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Abstract

In this article, we propose an analytical approximation for the pricing of European op-

tions for some lognormal stochastic volatility models. This approximation is a second-order

Taylor series expansion of the Fourier transform with respect to the "volatility of volatility".

We give, using these formulas, a new method of variance reduction for the Monte-Carlo

simulation of the trajectories of the underlying.

1 Introduction

Following the rejection of the assumption of constant volatility by empirical studies, a large num-

ber of models have been proposed in the literature such as generalized Lévy processes, fractional

Brownian motion, the di�usions with jumps and stochastic volatility models. Melino and Turn-

bull have shown in [22] that the assumption of stochastic volatility leads to a distribution of the

underlying asset that is closer to the empirical observations than the log-normal distribution.

The issue of stochastic volatility and its e�ects on prices of options have been widely studied in

the literature (see, e.g., Johnson and Shanno [18], Hull and White [17], Scott [25], Wiggins [27]).

The models developed by these authors require either the use of Monte Carlo simulation or the

numerical solution of partial di�erential equation (parabolic in most cases) with dimension larger

than 2 for the price of conventional options. Some of these models require the "questionable" as

assumption of zero correlation between the underlying and its volatility. Under this assumption,

Hull and White [17] gave an approximation of the price of a European option as a Taylor series

expansion, Stein and Stein [26] provide a solution for option prices that can be obtained using
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numerical integration in two variables. Heston [16] developed a semi-analytical solution for

pricing European options in a model with correlated stochastic volatility.

More recently, there has been an explosion of literature on approximation methods for the

pricing of European options. Alós et al. [1] studied the short-time behavior of implied volatility

in a stochastic volatility model using an extension of Ito's formula. Some authors have proposed

analytical techniques to calculate the asymptotic expansion of implied volatility for very short

or very long maturities, include Hagan et al. [13] , Berestycki et al. [3], [4], Henry Labordère

[14], [15] and Laurence [20], or more recently, the work of Forde, Jacquier and Mijatovic [9],

[10] on the asymptotic expansion of implied volatility in the Heston model for short and long

maturities. Other studies are based on an asymptotic expansion of prices with respect to the

Drift of the volatility process for short maturities. For example, in [11] , Fouque et al propose an

asymptotic expansion with respect to the parameter of mean reversion. Lewis [21], Benhamou

et al [2] propose approximation methods based on the asymptotic expansion with respect to the

volatility of volatility. In all the works cited above, the scope is often limited and the results can

only be applied in a speci�c context, outside which we lose either the analytical formulas or the

quality (accuracy) of these formulas.

This work belongs to the latter category. We �rst consider a lognormal stochastic volatility

model (Scott model [25] with time-dependent parameters). We propose an approximation method

based on a second-order Taylor expansion of Fourier transform of the joint distribution of the

underlying and its variance by solving the Fokker-Planck equation with respect to the "volatility

of volatility" parameter. We obtain an approximation of the density of the underlying as a sum

of successive derivatives of the Gaussian density. In addition, thanks to the particular shape

of the approximate density, we obtain easily a similar formula for prices of European options

as well as that of the implied volatility. Our approach extends to models where the variance is

an exponential of a sum of Ornstein-Uhlenbeck processes. It therefore allows to approach the

density of the underlying asset in Bergomi's model(s) ([5], [6], [7]). Our results are similar to

those obtained recently Bergomi and Guyon [8] who derive the second order Taylor expansion

of European options in some stochastic volatility models, including 2 factor Bergomi's model,

using some perturbation techniques.

The formulas we obtain, especially those giving an approximation of the density function of

the underlying asset, can also be used to reduce the variance of a Monte-Carlo simulation. In

[12], Fouque and Han use the approximations of European option prices obtained by perturbation

techniques to build variance reduction methods such as "importance sampling" and Control

Variate. In this work we propose a new method of variance reduction of type "Control Variate"

which uses the explicit approximation we obtain for the distribution function of the underlying.

The idea is to build a new process whose the density is given by the approximated denisty of
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the underlying and strongly correlated with the trajectories of the underlying asset. We give

an estimate of the gain in variance in terms of the volatility of volatility. Several numerical

experiments are provided to prove the performance of this method of variance reduction.

This paper is organized as follows: Section 2 deals with the case of a one factor lognormal

stochastic volatility model (time-dependent Scott model). We give the second-order Taylor

expansion of the Fourier transform of log-returns with respect to the volatility of volatility

parameters. We deduce the second-order Taylor expansion of the density of log-returns with

respect to the volatility of volatility as well as the implied volatility and the skew. In section

3 we generalize the results of Section 2 to the multidimensional case. In section 4 we present

a new method of variance reduction of the Monte-Carlo simulation. In section 5 we give some

numerical results.

2 One Factor Case : Time Dependent Scott Model

In this section we consider a generalization of the model proposed by Scott [25]. Under this

model, the dynamics of the underlying is given by the SDE{
dSt
St

= f(t, Vt)dW
S
t ,

dVt = −bVtdt+ ωσtdW
V
t , d〈WS ,W V 〉t = ρtdt,

(2.1)

where f2(t, v) = mte
v, m, ρ and σ are deterministic continuous functions of time. Assume

ω, σ ≥ 0. Assume also that V0 = 0 (Otherwise, we replace mt by mt e
V0e−bt and V by V − V0).

Denote by p(t, x, v) the joint density of the pair of random variables (Xt = log(St/S0), Vt).

This density satis�es the following Fokker-Planck equation :

∂tp = ∂v[bvp] +
(ωσt)

2

2

∂2p

∂v2
+

1

2
f2(t, v)

∂p

∂x
+

1

2
f2(t, v)

∂2p

∂x2
+ ρωσtf(t, v)

∂2p

∂x∂v
(2.2)

with the boundary condition p(0, x, v|0) = δ0(x)δ0(v).

Consider the Fourier transform of p de�ned as

ϕ(t, ξ, ζ;ω) :=

∫ ∞
−∞

dxeixξ
∫ ∞
−∞

dveivζp(t, x, v), ζ, ξ ∈ R.

The function ϕ is solution of the equation

Lϕ(t, ξ, ζ;ω) = 0, ∀(t, ξ, ζ) ∈]0,∞[×R× R, (2.3)
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where L is the operator de�ned by

Lh(t, ξ, ζ;ω) = ∂th(t, ξ, ζ;ω) + ω2σ
2
t

2
ζ2 h(t, ξ, ζ;ω) + bζ∂ζh(t, ξ, ζ;ω) +

mt
ξ2 + iξ

2
h(t, ξ, ζ − i;ω) + ξζωρtσt

√
mt h(t, ξ, ζ − i

2
;ω). (2.4)

In this section, we propose to approximate this Fourier transform by its second order Taylor

expansion with respect to the parameter ω, which measures the volatility of volatility. Our ap-

proach is inspired by the work of Perelló et al [24] giving an approach to approximate the Fourier

transform in the case of constant parameters. Note that our method is not a generalization of

[24] to the case of time-dependent parameters. Indeed, our approach is based on solving the

equation ϕ(t, ξ, ζ) ≡ ϕ(t, ξ, ζ, ω) for all ξ, ζ ∈ R by writing its second order Taylor expansion

with respect to ω, while the approximation of [24] is obtained by rescaling the equation and then

truncating the terms of order higher than 2 with respect to m
σ . We will compare both methods

by giving some numerical examples.

To calculate the Taylor expansion of the solution of (2.4) with respect to ω, we di�erentiate

it successively with respect to ω. We obtain that ϕ can be written in terms of its Taylor series

expansion with respect to ω as follows:

ϕ(t, ξ, ζ;ω) = ϕ0(t, ξ, ζ) + ωϕ1(t, ξ, ζ) +
ω2

2
ϕ2(t, ξ, ζ) + . . . , (2.5)

where ϕi is solution of

Liϕi(t, ξ, ζ) = 0, ∀(t, ξ, ζ) ∈]0,∞[×R× R,

and

L0h(t, ξ, ζ) = ∂th(t, ξ, ζ) + bζ∂ζh(t, ξ, ζ) +mt
ξ2 + iξ

2
h(t, ξ, ζ − i), (2.6)

L1h(t, ξ, ζ) = L0h(t, ξ, ζ) + ξζρtσt
√
mt ϕ0(t, ξ, ζ − i

2
), (2.7)

L2h(t, ξ, ζ) = L0h(t, ξ, ζ) + 2ξζρtσt
√
mt ϕ1(t, ξ, ζ − i

2
) + σ2

t ζ
2 ϕ0(t, ξ, ζ). (2.8)

De�nition 2.1. Let h ∈ C1,2,2,n+1(R+ × R× R× R+). We say that h is a n-order ω-equivalent

of ϕ, we denote h ≡ ϕ [n], if for all (t, ξ, ζ) ∈]0,∞[×R× R, we have

∂ih

∂ωi
(t, ξ, ζ; 0) = ϕi(t, ξ, ζ), ∀i ≤ n. (2.9)
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The main result of this section is the following result, whose proof can be found in the

appendix. It gives the second order w-equivalence of the Fourier transform of the joint density

of (Xt, Vt)

Theorem 2.2. Let's denote by

ϕ̂(t, ξ, ζ) = e−(A0(t,ξ;ω)+ωA1(t,ξ;ω)ζ+ω2A2(t)ζ2), (2.10)

where A0, A1 and A2 are given by

A2(t, ξ) =
1

2

∫ t

0
σ2
se
−2b(t−s)ds,

A1(t, ξ;ω) =

∫ t

0
(ηs(ξ) + 2iωµsA2(s, ξ))e−(γt(ξ;ω)−γs(ξ;ω))ds,

A0(t, ξ;ω) =

∫ t

0
µs(ξ)(1 + ω2A2(s) + (iωA1(s, ξ;ω)− ω2

2
A2

1(s, ξ; 0)))ds,

with µt(ξ) := mt
ξ2+iξ

2 , ηt(ξ) = ξρtσt
√
mt and

γt(ξ;ω) = bt− iω
2

∫ t

0
ηs(ξ)ds.

Then, we have

ϕ̂ ≡ ϕ [2]. (2.11)

Approximating the density of Xt

We now consider the approximation of the Fourier transform of the joint distribution of (Xt, Vt)

given by (2.10). Taking the particular case ζ = 0, we deduce an approximation of the Fourier

transform of Xt. This approximation is given as

ϕ̂(t, ξ, 0;ω) = e−A0(t,ξ;ω).

We can write the second order Taylor series expansion of A0(t, ξ, ω) with respect to ω, which is

obtained by calculating the �rst order Taylor expansion of A1(t, ξ, ω) with respect to ω:

A1(t, ξ;ω) =

∫ t

0
ηs(ξ)e

−b(t−s)(1 + i
ω

2

∫ t

s
ηu(ξ)du)ds+ iω

∫ t

0
µs(ξ)

∫ s

0
σ2
ue
−b(t+s−2u)duds

+O(ω2)
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and A2
1(t, ξ; 0):

A2
1(t, ξ; 0) =

(∫ t

0
ηs(ξ)e

−b(t−s)ds

)2

.

It follows that ϕ̂(t, ξ, 0;ω) can be written as

ϕ̂(t, ξ, 0;ω) = exp
(
−iµ1(t;ω)ξ − µ2(t;ω)ξ2 + iµ3(t;ω)ξ3 + µ4(t;ω)ξ4 +O(ω3)

)
,

where

µ1(t;ω) =
1

2

∫ t

0
msds+

ω2

4

∫ t

0
ms

∫ s

0
σ2
ue
−2b(s−u)duds,

µ2(t;ω) = µ1(t;ω) +
ω2

4

∫ t

0
mτ

∫ τ

0
ms

∫ s

0
σ2
ue
−b(τ+s−2u)dudsdτ − ω

2

∫ t

0
mτ

∫ τ

0
ηs(1)e−b(τ−s)dsdτ ,

µ3(t;ω) = −ω
2

∫ t

0
mτ

∫ τ

0
ηs(1)e−b(τ−s)dsdτ +

ω2

4

∫ t

0
mτ

∫ τ

0
ηs(1)e−b(τ−s)

∫ τ

s
ηu(1)dudsdτ

+
ω2

4

∫ t

0
mτ

( ∫ τ

0
ηs(1)e−b(τ−s)ds

)2
dτ +

ω2

2

∫ t

0
mτ

∫ τ

0
ms

∫ s

0
σ2
ue
−b(τ+s−2u)dudsdτ ,

µ4(t;ω) =
ω2

4

∫ t

0
mτ

∫ τ

0
ms

∫ s

0
σ2
ue
−b(τ+s−2u)dudsdτ +

ω2

4

∫ t

0
mτ

( ∫ τ

0
ηs(1)e−b(τ−s)ds

)2
dτ

+
ω2

4

∫ t

0
mτ

∫ τ

0
ηs(1)e−b(τ−s)

∫ τ

s
ηu(1)dudsdτ .

Similarly, writing that ex = 1 + x+ x2/2 + . . . , we can write ϕ̂(t, ξ, 0;ω) as

ϕ̂(t, ξ, 0;ω) = e(−iµ1(t;ω)ξ− ν(t)
2
ξ2)

(
1 +

6∑
n=1

(−i)nνn(t;ω)ξn +O(ω3)

)
, (2.12)

where ν(t) =
∫ t

0 msds and

ν1(t;ω) =
ω2

4

∫ t

0
ms

∫ s

0
σ2
ue
−2b(s−u)duds,

ν2(t;ω) = ν1 +
ω2

4

∫ t

0
mτ

∫ τ

0
ms

∫ s

0
σ2
ue
−b(τ+s−2u)dudsdτ − ω

2

∫ t

0
mτ

∫ τ

0
ηs(1)e−b(τ−s)dsdτ ,

ν3(t;ω) = µ3(t;ω), ν4(t;ω) = µ4(t;ω) +
ω2

8

(∫ t

0
mτ

∫ τ

0
ηs(1)e−b(τ−s)dsdτ

)2
,

ν5(t;ω) =
ω2

4

(∫ t

0
mτ

∫ τ

0
ηs(1)e−b(τ−s)dsdτ

)2
, ν6(t;ω) =

ω2

8

(∫ t

0
mτ

∫ τ

0
ηs(1)e−b(τ−s)dsdτ

)2
.

We then obtain the next result
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Theorem 2.3. Let's denote ϕX(t, ξ;ω) := E eiξXt . Consider the function ψ de�ned by

ψ(t, ξ;ω) := e(−iµ1(t)ξ− ν(t)
2
ξ2)

(
1 +

6∑
n=1

(−i)nνn(t;ω)ξn

)
.

Then we have

ψ ≡ ϕX [2].

Furthermore, if we denote by pX(t, x;ω) = P(Xt ∈ dx) and by p̂X(t, x;ω) := F−1(ψ)(t, x;ω),

then we have

p̂X ≡ pX [2], (2.13)

where p̂X is "explicitly" given by

p̂X(t, x;ω) =
1√

2πν(t)
e
− (x+µ1(t;ω))

2

2ν(t)

(
1 +

6∑
n=1

(−1)n
νn(t;ω)

ν
n
2 (t)

Hn(
x+ µ1(t;ω)√

ν(t)
)

)
, (2.14)

where the Hn's are the Hermite polynomials.

Proof: First, from the way we obtained the expression of ψ(t, ξ;ω) from that of ϕ̂(t, ξ, 0;ω), it

is easy to see that ψ ≡ ϕ̂X [2], where ϕ̂X(t, ξ;ω) := ϕ̂(t, ξ, 0;ω). It follows that ψ ≡ ϕX [2]

(because ϕ̂X ≡ ϕX [2]). Now, to show that F−1(ϕX) ≡ F−1(ψ) [2], it su�ces to show that

we can di�erentiate under
∫
with respect to ω. i.e.

∂jω

[∫ ∞
−∞

e−ixξψ(t, ξ;ω)dξ

]
ω=0

=

∫ ∞
−∞

(
e−ixξ∂jωψ(t, ξ;ω)

∣∣
ω=0

)
dξ, j = 1, 2. (2.15)

and

∂jω

[∫ ∞
−∞

e−ixξϕX(t, ξ;ω)dξ

]
ω=0

=

∫ ∞
−∞

(
e−ixξ∂jωϕX(t, ξ;ω)

∣∣
ω=0

)
dξ, j = 1, 2. (2.16)

The �rst equality holds since ψ is given as

ψ(t, ξ;ω) := e(−iµ1(t)ξ− ν(t)
2
ξ2)

(
1 +

6∑
n=2

(−i)nνn(t)ξn

)
,

where ν(t) > 0 and the νn(t)'s are polynomial functions of ω. We write that for any ξ ∈ R and
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for any j ∈ N, ω 7−→ ψ(t, ξ;ω) is di�erentiable and its derivative can be written as

∂j

∂ωj
ψ(t, ξ;ω) = Qjω(t, ξ) e(−iµ1(t)ξ− ν(t)

2
ξ2), ∀ω ≥ 0,

where Qjω(t, .) is a polynomial function. It follows that we can write

∂j

∂ωj

∫ ∞
−∞

e−ixξψ(t, ξ;ω)dξ =

∫ ∞
−∞

e−ixξ
∂j

∂ωj
ψ(t, ξ;ω)dξ, ∀j ∈ N.

On the other hand, we have

∂jϕX(t, ξ;ω)

∂ωj
|ω=0 :=

∂jE eiξXt

∂ωj
|ω=0 =

∂jψ(t, ξ;ω)

∂ωj
|ω=0, ∀j = 1, 2.

So for any M > 0 there exists δ > 0 such that

sup
ξ∈[−M,M ]

∣∣∣∣eξ2 (∂jϕX(t, ξ;ω)

∂ωj
− ∂jψ(t, ξ;ω)

∂ωj

)∣∣∣∣ < 1, ∀ω < δ, ∀j = 1, 2.

For the big values of ξ, we apply Hölder's inequality as follows

|∂ωϕX(t, ξ;ω)| ≤ |ξ| ‖∂ωXt‖p
∣∣∣∣ϕX(t,

p

p− 1
ξ;ω)

∣∣∣∣ p−1
p

, ∀p > 1.

It follows that, for any p > 1, we have

∣∣∂jωϕX(t, ξ;ω)
∣∣ ≤ cp|ξ|j ∣∣∣∣ϕX(t,

p

p− 1
ξ;ω)

∣∣∣∣ p−1
p

, j = 1, 2.

As |ϕX(t, ξ;ω)| −→ 0, we get sup|ξ|>M |ϕX(t, ξ;ω)| ≤ |ϕX(t,M0;ω)|, where M0 ≥ M . On the

other hand, we have

|ϕX(t,M0;ω)| ≤ |ϕX(t,M0; 0)|+ ω |∂ωϕX(t,M0; 0)| , ∀ω ∈ [0, ω0].

We �nally obtain that∣∣∣∣ ∂j∂ωj ϕX(t, ξ;ω)

∣∣∣∣ ≤ P jω(t, ξ) e(−iµ1(t)ξ− ν(t)
2
ξ2), ∀ξ ∈ R, ∀ω ≤ ω0, j = 1, 2,

8



where P jω(t, .) is a polynomial function. This allows us to write

∂j

∂ωj

∫ ∞
−∞

e−ixξϕX(t, ξ;ω)dξ =

∫ ∞
−∞

e−ixξ
∂j

∂ωj
ϕX(t, ξ;ω)dξ, ∀j ≤ 2.

Thus

∂jpX
∂ωj

(t, x, 0) = F−1(
∂jϕX
∂ωj

)(t, x, 0) = F−1(
∂jψ

∂ωj
)(t, x, 0) = p̂(t, x, 0), ∀j ≤ 2 �

Corollary 2.4. Consider the function C : (t,K;ω) ∈ R3
+ 7−→ E(eXt −K)+. Then, we have

Ĉ ≡ C [2],

where Ĉ(t,K;ω) =
∫
R(ex −K)+p̂X(t, x;ω)dx. Furthermore, Ĉ is explicitly given by

Ĉ(t,K;ω) = CBS(1,K,
√
ν) +

K√
ν
N ′(d2)

( 4∑
n=0

zn

ν
n
2

Hn(−d2)
)
, (2.17)

where CBS(t,K, I) = N(d1) −KN(d2), with d1 =
log( 1

K
)+ t

2
I2

I , d2 =
log( 1

K
)− t

2
I2

I , z4 = ν6, z3 =

−ν5 + z4, z2 = ν4 + z3, z1 = −ν3 + z2, z0 = ν2 + z1 = ν1.
1

Implied volatility

Denote by Σ the implied volatility de�ned as

C(t, k;ω) := E (eXt − ek)+ = N

(−k + t
2Σ2(t, k;ω)

√
tΣ(t, k;ω)

)
− ekN

(−k − t
2Σ2(t, k;ω)

√
tΣ(t, k;ω)

)
. (2.18)

Note that the dependence of C with respect to ω is only through Σ. So the second order Taylor

series expansion of C with respect to ω is given in terms of the Taylor expansion of Σ with

respect to ω as

C(t, k;ω) = CBS(t, k,Σ0) + ekN ′(d)
√
tΣ1ω + ekN ′(d)

(
(
d2

Σ0
− d)tΣ2

1 +
√
tΣ2

)
ω2

2
+O(ω3),

(2.19)

where d =
(
k + t

2Σ2
0(t, k)

)
/
(√
tΣ0(t, k)

)
and

Σi ≡ Σi(t, k) =
∂iΣ(t, k;ω)

∂ωi
|ω=0. (2.20)

1
Note that ν1 − ν2 + ν3 − ν4 + ν5 − ν6 = 0.
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Now, we can easily check that (2.17) can be written as

Ĉ = CBS +
KN ′(d)

2
√
ν

χ1d ω +
KN ′(d)√

ν
×(

2χ0 − χ2
d√
ν

+ (χ2 + χ3 + χ4)
d2 − 1

ν
+

1

2
(χ1)2(

d4 − 6d2 + 3

ν2
− d3 − 3d

ν
√
ν

)
)ω2

4
,(2.21)

where

χ0 :=

∫ t

0
ms

∫ s

0
σ2
ue
−2b(s−u)duds, χ1 :=

∫ t

0
mτ

∫ τ

0
ηs(1)e−b(τ−s)dsdτ,

χ2 :=

∫ t

0
mτ

∫ τ

0
ms

∫ s

0
σ2
ue
−b(τ+s−2u)dudsdτ , χ3 :=

∫ t

0
mτ

( ∫ τ

0
ηs(1)e−b(τ−s)ds

)2
dτ,

χ4 :=

∫ t

0
mτ

∫ τ

0
ηs(1)e−b(τ−s)

∫ τ

s
ηu(1)dudsdτ . (2.22)

Identifying (2.21) and (2.19) we obtain the following result

Corollary 2.5. For t > 0 and k ∈ R, we have

Σ0(t, k) =

√
1

t

∫ t

0
msds, (2.23)

Σ1(t, k) =
1

2
√
t

x+ 1
2Σ2

0

Σ3
0

∫ t

0
mτ

∫ τ

0
ρsσs
√
mse

−b(τ−s)dsdτ, (2.24)

Σ2(t, k) =
χ0√
tΣ0

− χ2
d

2tΣ2
0

+ (χ2 + χ3 + χ4)
d2 − 1

t
3
2 Σ3

0

+ (χ1)2(
3d

4t2Σ4
+

3− 6d2

4t
5
2 Σ5

0

). (2.25)

where the χ's are given by (2.22) and d =
k+ t

2
Σ2

0(t,k)√
tΣ0(t,k)

.

In particular, we have the following expansion of the skew with respect to the volatility of

volatility (see [8] for similar result)

ST =
ω

2t2Σ3
0

χ1 +
ω2

2

(
1
2χ2 + χ3 + χ4

t2Σ3
0

− 3(χ1)2

4t3Σ5
0

)
. (2.26)

3 Multi-factor case : Bergomi's model

In this section we consider a N-dimensional model de�ned by the stochastic di�erential equations{
dSt
St

= rdt+ f(t, V 1
t , . . . , V

N
t )dWS

t ,

dV n
t = (αn(t)− κnVn)dt+ σn(t)dWn

t ., d〈WS ,Wn〉t = ρSndt, n = 1, . . . , N,
(3.1)
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where d〈Wn,Wm〉t = ρn,mdt = 0, ∀m,n ≤ N , αn, σn, n ≤ N , are deterministic continuous

functions of time and the function f is de�ned by

, f2(t, V 1
t , . . . , V

N
t ) = mt exp

(
ω

N∑
n=1

θnV
n
t

)
. (3.2)

This model is a generalization of the Bergomi model ([5], [6], [7]). It corresponds also to another

version of Bergomi's model we proposed in [23]. These models are driven from a Markovian

modeling of the forward variance curve. The "factors" V 1, . . . , V N allow to control the volatility

dynamics by calibrating the so-called volatility derivatives (futures and options on VIX in the

case of the S&P 500, options on realized variance ...etcetera). The number of factors N is

the number of degrees of freedom we need to calibrate both the "VIX smiles" and the implied

volatility of the underlying. Although these models allow a good calibration of the volatility of

volatility, they have a large defect that is the cost of the evaluation of European options since

the only available method is the Monte Carlo simulation.

In this section, we extend the results of the previous section to the multidimensional case.

We will give an approximation of the Fourier transform of the joint distribution of (Xt :=

logSt/S0, V
1
t , . . . , V

N
t ), which appears as its second order Taylor series expansion with respect

to ω. Let's set

ϕ(t, ξ, ζ1, . . . , ζN ;ω) := E exp

(
iξXt + i

N∑
n=1

ζnV
n
t

)
.

We keep the notations of the previous section. The following result gives an approximation of ϕ

Proposition 3.1. Assume for all n,m ≤ N , ρn,m = 0. Consider the function ϕ̂ de�ned as

ϕ̂(t, ξ, ζ1, . . . , ζN ;ω) := exp

(
−A0(t, ξ;ω)−

N∑
1

An(t, ξ;ω)ζn −
N∑
1

Cn(t, ξ;ω)ζ2
n

)
, (3.3)

where, for n = 1, . . . , N ,

Cn(t, ξ;ω) = 1
2

∫ t
0 σ

2
n(s)e−2κn(t−s)ds,

An(t, ξ;ω) =
∫ t

0 (ξρSnσn(s)
√
ms − iαs + 2iωµsCn(s, ξ))e−(γn(t,ξ)−γn(s,ξ))ds,

A0(t, ξ;ω) =
∫ t

0 µs

(
1 + iω

∑M
n=1An(s, ξ)− ω2

2 (
∑M

n=1An(s, ξ))2 + ω2
∑M

n=1Cn(s, ξ)
)
ds,

µt(ξ) := mt
ξ2+iξ

2 , γn(t, ξ) = κnt− iξρSn ω2
∫ t

0 σn(s)
√
msds.
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Then, we have

ϕ̂ ≡ ϕ [2]. (3.4)

The proof of this proposition is very similar to the 1 factor case. As a result of this, if we set

ϕX(t, ξ;ω) := EeiξXt . (3.5)

and ϕ̂X(t, ξ;ω) := e−A0(t,ξ;ω), we obtain

ϕ̂X ≡ ϕX [2]. (3.6)

Writing C(t, ξ;ω) =
∑N

n=1Cn(t, ξ;ω) and

A(t, ξ;ω) =
N∑
n=1

∫ t

0
(ξρSnσn(s)

√
ms − iαn(s) + iωµs

∫ s

0
σ2
n(r, ξ)e−2κn(s−r)dr)e−(γn(t,ξ)−γn(s,ξ))ds,

we obtain that A0 can be written as

A0(t, ξ;ω) =

∫ t

0
µs(ξ)

(
1 + iωA(s, ξ)− ω2

2
A2(s, ξ) + ω2C(s, ξ)

)
ds.

Now writing the second order Taylor expansion of A(t, ξ;ω) with respect to ω, we have

A =

N∑
n=1

∫ t

0
(xρSnσn(s)

√
ms − iαn(s))e−κn(t−s)(1− i

2
ωρSnx

∫ t

s
σn(u)

√
mudu)ds

+iω

N∑
n=1

∫ t

0
µs

∫ s

0
σ2
n(r, x)e−κn(t+s−2r)drds+O(ω2).

It follows that ϕ̂X(t, x;ω) can be written as

ϕ̂X(t, x;ω) = exp
(
−iµ1(t, ω)x− µ2(t, ω)x2 + iµ3(t, ω)x3 + µ4(t, ω)x4 +O(ω3)

)
,

where the mµi's are given by (C.3). Also, we can write ϕ̂X as

ϕ̂X(t, x) = e(−iµ1x− ν(t)2
x2)

(
1 +

6∑
n=1

(−i)nνn(t;ω)xn +O(ω̄3)

)
, (3.7)
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where ν(t) := 2µ1(t) and

ν2(t;ω) = µ2(t;ω)− µ1(t;ω), ν3(t;ω) = µ3(t;ω),

ν4(t;ω) = µ4(t;ω) +
ω2

8

(
N∑
n=1

ρSn

∫ t

0
mu

∫ u

0
σn(s)

√
mse

−κn(u−s)dsdu

)2

,

ν5(t;ω) =
ω2

4

(
N∑
n=1

ρSn

∫ t

0
mu

∫ u

0
σn(s)

√
mse

−κn(u−s)dsdu

)2

,

ν6(t;ω) =
ω2

8

(
N∑
n=1

ρSn

∫ T

0
mt

∫ t

0
σn(s)

√
mse

−κn(t−s)ds

)2

.

We obtain the next result

Proposition 3.2. Let's set pX(t, x;ω) = P(Xt ∈ dx). We have

pX ≡ P [2], (3.8)

where P is de�ned as

P (t, x;ω) =
1√

2πν(t)
e
− (x+µ1)

2

2ν(t)

(
1 +

6∑
n=2

(−1)n
νn(t)

ν
n
2

Hn(
x+ µ1(t)√

ν(t)
)

)
(3.9)

and the Hn's are the Hermite polynomials. In particular, if we set C(t,K;ω) := E
(
eXt −K

)
+
,

we obtain

C ≡ C̃ [2], (3.10)

where C̃ is de�ned by

C̃(t,K;ω) = CBS(t,K,
√
ν) + (

6∑
n=2

νn)N(d1) +
K√
ν
N ′(d2)

( 4∑
n=0

zn

ν
n
2

Hn(−d2)
)
, (3.11)

with CBS(t,K,Σ) = N(d1)−KN(d2), d1 =
log( 1

K
)+ t

2
Σ2

√
tΣ

, d2 =
log( 1

K
)− t

2
Σ2

√
tΣ

and for n = 0, . . . , 4,

zn =
∑6

i=n+2 (−1)iνi.

4 Application : Variance Reduction

The formulas given in the previous section, including those that give the approximation of the

density and the price of European call options, can also be used otherwise. We can use these

formulas as a tool to reduce the variance for the simulation of the trajectories of the underlying
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asset via the Monte Carlo method. In this section, we propose a control variate for the variance

reduction of Monte Carlo simulations for pricing European options. Our method is based on the

use of the approximation of the distribution function of logSt (when it is available) in a general

stochastic volatility model. The idea is to construct a process Ŝ having as density (or distribution)

the approximate density and strongly correlated with the trajectories of the underlying asset,

then we write for a bound function H

E H(St) = E H(St)− E H(Ŝt) + E H(Ŝt).

As the law of Ŝt is known, we have just to simulate H(St)−H(Ŝt) whose variance will be very

small compared to the variance of H(St).

4.1 The Method

We consider a general one factor stochastic volatility model, where we assume that the dynamics

of the underlying is modeled by the SDE

dSεt
Sεt

=
√
f(V ε

t )
(
ρdW 1

t +
√

1− ρ2dW 2
t

)
, (4.1)

where V ε is the unique strong solution to the SDE

dV ε
t = α(t, V ε

t )dt+ εσ(t, V ε
t )dW 1

t , (4.2)

with d〈W 1,W 2〉t = 0 and α, σ are satisfying su�cient conditions which ensure the existence

of a strong solution to the stochastic di�erential equation in (4.1).

Proposition 4.1. For t > 0, denote by F εt (.) the distribution function of Xε
t := log(Sεt ). Denote

by V 0 the unique solution starting from v of the ODE

dV 0
t = α(t, V 0

t )dt.

Then the random variable

X̂ε
t = (F εt )−1 ◦N

 √
1− ρ2√∫ t

0 f(V ε
s )ds

∫ t

0

√
f(V ε

s )dW 2
s +

ρ√∫ t
0 f(V 0

s )ds

∫ t

0

√
f(V 0

s )dW 1
s

 (4.3)

has the same law as Xε
t .

Proof: As V 0 is deterministic, the random variable
∫ t

0

√
f(V 0

s )dW 1
s is Gaussian. On the other
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hand, since V ε is a strong solution of (4.2), then V ε
s is FW 1

s measurable, with FW 1

s is the

�ltration generated by the Brownian motion W 1. Thus V ε
s is independent of W 2 and there-

fore the random variable 1√∫ t
0 f(V εs )ds

∫ t
0

√
f(V ε

s )dW 2
s is a standard normal Random Variable

N (0, 1). Now we can easily check that, conditionally on
∫ t

0

√
f(V 0

s )dW 1
s , the random variable

1√∫ t
0 f(V εs )ds

∫ t
0

√
f(V ε

s )dW 2
s is N (0, 1). Then, the random variable

√
1−ρ2√∫ t

0 f(V εs )ds

∫ t
0

√
f(V ε

s )dW 2
s +

ρ√∫ t
0 f(V 0

s )ds

∫ t
0

√
f(V 0

s )dW 1
s is N (0, 1), which implies that N

( √
1−ρ2√∫ t

0 f(V εs )ds

∫ t
0

√
f(V ε

s )dW 2
s +

ρ√∫ t
0 f(V 0

s )ds

∫ t
0

√
f(V 0

s )dW 1
s

)
is uniformly distributed on [0, 1]. Thus X̂ε

t has the same law as Xε
t .

Proposition 4.2. Let G be C2, with bounded derivatives. We have

E
[(
G(X̂ε

t )−G(Xε
t )− E{G(X̂ε

t )−G(Xε
t )}
)2
]

= O(ε2), (4.4)

Remark 4.1. Note that the variance of G(Xε
t ) is of order 0 in ε. This method of variance

reduction makes possible to get rid of terms of order 0 and 1 in ε. As we can see in the next

numerical examples, the second order Taylor series expansion of price with respect to ε was very

close to the real price, we believe that the remaining variance will be very negligible compared

to the total variance.

Proof: We �rst note that X0
t = X̂0

t . Indeed, V 0
t is deterministic, which means that X0

t is

Gaussian with mean −1
2

∫ t
0 f(V 0

s )ds and variance
∫ t

0 f(V 0
s )ds. So

F 0
t (x) = N

x+ 1
2

∫ t
0 f(V 0

s )ds√∫ t
0 f(V 0

s )ds

 .

Its inverse is given by

(F 0
t )−1(y) = N−1(y)×

√∫ t

0
f(V 0

s )ds− 1

2

∫ t

0
f(V 0

s )ds.

Therefore

X̂0
t = (F 0

t )−1 ◦N

 √
1− ρ2√∫ t

0 f(V 0
s )ds

∫ t

0

√
f(V 0

s )dW 2
s +

ρ√∫ t
0 f(V 0

s )ds

∫ t

0

√
f(V 0

s )dW 1
s


=

√
1− ρ2

∫ t

0

√
f(V 0

s )dW 2
s + ρ

∫ t

0

√
f(V 0

s )dW 1
s −

1

2

∫ t

0
f(V 0

s )ds = X0
t .
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We now write the Taylor expansion of Xt and X̂t with respect to ε. We obtain{
Xε
t = X0

t + εX1
t + ε2

2 X
2
t + . . . ,

X̂ε
t = X̂0

t + εX̂1
t + ε2

2 X̂
2
t + . . .

where X0
t = X̂0

t . Similarly, we can write{
G(Xε

t ) = G(X0
t ) + εG′(X0

t )X1
t + . . . ,

G(X̂ε
t ) = G(X̂0

t ) + εG′(X̂0
t )X̂1

t + . . . .

Note that since Xε
t and X̂

ε
t have the same law, we have

E
[(
G(X̂ε

t )−G(Xε
t )− E{G(X̂ε

t )−G(Xε
t )}
)2
]

= 2E
[
G2 (Xε

t )−G (Xε
t )G

(
X̂ε
t

)]
On the other hand, by writing that E

[
G2(Xε

t )
]

= 1
2E
[
G2(Xε

t ) +G2(X̂ε
t )
]
, we obtain

E
[
G2(Xε

t )−G(Xε
t )G(X̂ε

t )
]

=
1

2
E
[
G2
(
X0 + εX1

)
+G2

(
X̂0 + εX̂1

)
+O(ε2)

]
−

E
[(
G(X0

t ) + εG′(X0)X1
) (
G(X̂0) + εG′(X̂0)X̂1

)
+O(ε2)

]
=

1

2
E
[
G2(X0) + 2εGG′(X0)X1 +G2(X̂0) + 2εGG′(X̂0)X̂1

]
−E

[
(G(X0)G(X̂0) + εG′(X0)G(X̂0)X1 + εG(X0)G′(X̂0)X̂1)

]
+O(ε2)

= O(ε2).

Because X0 = X̂0. We have �nally

E
[
G2(Xε

t )−G(Xε
t )G(X̂ε

t )
]

=
ε2

2
E
[
(G′)2(X0)

(
X1 − X̂1

)2
]

+O(ε3).

4.2 Application

In the case where the instantaneous variance is given as a sum of exponential Ornstein-Uhlenbeck

processes, we can use the approximation of the distribution function of the underlying obtained

in the previous section to construct the control variate. For example, consider the case of one

factor model with parameters t = 1 month, 1 year, r = 0, m = 0.1 × e−
ω2

2
t, b = 3, σ = 1,

and ρ = −0.75. In the following tables, we compare the variance of the price of (K − eXt)+

and (K − eXt)+ − (K − eX̂t )+ for several strikes. We also compare the variance of eXt with the
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variance of eXt − eX̂t for ω = 100%

t = 1 month t = 1 year

Strike Var VarDif V ar
V arDif Var VarDif V ar

V arDif

var S 0,8% 0,002% 344 6,17 % 0,10% 59

90% 0,04% 0,001% 54 1,05% 0,02% 45

100% 0,28% 0,002% 176 1,90% 0,03% 65

110% 0,64% 0,002% 394 2,92% 0,03% 85

120% 0,79% 0,002% 407 3,94% 0,04% 98

Remark 4.2. Note that the random variable eXt is square integrable, since ρ = −0.75 < − 1√
2

(cf. [19]) and eXt de�nes a true martingale.

5 Numerical results: Comparison with Perelló et al (cf [24])

We study the error of this approximation by comparing our results with those obtained with the

Monte Carlo and Perelló, Sircar and Masoliver [24]. We consider the case of a European Put with

several strikes and several maturities. We consider the case of constant parameters and we choose

the following values for the model parameters: S0 = 100, r = 0, m = 0.1× e−
ω2

2
T , b = 3, σ = 1,

ρ = −0.6 and compare the results for ω = 100%, 200% and T = 1 month, 2 ,months, 1 year.

We see that for short maturities and low levels of volatility the volatility, both methods (our

approximation method and PSM) are almost identical and give the real price, while for long

maturities and/or high levels of ω the error in our method is stable and does not exceed 1-2 %.

ω = 100%

2 months 1 year

Strike MC Proxy PSM MC Proxy PSM

80 0,26 ±0.003 0,26 0,23 2,65 ±0.009 2,65 2,28

90 1,46 ±0.005 1,46 1,38 5,53 ±0.011 5,53 5,03

100 4,96 ±0.005 4,97 4,86 9,96±0.013 9,96 9,42

110 11,52 ±0.005 11,52 11,45 15,96 ±0.012 15,96 15,47

120 20,32 ±0.006 20,31 20,28 23,33 ±0.013 23,33 22,94

130 30,05 ±0.005 30,05 30,03 31,74±0.014 31,75 31,46

In terms of impled volatility
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2 months 1 year

Strike MC Proxy PSM MC Proxy PSM

80 33,5 ±0.004 33,45 32,66 26,6 ±0.010 26,57 25,13

90 31,89 ±0.005 31,89 31,23 25,76 ±0.012 25,76 24,34

100 30,50 ±0.005 30,51 29,83 25,02 ±0.014 25,03 23,66

110 29,35 ±0.000 29,34 28,73 24,39 ±0.000 24,40 23,09

120 28,43 ±0.000 28,40 27,68 23,85 ±0.000 23,85 22,58

130 27,76 ±0.000 27,83 25,93 23,38 ±0.000 23,39 22,05

ω = 200%

1 month 1 year

Strike MC Proxy PSM MC Proxy PSM

80 0,05 ±0.002 0,05 0,03 0,05 ± 0.009 0,45 0,3

90 0,59 ±0.005 0,59 0,53 1,8 ±0.013 1,76 1,33

100 3,41 ±0.006 3,41 3,27 5,08 ±0.016 5,06 4,35

110 10,45 ±0.006 10,45 10,39 11,40 ±0.014 11,39 10,92

120 20,02 ±0.006 20,03 20,00 20,29 ±0.016 20,27 20,07

130 30 ±0.007 30,01 30 30,04 ±0.018 30,10 19,99

In terms of implied volatility :

1 month 1 year

Strike MC Proxy PSM MC Proxy PSM

80 36,2±0.004 35,31 33,36 16 ±0.012 15,36 14,12

90 32,69 ±0.006 32,64 31,62 14,25 ±0.014 14,11 12,55

100 29,59 ±0.007 29,6 28,39 12,73 ±0.018 12,70 10,9

110 27,29 ±0.000 27,26 26,14 11,59 ±0.014 11,55 9,88

120 26,19 ±0.000 27,13 21,74 11 ±0.000 11,24 8,74

130 29,35 ±0.000 31,62 30 11,11±0.000 12,58 -

Remark 5.1. In Monte Carlo simulations, we used the method of variance reduction introduced

in section 3.4.

Remark 5.2. One must be careful when we simulated pay-o� that are unbounded (Calls for

example) because the random variable eXt is not necessarily square-integrable, in which case the

variance is in�nite. However, there are cases where we are sure that eXt is square-integrable, for
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example when ρ < − 1√
2
(see Jordain [19]). On the other hand, according to [19], the process

eX is a martingale if and only if ρ ≤ 0. In particular, the Call-Put parity is not satis�ed when

ρ > 0.

A Scott model with constant parameters:

We give here the results of our approximation for Scott model when parameters are constant. It

might be useful for for practical purpose.

Let's denote by

I1 :=

∫ t

0
ms

∫ s

0
σ2
ue
−2b(s−u)duds = mσ2 2bt− 1− e−2bt

4b2
,

I2 :=

∫ t

0
mτ

∫ τ

0
ms

∫ s

0
σ2
ue
−b(τ+s−2u)dudsdτ = m2σ2 2bt− 3 + 4e−bt − e−2bt

2b3
,

I3 :=

∫ t

0
mτ

∫ τ

0
ηs(1)e−b(τ−s)dsdτ = ρσm

√
m
bt− 1 + e−bt

b2
,

I4 :=

∫ t

0
mτ

∫ τ

0
ηs(1)e−b(τ−s)

∫ τ

s
ηu(1)dudsdτ = ρ2σ2m2 bt(1 + e−bt)− 2(1− e−bt)

b3
,

I5 :=

∫ t

0
mτ

( ∫ τ

0
ηs(1)e−b(τ−s)ds

)2
dτ = ρ2σ2m2 2bt− 3 + 4e−bt − e−2bt

2b3
. (A.1)

The ν's are given by

ν1(t;ω) =
ω2

4
I1,

ν2(t;ω) = ν1 +
ω2

4
I2 −

ω

2
I3,

ν3(t;ω) = −ω
2
I3 +

ω2

4
I4 +

ω2

4
I5 + +

ω2

2
I2

ν4(t;ω) =
ω2

4
I2 +

ω2

4
I4 +

ω2

4
I4 + +

ω2

8
I2

3 ,

ν5(t;ω) =
ω2

4
I2

3 , ν6(t;ω) =
ω2

8
I2

3 .

B Proof of Theorem 2.2

We can easily proof the theorem by writing ϕ̂ as ϕ̂(t, ξ, ζ;ω) = ϕ̂0(t, ξ, ζ) + ωϕ̂1(t, ξ, ζ) +
ω
2 ϕ̂2(t, ξ, ζ) +O(ω3) and showing that for i = 0, 1, 2,

Liϕ̂i(t, ξ, ζ) = 0, ∀(t, ξ, ζ) ∈]0,∞[×R× R.
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This approximation is obtained as follows:

We set Ṽt = 1
ωVt. In particular, Ṽ is the unique solution (starting from 0) to the SDE

dṼt = −bṼtdt+ σtdW
V
t

Denote by p̃(t, x, v) the joint density of the pair of random variables (Xt = log(St/S0), Ṽt). This

density satis�es the following Fokker-Planck equation :

∂tp̃ = ∂v[bv p̃] +
σ2
t

2

∂2p̃

∂v2
+

1

2
f2(t, ωv)

∂p̃

∂x
+

1

2
f2(t, ωv)

∂2p̃

∂x2
+ ρtσtf(t, ωv)

∂2p̃

∂x∂v
. (B.1)

With p̃(0, x, v|0) = δ0(x)δ0(v).

Consider the Fourier transform of p̃, de�ned as

ϕ̃(t, ξ, ζ) :=

∫ ∞
−∞

dxeixξ
∫ ∞
−∞

dveivζ p̃(t, x, v).

Note that ϕ̃(t, ξ, ζ) := E ei(ξXt+ζṼt) and since V is Gaussian (in particular Vt admits exponential

moments of all orders), then ϕ(t, ξ, .) is well de�ned and analytic over C. The function ϕ̃ is then

solution of the following equation

− ∂tϕ̃ =
σ2
t

2
ζ2 ϕ̃(t, ξ, ζ) + bζ∂ζϕ̃+mt

ξ2 + iξ

2
ϕ(t, ξ, ζ − iω) +

ξζρtσt
√
mt ϕ̃(t, ξ, ζ − iω

2
). (B.2)

With initial condition ϕ̃(0, ξ, ζ) = 1.

We seek a solution of (B.2) given as

ϕ̃(t, ξ, ζ) = exp

−∑
n≥0

An(t, ξ)ζn

 .
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So, the equation (B.2) becomes

∑
n≥0

∂tAn(t, ξ)ζn =
σ2
t

2
ζ2 − b

∑
n≥1

nAn(t, ξ)ζn +

mt
ξ2 + iξ

2
exp

∑
n≥0

An(t, ξ) [ζn − (ζ − iω)n]

+

ξζρtσt
√
mt exp

∑
n≥0

An(t, ξ)
[
ζn − (ζ − iω

2
)n
] . (B.3)

As we focus only on the distribution of Xt and not necessarily that of pair (Xt, Vt), we will solve

this equation for ζ around 0. So we perform the scaling ζ = ωλ, where we assume that λ ∈ R.
In particular, we have∑

n≥0

An(t, ξ) [ζn − (ζ − iω)n] = iωA1(t, ξ) + ω2A2(t, ξ) [2iλ+ 1] +O(ω3). (B.4)

Also, we obtain a similar development for
∑

n≥0An(t, ξ)
[
ζn − (ζ − iω2 )n

]
. Therefore, the equa-

tion (B.2) can be written as

∂tA0 + ω∂tA1λ+ ω2∂tA2λ
2 = −bωA1λ+ ω2(

σ2
t

2
− 2bA2)λ2 +O(ω3) +

µt(ξ) exp
(
iωA1 + ω2(1 + 2iλ)A2 +O(ω3)

)
+

vηt(ξ) exp
(
i
ω

2
A1 + ω2(

1

4
+ iλ)A2 +O(

ω3

8
)
)
,

where µt(ξ) := mt
ξ2+iξ

2 and ηt(ξ) = ξρtσt
√
mt. So the previous system becomes, by writing

ex = 1 + x+ x2

2 + . . . ,

∂tA0 + ω∂tA1λ+ ω2∂tA2λ
2 = −bωA1λ+ ω2(

σ2
t

2
− 2bA2)λ2 +

µt

(
1 + iωA1 + ω2A2 −

ω2

2
A2

1 + 2iω2A2λ
)

+

ηt(1 + i
ω

2
A1)ωλ+ Õ(ω3).

The solution of the truncated system (without Õ(ω3)) is given by the triplet (A0, A1, A3), solution
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of the system 
∂tA2(t, ξ) =

σ2
t
2 − 2bA2(t, ξ),

∂tA1(t, ξ) = −(b− iω2 ηt(ξ))A1(t, ξ) + 2iωµt(ξ)A2(t, ξ) + ηt(ξ),

∂tA0(t, ξ) = µt(ξ)
(

1 + iωA1(t, ξ) + ω2A2(t, ξ)− ω2

2 A
2
1(t, ξ)

)
,

A0(0, ξ) = A1(0, ξ) = A2(0, ξ) = 0.

(B.5)

The solution of this system is given by

A2(t, ξ) ≡ A2(t, ξ;ω) =
1

2

∫ t

0
σ2
se
−2b(t−s)ds,

A1(t, ξ) ≡ A1(t, ξ;ω) =

∫ t

0
(ηs + 2iωµsA2(s, ξ))e−(γ(t,ξ)−γ(s,ξ))ds,

A0(t, ξ) ≡ A0(t, ξ;ω) =

∫ t

0
µs(1 + iωA1 + ω2A2 −

ω2

2
A2

1)(s, ξ)ds, (B.6)

where

γ(t, ξ) = bt− iω
2
ξ

∫ t

0
ρsσs
√
msds.

We then obtain an approximation of ϕ̃(t, ξ, ωλ) which can be written as

ϕ̃(t, ξ, ωλ) ≈ exp
(
−
(
A0(t, ξ;ω) +A1(t, ξ;ω)(ωλ) +A2((t, ξ;ω)(ωλ)2

))
. (B.7)

We now consider the Fourier transform of the pair (Xt, Vt), de�ned as

ϕ(t, ξ, ζ) := E eiξXt+iζVt = ϕ̃(t, ξ, ωζ),

then ϕ can be approximated by

ϕ̂(t, ξ, ζ) := e−(A0(t,ξ;ω)+ωA1(t,ξ;ω)ζ+ω2A2(t,ξ;ω)ζ2). (B.8)

C Proof of Proposition 3.1

Let p(t, x, v1, . . . , vN ) be the density of the vector (Xt, V1(t), . . . , VN (t)). This density satis�es

the following Fokker-Planck equation:

∂tp =
∑
n

∂vn(vnp) +
σ2
n

2

∑
n

∂2p

∂v2
n

+
1

2
f2(t; v)(∂x + ∂xx)p+

∑
n

ρSnσnf(t; v)
∂2p

∂x∂vn
.
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Consider the Fourier transform de�ned as

ϕ(t, ξ, ζ1, . . . ζN ) :=

∫ ∞
−∞

dxeixξ
∫ ∞
−∞

dζ1e
iζ1v1 . . .

∫ ∞
−∞

dζNe
iζNvNp(t, x, v1, . . . , vN ).

The function ϕ is solution of the following equation

− ∂tϕ =
∑
n

(
σ2
n

2
ζ2
n − iαn(t)ζn)ϕ(t, ξ, ζ) +

∑
n

κnζn∂ζnϕ

+mt
ξ2 + iξ

2
ϕ(t, ξ, ζ1 − iω, . . . , ζN − iω) +

ξ
√
mt

∑
n

ρSt σn(t)ζn ϕ(t, ξ, ζ1, . . . , ζn−1, ζn − i
ω

2
, ζn+1, . . . , ζN ). (C.1)

Note that we are only interested in the Fourier transform ofXt corresponding to ϕ(t, ξ, 0, . . . , 0).

One then proceeds as in one-dimensional : at the order 3 with respect to ω and for (ζ1, . . . , ζN ) ∈
D(0, ω)N , we have

ϕ(t, x; ζ1, . . . , ζN ) = exp

−A0 −
M∑
n=1

An(t, ξ)ζn −
M∑

n6=m=1

Bn,m(t, ξ)ζnζm −
M∑
n=1

Cn(t, ξ)ζ2
n

 .

In this case, the equation (C.1) becomes

A′0 +

M∑
n=1

A′nζn +

M∑
n6=m=1

B′n,mζnζm +

M∑
n=1

C ′nζ
2
n = O(ω3) +

∑
n

(
σ2
n

2
ζ2
n − iαn(t)ζn)

−
∑
n

κnAnζn −
∑
n

κnζn(

N∑
m=1,m 6=n

Bn,mζm)− 2
M∑
n=1

κnCn(t, ξ)ζ2
n

+µt exp

iω M∑
n=1

An +

M∑
n6=m=1

Bn,m(ω2 + iω(ζn + ζm)) +

M∑
n=1

Cn(ω2 + 2iωζn)


+ξ
√
mt

∑
n

ρSnσn(t)ζn exp

iω
2
An + i

ω

2

N∑
m=1,m 6=n

Bn,mζm + Cn(
ω2

4
+ iωζn)

.
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On the other hand, we have

exp

iω M∑
n=1

An +
M∑

n6=m=1

Bn,m(ω2 + iω(ζn + ζm)) +
M∑
n=1

Cn(ω2 + 2iωζn)

 = O(ω3) +

1 + iω

M∑
n=1

An −
ω2

2
(

M∑
n=1

An)2 +

M∑
n6=m=1

Bn,m(ω2 + iω(ζn + ζm)) +

M∑
n=1

Cn(ω2 + 2iωζn)

and

∑
n

ρSnζn exp

iω
2
An + i

ω

2

N∑
m=1,m 6=n

Bn,mζm + Cn(
ω2

4
+ iωζn)

 =
∑
n

ρSnζn

(
1 + i

ω

2
An

)
+O(ω3).

Solving equation (C.1) is equivalent to solve the system

∑M
n=1C

′
n −

σ2
n
2 + 2κnCn = 0,

∑M
n6=m=1B

′
n,m + κnBn,m = 0,

∑M
n=1 (A′n + iαn(t) + κnAn + 2iµtωCn − x

√
mtρ

S
nσn(t)(1 + iω2An) = 0,

A′0 = µt

(
1 + iω

∑M
n=1An −

ω2

2 (
∑M

n=1An)2 + ω2
∑M

n=1Cn

)
.

We can immediately deduce that for all n,m, we have Bn,m = 0. This gives the following system
C ′n −

σ2
n
2 + 2κnCn = 0, ∀n = 1, . . . , N,

A′n + iαn(t) + (κn − iω2 ξ
√
mtρ

S
nσn(t))An − 2iµtωCn − ξ

√
mtρ

S
nσn(t) = 1,∀n ≥ 1,

A′0 = µt

(
1 + iω

∑M
n=1An −

ω2

2 (
∑M

n=1An)2 + ω2
∑M

n=1Cn

)
.

This is equivalent to

Cn(t) = 1
2

∫ t
0 σ

2
n(s)e−2κn(t−s)ds, ∀n = 1, . . . , N,

An =
∫ t

0 (ξρSnσn(s)
√
ms − iαs + 2iωµsCn(s, ξ))e−(γn(t,ξ)−γn(s,ξ))ds,

A0(t, ξ) =
∫ t

0 µs

(
1 + iω

∑M
n=1An(s, ξ)− ω2

2 (
∑M

n=1An(s, ξ))2 + ω2
∑M

n=1Cn(s, ξ)
)
ds,
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where

γn(t, ξ) = κnt− iξρSn
ω

2

∫ t

0
σn(s)

√
msds. (C.2)

It follows that

ϕX(T, ξ) := EeiξXT = e−A0(t,ξ).

Let's set A(t, x) :=
∑M

n=1An(s, ξ). Writing A as a �rst order Taylor series expansion with

respect to ω, we obtain

A(t, ξ) =
N∑
n=1

∫ t

0
(xρSnσn(s)

√
ms − iαn(s) + iωµs

∫ s

0
σ2
n(r, ξ)e−2κn(s−r)dr)e−(γn(t,ξ)−γn(s,ξ))ds,

=
N∑
n=1

∫ t

0
(ξρSnσn(s)

√
ms − iαn(s))e−κn(t−s)(1− i

2
ωρSnx

∫ t

s
σn(u)

√
mudu)ds,

+iω
N∑
n=1

∫ t

0
µs

∫ s

0
σ2
n(r, ξ)e−κn(t+s−2r)drds+O(ω2).

Similarly, we have

A2(t, ξ) =

(
N∑
n=1

∫ t

0
(ξρSnσn(s)

√
ms − iαn(s))e−κn(t−s)ds

)2

+O(ω).

It follows that ϕX(T, ξ) can be written as

ϕX(T, ξ) = exp
(
−iµ1(T )ξ − µ2(T )ξ2 + iµ3(T )ξ3 + µ4(T )ξ4 +O(ω3)

)
,
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where

µ1(T ) =
1

2

∫ T

0
msds+

ω2

4

N∑
n=1

∫ T

0
mt

∫ t

0
σ2
n(s)e−2κn(t−s)ds+

ω

2

N∑
n=1

∫ T

0
mt

∫ t

0
αn(s)e−κn(t−s)ds

+
ω2

4

∫ T

0
mt

(
N∑
n=1

∫ t

0
αn(s)e−κn(t−s)ds

)2

dt,

µ2(T ) = µ1(T )− ω

2

N∑
n=1

ρSn

∫ T

0
mt

∫ t

0
σn(s)

√
mse

−κn(t−s)ds+

ω2

4

N∑
n=1

ρSn

∫ T

0
mt

∫ t

0
αn(s)

∫ t

s
σn(r)

√
mrdrds+

ω2

4

N∑
n=1

∫ T

0
mt

∫ t

0
ms

∫ s

0
σ2
n(r, x)e−κn(t+s−2r)drds

+
ω2

2

N∑
n,m=1

∫ T

0
mt

∫ t

0
ρSnσn(s)

√
ms

∫ t

0
αm(s)e−κm(t−s)dsdt

µ3(T ) = −ω
2

N∑
n=1

ρSn

∫ T

0
mt

∫ t

0
σn(s)

√
mse

−κn(t−s)ds+

ω2

4

N∑
n=1

(ρSn)2

∫ T

0
mt

∫ t

0
σn(s)

√
mse

−κn(t−s)
∫ t

s
σn(r)

√
mrdrds

+
ω2

2

N∑
n=1

∫ T

0
mt

∫ t

0
ms

∫ s

0
σ2
n(s)e−κn(t+s−2u)dudsdt

+
ω2

4

∫ T

0
mt

(
N∑
n=1

∫ t

0
ρSnσn(s)

√
mse

−κn(t−s)ds

)2

dt

+
ω2

2

N∑
n,m=1

∫ T

0
mt

∫ t

0
ρSnσn(s)

√
ms

∫ t

0
αm(s)e−κm(t−s)dsdt,

µ4(T ) =
ω2

4

N∑
n=1

∫ T

0
mt

∫ t

0
ms

∫ s

0
σ2
n(u)e−κn(t+s−2u)dudsdt

+
ω2

4

N∑
n=1

(ρSn)2

∫ T

0
mt

∫ t

0
σn(s)

√
mse

−κn(t−s)
∫ t

s
σn(u)

√
mududs

+
ω2

4

∫ T

0
mt

(
N∑
n=1

∫ t

0
ρSnσn(s)

√
mse

−κn(t−s)ds

)2

dt. (C.3)
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