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Option pricing for stochastic volatility models : Vol-of-Vol expansion

In this article, we propose an analytical approximation for the pricing of European options for some lognormal stochastic volatility models. This approximation is a second-order Taylor series expansion of the Fourier transform with respect to the "volatility of volatility". We give, using these formulas, a new method of variance reduction for the Monte-Carlo simulation of the trajectories of the underlying.

Introduction

Following the rejection of the assumption of constant volatility by empirical studies, a large number of models have been proposed in the literature such as generalized Lévy processes, fractional Brownian motion, the diusions with jumps and stochastic volatility models. Melino and Turnbull have shown in [START_REF] Melino | Pricing Foreign Currency Options with Stochastic Volatility[END_REF] that the assumption of stochastic volatility leads to a distribution of the underlying asset that is closer to the empirical observations than the log-normal distribution.

The issue of stochastic volatility and its eects on prices of options have been widely studied in the literature (see, e.g., Johnson and Shanno [START_REF] Johnson | Option pricing when the variance is changing[END_REF], Hull and White [START_REF] Hull | The pricing of options on assets with stochastic volatilities[END_REF], Scott [START_REF] Scott | Option Pricing when the Variance changes randomly: Theory, Estimation, and an Application[END_REF], Wiggins [START_REF] Wiggins | Option values under stochastic volatility: theory and empirical evidence[END_REF]).

The models developed by these authors require either the use of Monte Carlo simulation or the numerical solution of partial dierential equation (parabolic in most cases) with dimension larger than 2 for the price of conventional options. Some of these models require the "questionable" as assumption of zero correlation between the underlying and its volatility. Under this assumption, Hull and White [START_REF] Hull | The pricing of options on assets with stochastic volatilities[END_REF] gave an approximation of the price of a European option as a Taylor series expansion, Stein and Stein [START_REF] Stein | Stock Price Distributions with Stochastic Volatility: An Analytic Approach[END_REF] provide a solution for option prices that can be obtained using 1 numerical integration in two variables. Heston [START_REF] Heston | A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options[END_REF] developed a semi-analytical solution for pricing European options in a model with correlated stochastic volatility.

More recently, there has been an explosion of literature on approximation methods for the pricing of European options. Alós et al. [START_REF] Alós | Malliavin dierentiability of the Heston Volatility and applications to option pricing[END_REF] studied the short-time behavior of implied volatility in a stochastic volatility model using an extension of Ito's formula. Some authors have proposed analytical techniques to calculate the asymptotic expansion of implied volatility for very short or very long maturities, include Hagan et al. [START_REF] Hagan | Managing smile risk[END_REF] , Berestycki et al. [START_REF] Berestycki | Asymptotics and calibration of local volatility models[END_REF], [START_REF] Berestycki | Computing the Implied Volatility in Stochastic Volatility models[END_REF], Henry Labordère [START_REF] Henry-Labord`re | A General Asymptotic Implied Volatility for Stochastic Volatility Models[END_REF], [START_REF] Henry-Labord`re | Combining the SABR and LMM models[END_REF] and Laurence [START_REF] Laurence | Implied Volatility, Fundamental solutions, asymptotic analysis and symmetry methods[END_REF], or more recently, the work of Forde, Jacquier and Mijatovic [START_REF] Forde | Small-time asymptotics for implied volatility under the Heston model[END_REF], [START_REF] Forde | Asymptotic formulae for implied volatility under the heston model[END_REF] on the asymptotic expansion of implied volatility in the Heston model for short and long maturities. Other studies are based on an asymptotic expansion of prices with respect to the Drift of the volatility process for short maturities. For example, in [START_REF] Fouque | Derivatives in nancial Markets with stochastic volatility[END_REF] , Fouque et al propose an asymptotic expansion with respect to the parameter of mean reversion. Lewis [START_REF] Lewis | Option valuation under stochastic volatility with Mathematica code[END_REF], Benhamou et al [START_REF] Benhamou | Times dependent Heston model[END_REF] propose approximation methods based on the asymptotic expansion with respect to the volatility of volatility. In all the works cited above, the scope is often limited and the results can only be applied in a specic context, outside which we lose either the analytical formulas or the quality (accuracy) of these formulas.

This work belongs to the latter category. We rst consider a lognormal stochastic volatility model (Scott model [START_REF] Scott | Option Pricing when the Variance changes randomly: Theory, Estimation, and an Application[END_REF] with time-dependent parameters). We propose an approximation method based on a second-order Taylor expansion of Fourier transform of the joint distribution of the underlying and its variance by solving the Fokker-Planck equation with respect to the "volatility of volatility" parameter. We obtain an approximation of the density of the underlying as a sum of successive derivatives of the Gaussian density. In addition, thanks to the particular shape of the approximate density, we obtain easily a similar formula for prices of European options as well as that of the implied volatility. Our approach extends to models where the variance is an exponential of a sum of Ornstein-Uhlenbeck processes. It therefore allows to approach the density of the underlying asset in Bergomi's model(s) ( [START_REF] Bergomi | Smile dynamics[END_REF], [START_REF] Bergomi | Smile dynamics II[END_REF], [START_REF] Bergomi | Smile dynamics III[END_REF]). Our results are similar to those obtained recently Bergomi and Guyon [START_REF] Bergomi | Stochastic volatility's orderly smiles[END_REF] who derive the second order Taylor expansion of European options in some stochastic volatility models, including 2 factor Bergomi's model, using some perturbation techniques.

The formulas we obtain, especially those giving an approximation of the density function of the underlying asset, can also be used to reduce the variance of a Monte-Carlo simulation. In [START_REF] Fouque | Variance Reduction for Monte Carlo Methods to Evaluate Option Prices under Multi-factor Stochastic Volatility Models[END_REF], Fouque and Han use the approximations of European option prices obtained by perturbation techniques to build variance reduction methods such as "importance sampling" and Control

Variate. In this work we propose a new method of variance reduction of type "Control Variate" which uses the explicit approximation we obtain for the distribution function of the underlying.

The idea is to build a new process whose the density is given by the approximated denisty of the underlying and strongly correlated with the trajectories of the underlying asset. We give an estimate of the gain in variance in terms of the volatility of volatility. Several numerical experiments are provided to prove the performance of this method of variance reduction.

This paper is organized as follows: Section 2 deals with the case of a one factor lognormal stochastic volatility model (time-dependent Scott model). We give the second-order Taylor expansion of the Fourier transform of log-returns with respect to the volatility of volatility parameters. We deduce the second-order Taylor expansion of the density of log-returns with respect to the volatility of volatility as well as the implied volatility and the skew. In section 3 we generalize the results of Section 2 to the multidimensional case. In section 4 we present a new method of variance reduction of the Monte-Carlo simulation. In section 5 we give some numerical results.

One Factor Case : Time Dependent Scott Model

In this section we consider a generalization of the model proposed by Scott [START_REF] Scott | Option Pricing when the Variance changes randomly: Theory, Estimation, and an Application[END_REF]. Under this model, the dynamics of the underlying is given by the SDE

dSt St = f (t, V t )dW S t , dV t = -bV t dt + ωσ t dW V t , d W S , W V t = ρ t dt, (2.1) 
where f 2 (t, v) = m t e v , m, ρ and σ are deterministic continuous functions of time. Assume ω, σ ≥ 0. Assume also that V 0 = 0 (Otherwise, we replace m t by m t e V 0 e -bt and V by V -V 0 ).

Denote by p(t, x, v) the joint density of the pair of random variables (X t = log(S t /S 0 ), V t ).

This density satises the following Fokker-Planck equation :

∂ t p = ∂ v [bvp] + (ωσ t ) 2 2 ∂ 2 p ∂v 2 + 1 2 f 2 (t, v) ∂p ∂x + 1 2 f 2 (t, v) ∂ 2 p ∂x 2 + ρωσ t f (t, v) ∂ 2 p ∂x∂v (2.2)
with the boundary condition p(0, x, v|0) = δ 0 (x)δ 0 (v).

Consider the Fourier transform of p dened as

ϕ(t, ξ, ζ; ω) := ∞ -∞ dxe ixξ ∞ -∞ dve ivζ p(t, x, v), ζ, ξ ∈ R.
The function ϕ is solution of the equation (2.4)

Lϕ(t, ξ, ζ; ω) = 0, ∀(t, ξ, ζ) ∈]0, ∞[×R × R, (2.3 
In this section, we propose to approximate this Fourier transform by its second order Taylor expansion with respect to the parameter ω, which measures the volatility of volatility. Our approach is inspired by the work of Perelló et al [START_REF] Perello | Option pricing under stochastic volatility: the exponential Ornstein-Uhlenbeck model[END_REF] giving an approach to approximate the Fourier transform in the case of constant parameters. Note that our method is not a generalization of [START_REF] Perello | Option pricing under stochastic volatility: the exponential Ornstein-Uhlenbeck model[END_REF] to the case of time-dependent parameters. Indeed, our approach is based on solving the equation ϕ(t, ξ, ζ) ≡ ϕ(t, ξ, ζ, ω) for all ξ, ζ ∈ R by writing its second order Taylor expansion with respect to ω, while the approximation of [START_REF] Perello | Option pricing under stochastic volatility: the exponential Ornstein-Uhlenbeck model[END_REF] is obtained by rescaling the equation and then truncating the terms of order higher than 2 with respect to m σ . We will compare both methods by giving some numerical examples.

To calculate the Taylor expansion of the solution of (2.4) with respect to ω, we dierentiate it successively with respect to ω. We obtain that ϕ can be written in terms of its Taylor series expansion with respect to ω as follows:

ϕ(t, ξ, ζ; ω) = ϕ 0 (t, ξ, ζ) + ωϕ 1 (t, ξ, ζ) + ω 2 2 ϕ 2 (t, ξ, ζ) + . . . , (2.5) 
where ϕ i is solution of

L i ϕ i (t, ξ, ζ) = 0, ∀(t, ξ, ζ) ∈]0, ∞[×R × R, and L 0 h(t, ξ, ζ) = ∂ t h(t, ξ, ζ) + bζ∂ ζ h(t, ξ, ζ) + m t ξ 2 + iξ 2 h(t, ξ, ζ -i), (2.6) 
L 1 h(t, ξ, ζ) = L 0 h(t, ξ, ζ) + ξζρ t σ t √ m t ϕ 0 (t, ξ, ζ - i 2 ), (2.7) 
L 2 h(t, ξ, ζ) = L 0 h(t, ξ, ζ) + 2ξζρ t σ t √ m t ϕ 1 (t, ξ, ζ - i 2 ) + σ 2 t ζ 2 ϕ 0 (t, ξ, ζ). (2.8) Denition 2.1. Let h ∈ C 1,2,2,n+1 (R + × R × R × R + ). We say that h is a n-order ω-equivalent of ϕ, we denote h ≡ ϕ [n], if for all (t, ξ, ζ) ∈]0, ∞[×R × R, we have ∂ i h ∂ω i (t, ξ, ζ; 0) = ϕ i (t, ξ, ζ), ∀i ≤ n.
(2.9)

The main result of this section is the following result, whose proof can be found in the appendix. It gives the second order w-equivalence of the Fourier transform of the joint density of (X t , V t ) Theorem 2.2. Let's denote by

φ(t, ξ, ζ) = e -(A 0 (t,ξ;ω)+ωA 1 (t,ξ;ω)ζ+ω 2 A 2 (t)ζ 2 ) , (2.10) 
where A 0 , A 1 and A 2 are given by

A 2 (t, ξ) = 1 2 t 0 σ 2 s e -2b(t-s) ds, A 1 (t, ξ; ω) = t 0 (η s (ξ) + 2iωµ s A 2 (s, ξ))e -(γt(ξ;ω)-γs(ξ;ω)) ds, A 0 (t, ξ; ω) = t 0 µ s (ξ)(1 + ω 2 A 2 (s) + (iωA 1 (s, ξ; ω) - ω 2 2 A 2 1 (s, ξ; 0)))ds, with µ t (ξ) := m t ξ 2 +iξ 2 , η t (ξ) = ξρ t σ t √ m t and γ t (ξ; ω) = bt -i ω 2 t 0 η s (ξ)ds.
Then, we have

φ ≡ ϕ [2].
(2.11)

Approximating the density of X t

We now consider the approximation of the Fourier transform of the joint distribution of (X t , V t )

given by (2.10). Taking the particular case ζ = 0, we deduce an approximation of the Fourier transform of X t . This approximation is given as

φ(t, ξ, 0; ω) = e -A 0 (t,ξ;ω) .
We can write the second order Taylor series expansion of A 0 (t, ξ, ω) with respect to ω, which is obtained by calculating the rst order Taylor expansion of A 1 (t, ξ, ω) with respect to ω:

A 1 (t, ξ; ω) = t 0 η s (ξ)e -b(t-s) (1 + i ω 2 t s η u (ξ)du)ds + iω t 0 µ s (ξ) s 0 σ 2 u e -b(t+s-2u) duds +O(ω 2 )
and A 2 1 (t, ξ; 0):

A 2 1 (t, ξ; 0) = t 0 η s (ξ)e -b(t-s) ds 2 .
It follows that φ(t, ξ, 0; ω) can be written as

φ(t, ξ, 0; ω) = exp -iµ 1 (t; ω)ξ -µ 2 (t; ω)ξ 2 + iµ 3 (t; ω)ξ 3 + µ 4 (t; ω)ξ 4 + O(ω 3 ) , where µ 1 (t; ω) = 1 2 t 0 m s ds + ω 2 4 t 0 m s s 0 σ 2 u e -2b(s-u) duds, µ 2 (t; ω) = µ 1 (t; ω) + ω 2 4 t 0 m τ τ 0 m s s 0 σ 2 u e -b(τ +s-2u) dudsdτ - ω 2 t 0 m τ τ 0 η s (1)e -b(τ -s) dsdτ , µ 3 (t; ω) = - ω 2 t 0 m τ τ 0 η s (1)e -b(τ -s) dsdτ + ω 2 4 t 0 m τ τ 0 η s (1)e -b(τ -s) τ s η u (1)dudsdτ + ω 2 4 t 0 m τ τ 0 η s (1)e -b(τ -s) ds 2 dτ + ω 2 2 t 0 m τ τ 0 m s s 0 σ 2 u e -b(τ +s-2u) dudsdτ , µ 4 (t; ω) = ω 2 4 t 0 m τ τ 0 m s s 0 σ 2 u e -b(τ +s-2u) dudsdτ + ω 2 4 t 0 m τ τ 0 η s (1)e -b(τ -s) ds 2 dτ + ω 2 4 t 0 m τ τ 0 η s (1)e -b(τ -s) τ s η u (1)dudsdτ .
Similarly, writing that e x = 1 + x + x 2 /2 + . . . , we can write φ(t, ξ, 0; ω) as

φ(t, ξ, 0; ω) = e (-iµ 1 (t;ω)ξ-ν(t) 2 ξ 2 ) 1 + 6 n=1 (-i) n ν n (t; ω)ξ n + O(ω 3 ) , (2.12) 
where ν(t) = t 0 m s ds and

ν 1 (t; ω) = ω 2 4 t 0 m s s 0 σ 2 u e -2b(s-u) duds, ν 2 (t; ω) = ν 1 + ω 2 4 t 0 m τ τ 0 m s s 0 σ 2 u e -b(τ +s-2u) dudsdτ - ω 2 t 0 m τ τ 0 η s (1)e -b(τ -s) dsdτ , ν 3 (t; ω) = µ 3 (t; ω), ν 4 (t; ω) = µ 4 (t; ω) + ω 2 8 t 0 m τ τ 0 η s (1)e -b(τ -s) dsdτ 2 , ν 5 (t; ω) = ω 2 4 t 0 m τ τ 0 η s (1)e -b(τ -s) dsdτ 2 , ν 6 (t; ω) = ω 2 8 t 0 m τ τ 0 η s (1)e -b(τ -s) dsdτ 2 .
We then obtain the next result Theorem 2.3. Let's denote ϕ X (t, ξ; ω) := E e iξXt . Consider the function ψ dened by

ψ(t, ξ; ω) := e (-iµ 1 (t)ξ-ν(t) 2 ξ 2 ) 1 + 6 n=1 (-i) n ν n (t; ω)ξ n .
Then we have

ψ ≡ ϕ X [2].
Furthermore, if we denote by p X (t, x; ω) = P(X t ∈ dx) and by pX (t, x; ω) := F -1 (ψ)(t, x; ω), then we have

pX ≡ p X [2], (2.13) 
where pX is "explicitly" given by

pX (t, x; ω) = 1 2πν(t) e - (x+µ 1 (t;ω)) 2 2ν(t) 1 + 6 n=1 (-1) n ν n (t; ω) ν n 2 (t) H n ( x + µ 1 (t; ω) ν(t) ) , (2.14) 
where the H n 's are the Hermite polynomials.

Proof: First, from the way we obtained the expression of ψ(t, ξ; ω) from that of φ(t, ξ, 0; ω), it is easy to see that ψ ≡ φX [START_REF] Benhamou | Times dependent Heston model[END_REF], where φX (t, ξ; ω) := φ(t, ξ, 0; ω). It follows that ψ ≡ ϕ X [START_REF] Benhamou | Times dependent Heston model[END_REF] (because φX ≡ ϕ X [START_REF] Benhamou | Times dependent Heston model[END_REF]). Now, to show that F -1 (ϕ X ) ≡ F -1 (ψ) [START_REF] Benhamou | Times dependent Heston model[END_REF], it suces to show that we can dierentiate under with respect to ω. i.e.

∂ j ω ∞ -∞ e -ixξ ψ(t, ξ; ω)dξ ω=0 = ∞ -∞ e -ixξ ∂ j ω ψ(t, ξ; ω) ω=0 dξ, j = 1, 2.
(2.15) and

∂ j ω ∞ -∞ e -ixξ ϕ X (t, ξ; ω)dξ ω=0 = ∞ -∞ e -ixξ ∂ j ω ϕ X (t, ξ; ω) ω=0 dξ, j = 1, 2.
(2.16)

The rst equality holds since ψ is given as

ψ(t, ξ; ω) := e (-iµ 1 (t)ξ-ν(t) 2 ξ 2 ) 1 + 6 n=2 (-i) n ν n (t)ξ n ,
where ν(t) > 0 and the ν n (t)'s are polynomial functions of ω. We write that for any ξ ∈ R and for any j ∈ N, ω -→ ψ(t, ξ; ω) is dierentiable and its derivative can be written as

∂ j ∂ω j ψ(t, ξ; ω) = Q j ω (t, ξ) e (-iµ 1 (t)ξ-ν(t) 2 ξ 2 ) , ∀ω ≥ 0,
where Q j ω (t, .) is a polynomial function. It follows that we can write

∂ j ∂ω j ∞ -∞ e -ixξ ψ(t, ξ; ω)dξ = ∞ -∞ e -ixξ ∂ j ∂ω j ψ(t, ξ; ω)dξ, ∀j ∈ N.
On the other hand, we have

∂ j ϕ X (t, ξ; ω) ∂ω j | ω=0 := ∂ j E e iξXt ∂ω j | ω=0 = ∂ j ψ(t, ξ; ω) ∂ω j | ω=0 , ∀j = 1, 2.
So for any M > 0 there exists δ > 0 such that

sup ξ∈[-M,M ] e ξ 2 ∂ j ϕ X (t, ξ; ω) ∂ω j - ∂ j ψ(t, ξ; ω) ∂ω j < 1, ∀ω < δ, ∀j = 1, 2.
For the big values of ξ, we apply Hölder's inequality as follows

|∂ ω ϕ X (t, ξ; ω)| ≤ |ξ| ∂ ω X t p ϕ X (t, p p -1 ξ; ω) p-1 p , ∀p > 1.
It follows that, for any p > 1, we have

∂ j ω ϕ X (t, ξ; ω) ≤ c p |ξ| j ϕ X (t, p p -1 ξ; ω) p-1 p , j = 1, 2. As |ϕ X (t, ξ; ω)| -→ 0, we get sup |ξ|>M |ϕ X (t, ξ; ω)| ≤ |ϕ X (t, M 0 ; ω)|, where M 0 ≥ M . On the other hand, we have |ϕ X (t, M 0 ; ω)| ≤ |ϕ X (t, M 0 ; 0)| + ω |∂ ω ϕ X (t, M 0 ; 0)| , ∀ω ∈ [0, ω 0 ].
We nally obtain that

∂ j ∂ω j ϕ X (t, ξ; ω) ≤ P j ω (t, ξ) e (-iµ 1 (t)ξ-ν(t) 2 ξ 2 ) , ∀ξ ∈ R, ∀ω ≤ ω 0 , j = 1, 2,
where P j ω (t, .) is a polynomial function. This allows us to write

∂ j ∂ω j ∞ -∞ e -ixξ ϕ X (t, ξ; ω)dξ = ∞ -∞ e -ixξ ∂ j ∂ω j ϕ X (t, ξ; ω)dξ, ∀j ≤ 2. Thus ∂ j p X ∂ω j (t, x, 0) = F -1 ( ∂ j ϕ X ∂ω j )(t, x, 0) = F -1 ( ∂ j ψ ∂ω j )(t, x, 0) = p(t, x, 0), ∀j ≤ 2 Corollary 2.4. Consider the function C : (t, K; ω) ∈ R 3 + -→ E(e Xt -K) + .
Then, we have

Ĉ ≡ C [2],
where Ĉ(t, K; ω) = R (e x -K) + pX (t, x; ω)dx. Furthermore, Ĉ is explicitly given by where

Ĉ(t, K; ω) = C BS (1, K, √ ν) + K √ ν N (d 2 ) 4 n=0 z n ν n 2 H n (-d 2 ) , (2.17 
C BS (t, K, I) = N (d 1 ) -KN (d 2 ), with d 1 = log( 1 K )+ t 2 I 2 I , d 2 = log( 1 K )-t 2 I 2 I , z 4 = ν 6 , z 3 = -ν 5 + z 4 , z 2 = ν 4 + z 3 , z 1 = -ν 3 + z 2 , z 0 = ν 2 + z 1 = ν 1 . 1

Implied volatility

Denote by Σ the implied volatility dened as

C(t, k; ω) := E (e Xt -e k ) + = N -k + t 2 Σ 2 (t, k; ω) √ tΣ(t, k; ω) -e k N -k -t 2 Σ 2 (t, k; ω) √ tΣ(t, k; ω) . (2.18)
Note that the dependence of C with respect to ω is only through Σ. So the second order Taylor series expansion of C with respect to ω is given in terms of the Taylor expansion of Σ with respect to ω as

C(t, k; ω) = C BS (t, k, Σ 0 ) + e k N (d) √ tΣ 1 ω + e k N (d) ( d 2 Σ 0 -d)tΣ 2 1 + √ tΣ 2 ω 2 2 + O(ω 3 ), (2.19 
)

where d = k + t 2 Σ 2 0 (t, k) / √ tΣ 0 (t, k) and Σ i ≡ Σ i (t, k) = ∂ i Σ(t, k; ω) ∂ω i | ω=0 .
(2.20)

1 Note that ν1 -ν2 + ν3 -ν4 + ν5 -ν6 = 0.
Now, we can easily check that (2.17) can be written as ( 

Ĉ = C BS + KN (d) 2 √ ν χ 1 d ω + KN (d) √ ν × 2χ 0 -χ 2 d √ ν + (χ 2 + χ 3 + χ 4 ) d 2 -1 ν + 1 2 (χ 1 ) 2 ( d 4 -6d 2 + 3 ν 2 - d 3 -3d ν √ ν ) ω 2 4 , (2.21 
Σ 0 (t, k) = 1 t t 0 m s ds, (2.23) 
Σ 1 (t, k) = 1 2 √ t x + 1 2 Σ 2 0 Σ 3 0 t 0 m τ τ 0 ρ s σ s √ m s e -b(τ -s) dsdτ, (2.24) 
Σ 2 (t, k) = χ 0 √ tΣ 0 -χ 2 d 2tΣ 2 0 + (χ 2 + χ 3 + χ 4 ) d 2 -1 t 3 2 Σ 3 0 + (χ 1 ) 2 ( 3d 4t 2 Σ 4 + 3 -6d 2 4t 5 2 Σ 5 0
). (2.25) where the χ's are given by (2.22) and d =

k+ t 2 Σ 2 0 (t,k) √ tΣ 0 (t,k) .
In particular, we have the following expansion of the skew with respect to the volatility of volatility (see [START_REF] Bergomi | Stochastic volatility's orderly smiles[END_REF] for similar result)

S T = ω 2t 2 Σ 3 0 χ 1 + ω 2 2 1 2 χ 2 + χ 3 + χ 4 t 2 Σ 3 0 - 3(χ 1 ) 2 4t 3 Σ 5 0 . (2.26) 3 
Multi-factor case : Bergomi's model

In this section we consider a N-dimensional model dened by the stochastic dierential equations

dSt St = rdt + f (t, V 1 t , . . . , V N t )dW S t , dV n t = (α n (t) -κ n V n )dt + σ n (t)dW n t ., d W S , W n t = ρ S n dt, n = 1, . . . , N, (3.1) 
where d W n , W m t = ρ n,m dt = 0, ∀m, n ≤ N , α n , σ n , n ≤ N , are deterministic continuous functions of time and the function f is dened by

, f 2 (t, V 1 t , . . . , V N t ) = m t exp ω N n=1 θ n V n t . (3.2)
This model is a generalization of the Bergomi model ( [START_REF] Bergomi | Smile dynamics[END_REF], [START_REF] Bergomi | Smile dynamics II[END_REF], [START_REF] Bergomi | Smile dynamics III[END_REF]). It corresponds also to another version of Bergomi's model we proposed in [START_REF] Ould-Aly | Forward variance dynamics : Bergomi's model revisited[END_REF]. These models are driven from a Markovian modeling of the forward variance curve. The "factors" V 1 , . . . , V N allow to control the volatility dynamics by calibrating the so-called volatility derivatives (futures and options on VIX in the case of the S&P 500, options on realized variance ...etcetera). The number of factors N is the number of degrees of freedom we need to calibrate both the "VIX smiles" and the implied volatility of the underlying. Although these models allow a good calibration of the volatility of volatility, they have a large defect that is the cost of the evaluation of European options since the only available method is the Monte Carlo simulation.

In this section, we extend the results of the previous section to the multidimensional case.

We will give an approximation of the Fourier transform of the joint distribution of (X t := log S t /S 0 , V 1 t , . . . , V N t ), which appears as its second order Taylor series expansion with respect to ω. Let's set

ϕ(t, ξ, ζ 1 , . . . , ζ N ; ω) := E exp iξX t + i N n=1 ζ n V n t .
We keep the notations of the previous section. The following result gives an approximation of ϕ Proposition 3.1. Assume for all n, m ≤ N , ρ n,m = 0. Consider the function φ dened as

φ(t, ξ, ζ 1 , . . . , ζ N ; ω) := exp -A 0 (t, ξ; ω) - N 1 A n (t, ξ; ω)ζ n - N 1 C n (t, ξ; ω)ζ 2 n , (3.3) 
where, for n = 1, . . . , N ,

                           C n (t, ξ; ω) = 1 2 t 0 σ 2 n (s)e -2κn(t-s) ds, A n (t, ξ; ω) = t 0 (ξρ S n σ n (s) √ m s -iα s + 2iωµ s C n (s, ξ))e -(γn(t,ξ)-γn(s,ξ)) ds, A 0 (t, ξ; ω) = t 0 µ s 1 + iω M n=1 A n (s, ξ) -ω 2 2 ( M n=1 A n (s, ξ)) 2 + ω 2 M n=1 C n (s, ξ) ds, µ t (ξ) := m t ξ 2 +iξ 2 , γ n (t, ξ) = κ n t -iξρ S n ω 2 t 0 σ n (s) √ m s ds.
Then, we have

φ ≡ ϕ [2]. (3.4) 
The proof of this proposition is very similar to the 1 factor case. As a result of this, if we set ϕ X (t, ξ; ω) := Ee iξXt .

(3.5)

and φX (t, ξ; ω) := e -A 0 (t,ξ;ω) , we obtain φX ≡ ϕ X [START_REF] Benhamou | Times dependent Heston model[END_REF].

(3.6) Writing C(t, ξ; ω) = N n=1 C n (t, ξ; ω) and A(t, ξ; ω) = N n=1 t 0 (ξρ S n σ n (s) √ m s -iα n (s) + iωµ s s 0 σ 2 n (r, ξ)e -2κn(s-r)
dr)e -(γn(t,ξ)-γn(s,ξ)) ds,

we obtain that A 0 can be written as

A 0 (t, ξ; ω) = t 0 µ s (ξ) 1 + iωA(s, ξ) - ω 2 2 A 2 (s, ξ) + ω 2 C(s, ξ) ds.
Now writing the second order Taylor expansion of A(t, ξ; ω) with respect to ω, we have

A = N n=1 t 0 (xρ S n σ n (s) √ m s -iα n (s))e -κn(t-s) (1 - i 2 ωρ S n x t s σ n (u) √ m u du)ds +iω N n=1 t 0 µ s s 0 σ 2 n (r,
x)e -κn(t+s-2r) drds + O(ω 2 ).

It follows that φX (t, x; ω) can be written as

φX (t, x; ω) = exp -iµ 1 (t, ω)x -µ 2 (t, ω)x 2 + iµ 3 (t, ω)x 3 + µ 4 (t, ω)x 4 + O(ω 3 ) ,
where the mµ i 's are given by (C.3). Also, we can write φX as φX (t, x) = e (-iµ 1 x-ν(t)

2 x 2 ) 1 + 6 n=1 (-i) n ν n (t; ω)x n + O(ω 3 ) , (3.7) 
where ν(t) := 2µ 1 (t) and

ν 2 (t; ω) = µ 2 (t; ω) -µ 1 (t; ω), ν 3 (t; ω) = µ 3 (t; ω), ν 4 (t; ω) = µ 4 (t; ω) + ω 2 8 N n=1 ρ S n t 0 m u u 0 σ n (s) √ m s e -κn(u-s) dsdu 2 , ν 5 (t; ω) = ω 2 4 N n=1 ρ S n t 0 m u u 0 σ n (s) √ m s e -κn(u-s) dsdu 2 , ν 6 (t; ω) = ω 2 8 N n=1 ρ S n T 0 m t t 0 σ n (s) √ m s e -κn(t-s) ds 2 .
We obtain the next result Proposition 3.2. Let's set p X (t, x; ω) = P(X t ∈ dx). We have

p X ≡ P [2], (3.8) 
where P is dened as

P (t, x; ω) = 1 2πν(t) e - (x+µ 1 ) 2 2ν(t) 1 + 6 n=2 (-1) n ν n (t) ν n 2 H n ( x + µ 1 (t) ν(t) ) (3.9)
and the H n 's are the Hermite polynomials. In particular, if we set C(t, K; ω) := E e Xt -K + , we obtain

C ≡ C [2], (3.10) 
where C is dened by

C(t, K; ω) = C BS (t, K, √ ν) + ( 6 n=2 ν n )N (d 1 ) + K √ ν N (d 2 ) 4 n=0 z n ν n 2 H n (-d 2 ) , (3.11) 
with

C BS (t, K, Σ) = N (d 1 ) -KN (d 2 ), d 1 = log( 1 K )+ t 2 Σ 2 √ tΣ , d 2 = log( 1 K )-t 2 Σ 2 √ tΣ
and for n = 0, . . . , 4,

z n = 6 i=n+2 (-1) i ν i . 4 
Application : Variance Reduction

The formulas given in the previous section, including those that give the approximation of the density and the price of European call options, can also be used otherwise. We can use these formulas as a tool to reduce the variance for the simulation of the trajectories of the underlying asset via the Monte Carlo method. In this section, we propose a control variate for the variance reduction of Monte Carlo simulations for pricing European options. Our method is based on the use of the approximation of the distribution function of log S t (when it is available) in a general stochastic volatility model. The idea is to construct a process Ŝ having as density (or distribution) the approximate density and strongly correlated with the trajectories of the underlying asset, then we write for a bound function H

E H(S t ) = E H(S t ) -E H( Ŝt ) + E H( Ŝt ).
As the law of Ŝt is known, we have just to simulate H(S t ) -H( Ŝt ) whose variance will be very small compared to the variance of H(S t ).

The Method

We consider a general one factor stochastic volatility model, where we assume that the dynamics of the underlying is modeled by the SDE

dS t S t = f (V t ) ρdW 1 t + 1 -ρ 2 dW 2 t , (4.1) 
where V is the unique strong solution to the SDE Proposition 4.1. For t > 0, denote by F t (.) the distribution function of X t := log(S t ). Denote by V 0 the unique solution starting from v of the ODE

dV t = α(t, V t )dt + σ(t, V t )dW 1 t , ( 4 
dV 0 t = α(t, V 0 t )dt.
Then the random variable

X t = (F t ) -1 • N   1 -ρ 2 t 0 f (V s )ds t 0 f (V s )dW 2 s + ρ t 0 f (V 0 s )ds t 0 f (V 0 s )dW 1 s   (4.3)
has the same law as X t .

Proof: As V 0 is deterministic, the random variable t 0 f (V 0 s )dW 1 s is Gaussian. On the other hand, since V is a strong solution of (4.2), then V s is F W 1 s measurable, with F W 1 s is the ltration generated by the Brownian motion W 1 . Thus V s is independent of W 2 and therefore the random variable

1 t 0 f (V s )ds t 0 f (V s )dW 2
s is a standard normal Random Variable N (0, 1). Now we can easily check that, conditionally on

t 0 f (V 0 s )dW 1
s , the random variable

1 t 0 f (V s )ds t 0 f (V s )dW 2 s is N (0, 1). Then, the random variable √ 1-ρ 2 t 0 f (V s )ds t 0 f (V s )dW 2 s + ρ t 0 f (V 0 s )ds t 0 f (V 0 s )dW 1 s is N (0, 1), which implies that N √ 1-ρ 2 t 0 f (V s )ds t 0 f (V s )dW 2 s + ρ t 0 f (V 0 s )ds t 0 f (V 0 s )dW 1 s is uniformly distributed on [0, 1]
. Thus X t has the same law as X t .

Proposition 4.2. Let G be C 2 , with bounded derivatives. We have

E G( X t ) -G(X t ) -E{G( X t ) -G(X t )} 2 = O( 2 ), (4.4) 
Remark 4.1. Note that the variance of G(X t ) is of order 0 in . This method of variance reduction makes possible to get rid of terms of order 0 and 1 in . As we can see in the next numerical examples, the second order Taylor series expansion of price with respect to was very close to the real price, we believe that the remaining variance will be very negligible compared to the total variance.

Proof: We rst note that X 0 t = X0 t . Indeed, V 0 t is deterministic, which means that X 0 t is Gaussian with mean -1 2 t 0 f (V 0 s )ds and variance

t 0 f (V 0 s )ds. So F 0 t (x) = N   x + 1 2 t 0 f (V 0 s )ds t 0 f (V 0 s )ds   .
Its inverse is given by

(F 0 t ) -1 (y) = N -1 (y) × t 0 f (V 0 s )ds - 1 2 t 0 f (V 0 s )ds. Therefore X0 t = (F 0 t ) -1 • N   1 -ρ 2 t 0 f (V 0 s )ds t 0 f (V 0 s )dW 2 s + ρ t 0 f (V 0 s )ds t 0 f (V 0 s )dW 1 s   = 1 -ρ 2 t 0 f (V 0 s )dW 2 s + ρ t 0 f (V 0 s )dW 1 s - 1 2 t 0 f (V 0 s )ds = X 0 t .
We now write the Taylor expansion of X t and Xt with respect to . We obtain

X t = X 0 t + X 1 t + 2 2 X 2 t + . . . , X t = X0 t + X1 t + 2 2 X2 t + . . .
where X 0 t = X0

t . Similarly, we can write

G(X t ) = G(X 0 t ) + G (X 0 t )X 1 t + . . . , G( X t ) = G( X0 t ) + G ( X0 t ) X1 t + . . . .
Note that since X t and X

t have the same law, we have

E G( X t ) -G(X t ) -E{G( X t ) -G(X t )} 2 = 2E G 2 (X t ) -G (X t ) G X t On the other hand, by writing that E G 2 (X t ) = 1 2 E G 2 (X t ) + G 2 ( X t ) , we obtain E G 2 (X t ) -G(X t )G( X t ) = 1 2 E G 2 X 0 + X 1 + G 2 X0 + X1 + O( 2 ) - E G(X 0 t ) + G (X 0 )X 1 G( X0 ) + G ( X0 ) X1 + O( 2 ) = 1 2 E G 2 (X 0 ) + 2 GG (X 0 )X 1 + G 2 ( X0 ) + 2 GG ( X0 ) X1 -E (G(X 0 )G( X0 ) + G (X 0 )G( X0 )X 1 + G(X 0 )G ( X0 ) X1 ) +O( 2 ) = O( 2 ).
Because X 0 = X0 . We have nally

E G 2 (X t ) -G(X t )G( X t ) = 2 2 E (G ) 2 (X 0 ) X 1 -X1 2 + O( 3 ).

Application

In the case where the instantaneous variance is given as a sum of exponential Ornstein-Uhlenbeck processes, we can use the approximation of the distribution function of the underlying obtained in the previous section to construct the control variate. For example, consider the case of one factor model with parameters t = 1 month, 1 year, r = 0, m = 0.1 × e -ω 2 2 t , b = 3, σ = 1, and ρ = -0.75. In the following tables, we compare the variance of the price of (K -e Xt ) + and (K -e Xt ) + -(K -e X t ) + for several strikes. We also compare the variance of e (cf. [START_REF] Jourdain | Loss of martingality in asset price models with lognormal stochastic volatility[END_REF]) and e Xt denes a true martingale.
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Numerical results: Comparison with Perelló et al (cf [START_REF] Perello | Option pricing under stochastic volatility: the exponential Ornstein-Uhlenbeck model[END_REF])

We study the error of this approximation by comparing our results with those obtained with the Monte Carlo and Perelló, Sircar and Masoliver [START_REF] Perello | Option pricing under stochastic volatility: the exponential Ornstein-Uhlenbeck model[END_REF]. We consider the case of a European Put with several strikes and several maturities. We consider the case of constant parameters and we choose the following values for the model parameters: S 0 = 100, r = 0, m = 0.1 × e -ω 2 2 T , b = 3, σ = 1, ρ = -0.6 and compare the results for ω = 100%, 200% and T = 1 month, 2 , months, 1 year.

We see that for short maturities and low levels of volatility the volatility, both methods (our approximation method and PSM) are almost identical and give the real price, while for long maturities and/or high levels of ω the error in our method is stable and does not exceed 1-2 %. ω = 100% Remark 5.2. One must be careful when we simulated pay-o that are unbounded (Calls for example) because the random variable e Xt is not necessarily square-integrable, in which case the variance is innite. However, there are cases where we are sure that e Xt is square-integrable, for example when ρ < -1 √ 2

(see Jordain [START_REF] Jourdain | Loss of martingality in asset price models with lognormal stochastic volatility[END_REF]). On the other hand, according to [START_REF] Jourdain | Loss of martingality in asset price models with lognormal stochastic volatility[END_REF], the process e X is a martingale if and only if ρ ≤ 0. In particular, the Call-Put parity is not satised when ρ > 0.

A Scott model with constant parameters:

We give here the results of our approximation for Scott model when parameters are constant. It might be useful for for practical purpose.

Let's denote by

I 1 := t 0 m s s 0 σ 2 u e -2b(s-u) duds = mσ 2 2bt -1 -e -2bt 4b 2 , I 2 := t 0 m τ τ 0 m s s 0 σ 2 u e -b(τ +s-2u) dudsdτ = m 2 σ 2 2bt -3 + 4e -bt -e -2bt 2b 3 , I 3 := t 0 m τ τ 0 η s (1)e -b(τ -s) dsdτ = ρσm √ m bt -1 + e -bt b 2 , I 4 := t 0 m τ τ 0 η s (1)e -b(τ -s) τ s η u (1)dudsdτ = ρ 2 σ 2 m 2 bt(1 + e -bt ) -2(1 -e -bt ) b 3 , I 5 := t 0 m τ τ 0 η s (1)e -b(τ -s) ds 2 dτ = ρ 2 σ 2 m 2 2bt -3 + 4e -bt -e -2bt 2b 3 . 
(A.1)

The ν's are given by 

ν 1 (t; ω) = ω 2 4 I 1 , ν 2 (t; ω) = ν 1 + ω 2 4 I 2 - ω 2 I 3 , ν 3 (t; ω) = - ω 2 I 3 + ω 2 4 I 4 + ω 2 4 I 5 + + ω 2 2 I 2 ν 4 (t; ω) = ω 2 4 I 2 + ω 2 4 I 4 + ω 2 4 I 4 + + ω 2 8 I 2 3 , ν 5 (t; ω) = ω 2 4 I 2 3 , ν 6 (t; ω) = ω 2 8 I 2 
i = 0, 1, 2, L i φi (t, ξ, ζ) = 0, ∀(t, ξ, ζ) ∈]0, ∞[×R × R.
This approximation is obtained as follows:

We set Ṽt = 1 ω V t . In particular, Ṽ is the unique solution (starting from 0) to the SDE

d Ṽt = -b Ṽt dt + σ t dW V t
Denote by p(t, x, v) the joint density of the pair of random variables (X t = log(S t /S 0 ), Ṽt ). This density satises the following Fokker-Planck equation :

∂ t p = ∂ v [bv p] + σ 2 t 2 ∂ 2 p ∂v 2 + 1 2 f 2 (t, ωv) ∂ p ∂x + 1 2 f 2 (t, ωv) ∂ 2 p ∂x 2 + ρ t σ t f (t, ωv) ∂ 2 p ∂x∂v . (B.1)
With p(0, x, v|0) = δ 0 (x)δ 0 (v).

Consider the Fourier transform of p, dened as

φ(t, ξ, ζ) := ∞ -∞ dxe ixξ ∞ -∞
dve ivζ p(t, x, v).

Note that φ(t, ξ, ζ) := E e i(ξXt+ζ Ṽt) and since V is Gaussian (in particular V t admits exponential moments of all orders), then ϕ(t, ξ, .) is well dened and analytic over C. The function φ is then solution of the following equation

-∂ t φ = σ 2 t 2 ζ 2 φ(t, ξ, ζ) + bζ∂ ζ φ + m t ξ 2 + iξ 2 ϕ(t, ξ, ζ -iω) + ξζρ t σ t √ m t φ(t, ξ, ζ -i ω 2 
).

(B.2)

With initial condition φ(0, ξ, ζ) = 1.

We seek a solution of (B.2) given as

φ(t, ξ, ζ) = exp   - n≥0 A n (t, ξ)ζ n   . So, the equation (B.2) becomes n≥0 ∂ t A n (t, ξ)ζ n = σ 2 t 2 ζ 2 -b n≥1 nA n (t, ξ)ζ n + m t ξ 2 + iξ 2 exp   n≥0 A n (t, ξ) [ζ n -(ζ -iω) n ]   + ξζρ t σ t √ m t exp   n≥0 A n (t, ξ) ζ n -(ζ -i ω 2 ) n   . (B.3)
As we focus only on the distribution of X t and not necessarily that of pair (X t , V t ), we will solve this equation for ζ around 0. So we perform the scaling ζ = ωλ, where we assume that λ ∈ R.

In particular, we have n≥0

A n (t, ξ) [ζ n -(ζ -iω) n ] = iωA 1 (t, ξ) + ω 2 A 2 (t, ξ) [2iλ + 1] + O(ω 3 ). (B.4)
Also, we obtain a similar development for

n≥0 A n (t, ξ) ζ n -(ζ -i ω 2 ) n . Therefore, the equa- tion (B.
2) can be written as 

∂ t A 0 + ω∂ t A 1 λ + ω 2 ∂ t A 2 λ 2 = -bωA 1 λ + ω 2 ( σ 2 t 2 - 2bA 
∂ t A 0 + ω∂ t A 1 λ + ω 2 ∂ t A 2 λ 2 = -bωA 1 λ + ω 2 ( σ 2 t 2 -2bA 2 )λ 2 + µ t 1 + iωA 1 + ω 2 A 2 - ω 2 2 A 2 1 + 2iω 2 A 2 λ + η t (1 + i ω 2 A 1 )ωλ + Õ(ω 3 ).
The solution of the truncated system (without Õ(ω 3 )) is given by the triplet (A 0 , A 1 , A 3 ), solution of the system

           ∂ t A 2 (t, ξ) = σ 2 t
2 -2bA 2 (t, ξ), ∂ t A 1 (t, ξ) = -(b -i ω 2 η t (ξ))A 1 (t, ξ) + 2iωµ t (ξ)A 2 (t, ξ) + η t (ξ), ∂ t A 0 (t, ξ) = µ t (ξ) 1 + iωA 1 (t, ξ) + ω 2 A 2 (t, ξ) -ω 2 2 A 2 1 (t, ξ) , A 0 (0, ξ) = A 1 (0, ξ) = A 2 (0, ξ) = 0. The solution of this system is given by We then obtain an approximation of φ(t, ξ, ωλ) which can be written as φ(t, ξ, ωλ) ≈ exp -A 0 (t, ξ; ω) + A 1 (t, ξ; ω)(ωλ) + A 2 ((t, ξ; ω)(ωλ) 2 .

A 2 (t,
(B.7)

We now consider the Fourier transform of the pair (X t , V t ), dened as ϕ(t, ξ, ζ) := E e iξXt+iζVt = φ(t, ξ, ωζ), then ϕ can be approximated by φ(t, ξ, ζ) := e -(A 0 (t,ξ;ω)+ωA 1 (t,ξ;ω)ζ+ω 2 A 2 (t,ξ;ω)ζ 2 ) . Let p(t, x, v 1 , . . . , v N ) be the density of the vector (X t , V 1 (t), . . . , V N (t)). 

  )

  e -b(τ +s-2u) dudsdτ , χ 3 := 1)e -b(τ -s) τ s η u (1)dudsdτ .

  .2) with d W 1 , W 2 t = 0 and α, σ are satisfying sucient conditions which ensure the existence of a strong solution to the stochastic dierential equation in (4.1).

(C. 2 ) 2 n 2 n 2 +

 2222 It follows that ϕ X (T, ξ) := Ee iξX T = e -A 0 (t,ξ) .Let's set A(t, x) := M n=1 A n (s, ξ). Writing A as a rst order Taylor series expansion with respect to ω, we obtain A(t, ξ) = (r, ξ)e -2κn(s-r) dr)e -(γn(t,ξ)-γn(s,ξ)) ds, n σ n (s)√ m s -iα n (s))e -κn(t-s) (1 -(r, ξ)e -κn(t+s-2r) drds + O(ω 2 ). n σ n (s) √ m s -iα n (s))e -κn(t-s) ds O(ω).It follows that ϕ X (T, ξ) can be written as ϕ X (T, ξ) = exp -iµ 1 (T -µ 2 (T )ξ 2 + iµ 3 (T )ξ 3 + µ 4 (T )ξ 4 + O(ω 3 ) ,

  Xt with the variance of e Xt -e Xt for ω = 100% Note that the random variable e Xt is square integrable, since ρ = -0.75 < -1

			t = 1 month		t = 1 year	
	Strike	Var	VarDif	V ar V arDif	Var	VarDif	V ar V arDif
	var S 0,8%	0,002%	344	6,17 %	0,10%	59
	90%	0,04%	0,001%	54	1,05%	0,02%	45
	100%	0,28%	0,002%	176	1,90%	0,03%	65
	110%	0,64%	0,002%	394	2,92%	0,03%	85
	120%	0,79%	0,002%	407	3,94%	0,04%	98
	Remark 4.2. √	2

  [START_REF] Berestycki | Asymptotics and calibration of local volatility models[END_REF] .

	B	Proof of Theorem 2.2
	We can easily proof the theorem by writing φ as φ(t, ξ, ζ; ω) = φ0 (t, ξ, ζ) + ω φ1 (t, ξ, ζ) +
	ω 2 φ2 (t, ξ, ζ) + O(ω 3 ) and showing that for

  2 )λ 2 + O(ω 3 ) + µ t (ξ) exp iωA 1 + ω 2 (1 + 2iλ)A 2 + O(ω 3 ) +

	vη t (ξ) exp i	ω 2	A 1 + ω 2 (	1 4	+ iλ)A 2 + O(	ω 3 8	) ,

where µ t (ξ) := m t ξ 2 +iξ 2 and η t (ξ) = ξρ t σ t √ m t . So the previous system becomes, by writing e x = 1 + x + x 2 2 + . . . ,

  ξ) ≡ A 2 (t, ξ; ω) = 1 2

	t		
	σ 2 s e -2b(t-s) ds,		
	0		
	A ω 2 2	A 2 1 )(s, ξ)ds,	(B.6)

1 (t, ξ) ≡ A 1 (t, ξ; ω) = t 0 (η s + 2iωµ s A 2 (s, ξ))e -(γ(t,ξ)-γ(s,ξ)) ds, A 0 (t, ξ) ≡ A 0 (t, ξ; ω) = t 0 µ s (1 + iωA 1 + ω 2 A 2where γ(t, ξ) = bt -i ω 2 ξ t 0 ρ s σ s √ m s ds.
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Consider the Fourier transform dened as

dζ N e iζ N v N p(t, x, v 1 , . . . , v N ).

The function ϕ is solution of the following equation

Note that we are only interested in the Fourier transform of X t corresponding to ϕ(t, ξ, 0, . . . , 0).

One then proceeds as in one-dimensional : at the order 3 with respect to ω and for (ζ 1 , . . . , ζ N ) ∈ D(0, ω) N , we have

In this case, the equation (C.1) becomes

On the other hand, we have

Solving equation (C.1) is equivalent to solve the system

We can immediately deduce that for all n, m, we have B n,m = 0. This gives the following system