collected QIDs belonging to both (the copied subset of

tuples), and (2) the SDs returned for only one class correspond

to the collected QIDs belonging to that class only. After

having computed the differences, the UE is thus able to draw

a correspondence between subsets of QIDs and SDs whose

cardinality is less than k. These attacks are called differential

attacks.

Fig. 4 depicts a differential attack. For instance, the version

2 of EC1 contains one tuple copied from its first version and

one new tuple. By computing the differences between the two

versions, the attacker infers that (1) QID = (75001, 22) →
SD = cold, (2) QID = (75002, 31) → SD = flue, and

(3) QID = (75003, 22) → SD = HIV .

B. Safety properties of equivalence classes

To prevent UE from acting maliciously, the equivalence

classes must verify the following properties.

Local properties: Local properties are related to the content

of each equivalence class, independently from the others:

• Cardinality: The given equivalence class contains at least

k tuples.

• Origin: All tuples in the given equivalence class originate

from a SPT.

• Distinguishability: All tuples in a given equivalence class

are distinct.

• Specialization: The QID of each tuple specializes its

class’s generalization node. In other words, each tuple must
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belong to the proper class.

Global properties: Global properties stem from the relation

of a given equivalence class with the whole set of classes already

sent to an SPT:

• Mutual Exclusion: The Mutual Exclusion property requires

that nodes of distinct classes generalize distinct sets of

values.

• Invariance: The Invariance property requires that each class

always be associated with the same content.

Coverage of Malicious Actions: The Cardinality property

prevents the A1 actions to endanger the k-anonymity of any

equivalence class. The Origin property guarantees that any

attempt of performing A2 actions will be detected, and the

Distinguishability property provides the same guarantee for A3

actions. Together, the Specialization, Mutual Exclusion, and

Invariance properties make A4 actions inoperative. For space

reasons, we do not detail the formal proof of the coverage,

which is straightforward.

As a result, the safety properties defeat all malicious actions

defined above, thereby precluding UE to launch any attack based

on these actions. Processing equivalence classes satisfying all

these properties will generate a k-anonymous result set with

certainty.

C. Checking local properties

Checking the local properties in an SPT is rather straight-

forward. To test the Cardinality property, each SPT receiving

an equivalence class during the anonymization phase checks

that the number of tuples in the class is higher than k. To test

the Distinguishability property, each SPT is assigned a unique

identifier SPTIDi which serves as tuple identifier TIDi. Tuple

identifiers are encrypted with the tuples during the Collection

phase, then each SPT participating in the Anonymization phase

checks the uniqueness of this identifier in the equivalence class.

To test the Origin property, a simple solution is for each SPT

participating in the Collection phase to compute a MAC of its

tuple. Finally, the MAC is checked by the SPTs participating in

the Anonymization phase. To test the Specialization property,

QIDs are encrypted within the tuples during the Collection

phase, then each SPT participating in the Anonymization phase

checks that the QIDs of all tuples specialize their class’s node.

D. Checking global properties

No global history: Each SPT receives a single equivalence

class per session, so checking the global properties would

require that SPTs share information among them about the

classes received. Unfortunately, SPTs are not able to commu-

nicate directly with each other: each SPT can solely rely on

its own history. In the algorithm, UE can easily select the

equivalence class sent to each SPT such that all the properties

are satisfied from the SPT’s viewpoint while they are violated

from a global viewpoint. There is no ultimate solution to this

problem since UE can delete any information sent by SPTs

trying to build a common history or share a global viewpoint.

However, considering that UE has weakly-malicious intentions,

we propose to deter it from violating global properties by

making any violation visible to SPTs through caveat actions.

Caveat actions: The first caveat action is to use anonymous

communication channels between UE and SPTs [18]. This

precludes UE to control which SPT receives which equivalence

class. Consequently, the probability to send classes violating

the global properties to the same SPT is no longer null. The

second caveat action is to force UE to produce a Summary

of the equivalence classes, which contains for every class its

generalization node plus a digest of its content (e.g., a hash

of its tuples). Each SPT participating in the anonymization

phase primarily downloads the Summary S , asserts the global

properties based on S , downloads a class, and checks the

consistency between S and the downloaded class. If UE corrupts

the content of a class, it will have to cascade the corruption to

S in order to ensure its consistency with the class, and send

the corrupted S to all the connecting SPTs. Any SPT receiving

two disagreeing summaries will detect the attack. As a result,

the detection is probabilistic, and its probability depends on the

number of SPTs receiving each version of the summary. We

have shown that the detection probability can be brought to

highly deterring values (e.g., over 0.99) by tuning the minimal

number of SPTs receiving each class. We refer the reader to [7]

for a detailed discussion on this point.

Minimizing the cost of Mutual Exclusion: Although

smart implementations of the Mutual Exclusion property can

be designed in order to avoid a nested-loop style comparison

of classes (e.g., in a sort-merge fashion), Mutual Exclusion

remains one of the most costly checks. However, by slightly

extending the Invariance property to encompass the classes’s

nodes in addition to their content, we can avoid the cost

of checking Mutual Exclusion between summaries received at

different moments. Indeed, if during its first connection, a SPT

checks that the summary asserts Mutual Exclusion, it has only

to check that the summary never changes during its following

connections to guarantee that classes never overlap.

E. SPT algorithm for Weakly-Malicious UE

Algorithm 2 details the anonymization phase of the algorithm

to be executed by each SPT. If a property check is not fulfilled,

the SPT stops the execution and raises an alarm (e.g., to the

destination of the SPT owner or a trusted third party). Due to

lack of space, we do not detail the mechanisms (1) used to avoid

an SPT from downloading an equivalence class already fully

processed, and (2) used to assert that each class has been sent

to enough SPTs to guarantee the desired detection probability.

V. INADEQUACY OF TRIVIAL SOLUTIONS

Trivial alternatives to the Robust and WM algorithms could be

devised based on collecting QIDs and SDs separately. Indeed,

one could imagine to reorganize the phases as follows: (1) a

phase of QID collection during which all SPT owners send

their QID to the UE, followed by (2) a phase of construction

during which the UE constructs the equivalence classes, and (3)

a phase of SD collection during which each SPT that connects

downloads the boundaries of equivalence classes and sends to

UE its SD and the identifier of the class corresponding to its

own QID.



Algorithm 2 Weakly-Malicious - SPT’s Side

Require: An anonymous communication channel between the

SPTs and UE, the k-anonymity level, Eκ1
and Mκ2

the

encryption and MAC functions parametrized by secret keys

κ1 and κ2 shared among the SPTs, a hash function H , and

a function L returning the raw QID values that specialize

a given generalizatin node.

1: Receive the current Summary S: let S.EC denote the

classes of S , and ECi.δ and ECi.η respectively the digest

and generalization node of the class ECi;

2: if ∄ previous summary Sp then

3: for all ECi, ECj ∈ S.EC2 s.t. ECi.η 6= ECj .η do

4: Check the Mutual Exclusion property: L(ECi.η) ∩
L(ECj .η) = ∅;

5: end for

6: else

7: Check the Invariance of the number of classes: |S.EC| =
|Sp.EC|;

8: for all ECi ∈ S do

9: Check the Invariance of the classes’s nodes and con-

tents: ∃ECj ∈ Sp s.t. ECi.η = ECj .η and ECi.δ =
ECj .δ;

10: end for

11: end if

12: Download a class ECi;

13: Check the consistency between S and the class’s content:

ECi.δ = H(ECi.T );
14: Shuffle ECi.T ;

15: Check the Cardinality property: |ECi.T | ≥ k;

16: Init. the TIDs and decrypted tuples sets: Θ← ∅, ∆← ∅;

17: for all t ∈ ECi.T do

18: d← E−1

κ1
(t);

19: Check the Origin property: Mκ2
(d) = t.MAC

20: Check the Specialization property: d.QID � ECi.η;

21: Check the Distinguishability property: d.TID /∈ Θ;

22: Θ← Θ ∪ d.TID;

23: ∆← ∆ ∪ d;

24: end for

25: for all d ∈ ∆ do

26: Send to UE 〈d.SD〉;
27: end for

Although the above scheme tackles the Honest-but-Curious

attack model without requiring the sharing of any cryptograph-

ical material between SPTs, it still requires the enforcement

of safety properties in order to cope with Weakly-Malicious

attackers. Indeed, during the third phase, a Weakly-Malicious

UE could send cheated classes spanning less than k individuals.

The SPTs would thus still have to check the safety of the

classes received during the third phase (e.g., distinguishability of

tuples). Moreover, the above scheme incurs either an unbounded

latency (if UE wishes to collect the SDs of all the SPTs having

participated to the QID collection), or a discrepancy between

the collected QIDs and SDs (otherwise). In order to avoid these

drawbacks, the proposed Robust and WM algorithms collect

both QIDs and SDs during the first phase.

VI. EXPERIMENTAL VALIDATION

A. Experimental platform

The algorithms presented in this paper have been imple-

mented and are being integrated in a larger prototype named

PlugDB4. PlugDB aims at managing secure portable medical-

social folders with the objective to increase quality and co-

ordination of care provided at home to dependent patients. A

complete chain of software (web server, application and DBMS

server) has been developed and is embedded in the secure USB

Flash platform pictured in Figure 2. This prototype has been

demonstrated at [10]. The hardware platform is provided by

Gemalto (the world leader in smart-cards), industrial partner of

the project. The project is founded by the Yvelines District of

France and by the French National Research Agency and will

soon be experimented in the field in a medical network handling

elderly people. The hardware platform is still under test so the

performance measurements have been conducted on a cycle-

accurate hardware emulator.

The algorithms considered for the experiments are Robust

and WM (weakly-malicious). As a comparison baseline we

also implemented the trivial algorithm described in section V

and consisting in (1) collecting QIDs, (2) constructing the

equivalence classes, and (3) collecting the SDs corresponding to

all the QIDs collected first. We call this later algorithm Naı̈ve.

We concentrate on the evaluation (1) of the time spent

internally in each SPT to participate to each phase of the

protocol, and (2) of the protocol latency. We obtained the results

of point (1) by performance measurements conducted on the

hardware emulator, and the results of point (2) by simulation.

B. Internal Time Consumption

Settings: The cycle-accurate hardware simulator we used

for this experiment is clocked at 50Mhz, corresponding to the

CPU clock of the target platform. Cryptographic operations

are implemented in hardware with good performances (e.g.,

encrypting a block of 128bits with AES costs 150 cycles).

Although Hi-Speed USB2 (480 Mbps theoretical bandwidth)

is announced for the near future, today’s implementation of

the communication channel is far less efficient. The measured

throughput is 12Mbps (i.e., Full-Speed USB2), which amounts

to 8Mbps of useful bandwidth when we exclude the overhead

of the USB protocol itself.

Internal time consumption: Figure 5(a) details the time

consumed by a SPT for each basic operation performed during

the anonymization protocol. The measure has been performed

with a sample of 106 SPTs, k varying from 10 to 100. The

dataset was synthetically generated; two numerical attributes

formed the QID and one string attribute formed the SD.

Depending on the algorithm, the worst case occurs either

when k is minimal or maximal. For each algorithm, we plot

these two cases to assess whether performance bottlenecks could

compromise the feasibility of the approach. The worst case for

Naı̈ve and WM occurs when k is low. In this situation, the

transfer cost of the Summary for both, and the checking cost

of Mutual Exclusion for WM only, dominate the other costs

because of the high number of equivalence classes. Note that
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Fig. 5. SPT’s Time Consumption

a SPT only checks Mutual Exclusion once, i.e., at its first

connection. It then checks Invariance during its subsequent

connections (see section IV). Operations related to tuples (ie,

transfer, hashing, and decryption) are cheap since Naı̈ve solely

uploads its sensitive data, and WM downloads and uploads

between k and 2k−1 tuples. On the contrary, the worst case for

Robust occurs for a high k value, where the tuples’ transfer cost

overwhelms the other costs. Indeed, since Robust does not make

use of any summary, its cost does not depend on the number of

classes but on the cardinality of each class. As a conclusion, this

figure confirms the feasibility of the approach by showing that,

even in the worst cases, the execution time amounts to couples

of seconds.

Scaling: Figure 5(b) shows the scaling of all the protocols

wrt to the number of SPTs in the sample - chosen to be on a

nation-wide scale - with k = 100. Apparently, Naı̈ve and WM

scale linearly with the number of SPTs sampled. This is due to

the linear increase in size of the Summary (cost of transferring

it and checking the global properties). Robust remains constant,

around 10−3 sec.; indeed, it does not use any summary so the

time it consumes only depends on k.

C. Latencies

Figures 5(c) and 5(d) plot respectively the latency of the

Collection phase and of the Anonymization phase of the pro-

tocols, considering a population of 106 SPTs. The latency

is measured in terms of connection steps of equal duration,

this duration being application dependent. At each given step,

each SPT SPTi has a probability Pi of connecting to UE

and executing the algorithm. We plot and compare below the

latencies corresponding to a uniform connection distribution,

where ∀ SPTi,Pi = 0.01.

Collection phase (all) / Anonymization phase (Naı̈ve):

The latency of the collection phase is the same, regardless of

the protocol studied. This latency depends on the connectivity

distribution and on the proportion of SPTs in the sample.

Figure 5(c) shows that the latency is about 160 steps when

considering a sample of 80% of the total 106 SPTs. Note that

this latency does not vary much with the total number of SPTs,

and depends on Pi because the less often SPTs connect, the

longer the protocol will be. On the same figure, since the times

involved are of the same magnitude, we have also plotted the

latency of the anonymization phase of the Naı̈ve algorithm.

This latency is about 1000 steps, regardless of the proportion



of SPTs reconnecting (and would be even bigger for a skewed

distribution). These high numbers are explained by the fact that

the same set of SPTs must connect at each phase of the protocol.

Anonymization phase (Robust and WM): Figure 5(d)

shows the latency of the anonymization phase of the Robust

and WM algorithms for k = 10 and k = 100. For Robust, we

assumed that a connecting SPT anonymizes exactly one class

during its session. The latency is linear and depends on the

total number of classes to anonymize divided by the number

of connected SPTs per step. The Robust’s latency is constant

and equal to 1 for k = 100 because there are more SPTs that

connect during one step than the total number of classes. The

WM’s latency behaves also linearly. It differs from the Robust’s

one in that its increased protection incurs the supplementary

cost of sending each class to several SPTs in order to guarantee

the desired detection probability (in the measures, the minimal

detection probability was set to 0.99).

As a conclusion, it appears from these figures that the latency

of the Robust and Weakly-Malicious protocols is determined

by the latency of their collection phase, itself being related to

the size of the sample of interest in the complete population

of SPTs. Note that we do not plot the latencies of a skewed

distribution merely because it presents a limited interest ((1) the

latency of the Collection phase depends on the number and

connection probabilities of SPTs that connect few because UE

may have to wait for their connection to reach the desired

sample size, and (2) the latency of the Anonymization phase

depends on the number of SPTs that connect at each step).

VII. ENABLING OTHER PRIVACY MODELS

The diversity of data recipients in terms of usage and trust

preclude the election of a “one-size-fits-all” model. The en-

forcement of the k-anonymity model in a context where data

is hosted on smart tokens is a first step towards the design of

a broad framework able to adapt to various privacy criterion

(e.g., l-diversity [17], PRAM [14]). For this, the key enabler

lies in broadening the scope of the techniques explained in

this paper, to privacy mechanisms other than generalization.

This objective can be met in the following way. First, PPDP

aims at obfuscating the link between identifying and sensitive

data: some mechanisms act on the identifying part of data

(e.g., generalizing the quasi-identifiers), some others on the

sensitive part (e.g., perturbing the sensitive data). In our context,

it appears that the construction phase, run by UE, can act

indistinctly on either the former or the latter. Second, differential

attacks are not specific to any mechanism. Their threat appears

as soon as the collected dataset is divided into smaller partitions,

which is necessary in a context where the sanitization task

is distributed to light trusted devices that are unable to treat

the dataset as a whole. Hence, (light variations of) the safety

properties defined in this paper are still necessary for securing

the realization of other mechanisms.

VIII. CONCLUDING REMARKS

The increasing suspicion on the ability of DB servers to

protect data against attacks and negligences urge the DB

community to design credible alternatives to the centralization

of personal data. This paper considers a new environment,

where private data is stored by individuals into tamper-resistant

smart portable tokens under their control. Unfortunately, this

individual-centric environment conflicts with the collective re-

quirement for knowledge-based decision making. This paper

shows how to reconcile the best of the two worlds. To this end,

we propose new secure distributed PPDP algorithms coping with

the smart token’s limited availability and the outside world’s

untrustworthiness.

This work paves the way for a new family of privacy-

preserving distributed protocols exploiting the emergence of

more and more powerful smart tokens. Future work will mainly

consist in generalizing the approach to a wider variety of privacy

mechanisms. The results presented in this paper are a strong

incentive to go in this direction.
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