
HAL Id: hal-00623914
https://hal.science/hal-00623914

Submitted on 15 Sep 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic access-control policies on XML encrypted data
Luc Bouganim, François Dang Ngoc, Philippe Pucheral

To cite this version:
Luc Bouganim, François Dang Ngoc, Philippe Pucheral. Dynamic access-control policies on XML
encrypted data. ACM Transactions on Information and System Security, 2008, 10 (4), pp.1-37. �hal-
00623914�

https://hal.science/hal-00623914
https://hal.archives-ouvertes.fr

16

Dynamic Access-Control Policies on XML
Encrypted Data

LUC BOUGANIM, FRANCOIS DANG NGOC, and PHILIPPE PUCHERAL

INRIA Rocquencourt and PRiSM Laboratory, University of Versailles

The erosion of trust put in traditional database servers and in Database Service Providers and the
growing interest for different forms of selective data dissemination are different factors that lead
to move the access-control from servers to clients. Different data encryption and key dissemination
schemes have been proposed to serve this purpose. By compiling the access-control rules into the
encryption process, all these methods suffer from a static way of sharing data. With the emer-
gence of hardware security elements on client devices, more dynamic client-based access-control
schemes can be devised. This paper proposes a tamper-resistant client-based XML access-right
controller supporting flexible and dynamic access-control policies. The access-control engine is em-
bedded in a hardware-secure device and, therefore, must cope with specific hardware resources.
This engine benefits from a dedicated index to quickly converge toward the authorized parts of
a potentially streaming XML document. Pending situations (i.e., where data delivery is condi-
tioned by predicates, which apply to values encountered afterward in the document stream) are
handled gracefully, skipping, whenever possible the pending elements and reassembling relevant
parts when the pending situation is solved. Additional security mechanisms guarantee that (1) the
input document is protected from any form of tampering and (2) no forbidden information can be
gained by replay attacks on different versions of the XML document and of the access-control rules.
Performance measurements on synthetic and real datasets demonstrate the effectiveness of the
approach. Finally, the paper reports on two experiments conducted with a prototype running on a
secured hardware platform.

Categories and Subject Descriptors: H.2.4 [Database Management]: Systems—Query processing;
H.2.7 [Database Management]: Database Administration—Security, integrity, and protection;
H.3.1

This paper is coauthored by employees of the Institute National de Recherche en Informatique et
en Automatique (INRIA) and by the Government of France. Nonexclusive permission to copy and
publish the paper is granted, provided that the authors and INRIA are clearly identified as its
sources.
This paper is coauthored by employees of the Institute National de Recherche en Information et
en Automatique (INRIA) and of the University of Versailles Saint Quentin en Yvelines (UVSQ).
Nonexclusive permission to copy and publish the paper is granted provided that the authors, INRIA
and UVSQ are clearly identified as its sources.
Authors’ addresses: Luc Bouganim, François Dang Ngoc, and Philippe Pucheral, INRIA Rocquen-
court, Domaine de Voluceau, 78153 Le Chesnay Cedex, France; email: {Luc.bouganim}@inria.fr;
François Dang Ngoc and Philippe Pucheral, University of Versailles, 45 avenue des Etats-Unis,
78035 Versailles Cedex, France; email: {Philippe.Pucheral}@prism.uvsq.fr.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2008 ACM 1094-9224/2008/01-ART16 $5.00 DOI 10.1145/1284680.1284684 http://doi.acm.org/
10.1145/1284680.1284684

ACM Transactions on Information and System Security, Vol. 10, No. 4, Article 16, Pub. date: January 2008.

16:2 • L. Bouganim et al.

General Terms: Security, Design

Additional Key Words and Phrases: Access-control, data confidentiality, ubiquitous data manage-
ment, smartcard

ACM Reference Format:
Bouganim, L., Ngoc, F. D., and Pucheral, P. 2008. Dynamic access-control policies on XML en-
crypted data. ACM Trans. Inform. Syst. Secur. 10, 4, Article 16 (January 2008), 37 pages. DOI =
10.1145/1284680.1284684 http://doi.acm.org/ 10.1145/1284680.1284684

1. INTRODUCTION

The access-control management is traditionally performed by the servers–the
place where the trust is. This situation, however, is rapidly evolving because of
very different factors: the suspicion toward Database Service Providers (DSP)
hosting outsourced databases [Hacigumus et al. 2002; Bouganim and Pucheral
2002], the increasing vulnerability of database servers facing external and in-
ternal attacks [Computer Security Institute 2003], the emergence of decen-
tralized ways to share and process data resulting from peer-to-peer databases
[Ng et al. 2003] or license-based distribution systems [XrML], and the ever-
increasing concern of parents and teachers to protect children by controlling
and filtering out what they access on the Internet [W3C PICS]. The common
consequence of these orthogonal factors is to move access-control from servers
to clients. Because of the intrinsic untrustworthiness of client devices, all client-
based access-control solutions rely on data encryption. The data are kept en-
crypted at the server and a client is granted access to subparts of them, accord-
ing to the decryption keys in its possession. Sophisticated variations of this
basic model have been designed in different contexts, such as DSP [Hacigu-
mus et al. 2002], database server security [He and Wang 2001], nonprofit and
for-profit publishing [Miklau and Suciu 2003, Bertino et al. 2001, Microsoft]
and hierarchical access-control [Akl and Taylor. 1983, Birget et al. 2001, Ray
et al. 2002]. These models differ in several ways: data access model (pull Ver-
sus. push), access-control model (DAC, RBAC, MAC), encryption scheme, key
delivery mechanism, and granularity of sharing. However, these models have
in common to minimize the trust required of the client at the price of a static
way of sharing data. Indeed, whatever the granularity of sharing is, the dataset
is split in subsets reflecting a current sharing situation, each encrypted with a
different key, or composition of keys. Thus, access-control rules intersections are
precompiled by the encryption. Once the dataset is encrypted, changes in the
access-control rules definition may impact the subset boundaries, hence incur-
ring a partial reencryption of the dataset and a potential redistribution of keys.

Unfortunately, there are many situations where access-control rules are user
specific, dynamic, and, thereby, difficult to predict. Let us consider a community
of users (family, friends, research team) sharing data via a DSP or in a peer-to-
peer fashion (agendas, address books, profiles, research experiments, working
drafts, etc.). It is likely that the sharing policies change as the initial situation
evolves (relationship between users, new partners, new projects with diverg-
ing interest, etc.). The exchange of medical information is traditionally ruled
by strict sharing policies to protect the patient’s privacy, but these rules may

ACM Transactions on Information and System Security, Vol. 10, No. 4, Article 16, Pub. date: January 2008.

Dynamic Access-Control Policies on XML Encrypted Data • 16:3

suffer exceptions in particular situations (e.g., in case of emergency) [El Kalam
et al. 2003], may evolve over time (e.g., depending on the patient’s treatment)
and may be subject to provisional authorizations [Kudo and Hada. 2000]. In the
same way, there is no particular reason for a corporate database hosted by a DSP
to have more static access-control rules than its home-administered counterpart
[Bouganim and Pucheral. 2002]. Regarding parental control, neither Web site
nor Internet Service Provider (ISP) can predict the diversity of access-control
rules that parents with different sensibility are willing to enforce. Finally, the
diversity of publishing models (non-profit or lucrative) leads to the definition of
sophisticated access-control languages like XrML, XACML or ODRL [XACML,
XrML, ODRL]. The access-control rules being more complex, the encrypted con-
tent and the licenses are managed through different channels, allowing differ-
ent privileges to be exercised by different users on the same encrypted content.

In the meantime, software and hardware architectures are rapidly evolving
to integrate elements of trust in client devices. Secure tokens and smart cards
plugged or embedded into different devices (e.g., PC, PDA, cellular phone, set-
top-box) are tamper-resistant hardware solutions exploited in a growing vari-
ety of applications (certification, authentication, electronic voting, e-payment,
healthcare, etc.) [Henderson et al. 2001]. Secure chips are now at the heart
of computing systems such as the TCPA architecture to protect PC platforms
against piracy [TCPA] or the SmartRight architecture to enforce digital right
management in the rendering devices [SmartRight]. Secure chips are also be-
ing integrated in a large diversity of usual objects, making them smarter, to
form an ambient and secure intelligence surrounding. Thus, secure operating
environments (SOE) have become a reality on client devices [Vingralek 2002].
Hardware-based SOE guarantee a high tamperresistance, generally on lim-
ited resources (e.g., a small portion of stable storage and RAM is protected to
preserve secrets like encryption keys and sensitive data structures).

The objective of this paper is to exploit these new elements of trust in order to
devise smarter client-based access-control managers. The goal pursued is being
able to evaluate dynamic and personalized access-control rules on a ciphered
input document, with the benefit of dissociating the access-control management
from encryption. The considered input documents are XML documents, the de-
facto standard for data exchange. Authorization models proposed for regulating
access to XML documents use XPath expressions to delineate the scope of each
access-control rule [Bertino et al. 2001, Carminati et al. 2005, Damiani et al.
2002, Gabillon 2004]. Having this context in mind, the problem addressed in
this paper can be stated as follows.

1.1 Problem Statement

� To propose an efficient access-control rules evaluator coping with the SOE
hardware constraints
The SOE being the unique element of trust, the access-control rules evaluator
must be embedded within the SOE. First, the limited amount of SOE secured
memory precludes any technique based on materialization (e.g., building a
DOM [W3C DOM] representation of the document). Second, limited CPU

ACM Transactions on Information and System Security, Vol. 10, No. 4, Article 16, Pub. date: January 2008.

16:4 • L. Bouganim et al.

power and limited communication bandwidth lead to minimization of the
amount of data to be downloaded and decrypted in the SOE. Efficiency is, as
usual, an important concern.

� To guarantee that prohibited information is never disclosed
The access-control being realized on the client device, no clear-text data but
the authorized ones must be made accessible to the untrusted part of this
client device.

� To protect the input document from any form of tampering
Under the assumption that the SOE is secure, the only way to mislead the
access-control rule evaluator is to tamper the input document, for example,
by substituting or modifying encrypted blocks.

1.2 Contributions

To tackle this problem, we make the following five contributions:

1. Accurate streaming access-control rules evaluator
We propose a streaming evaluator of XML access-control rules, supporting a
robust subset of the XPath language. The choice of a streaming evaluator al-
lows coping with the SOE memory constraint. Streaming is also mandatory
to cope with target applications consuming streaming documents. At first
glance, one may consider that evaluating a set of XPath-based access-control
rules and a set of XPath queries over a streaming document are equivalent
problems [Diao and Frauklin 2003, Green et al. 2004, Chan et al. 2002].
However, access-control rules are not independent. They may generate con-
flicts or become redundant on given parts of the document. The proposed
evaluator detects these situations accurately and exploits them to stop, as
soon as possible, rules becoming irrelevant.

2. Skip Index
We design a streaming and compact index structure allowing to quickly con-
verge toward the authorized parts of the input document, while skipping the
others, and to compute the intersection with a potential query expressed on
this document (in a pull context). Indexing is of utmost importance consider-
ing the two limiting factors of the target architecture: the cost of decryption
in the SOE, and the cost of communication between the SOE, the client,
and the server. This second contribution complements the first to match the
performance objective.

3. Pending predicates management
Pending predicates (i.e., a predicate S, conditioning the delivery of a subtree
S, but encountered after S in the document) are difficult to manage. We pro-
pose a strategy to detect the pending parts of the document, to skip them at
parsing time (whenever possible) and to reassemble afterward the relevant
pending parts at the right place in the final result.

4. Integrity checking with random accesses
We combine hashing and encryption techniques to make the integrity of
the document verifiable despite the forward and backward random accesses
generated by the skip index and by the support of pending predicates.

ACM Transactions on Information and System Security, Vol. 10, No. 4, Article 16, Pub. date: January 2008.

Dynamic Access-Control Policies on XML Encrypted Data • 16:5

5. Dynamic access-control policy management
The dynamicity of access-control policies requires refreshing the access-
control rule definitions on the SOE. We propose a solution to ensure the confi-
dentiality and integrity of this refreshing mechanism as well as to guarantee
the consistency of the rule updates with respect to the processed document
in order to avoid any unauthorized access.

The paper is organized as follows. Section 2 gives an overview of the existing
approaches to secure the access-control on XML documents. Section 3 intro-
duces the XML access-control model we consider in this paper, and illustrates
it on a motivating example. Sections 4–8 detail the five contributions mentioned
above. Section 9 presents experimental results based on both synthetic and real
datasets. Section 10 reports on two experiments conducted with a prototype of
our approach, developed on a smart-card platform acting as an SOE. Section
11 concludes.

2. RELATED APPROACHES

Despite the growing interest for XML encryption, on one side [W3C XMLENC,
Chang and Hwang 2004] and XML access-control, on the other side [Abadi and
Warinschi 2005; Bertino et al. 2001; Carminati et al. 2005; Damiani et al. 2002;
Gabillon 2004; Finance et al. 2005; Kudo and Hada 2000; Miklau and Suciu
2003; XrML; XACML], few works actually combine both issues. As stated in the
introduction, there are, as yet, a number of situations where access-control must
be performed on client devices and encryption is seen as a prerequisite in this
context. This section sketches different approaches to translate access-control
policies into encryption schemes and highlight their limits with respect to the
problem addressed in this paper. More specific related works are referenced
throughout each section of the paper.

2.1 Direct Encryption

Direct encryption refers to methods translating an access-control policy applied
to an XML document into a collection of XML fragments and encryption keys
such that: (i) a partition of the document is defined according to the set of au-
thorizations (i.e., positive or negative access-control rules) forming the policy,
(ii) each fragment resulting from this partition is encrypted with a different key,
and (iii), each subject receives the keys needed to decrypt the fragment he/she
is granted access to. The Author-X [Bertino et al. 2001] framework is repre-
sentative of this approach. It considers a publish/subscribe model where en-
crypted XML documents are pushed toward subscribers. The encryption scheme
follows an attribute-wise encryption (i.e., tags, attributes, and values are en-
crypted in place in the document with an attribute granularity). The decryp-
tion keys can be provided to the subscribers in different ways (e.g., through
an LDAP directory or within the document itself, encrypted with the public
key of each subscriber). The limiting factor in this approach is the number of
keys to consider, since this number may grow exponentially with the number
of users. The preceding issue (number of keys) can be solved using compati-
ble keys [Ray and Ray 2002], which provide a way for an encrypted data to be

ACM Transactions on Information and System Security, Vol. 10, No. 4, Article 16, Pub. date: January 2008.

16:6 • L. Bouganim et al.

decrypted using different keys. However, compatible keys rely on a costly asym-
metric encryption, roughly three orders of magnitude slower than symmetric
encryption.

2.2 Super Encryption

Miklau and Suciu [2003] and Abadi and Warinschi [2005] propose another en-
cryption scheme based on super encryption (i.e., recursive encryption of the
same data with different keys). Inner keys are used to encrypt subparts of
the document and are themselves embedded in the document. Inner keys are
encrypted with user’s keys or provisional information (e.g., birthdate, social
security number) and can be combined together (e.g., XORed) to form a new
key corresponding to a potentially complex logical expression. In this way, log-
ical conditions to access the data can be directly compiled into the encryption
process. When receiving a document, a user decrypts the subparts he/she is
primarily granted access to and can keep decrypting the following subparts
recursively as long as he/she obtains the proper decryption keys.

This solution provides an elegant way to implement complex conditions and
provisional access and relies on a simple key distribution. However, it suffers
from important limitations in our context. First, the cost incurred by super-
encryption and by the cryptographic initialization of inner keys makes this
solution inappropriate for devices with low processing capacities. Second, as no
compression is considered, the space overhead incurred by the XML encryption
format and inner keys can be significant.

2.3 Query-Aware Encryption

The previous solutions do not perform well when a user is interested in (or is
granted access to) a small subset of the document. Indeed, there is no indexation
structure to converge toward relevant parts of the document with respect to a
potential query and/or access-control rules. The idea developed in Carminati
et al. [2005] is to delegate part of query evaluation to an insecure server hosting
the encrypted data. To this end, attribute-wise encryption is considered. A query
on the XML structure can be processed easily by the server, encrypting in place
tags and attributes in the XPath expression (e.g., /a/b can be evaluated on the
encrypted data as /E(a)/E(b), where E is the encryption function). Selection on
values are tackled by index partitioning in a way similar to Hacigumus et al.
[2002], appending to each encrypted value a plaintext index value relating to
which interval the value belongs (the bounds of the intervals remain hidden
to the server). This allows a coarse filtering on the server side, subsequently
refined by the client after data decryption.

Delegating computation on an untrusted server requires enforcing the in-
tegrity of the result, the most difficult issue being checking the completeness of
the result. This problem is solved in Devanbu et al. [2001] as a result of a Merkle
hash tree [Merkle 1989] built on the queried document. However, Devanbu et al.
[2001] considers completeness only for complete subtrees, thereby precluding
the use of negative authorizations in an access-control policy. [Carminati et al.
2005] extend the Merkle hash tree toward an XML hash tree by considering,

ACM Transactions on Information and System Security, Vol. 10, No. 4, Article 16, Pub. date: January 2008.

Dynamic Access-Control Policies on XML Encrypted Data • 16:7

for each internal XML node, a hash value built from its tag name, its content,
and the hash of all its children nodes.

In our resource-limited context (i.e., limited memory, communication band-
width, and CPU power within the SOE), this solution suffers from two weak-
nesses. First, the encoding scheme may incur a significant space overhead, con-
sidering that tags and values have to be padded at encryption time (e.g, 3DES
and AES produce, respectively, 64- and 128-bit blocks). Index and schema in-
formation contribute also to this space overhead. Second, extending the Merkle
hash tree, which originally operates on binary tree, incurs an important over-
head: when requesting an element having n siblings, their n hashes are sent
back along with the answer (SHA-1 produces hash of 20 bytes).

As a conclusion, while these methods offer different interesting features,
they do not perform well in the context considered in this paper. Their common
weakness is related to the management of dynamic access-control policies. In-
deed, subparts of the data need be reencrypted whenever the access-control
policies change.

3. ACCESS-CONTROL MODEL

3.1 Access-Control Model Semantics

Several authorization models have been recently proposed for regulating access
to XML documents. Most of these models follow the well-established discre-
tionary access-control (DAC) model [Bertino et al. 2001; Gabillon et al. 2004;
Damiani et al. 2002], even though RBAC and MAC models have also been con-
sidered [Chandramouli 2000; Cho et al. 2002]. We introduce below a simplified
access-control model for XML, inspired by Bertino’s [Bertino et al. 2001] and
Damiani’s model [Damiani et al. 2002] that roughly share the same foundation.
Subtleties of these models are ignored for the sake of simplicity.

In this simplified model, access-control rules take the form of a three-uple
<sign, subject, object>. Sign denotes either a permission (positive rule) or a
prohibition (negative rule) for the read operation. Subject is a generic term,
which can refer either to a user, a group, a role, etc. Object corresponds to
elements or subtrees in the XML document, identified by an XPath expression.
The expressive power of the access-control model and then the granularity of
sharing, is directly bounded by the supported subset of the XPath language.
In this paper, we consider a rather robust subset of XPath denoted by XP{[],∗,//}

[Miklau and Sucui 2002]. This subset, widely used in practice, consists of node
tests, the child axis (/), the descendant axis (//), wildcards (*), and predicates or
branches [. . .]. The predicates can further include child and descendant axis,
and wildcards, as well as node test or value test (i.e., comparison with a given
value). Attributes are handled in the model similarly to elements and are not
discussed further.

The cascading propagation of rules is implicit in the model, meaning that a
rule propagates from an object to all its descendants in the XML hierarchy. Be-
cause of this propagation mechanism and to the multiplicity of rules for a same
user, a conflict-resolution principle is required. Conflicts are resolved using two

ACM Transactions on Information and System Security, Vol. 10, No. 4, Article 16, Pub. date: January 2008.

16:8 • L. Bouganim et al.

policies: denial-takes-precedence and most-specific-object-takes-precedence. Let
us assume two rules R1 and R2 of opposite sign. These rules may conflict either
because they are defined on the same object, or because they are defined, re-
spectively, on two different objects O1 and O2, linked by an ancestor/descendant
relationship (i.e., O1 is ancestor of O2). In the former situation, the denial-
takes-precedence policy favors the negative rule. In the latter situation, the
most-specific-object-takes-precedence policy favors the rule that applies directly
to an object against the inherited one (i.e., R2 takes precedence over R1 on O2).
Finally, if a subject is granted access to an object, the path from the document
root to this object is also granted [Damiani et al. 2002] (names of denied ele-
ments in this path can be replaced by a dummy value [Fan et al. 2004, Gabillon
2004]. This structural rule keeps the document structure consistent with re-
spect to the original one. The set of rules attached to a given subject on a given
document is called an access-control policy. This policy defines an authorized
view of this document and, depending on the application context, this view
may be queried. We consider that queries are expressed with the same XPath
fragment as access-control rules, namely XP{[],∗,//}. Semantically, the result of
a query is computed from the authorized view of the queried document (e.g.,
predicates cannot be expressed on denied elements even if these elements do
not appear in the query result). However, access-control rules predicates can
apply to any part of the initial document.

3.2 Motivating Example

We use an XML document representing medical folders to illustrate the seman-
tics of the access-control model and to serve as motivating example. A sample of
this document is pictured in Figure 1, along with the access-control policies as-
sociated to three profiles of users: secretaries, doctors, and medical researchers.
A secretary is granted access only to the patient’s administrative subfolders.
A doctor is granted access to the patient’s administrative subfolders and to
all medical acts and analysis of her patients, except the details for acts she
did not carry out herself. Finally, a researcher is granted access to the age of
patients who have subscribed to any protocol test and only to the laboratory
results of patients who have subscribed to a protocol test of type G3, provided
the measurement for the element Cholesterol does not exceed 250 mg/dL.

Medical applications exemplify the need for dynamic access-control rules.
For example, a researcher may be granted an exceptional and time-limited ac-
cess to a fragment of all medical folders where the measurement of cholesterol
exceeds 300 mg/dL (a rather rare situation). A patient having subscribed to a
protocol to test the effectiveness of a new treatment may revoke this protocol
at any time because of a degradation of her state of health or for any other
personal reasons. Models compiling access control policies in the data encryp-
tion cannot tackle this dynamicity. However, the reasons to encrypt the data
and delegate the access control to the clients are manifold: exchanging data
among medical research teams in a protected peer-to-peer fashion, protect the
data from external attacks, as well as from internal attacks. The latter aspect
is particularly important in the medical domain because of the very high level

ACM Transactions on Information and System Security, Vol. 10, No. 4, Article 16, Pub. date: January 2008.

Dynamic Access-Control Policies on XML Encrypted Data • 16:9

Fig. 1. Hospital XML document.

Fig. 2. Abstract target architecture.

of confidentiality attached to the data and to the very high level of decentral-
ization of the information system (e.g., small clinics and general practitioners
are prompted to subcontract the management of their information system).

3.3 Target Architectures

Figure 2 illustrates an abstract representation of the target architecture for the
motivating example, as well as for the applications mentioned in the introduc-
tion. As the access-control rules are evaluated on the client, the client device
has to be made tamper resistant by creating a secure operating environment
(SOE). As stated in the introduction, SOE usually rely on secure chips (e.g.,
smartcard, secure token, TCPA chip). In the sequel of this paper, and up to
the performance evaluation section, we make no assumption on the hardware
SOE, except the traditional ones: (1) the code executed by the SOE cannot be

ACM Transactions on Information and System Security, Vol. 10, No. 4, Article 16, Pub. date: January 2008.

16:10 • L. Bouganim et al.

corrupted, (2) the SOE has at least a small quantity of secure stable storage (to
store secrets like encryption keys), (3) the SOE has at least a small quantity
of secure working memory (to protect sensitive data structures at processing
time). In our context, the SOE is in charge of decrypting the input document,
checking its integrity, and evaluating the access-control policy, corresponding
to a given (document, subject) pair. This access-control policy, as well as the
key(s) required to decrypt the document, can be permanently hosted by the
SOE and refreshed or downloaded from different sources (including untrusted
servers—see Section 7).

4. STREAMING THE ACCESS-CONTROL

While several access-control models for XML have been recently proposed, few
papers address the enforcement of these models and, to the best of our knowl-
edge, no one considers access control in a streaming fashion. Streaming is a
prerequisite in our context, considering the limited SOE secure storage capac-
ity. At first glance, streaming access control resembles the well-known problem
of XPath processing on streaming documents. There is a large body of work on
this latter problem in the context of XML filtering [Diao and Franklin 2003;
Green et al. 2004; Chan et al. 2002]. These studies consider a very large num-
ber of XPath expressions (typically tens of thousands). The primary goal here
is to select the subset of queries matching a given document (the query result
is not a concern) and the focus is on indexing and/or combining a large number
of queries. One of the first works addressing the precise evaluation of com-
plex XPath expressions over streaming documents is by Peng and Chawathe
[2003], which proposes a solution to deliver parts of a document matching a
single XPath. While access-control rules are expressed in XPath, the nature
of our problem differs significantly from the preceding ones. Indeed, the rule-
propagation principle, along with its associated conflict-resolution policies (see
Section 3) makes access-control rules not independent. The interference be-
tween rules introduces two new important issues:

� Access-control rules evaluation: for each node of the input document, the
evaluator must be capable of determining the set of rules that applies to it
and for each rule determining if it applies directly or is inherited. The nesting
of the access-control rules scopes determines the authorization outcome for
that node. This problem is made more complex by the fact that some rules
are lazily evaluated because of pending predicates.

� Access-control optimization: the nesting of rule scopes associated with the
conflict-resolution policies inhibits the effect of some rules. The rule evaluator
must take advantage of this inhibition to suspend the evaluation of these
rules and even to suspend the evaluation of all rules if a global decision can
be reached for a given subtree.

4.1 Access-Control Rules Evaluation

As streaming documents are considered, we make the assumption that the
evaluator is fed by an event-based parser (e.g., SAX [SAX]) raising open, value,

ACM Transactions on Information and System Security, Vol. 10, No. 4, Article 16, Pub. date: January 2008.

Dynamic Access-Control Policies on XML Encrypted Data • 16:11

Fig. 3. Execution snapshot.

and close events, respectively, for each opening, text, and closing tag in the input
document.

We represent each access-control rule (i.e., XPath expression) by a non-
deterministic finite automaton (NFA) [Hopcroft and Ullman 1979]. Figure 3b
shows the access-control rules Automata (ARA) corresponding to two rather
simple access-control rules expressed on an abstract XML document. This ab-
stract example, used in place of the motivating example introduced in Section 3,
gives us the opportunity to study several situations (including the trickiest
ones) on a simple document. In our ARA representation, a circle denotes a
state and a double circle, a final state, both identified by a unique StateId.
Directed edges represent transitions, triggered by open events matching the
edge label (either an element name or *). Thus, directed edges represent the
child (/) XPath axis or a wildcard, depending on the label. To model the de-
scendant axis (//), we add a self-transition with a label * matched by any
open event. An ARA includes one navigational path and optionally one or
several predicate paths (in grey in the figure). To manage the set of ARA

ACM Transactions on Information and System Security, Vol. 10, No. 4, Article 16, Pub. date: January 2008.

16:12 • L. Bouganim et al.

representing a given access-control policy, we introduce the following data
structures:
� Tokens and token stack: we distinguish between navigational tokens (NT)

and predicate tokens (PT) depending on the ARA path they are involved in.
To model the traversal of an ARA by a given token, we actually create a token
proxy each time a transition is triggered and we label it with the destination
StateId. (The terms token and token proxy are used interchangeably in the
rest of the paper). The navigation progress in all ARA is memorized as a
result of a unique stack-based data structure called token stack. The top of
the stack contains all active navigational and predicate tokens, i.e., tokens
that can trigger a new transition at the next incoming event. Tokens created
by a triggered transition are pushed in the stack. The stack is popped at each
close event. The goal of token stack is twofold: allowing a straightforward
backtracking in all ARA and reducing the number of tokens to be checked at
each event (only the active ones, at the top of the stack, are considered).

� Rule status and authorization stack: Let us assume for the moment that
access-control rule expressions do not exploit the descendant axis (no //). In
this case, a rule is said to be active—meaning that its scope covers the current
node and its subtree—if all final states of its ARA contain a token. A rule is
said to be pending if the final state of its navigational path contains a token,
while the final state of some predicate path has not yet been reached. The
authorization stack registers the navigational tokens having reached the final
state of a navigational path, at a given depth in the document. The scope of
the corresponding rule is bounded by the time the navigational token remains
in the stack. This stack is used to solve conflicts between rules. The status
of a rule present in the stack can be fourfold: positive-active (denoted by ⊕),
positive-pending (denoted by ⊕?), negative-active (denoted by �), negative-
pending (denoted by �?). By convention, the bottom of the stack contains an
implicit negative-active rule materializing a closed access-control policy (i.e.,
by default, the set of objects the user is granted access to is empty).

� Rule-instances materialization: Taking into account the descendant axis (//)
in the access-control rules expressions makes things more complex to man-
age. Indeed, the same element names can be encountered at different depths
in the same document, leading several tokens to reach the final state of a nav-
igational path and predicate paths in the same ARA, without being related
together.1 To tackle this situation, we label navigational and predicate token
proxies with the depth at which the original predicate token has been created,
materializing their participation in the same rule instance.2 Consequently, a
token (proxy) must hold the following information: RuleId (denoted by R, S,

1The complexity of this problem has been highlighted in Peng and Chawathe [2003].
2To illustrate this, let us consider the rule R and the right subtree of the document presented in
Figure 3. The predicate path final state 5 (expressing //b[c]) can be reached from two different
instances of b, respectively, located at depth 2 and 3 in the document, while the navigational path
final state 3 (expressing //b/d) can be reached only from b, located at depth 3. Thus, a single rule
instance is valid here, materialized by navigational and predicate token proxies labeled with the
same depth 3.

ACM Transactions on Information and System Security, Vol. 10, No. 4, Article 16, Pub. date: January 2008.

Dynamic Access-Control Policies on XML Encrypted Data • 16:13

. . .), Navigational/Predicate status (denoted by n or p), StateId, and Depth.3

For example, Rn22 and Rp42 (also noted 22, 42 to simplify the figures) denote
the navigational and predicate tokens created in rule R’s ARA at the time el-
ement b is encountered at depth 2 in the document. If the transition between
states 4 and 5 of this ARA is triggered, a token proxy Rp52 will be created and
will represent the progress of the original token Rp42 in the ARA. All these
tokens refer to the same rule instance, since they are labeled by the same
depth. A rule instance, is said to be active or pending under the same condi-
tion as before, taking into account only the tokens related to this instance.

� Predicate set: this set registers the predicate tokens having reached the
final state of a predicate path. A predicate token, representing a predicate
instance, is discarded from this set at the time the current depth in the
document becomes less than its own depth.

Stack-based data structures are well adapted to the traversal of a hierarchical
document. However, we need a direct access to any stack level to update pending
information and to allow some optimizations detailed below. Figure 3c repre-
sents an execution snapshot based on these data structures. This snapshot is
almost self-explanatory. We thus detail only a small subset of steps.
� Step 2: the open event b generates two tokens Rn22and Rp42, participating

in the same rule instance.
� Step 3: the ARA of the negative rule S reaches its final state and an active

instance of S is pushed in the authorization stack. The current authorization
remains negative. Token Rp52 enters the predicate set. The corresponding
predicate will be considered true until level 2 of the token stack is popped
(i.e., until event /b is produced at step 11). Thus, there is no need to continue
to evaluate this predicate in this subtree and token Rp42 can be discarded
from the token stack.

� Step 5: An active instance of the positive rule R is pushed in the authorization
stack. The current authorization becomes positive, allowing the delivery of
element d .

� Step 16: A new instance of R is pushed in the authorization stack, represented
by token Rn33. This instance is pending, since the token Rp52 pushed in
the predicate set at step 13 (event c), does not participate in the same rule
instance.

� Step 18: Token Rp53 enters the predicate set, changing the status of the as-
sociated rule instance to positive active. The management of pending predi-
cates and their effect on the delivery process is more thoroughly studied in
Section 6.

4.2 Conflict Resolution

From the information kept in the authorization stack, the outcome of the cur-
rent document node can be easily determined. The conflict-resolution algorithm

3If the same ARA contains different predicate paths starting at different levels of the navigational
path, a navigational token will have, in addition, to register all predicate tokens related to it.

ACM Transactions on Information and System Security, Vol. 10, No. 4, Article 16, Pub. date: January 2008.

16:14 • L. Bouganim et al.

Fig. 4. Conflict-resolution algorithm.

presented in Figure 4 integrates the closed access-control policy (line 1), the
denial-takes-precedence (line 2) and most-specific-object-takes-precedence (lines
5 and 7) policies to reach a decision. In the algorithm, AS denotes the authoriza-
tion stack and AS[i].RuleStatus denotes the set of status of all rules registered
at level i in this stack. In the first call of this recursive algorithm, depth cor-
responds to the top of AS. Recursion captures the fact that a decision may be
reached even, if the rules at the top of the stack are pending, depending on the
rule status found in the lower stack levels. Note, however, that the decision can
remain pending if a pending rule at the top of the stack conflicts with other
rules. In that case, the current node has to be buffered, waiting for a delivery
condition. This issue is tackled in Section 6. The rest of the algorithm is self-
explanatory and examples of conflict resolutions are given in the figure. The
DecideNode algorithm presented below considers only the access-control rules.
Things are slightly more complex if queries are also considered. Queries are
expressed in XPath and are translated in a nondeterministic finite automaton
in a way similar to access-control rules. However, a query cannot be regarded
as an access-control rule at conflict-resolution time. The delivery condition for
the current node of a document becomes twofold: (1) the delivery decision must
be true and (2) the query must be interested in this node. The first condition is
the outcome of the DecideNode algorithm. The second condition is matched if
the query is active, that is if all final states of the query ARA contain a token,
meaning that the current node is part of the query scope.

4.3 Optimization Issues

The first optimization that can be devised is doing a static analysis of the system
of rules composing an access-control policy. Query-containment property can be
exploited to decrease the complexity of this system of rules. Let us denote by ⊆
the containment relation between rules R, S . . . T. If S ⊆ R∧ (R.Sign = S.Sign);
the elimination of S could be envisioned. However, this elimination is precluded
if, for example, ∃ T / T ⊆ R ∧ (T.Sign 	= R.Sign) ∧ (S ⊆ T). Thus, rules
cannot be pairwise examined and the problem turns to check whether some
partial order among rules can be defined wrt. the containment relation, e.g.,
{Ti,. . . Tk} ⊂ {Si,. . . Sk}⊆ {Ri,. . . Rk} ∧ ∀ i, (Ri.Sign = Si.Sign ∧Si.Sign 	= Ti.Sign)
⇒ {Si,. . . Sk} can be eliminated. Note that this condition does not eliminate
all irrelevant rules. For instance, let R and S be two positive rules, respec-
tively, expressed by /a and /a/b[P1] and T be a negative rule expressed by

ACM Transactions on Information and System Security, Vol. 10, No. 4, Article 16, Pub. date: January 2008.

Dynamic Access-Control Policies on XML Encrypted Data • 16:15

Fig. 5. Decision on a complete subtree.

/a/b[P2]/c. S can still be eliminated while T 	⊂ S, because the containment
holds for each subtree, where the two rules are active together. The problem
is particularly complex, considering that the query containment problem itself
has been shown co-NP complete for the class of XPath expressions of interest,
that is, XP{[],//,∗} [Miklau and Suciu 2002]. This issue could be further investi-
gated since more favorable results have been found for subclasses of XP{[],//,∗}

[Amer-Yahia et al. 2001], but this work is outside the scope of this paper.
A second form of optimization is to dynamically suspend the evaluation of

ARA that become irrelevant or useless inside a subtree. The knowledge gath-
ered in the token stack, authorization stack, and predicate set can be exploited
to this end. The first optimization is to suspend the evaluation of a predicate
in a subtree as soon as an instance of this predicate has been evaluated to true
in this subtree. This optimization has been illustrated by Step 3 of Figure 3c.
The second optimization is to dynamically evaluate the containment relation
between active and pending rules and to benefit from the elimination condition
mentioned above. From the authorization stack, we can detect situations where
the following local condition holds: (T ⊂ S ⊆ R)∧ (R.Sign = S.Sign ∧ S.Sign 	=
T.Sign), the stack levels reflecting the containment relation inside the current
subtree. S can be inhibited in this subtree. If stopping the evaluation of some
ARA is beneficial, one must keep in mind that the two limiting factors of our
architecture are the decryption and the communication costs. Therefore, the
real challenge is being able to make a common decision for complete subtrees, a
necessary condition to detect and skip prohibited subtrees, thereby saving both
decryption and communication costs.

Without any additional information on the input document, a common deci-
sion can be made for a complete subtree rooted at node n iff: (1) the DecideNode
algorithm can deliver a decision D (either ⊕ or �) for n itself and (2) a rule R
whose sign contradicts D cannot become active inside this subtree (meaning
that all its final states, of navigational path and potential predicate paths, can-
not be reached altogether). These two conditions are compiled in the algorithm
presented in Figure 5. In this algorithm, AS denotes the authorization stack,
TS the token stack, TS[i].NT (resp. TS[i].PT) the set of navigational (resp. pred-
icate) tokens registered at level i in this stack, and top is the level of the top of a
stack. In addition, t.RuleInst denotes the rule instance associated with a given
token, Rule.Sign, the sign of this rule, and Rule.Pred, a boolean indicating if
this rule includes predicates in its definition.

The immediate benefit of this algorithm is to stop the evaluation for any
active navigational tokens and the main expected benefit is to skip the com-
plete subtree if this decision is �. Note, however, that only navigational
tokens are removed from the stack at line 4. The reason for this is that

ACM Transactions on Information and System Security, Vol. 10, No. 4, Article 16, Pub. date: January 2008.

16:16 • L. Bouganim et al.

active predicate tokens must still be considered, otherwise pending predicates
could remain pending forever. As a conclusion, a subtree rooted at n can be
actually skipped iff: (1) the decision for n is �, (2) the DecideSubtree algo-
rithm decides �, and (3) there are no predicate tokens at the top of the token
stack (which turns to be empty). Unfortunately, these conditions are rarely
met together, especially when the descendant axis appears in the expression of
rules and predicates. The next section introduces a skip index structure that
gives useful information about the forthcoming content of the input document.
The goal of this index is to detect a priori rules and predicates that will be-
come irrelevant, thereby increasing the probability to meet the aforementioned
conditions.

When queries are considered, any subtree not contained in the query scope
is candidate to a skip. This situation holds as soon as the navigational token of
the query (or navigational tokens when several instances of the same query can
coexist) becomes inactive (i.e., is no longer element of TS[top].NT). This token
can be removed from the token stack, but potential predicate tokens related
to the query must still be considered, again to prevent pending predicate to
remain pending forever. As before, the subtree will be skipped if the token stack
becomes empty.

5. SKIP INDEX

This section introduces a new form of indexation structure, called skip index,
designed to detect and skip the unauthorized fragments (w.r.t. an access-control
policy) and the irrelevant fragments (w.r.t. a potential query) of an XML doc-
ument, while satisfying the constraints introduced by the target architecture
(streaming encrypted document, scarce SOE storage capacity).

In the context of XML filtering [Chen et al. 2004, Bayardo et al. 2004] and
XML routing [Green et al. 2004], the authors devised a streaming index, which
consists of appending its size to each subtree, allowing the possibility to skip it
when no other query can apply to this subtree. However, since no extra infor-
mation on the content of the subtree is provided, the use of such index is rather
limited (e.g., a query of the form //a precludes any skip).

The first requirement is the ability to keep the desired index encrypted out-
side of the SOE to guarantee the absence of information disclosure. The second
requirement (related to the first and to the SOE storage capacity) is the abil-
ity for the SOE to manage the index in a streaming fashion, similarly to the
document itself. These two features lead to design a very compact index (its
decryption and transmission overhead must not exceed its own benefit), embed-
ded in the document in a way compatible with streaming. For these reasons, we
concentrate on indexing the structure of the document, pushing aside the index-
ation of its content. Structural summaries [Arion et al. 2004] or XML skeleton
[Buneman et al. 2003] could be considered as a candidate for this index. Beside
the fact that they may conflict with the size and streaming requirements, these
approaches do not capture the irregularity of XML documents (e.g., medical
folders are likely to differ from one instance to another while sharing the same
general structure).

ACM Transactions on Information and System Security, Vol. 10, No. 4, Article 16, Pub. date: January 2008.

Dynamic Access-Control Policies on XML Encrypted Data • 16:17

In the following, we propose a highly compact structural index, encoded re-
cursively into the XML document to allow streaming. An interesting side effect
of the proposed indexation scheme is to provide new means to further compress
the structural part of the document.

5.1 Skip Index Encoding Scheme

The primary objective of the index is to detect rules and queries that cannot
apply inside a given subtree, with the expected benefit to skip this subtree
if the conditions stated in Section 4.3 are met. Keeping the compactness re-
quirement in mind, the minimal structural information required to achieve
this goal is the set of element tags, or tags for short, that appear in each sub-
tree. While this metadata does not capture the tag nestings, it turns out to
be very effective to filter out irrelevant XPath expressions. We propose be-
low data structures encoding this metadata in a highly compact way. These
data structures are illustrated in Figure 7a see later on an abstract XML
document.
� Encoding the set of descendant tags: The size of the input document being a

concern, we make the rather classic assumption that the document structure
is compressed because of a dictionary of tags [Arion et al. 2004; Tolani and
Harista 2002].4 The set of tags that appear in the subtree rooted by an ele-
ment e, named DescTage, can be encoded by a bit array, named TagArraye, of
length Nt , where Nt is the number of entries of the tag dictionary. A recursive
encoding can further reduce the size of this metadata. Let us call DescTag(e)
the bijective function that maps TagArraye into the tag dictionary to com-
pute DescTage. We can trade storage overhead for computation complexity
by reducing the image of DescTag(e) to DescTagparent(e) in place of the tag
dictionary. The length of the TagArray structure decreases while descending
into the document hierarchy at the price of making the DescTag() function
recursive. Since the number of elements generally increases with the depth of
the document, the gain is substantial. To distinguish between intermediate
nodes and leaves (that do not need the TagArray metadata), an additional bit
is added to each node.

� Encoding the element tags: In a dictionary-based compression, the tag of each
element e in the document is replaced by a reference to the corresponding en-
try in the dictionary. Log2(Nt) bits are necessary to encode this reference.
The recursive encoding of the set of descendant tags can be exploited as
well to further compress the encoding of tags themselves. Using this scheme,
Log2(DescTagparent(e)) bits suffice to encode the tag of an element e.

� Encoding the size of a subtree: Encoding the size of each subtree is mandatory
to implement the skip operation. At first glance, Log2(size(document)) bits
are necessary to encode SubtreeSizee, the size of the subtree rooted by an
element e. Again, a recursive scheme allows to reduce the encoding of this

4Considering the compression of the document content itself is out of the scope of this paper. In
any case, value compression does not interfere with our proposal as far as the compression scheme
remains compatible with the SOE resources.

ACM Transactions on Information and System Security, Vol. 10, No. 4, Article 16, Pub. date: January 2008.

16:18 • L. Bouganim et al.

Fig. 6. Skipping decision.

size to log2(SubtreeSizeparent(e)) bits. Storing the SubtreeSize for each element
makes closing tags unnecessary.

� Decoding the document structure: The decoding of the document structure
must be done by the SOE, efficiently, in a streaming fashion and with-
out consuming much memory. To this end, the SOE stores the tag dictio-
nary and uses an internal SkipStack to record the DescTag and SubtreeSize
of the current element. When decoding an element e, DescTagparent(e) and
SubtreeSizeparent(e) are retrieved from this stack and used to decode, in turn,
TagArraye, SubtreeSizee and the encoded tag of e.

� Updating the document: In the worst case, updating an element e induces
an update of the SubtreeSize, the TagArray, and the encoded tag of each e
ancestor and their direct children. In the best case, only the SubtreeSize of
e ancestors need be updated. The worst case occurs in two rather infrequent
situations. The SubtreeSize of e ancestor’s children have to be updated if the
size of e father grows (resp. shrinks) and jumps a power of 2. The TagArray
and the encoded tag of e ancestor’s children have to be updated if the update
of e generates an insertion or deletion in the tag dictionary.

5.2 Skip Index Usage

As stated earlier, the primary objective of the skip index is to detect rules and
queries that cannot apply inside a given subtree. This means that any active
token that cannot reach a final state in its ARA can be removed from the top
of the token stack. Let us call RemainingLabels(t) the function that determines
the set of transition labels encountered in the path separating the current state
of a token t from the final state of its ARA, and let us call e the current element
in the document. A token t, either navigational or predicate, will be unable
to reach a final state in its ARA if RemainingLabels(t) 	⊂ DescTage. Note that
since the skip index does not capture the element tags nesting, some rules that
cannot apply may not be detected and their evaluation is carried out needlessly.
Once this token filtering has been done, the probability for the DecideSubtree
algorithm to reach a global decision about the subtree rooted by the current
element e is greatly increased since many irrelevant rules have been filtered.
If this decision is negative (�) or pending (?), a skip of the subtree can be
envisioned.

This skip is actually possible if there are no more active tokens, either navi-
gational or predicate, at the top of the token stack. The algorithm SkipSubtree
given in Figure 6 decides whether the skip is possible or not. Note that this
algorithm should be triggered both on open and close events. Indeed, each el-
ement may change the decision delivered by the algorithm DecideNode, then

ACM Transactions on Information and System Security, Vol. 10, No. 4, Article 16, Pub. date: January 2008.

Dynamic Access-Control Policies on XML Encrypted Data • 16:19

Fig. 7. Skip Index example.

DecideSubtree, and, finally, SkipSubtree with the benefit of being able to skip
a bigger subtree at the next step.

Figure 7 shows an illustrative XML document and its encoding, a set of
access-control rules and the skips done while analyzing the document. The
information in grey is presented to ease the understanding of the indexing
scheme, but is not stored in the document. Let us consider the document analy-
sis (for clarity, we use below the real element tags instead of their encoding). At
the time element b (leftmost subtree) is reached, all the active rules are stopped
because of TagArrayb and the complete subtree can be skipped (the decision
is � because of the closed access-control policy). When element c is reached,
Rule R becomes pending. However, the analysis of the subtree continues, since
TagArrayc does not allow more filtering. When element e is reached, TagArraye

filters out rules R, T, and U. Rule S becomes negative-active when the value “3”
is encountered below element m. On the closing event, SkipSubtree decides to
skip the e subtree. This situation illustrate the benefit to trigger the SkipSub-
tree at each opening and closing events. The analysis continues following the
same principle and leads to deliver the elements underlined in Figure 7c.

6. MANAGEMENT OF PENDING PREDICATES

An element in the input document is said to be pending if its delivery depends
on a pending rule, that is, a rule for which the navigational path final state
has been reached, but at least one predicate path final state remains to be
reached. This unfavorable case is unfortunately frequent. Indeed, any rule of
the form /. . . /e[P] leads invariably to a pending situation. Any rule of the form
/../e[P]/../ also generates a pending situation, until P has been evaluated
to true. Indeed, a false evaluation of P does not stop the pending situation,
because another instance of P may be true elsewhere in the document.

ACM Transactions on Information and System Security, Vol. 10, No. 4, Article 16, Pub. date: January 2008.

16:20 • L. Bouganim et al.

This situation is made even more difficult since pending parts cannot be
buffered inside the SOE, considering the assumption made on its storage ca-
pacity. Moreover, when multiple pending predicates are considered, their man-
agement can become particularly complex. In the following, we present two
different ways to tackle this problem, each adapted to a specific context. We
then, provide a solution to cope with multiple pending predicates.

6.1 Pending Delivery

By nature, pending predicates are incompatible with applications-consuming
documents in a strict streaming fashion (note that a predicate may remain
pending until the document end). When considering pending predicates, we
make the assumption that the terminal has enough memory to buffer the pend-
ing parts of the document. We first propose a simple solution adapted to doc-
uments delivered in a strict streaming fashion (e.g., push-based access, broad-
cast). We then, describe a more accurate solution adapted to contexts where
backward and forward accesses are allowed in the document (e.g., pull-based
access, VCR).

6.1.1 Strict Streaming. When receiving the document in a strict streaming
fashion, the outcome of pending predicates cannot be known beforehand. Pend-
ing parts cannot be buffered inside the SOE considering the assumption made
on its storage capacity. To tackle this problem, pending parts are externalized
to the terminal in an encrypted form using a temporary encryption key. If later
in the parsing, the pending parts are found to be authorized, the temporary key
is delivered and otherwise discarded. A different temporary key is generated
for every pending part, which depends on different predicates. We refer in the
following to output block as a contiguous output encrypted with the same key
or a contiguous clear-text output.

Each issued output block Bi(encrypted or not) may include additional in-
formation to integrate it consistently into the result document when some an-
cestors or left sibling elements are in a pending situation. This information is
called the pathlist of Bi and contains the list of tags in the path between the
last authorized issued element and Bi ’s root. Indeed, if Bi ’s ancestors are fi-
nally found to be prohibited, this list is necessary to enforce the structural rule
stating that the result document must keep the same structure as the input
one (cf. Section 3).5 In order to avoid confusion between elements sharing the
same tag during Bi ’s integration, every delivered pending element is marked
with an identifier (e.g., a random value). These values are kept in the SOE and
are associated with the tag of Bi’s pathlist.6

6.1.2 Backward/Forward Access. In the case of backward/forward access,
we make the assumption that the pending parts can be read back (e.g., from the

5An alternative is to tag forbidden ancestors with a dummy value to comply with [Gabillon 2004]
and Fan et al. [2004].
6Note that the marking overhead can be restricted to ancestors of pending subtrees because of the
skip index (marking is deactivated as soon as no pending rule may apply in the subtree).

ACM Transactions on Information and System Security, Vol. 10, No. 4, Article 16, Pub. date: January 2008.

Dynamic Access-Control Policies on XML Encrypted Data • 16:21

Fig. 8. Pending predicate management.

server) when pending predicates are solved. The objective pursued is, therefore,
to detect pending subtrees and to leave them aside as a result of the skip index
until the pending situation is solved. The goal is to never read and analyze
the same data twice. The skipping strategy and the associated reassembling
strategy proposed below meet this goal.

Pending subtrees are externalized at the time the logical expression condi-
tioning their delivery is evaluated to true (e.g., //a[d = 6]/b[c = 5] requires that
an element d = 6 and an element c = 5 are found to be true). Therefore, pend-
ing subtrees can be delivered in an order different from their initial order in
the input document. The benefit of this asynchrony is to reduce the latency
of the access-control management and to free the SOE internal memory, at
the cost of a more complex reassembling of the final result. Indeed, the initial
parent, descendant, and sibling relationships have to be preserved at reassem-
bling time. This forces to register, at parsing time, the information <offset, level,
anchor, condition> for each pending subtree (Figure 8 illustrates a pending sit-
uation involving four subtrees S0, S1, S2, and S3, respectively, associated with
pending predicates P0, P1, P2, and P3). Offset and level are, respectively, the
subtree offset and subtree depth in the initial document (we use the term level
to avoid any confusion with the depth attached to tokens); anchor references
the target position of the subtree in the result (see below); condition is the
logical expression conditioning the subtree delivery. This information is kept
for each pending subtree in a list named pending list and denoted by PL. The
reassembling process is as follows:

� Anchor assignation: Let us assume that each element e in the result document
is labeled by a unique number Ne (representing, for example, the ordering

ACM Transactions on Information and System Security, Vol. 10, No. 4, Article 16, Pub. date: January 2008.

16:22 • L. Bouganim et al.

in which elements are delivered). The future position of a pending subtree
e′ in the result can be uniquely identified by a single number using the fol-
lowing convention: Ne if e′ is a potential right sibling of e or −Ne if e′ is the
potential left-most child of e. No anchor needs to be memorized for pending
right siblings and embedded subtrees of a pending subtree e′ (in Figure 8:
NS0 = −3, while S1, S2, S3 have no anchor). The reason for this is twofold:
(1) these subtrees share e′ anchor until one of their left sibling (see subtree
delivery) or ancestor (see embedded pending subtrees) is delivered and (2)
parent and sibling relationships among pending elements can be recovered
from the Pending List as follows:

≺ denotes the precedence relation in the Pending List
A child of B ⇔ B≺A ∧ LevelA = LevelB + 1 ∧ ¬ (∃ C / B≺C≺A ∧ LevelC =

LevelB)A right sibling of B ⇔ B≺A ∧ LevelA = LevelB∧ ¬ (∃ C / B≺C≺A ∧
LevelC ≤LevelA)

� Embedded pending subtrees: a pending subtree may, in turn, embed other
pending subtrees leading to tricky situations, depending on the pending pred-
icate issues (i.e., affecting the delivery order). Let us assume the innermost
subtree Sinner (e.g., S1) is found authorized while the outermost subtree Souter

(e.g., S0) is still pending. All the tags in the path from Sinner to its last autho-
rized ancestor Anc (e.g., d and f connect S1 to element c) must be delivered
in their hierarchical order, along with Sinner to enforce the structural rule. Let
us assume that Souter is delivered afterward. Sinner and the path connecting
it to Anc must not be delivered twice. To cope with this situation and produce
a consistent result document, the parts of Souter previously delivered must
be recorded. This information is stored in a skip list integrated in the PL
structure (see S0 skip list in Figure 8).

� Subtree delivery: At the time a pending subtree e′ is delivered, its place in
the result document is determined by its anchor. In turn, Ne′ becomes the
anchor of the potential pending right sibling of e′ (e.g., S3 anchor is updated
when S2 is delivered). Respectively, −Ne′ becomes the anchor of the poten-
tial pending right sibling of e′. To deliver the subtree e′, the whole subtree
is read back from the input document, decrypted, and delivered, taking care
to skip elements that may have been already delivered (i.e., authorized em-
bedded subtrees, tags delivered to enforce the structural rule) and those that
may not be delivered (still embedded pending subtrees and denied embedded
subtrees).

Figure 8 illustrates the problem of embedded pending subtrees, showing the
state of the pending list at different steps during the execution. The figure is
self-explanatory.

6.2 Coping with Multiple Pending Predicates

The conditions recorded in the pending list may be complex logical expressions.
Each time a pending predicate is resolved, these conditions must be evaluated
to determine whether some pending subtrees can be delivered. When coping
with multiple pending predicates, there is a clear need to organize them in a

ACM Transactions on Information and System Security, Vol. 10, No. 4, Article 16, Pub. date: January 2008.

Dynamic Access-Control Policies on XML Encrypted Data • 16:23

Fig. 9. Multiple pending predicate management.

way that reduces the storage overhead of pending list conditions and the time
required by their evaluation.

Let us call a pending class the set of pending subtrees whose delivery depends
on the same logical expression. As the number of pending predicates is likely to
be small, the logical expressions can be modeled using a bit vector representing
the truth table. To minimize the memory consumption, two vectors V and B are
attached to each pending class. V = {(p, d)} is a list of predicates identified by a
predicate id p and the depth d at which it occurs; B is the truth table results
representing the logical expression (in Figure 9, only the gray parts are stored
in memory, the rest is implicit). Using binary operations on bit vectors (e.g.,
bitwise AND, bit shift), V and B may be expanded incrementally as new pending
predicates are considered or, shrunk when pending predicates are resolved. This
truth table evolves until it becomes either a true function (the associated data
are delivered) or a false function (the associated data are prohibited).

Figure 9 illustrates how the logical expressions are incrementally built and
evaluated. Let us assume an initial situation with a unique pending class Class1
containing the subtree S1 rooted at n1 with a delivery condition a ∧ b, where
predicates a and b occur, respectively, at depth 1 and 2. Let us now consider
an element f , descendant of n1 on which a new pending rule R applies with
a predicate c. If R is a negative (resp. positive) rule, the logical expression
conditioning the delivery of element f is a ∧ b ∧ ¬c (resp. a ∧ b ∧ c). To reflect
this situation, a new class Class2 is created with a vector V2 derived from
V1 (predicate c is inserted in the list in the lexical order) and a bit vector B2
built as follows (we assume that B2 must represent the expression a ∧ b ∧ ¬c).
A bit vector B′ is created from B1 by duplicating every segment of 2index (c)−1

bits, index(c) being the position of predicate c in V2 (e.g., index((c, 3)) = 3).
Predicate c is represented by a bit vector Bc made as an alternation of 2index(c)−1

bit segments of 0 and 1. Finally, B2 is computed because of a bitwise AND
NOT between B′ and Bc (Figure 9b). Let us assume predicate c is found to be
false the rows representing a true value for c in B2 are removed and the rest is
shifted backward (Figure 9c), that is all the rows (the first row being numbered

ACM Transactions on Information and System Security, Vol. 10, No. 4, Article 16, Pub. date: January 2008.

16:24 • L. Bouganim et al.

0) in the intervals [k ∗ 2index(c) + 2index(c)−1, (k + 1)*2index(c)], k varying from 0 to
2(|V |−index(c)) − 1, where |V| is the cardinality of V . The resulting truth table of
Class2 being the same as the one of Class1, the two classes are merged into the
Class1–2. Let us assume predicate b is evaluated to false, the table is shrunk as
pictured in Figure 9d. The resulting truth table contains only bit values equal
to zero. Hence, the logical expression is evaluated to false and all the elements
of this class are discarded.

This solution is both time and space efficient considering that bitwise logical
operations are applied on bit arrays that are likely to fit in 32-bit numbers.

7. INTEGRITY CHECKING WITH RANDOM ACCESSES

Encryption and hashing are required to guarantee, respectively, the confiden-
tiality and the integrity of the input document. Unfortunately, standard in-
tegrity checking methods are badly adapted to our context for two important
reasons. First, the memory limitation of the SOE imposes a streaming integrity
checking. Second, the integrity checking must tackle the forward and backward
random accesses to the document incurred by the skip index and by the reassem-
bling of pending document fragments. In this section, we provide a solution to
face potential attacks on an input document.

In a client-based context, the attacker is the user himself. For instance, a
user being granted access to medical folder X may try to extract unautho-
rized information from a medical folder Y. Let us assume that the document
is encrypted with a classic block cipher algorithm (e.g., triple-DES) and that
blocks are encrypted independently (e.g., following the ECB mode [Menezes
et al. 1996; Schneier 1996]), identical plaintext blocks will generate identical
ciphered values. In that case, the attacker can conduct different attacks: sub-
stituting some blocks of folders X and Y to mislead the access-control manager
and decrypt part of Y; building a dictionary of known plaintext/ciphertext pairs
from authorized information (e.g., folder X), and using it to derive unautho-
rized information from ciphertext (e.g., folder Y); making statistical inference
on ciphertext. In addition, if no integrity checking occurs, the attacker can ran-
domly modify some blocks, inducing a malfunction of the rule processor (e.g.,
Bob is authorized to access folders of patients older than 80 and he randomly
alters the ciphertext storing the age).

To face these attacks, we exploit two techniques. Regarding encryption, the
objective is to generate different ciphertexts for different instances of a same
value. This property could be obtained by using a cipher block chaining (CBC)
mode in place of ECB, meaning that the encryption of a block depends on the
preceding block [Menezes et al. 1996; Schneier 1996]. This, however, would
introduce an important overhead at decryption time if random accesses are
performed in the document. As an alternative, we merge the position of a value
with the value itself at encryption time, i.e., we perform an XOR (denoted ⊕)
between each block and the position of this block in the document, before en-
crypting the result using a simple ECB mode. The encryption itself is performed
with a triple-DES algorithm, but other algorithms, (e.g., AES) could be used for
this purpose. Thus, a plaintext block bat position p in the document is encrypted

ACM Transactions on Information and System Security, Vol. 10, No. 4, Article 16, Pub. date: January 2008.

Dynamic Access-Control Policies on XML Encrypted Data • 16:25

by Ek(b ⊕ p), where k is a secret key attached to the document and stored in
the SOE. Key k can be permanently stored in the SOE and is not known, even
by the SOE owner.

Encryption alone is not sufficient to guarantee the document integrity, since
the attacker can perform random modifications and substitutions in the cipher-
text. Our goal is to provide a solution coping with the forward and backward
random accesses to the document, minimizing the quantity of data transmitted
to the SOE and the number of cryptographic primitives calls.

A basic solution would be to split the encrypted document into chunks (e.g.,
2 KB) and use a collision resistant hash function (e.g., SHA-1) applied to the
encrypted data to compute a digest of each chunk, called ChunkDigest that
prevents any tampering to occur without impacting this digest. Each chunk
contains an identifier reflecting its position in the document, so that block sub-
stitutions can be easily detected. Remark that ChunkDigest must be encrypted
to prevent the terminal to compute by itself a new digest corresponding to tam-
pered data. When accessing n bytes7 within a chunk, this basic solution would
incur to communicate sizeof(ChunkDigest) + sizeof(Chunk) bytes to the SOE
and to decrypt sizeof(ChunkDigest) + n bytes in the SOE.

A more efficient solution can be devised and requires the cooperation of the
untrusted terminal. Letus consider an iterated hash function based on the
Merkle–Damgård construction, which uses a collision-resistant compression
function cworking on r bytes blocks (e.g., with SHA-1, r = 64). When the SOE
accesses n bytes at position pos8 in a chunk, the idea is (1) to start the compu-
tation on the untrusted terminal using function c on the pos − 1 first bytes of
the chunk; (2) to transmit the intermediate result to the SOE; (3) to complete
the hash computation on the SOE; and (4) to check the integrity of the received
data by comparing the final hashed value to ChunkDigest. This solution incurs
to communicate sizeof(ChunkDigest) + sizeof(Chunk) − (pos − 1) bytes to the
SOE and to decrypt sizeof(ChunkDigest) + n bytes in the SOE.

Although correct, the previous solution reduces the benefit of small skips in
the document since the target chunk must always be read by the SOE from
the position pos of interest until its end. Thus, sizeof (Chunk) − (pos − 1) − n
irrelevant bytes have to be transferred to the SOE. To alleviate this drawback,
we adapt the Merkle hash tree principle introduced in Merkle [1989] as follows.
Each chunk is divided into m fragments (e.g., of 256 bytes), where m is a power
of 2, and these m fragments are organized in a binary tree. A hash value is
computed for each fragment and then attached to each leaf of the binary tree.
Each intermediate node of the tree contains a hash value computed on the
concatenation of its children hash value. The ChunkDigest corresponds to the
hash value attached to the binary tree root. When the SOE accesses n bytes

7For simplicity, we assume that n is a multiple of the encryption block size (e.g., eight bytes for
3-DES) and is less than the chunk size. Removing the first assumption incurs an additional trans-
mission of n mod encryption block size bytes to the SOE, while removing the second assumption is
straightforward.
8For simplicity, we assume that pos is aligned with r (i.e., pos mod r = 0). Removing this assumption
incurs, in the worst case, an additional transmission of r − 1 bytes to the SOE.

ACM Transactions on Information and System Security, Vol. 10, No. 4, Article 16, Pub. date: January 2008.

16:26 • L. Bouganim et al.

Fig. 10. Integrity checking with random accesses.

at position pos in a fragment f of a given chunk,9 the terminal sends: (1) the
bytes from pos up to the end of fragment f , that is sizeof(fragment) − (pos − 1)
bytes including the n bytes of interest; (2) the intermediate computation using
function con the pos−1 first bytes of fragment f ; (3) the hash information
computed on the other fragments following the Merkle hash tree strategy; and
(4) the encrypted ChunkDigest. As a result of this information, the SOE can
recompute the root of the Merkle hash tree and compare it to ChunkDigest, as
shown in Figure 10.

To conclude, the document is protected against tampering and confidential-
ity attacks while remaining agnostic regarding the encryption algorithm used
to cipher the elementary data. Unlike Hacigumus et al. [2002] and Bouganim
and Pucheral [2002], we make no assumption about any particular way of en-
crypting data that could facilitate the query execution at the price of a weaker
robustness against cryptanalysis attacks.

8. DYNAMIC ACCESS-CONTROL POLICY MANAGEMENT

As stated in the introduction, dynamicity of the access-control policies is a
mandatory feature for a number of applications. This led us to design a secure
mechanism to refresh the access-control rules on the SOE. Access-control rule
updates may be done proactively, requiring updates systematically before ac-
cessing the document, reactively when rule updates are detected, or even be
disseminated jointly with the data. The protocols may vary depending on the
application scenarios (consider, for instance, two separate transmission chan-
nels for the data and for the access control rules updates as in a digital right
management (DRM) architecture). The update protocol must ensure three com-
plementary properties independently of the way it is actually implemented:. (i)
confidentiality since access-control rules definition may disclose unauthorized
information; (ii) integrity since rule modification (even done randomly on an
encrypted rule) may mislead the rule processor (cf. Section 7); (iii) consistency,
meaning that the set of access-control rules stored on the SOE must be up-to-
date with respect to the currently processed document.

9We used the same assumption as above. Moreover, we assume that n is smaller than a fragment.
Handling the case when n is greater than a fragment is straightforward.

ACM Transactions on Information and System Security, Vol. 10, No. 4, Article 16, Pub. date: January 2008.

Dynamic Access-Control Policies on XML Encrypted Data • 16:27

Access rules confidentiality and integrity are enforced because of encryption
and hashing mechanisms presented in Section 7. Ensuring consistency is more
difficult. Inconsistency between the set of access-control rules and the document
may appear as a result of a malicious user who may, for instance, filter the
update flow, replay the document or the update flow, etc. In any case, the SOE
must detect it and must not deliver any data.

We should remark that if both the document and the access-control rules are
delivered in an old and consistent version, the user will get exactly the same
result that he got in the past. Even if these data are no longer authorized at the
present time, the user does not gain access to new information. Inconsistencies
appears when a new access-control policy is applied on an old document, thus
potentially revealing unauthorized outdated data, or, conversely, when an out-
dated access-control policy is applied on a recent version of the document, thus
revealing unauthorized current data.

Both problems may be solved using a cross-reference versioning between
the data and the access-control rules. The access-control policy of every user10

is stored in a form of a set of rules, each represented by a tuple with four
attributes (rule ts, rule, doc ts, sig), where rule ts is a timestamp incremented
for every new access-control rule, rule is the access-control rule definition in its
encrypted form, doc ts the timestamp of the document at the time the access-
control rule was defined, and sig is a signature of the tuple. Conversely, the
document contains in a signed header its timestamp doc ts as well as the last
access-control rule timestamp, rule ts, for each user at the time the document
was updated.

When the SOE receives an access-control policy updates, it gets all the access-
control rules of the associated user having a rule ts greater than the one got
from the last connection. It then checks that the access-control rules are prop-
erly chained as a result of their rule ts timestamp to ensure that no rules are
missing. Let R be the last downloaded access-control rule. When the SOE gets
document D, it checks that D.doc ts is greater or equal than R.doc ts (if this
condition does not hold, this means that a tampering attack tries to apply a
new access-control policy on an old document). Similarly, the SOE checks that
R.rule ts is greater or equal to D.rule ts (otherwise, it means that a tampering
attack tries to apply an outdated access-control policy on a recent document).

9. EXPERIMENTAL RESULTS

This section presents experimental results obtained from both synthetic and
real datasets. We first give details about the experimentation platform. We
then analyze the storage overhead incurred by the skip index and compare it
with possible variants. We next, study the performance of access-control man-
agement, query evaluation, and integrity checking. Finally, the global perfor-
mance of the proposed solution is assessed on four datasets that exhibit different
characteristics.

10If many users are involved, a table can be shared by a group of users, taking into account common
access-control rules and individual access-control rules.

ACM Transactions on Information and System Security, Vol. 10, No. 4, Article 16, Pub. date: January 2008.

16:28 • L. Bouganim et al.

Table I. Document Characteristics

WSU Sigmod Treebank Hospital
Size 1.3 MB 350 KB 59 MB 3.6 MB
Text size 210 KB 146 KB 33 MB 2.1 MB
Maximum depth 4 6 36 8
Average depth 3.1 5.1 7.8 6.8
distinct tags 20 11 250 89
text nodes 48820 8383 1391845 98310
elements 74557 11526 2437666 117795

9.1 Experimentation Platform

The abstract target architecture presented in Section 3 can be instantiated
in many different ways. In this experimentation, we consider that the SOE is
embedded in an advanced smartcard platform. While existing smartcards are
already powerful (32-bit CPU running at 30 Mhz, 4 KB of RAM, 128 KB of
EEPROM), they are still too limited to support our architecture, especially in
terms of communication bandwidth (9.6 Kbps). Our industrial partner, Axalto
announces by the end of this year a more powerful smartcard equipped with a
32-bit CPU running at 40 Mhz, 8 KB of RAM, 1 MB of flash, and supporting
an USB protocol at 1 MBps. Axalto provided us with a hardware cycle-accurate
simulator for this forthcoming smartcard. Our prototype has been developed
in C and has been measured using this simulator. Cycle accuracy guarantees
an exact prediction of the performance that will be obtained with the target
hardware platform.

As this section will make clear, our solution is strongly bounded by the de-
cryption and the communication costs. We considered a smartcard communi-
cation bandwidth of 0.5 MB/s which corresponds to a worst case, where each
data entering the SOE takes part in the result. We also measure the encryp-
tion/decryption bandwidth using the 3DES algorithm, hardwired in the smart-
card and obtained 0.15 MB/s.

In the experiment, we consider three real datasets: WSU corresponding to
university courses, Sigmod records containing index of articles, and Tree Bank
containing English sentences tagged with parts of speech [UW XML]. In ad-
dition, we generate a synthetic content for the Hospital document depicted in
Section 3 (real datasets are very difficult to obtain in this area), because of
the ToXgene generator [ToXgene]. The characteristics of interest of these doc-
uments are summarized in Table I.

9.2 Index Storage Overhead

The skip index is an aggregation of three techniques for encoding, respectively,
tags, lists of descendant tags, and subtree sizes. Variants of the skip index could
be devised by combining these techniques differently (e.g., encoding the tags and
the subtree sizes without encoding the lists of descendant tags makes sense).
Thus, to evaluate the overhead ascribed to each of these metadata, we com-
pare the following techniques. NC corresponds to the original noncompressed
document. TC is a rather classic tag compression method and will serve as

ACM Transactions on Information and System Security, Vol. 10, No. 4, Article 16, Pub. date: January 2008.

Dynamic Access-Control Policies on XML Encrypted Data • 16:29

Fig. 11. Index storage overhead.

reference. In TC, each tag is encoded by a number expressed with log2(#distinct
tags) bits. We denote by TCS (tag compressed and subtree size) the method stor-
ing the subtree size to allow subtrees to be skipped. The subtree size is encoded
with log2(compressed document size) bits. In TCS, the closing tag is useless and
can be removed. TCSB complements TCS with a bitmap of descendant tags
encoded with #distinct tags bits for each element. Finally, TCSBR is the re-
cursive variant of TCSB and corresponds actually to the skip index detailed
in Section 5. In all these methods, the metadata need be aligned on a byte
frontier. Figure 11 compares these five methods on the datasets introduced for-
merly. These datasets having different characteristics, the y-axis is expressed
in terms of the ratio structure/(text length). Clearly, TC drastically reduces the
size of the structure in all datasets. Adding the subtree size to nodes (TCS)
increases the structure size by 50%, up to 150% (big documents require an
encoding of about 5 bytes for both the subtree size and the tag element, while
smaller documents need only 3 bytes). The bitmap of descendant tags (TCSB) is
even more expensive, especially in the case of the Bank document, which con-
tains 250 distinct tags. TCSBR drastically reduces this overhead and brings
back the size of the structure near the TC one. The reason is that the subtree
size generally decreases rapidly, as well as the number of distinct tags inside
each subtree. For the Sigmod document, TCSBR becomes even more compact
than TC.

9.3 Access-Control Overhead

To assess the efficiency of our strategy (based on TCSBR), we compare it with:
(i) a brute-force strategy (BF) filtering the document without any index and
(ii) a time lower-bound LWB. LWB cannot be reached by any practical strategy.
It corresponds to the time required by an oracle to read only the authorized
fragments of a document and decrypt it. Obviously, a genuine oracle will be
able to predict the outcome of all predicates—pending or not—without check-
ing them and to guess where the relevant data are in the document. Figure 12
shows the execution time required to evaluate the authorized view of the three

ACM Transactions on Information and System Security, Vol. 10, No. 4, Article 16, Pub. date: January 2008.

16:30 • L. Bouganim et al.

Fig. 12. Access-control overhead.

profiles (Secretary, Doctor, and Researcher) introduced in Section 3 on the Hos-
pital document. Integrity checking is not taken into account here. The size of
the compressed document is 2.5 MB and the evaluation of the authorized view
returns 135 KB for the Secretary, 575 KB for the Doctor, and 95 KB for the
Researcher. In order to compare the three profiles despite this size discrepancy,
the y-axis represents the ratio between each execution time and its respective
LWB. The real execution time (in s) is mentioned on each histogram. To mea-
sure the impact of a rather complex access-control policy, we consider that the
Researcher is granted access to 10 medical protocols instead of a single one,
each expressed by one positive and one negative rule, as in Section 3.

The conclusions that can be drawn from this figure are threefold. First, the
BF strategy exhibits very poor performance, explained by the fact that the
smartcard has to read and decrypt the whole document in order to analyze it.
Second, the performance of our TCSBR strategy is generally very close to the
LWB (recall that LWB is a theoretical and unreachable lower bound), exem-
plifying the importance of minimizing the input flow entering the SOE. The
largest overhead noticed for the Researcher profile compared to LWB is due to
the predicate expressed on the protocol element that can remain pending until
the end of each folder. Indeed, if this predicate is evaluated to false, the access-
control rule evaluator will continue—needlessly in the current case—to look
at another instance of this predicate (see Section 6). Third, the cost of access-
control (from 2 to 15%) is largely dominated by the decryption cost (from 53 to
60%) and by the communication cost (from 30 to 38%). The cost of access-control
is determined by the number of active tokens that are to be managed at the
same time. This number depends on the number of ARA in the access-control
policy and the number of descendant transitions (//) and predicates inside each
ARA. This explains the larger cost of evaluating the Researcher access-control
policy.

9.4 Impact of Queries

To accurately measure the impact of a query in the global performance, we
consider the query //Folder[//Age>v] (v allows us to vary the query selectivity),

ACM Transactions on Information and System Security, Vol. 10, No. 4, Article 16, Pub. date: January 2008.

Dynamic Access-Control Policies on XML Encrypted Data • 16:31

Fig. 13. Impact of queries.

Fig. 14. Impact of integrity control.

executed over five different views built from the preceding profiles and corre-
sponding to: a secretary (S), a part-time doctor (PTD) in charge of a few patients,
a full-time doctor (FTD) in charge of many patients, a junior researcher (JR)
being granted access to few analysis results, and a senior researcher (SR) being
granted access to several analysis results. Figure 13 plots the query execution
time (including the access control) as a function of the query result size. The
execution time decreases linearly as the query and view selectivity’s increase,
showing the accuracy of TCSBR. Even if the query result is empty, the execu-
tion time is not null since parts of the document have to be analyzed before
being skipped. The parts of the document that need to be analyzed depend on
the view and on the query. The embedded figure shows the same linearity for
larger values of the query result size.

9.5 Evaluation of the Integrity Control

Figure 14 depicts the execution time required to build the authorized view of
the Secretary, Doctor, and Researcher profiles, including integrity checking.
Comparing these results with Figure 12 shows that the cost ascribed to in-
tegrity checking remains quite acceptable when using the technique proposed
in Section 8 (from 32 to 38%). To better capture the benefit of this technique,
based on ECB and Merkle hash tree (ECB-MHT), we compare it with: ECB,

ACM Transactions on Information and System Security, Vol. 10, No. 4, Article 16, Pub. date: January 2008.

16:32 • L. Bouganim et al.

Fig. 15. Performance on real datasets.

a basic ECB encryption scheme without hashing that enforces confidentiality,
but not tamper-resistance; CBC-SHA, a CBC encryption scheme complemented
by a SHA-1 hashing applied to the clear-text version of complete chunks (this
solution represents the most direct application of state-of-the-art techniques);
CBC-SHAC, that is similar to CBC-SHA except that the hashing applies to ci-
phered chunks, thereby allowing the SOE to check the chunk digest without
decrypting the chunk itself. The results plotted in Figure14 are self-explanatory.

9.6 Performance on Real Datasets

To assess the robustness of our approach when different document structures
are faced, we measured the performance of our prototype on the three real
datasets: WSU, Sigmod, and Bank. For these documents we generated ran-
dom access-control rules (including // and predicates). Each document exhibits
interesting characteristics. The Sigmod document is well-structured, nonrecur-
sive, of medium depth, and the generated access-control policy was simple and
not very selective (50% of the document was returned). The WSU document is
rather flat and contains a large amount of very small elements (its structure
represents 78% of the document size after TCSBR indexation). The Bank doc-
ument is very large, contains a large amount of tags that appear recursively
in the document and the generated access-control policy was complex (eight
rules). Figure 15 reports the results. We added in the figure the measures ob-
tained with the Hospital document to serve as a basis for comparisons. The
figure plots the execution time in terms of throughput for our method and for
LWB, both with and without integrity checking. We show that our method tack-
les well very different situations and produces a throughput ranging from 55 to
85 KBps, depending on the document and the access-control policy. These pre-
liminary results are encouraging when compared with current available xDSL
Internet bandwidth (ranging from 16 to 128 KBps).

10. APPLICATIONS AND EXPERIMENTS

Our C prototype running on a hardware cycle-accurate simulator has been de-
veloped to forecast the performance of client-based access-control management

ACM Transactions on Information and System Security, Vol. 10, No. 4, Article 16, Pub. date: January 2008.

Dynamic Access-Control Policies on XML Encrypted Data • 16:33

on future smartcard platforms and to assess the medium-term viability of
the approach. Besides this objective, our team developed a second prototype
in JavaCard 2.2.1 running on a real Axalto’s smartcard platform (SIMera
[Axalto]). The objective of this second prototype is to demonstrate the versa-
tility of the approach from the application viewpoint. Toward this goal, two
scenarios have been selected, exhibiting two rather different application’s pro-
files regarding the way the information is accessed (pull versus push), the type
of this information (textual versus video), and the response time requirements
(user patience/real time). We report on these experiments below.

The first application scenario deals with collaborative works. A community of
users desires organizing a confidential data sharing space via an untrusted DSP
to exchange textual XML data like agendas, address books, profiles, working
drafts, etc. Our technology permits to easily define powerful access-control rules
on sensitive data (e.g., specific appointments in an agenda or financial section
in a working document) while handling rule dynamicity (new partners join or
leave the community and relationships among them evolve). This experiment
has been the recipient of the silver award of the e-gate open 2004 smartcard
international software contest [Axalto E-Gate 2004].

The second scenario demonstrates a selective dissemination of multimedia
streams through unsecured channels. Videos are encoded using the MPEG7
standard, which allows storing short descriptions of the scenes in the XML
metadata. The requirements of parental control and advanced digital right-
management models are matched as a result of specific and dynamic access-
control rules. To tackle the current smartcard low communication bandwidth,
we had to trade security for performance. Hence, metadata and video streams
are separated, only the former actually traversing the smartcard. This exper-
iment has been conducted on cell phones equipped with new-generation SIM
cards. It has been rewarded by the gold award of the SIMagine’05 smartcard
international software contest [Axalto SIMagine 2005].

Finally, the internals of the solution have been demonstrated at the
Sigmod’05 conference with a particular focus on the nondeterministic automata
engine and the skip index structure. Elements of this demonstration are avail-
able on-line [Bouganim et al. 2005].

11. CONCLUSION

Important factors currently motivate the delegation of access control to client
devices. By compiling the access-control policies into the data encryption, ex-
isting client-based access-control solutions minimize the trust required on the
client at the price of a rather static way of sharing data. Our objective is to take
advantage of new elements of trust on client devices to propose a client-based
access-control manager capable of evaluating dynamic access-control rules on
a ciphered XML document.

To achieve this goal, we made five complementary contributions. First, we
proposed a streaming evaluator of access-control rules supporting a rather ro-
bust fragment of the XPath language. To the best of our knowledge, this is the
first approach dealing with XML access-control in a streaming fashion. Second,

ACM Transactions on Information and System Security, Vol. 10, No. 4, Article 16, Pub. date: January 2008.

16:34 • L. Bouganim et al.

we designed a streaming index structure allowing skipping the irrelevant parts
of the input document, with respect to the access-control policy and to a poten-
tial query. This index is essential to circumvent the inherent bottlenecks of the
target architecture, namely, the decryption and the communication costs. While
more complex indexing methods could be devised, the proposed skip index com-
bines simplicity (an important feature for embedded software) and performance
close to the optimal (both in terms of size and efficiency). Third, we proposed
a graceful management of pending predicates compatible with a streaming de-
livery of the authorized parts of the document. Fourth, we proposed a secure
mechanism to refresh the SOE access-control rules from a potentially malicious
server, which can use replay attacks to gain access to forbidden data. Fifth, we
proposed a combination of hashing and encryption techniques to make the in-
tegrity of the document verifiable despite the forward and backward random
accesses generated by the preceding contributions.

Our experimental results have been obtained from a C prototype running on
a hardware cycle-accurate smartcard simulator provided by Axalto. The global
throughput measured is around 70 KBps and the relative cost of the access-
control is less than 20% of the total cost. These measurements are promising
and demonstrate the applicability of the solution. A JavaCard prototype has
been developed on a real Axalto’s smartcard platform to demonstrate the ver-
satility of the solution from the application’s viewpoint. This second prototype
has been the recipient of two well-known smartcard international contests.

This work demonstrates that client-based security solutions give rise to inter-
esting research perspectives and may have a large impact on a growing scale of
applications. Among potential research perspectives, we can mention: secured
data centric computational models relying on a small source of tamper-resistant
storage and computing power, cryptographic methods making integrity viola-
tions tamper-evident in a database context (specific access pattern and granu-
larity), indexation techniques for encrypted data, and administration of access-
control policies in a large decentralized environment.

ACKNOWLEDGMENTS

The authors wish to thank Nicolas Dieu and Cosmin Cremarenco for their con-
tribution to the prototypes implementation. Special thanks to Dennis Shasha
for his helpful comments on the document and his careful proofreading.

REFERENCES

ABADI, M. AND WARINSCHI, B. 2005. Security analysis of cryptographically controlled access to
XML documents. In Proceedings of the ACM SIGMOD International Conference on Management
of Data, Baltimore, MD.

AKL, S. AND TAYLOR, P. 1983. Cryptographic solution to a problem of access-control in a hierarchy.
ACM Transactions on Computer Systems (TOCS) 1, 3 (Aug.), 239–248.

AMER-YAHIA, S., CHO, S., LAKSHMANAN, L., AND SRIVASTAVA, D. 2001. Minimization of tree pattern
queries. In Proceedings of the ACM SIGMOD International Conference on Management of Data.
Santa Barbara, CA.

ARION, A., BONIFATI, A., COSTA, G., D’AGUANNO, S., MANOLESCU, I., AND PUGLIES, A. 2004. Efficient
query evaluation over compressed data. In Proceedings of the 9th Extending Database Technology
(EDBT) International Conference. Heraklion, Greece.

ACM Transactions on Information and System Security, Vol. 10, No. 4, Article 16, Pub. date: January 2008.

Dynamic Access-Control Policies on XML Encrypted Data • 16:35

AXALTO E-GATE. 2004. Worldwide USB smartcard developer contest. 2nd ed. held at CTST,
Washington, DC. http://www.egateopen.axalto.com.

AXALTO SIMAGINE 2005. Worldwide Mobile Communication and Java CardTM developer contest.
6th ed. held at 3GSM, Cannes, France. http://www.simagine.axalto.com.

AXALTO. SIMera—Classic SIM Card. http://www.axalto.com/wireless/classic.asp.
BAYARDO, R., GRUHL, D., JOSIFOVSKI, V., AND MYLLYMAKI, J. 2004. An evaluation of binary XML

encoding optimizations for fast stream based XML processing. In Proceedings of the 13th World
Wide Web (WWW) International Conference. New York.

BERTINO, E., CASTANO, S., AND FERRARI, E. 2001. Securing XML documents with Author-X. In
Proceedings of the IEEE International Conference on Internet Computing.

BIRGET, J.-C., ZOU, X., NOUBIR, G., AND RAMAMURTHY, B. 2001. Hierarchy-based access-control in dis-
tributed environments. In Proceedings of the IEEE International Conference on Communication
(ICC), Saint Petersbourg, Russia.

BOUGANIM, B. AND PUCHERAL, P. 2002. Chip-secured data access: Confidential data on untrusted
servers. In Proceedings of the 28th International Conference on Very Large Databases (VLDB),
Hong Kong.

BOUGANIM, L., CREMARENCO, C., DANG NGOC, F., DIEU, N., AND PUCHERAL, P. 2005. Safe data sharing
and data dissemination on smart devices. In Proceedings of the ACM SIGMOD International
Conference on Management of Data. http://www-smis.inria.fr/Ecsxa.html.

BUNEMAN, P., GROHE, M., AND KOCH, C. 2003. Path queries on compressed XML. In Pro-
ceedings of the 29th International Conference on Very Large Databases (VLDB), Berlin,
Germany.

CARMINATI, B., FERRARI, E., AND BERTINO, E. 2005. Securing XML data in third-party distribution
systems. IN Proceedings of the 14th IEEE International Conference on Information and Knowl-
edge Management (CIKM), Bremen, Germany.

CHAN, C., FELBER, P., GAROFALAKIS, M., AND RASTOGI, R. 2002. Efficient filtering of XML documents
with XPath expressions. In Proceedings of the 18th International Conference on Data Engineering
(ICDE), San Jose, CA.

CHANDRAMOULI, R. 2000. Application of XML tools for enterprise-wide RBAC implementation
tasks. In Proceedings of the 5th ACM Workshop on Role-Based Access-Control, Berlin, Germany.

CHANG, T. AND HWANG, G. 2004. Using the extension function of XSLT and DSL to secure XML
documents. In Proceedings of the 18th International Conference on Advanced Information Net-
working and Applications (AINA), Fukuoka, Japan.

CHEN, Y., MIHAILA, G., DAVIDSON, S., AND PADMANAHBAN, S. 2004. EXPedite: A system for encoded
XML processing. In Proceedings of the 13th ACM International Conference on Information and
Knowledge Management (CIKM), Washington, D.C.

CHO, S., AMER-YAHIA, S., LAKSHMANAN, L., AND SRIVASTAVA, D. 2002. Optimizing the secure evalua-
tion of twig queries. In Proceedings of the 28th International Conference on Very Large Databases
(VLDB), Hong Kong.

COMPUTER SECURITY INSTITUTE. 2003. CSI/FBI computer crime and security survey. http://www.
gocsi.com/forms/fbi/pdf.html.

DAMIANI, E., DE CAPITANI DI VIMERCATI, S., PARABOSCHI, S., AND SAMARATI, P. 2002. A fine-grained
access-control system for XML documents. ACM Transactions on Information and System Secu-
rity (TISSEC) 5, 2, 169–202.

DEVANBU, P., GERTZ, M., KWONG, A., MARTEL, C., NUCKOLLS, G., AND STUBBLEBINE, S. 2001. Flexible
authentification of XML documents. In Proceedings of the 8th ACM International Conference on
Computer and Communication Security, Philadelphia, PA.

DIAO, Y. AND FRANKLIN, M. 2003. High-performance XML filtering: An overview of filter. In Pro-
ceedings of the 20th IEEE International Conference on Data Engineering (ICDE), Bangalore,
India.

EL KALAM, A., BENFERHAT, S., MIEGE, A., BAIDA, R., CUPPENS, F., SAUREL, C., BALBIANI, P., DESWARTE,
Y., AND TROUESSIN, G. 2003. Organization based access-control. In Proceedings of the 4th IEEE
International Workshop on Policies for Distributed Systems and Networks (POLICY). New York.

FAN, W., CHAN, C., AND GAROFALAKIS, M. 2004. Secure XML querying with security views. In
Proceedings of the ACM SIGMOD International Conference on Management of Data, Paris,
France.

ACM Transactions on Information and System Security, Vol. 10, No. 4, Article 16, Pub. date: January 2008.

16:36 • L. Bouganim et al.

FINANCE, B., MEDJOUB, S., AND PUCHERAL, P. 2005. The case for access-control on XML relation-
ships. In Proceedings of the 14th IEEE International Conference on Information and Knowledge
Management (CIKM), Bremen, Germany.

GABILLON, A. 2004. An authorization model for XML databases. In Proceedings of the ACM Work-
shop on Secure Web Services, Fairfax, VA.

GREEN, T., GUPTA, A., MIKLAU, G., ONIZUKA, M., AND SUCIU, D. 2004. Processing XML streams with
deterministic automata and stream indexes. ACM Transaction on Database Systems (TODS) 29,
4 (Dec.), 752–788.

HACIGUMUS, H., IYER, B., LI, C., AND MEHROTRA, S. 2002. Executing SQL over encrypted data in the
database-service-provider model. In Proceedings of the ACM SIGMOD International Conference
on Management of Data, Madison, WI.

HE, J. AND WANG, M. 2001. Cryptography and relational database management systems. In
Proceedings of the International Database Engineering and Applications Symposium (IDEAS),
Grenoble, France.

HENDERSON, N. J., WHITE, N. M., AND HARTEL, P. H. 2001. iButton enrolement and verification
requirements for the pressure sequence smartcard biometric. In Proceedings of the International
Conference on Research in SmartCards.

HOPCROFT, J. AND ULLMAN, J. 1979. Introduction to Automata Theory, Languages and Computation.
Addison-Wesley, Reading, MA.

KUDO, M. AND HADA, S. 2000. XML document security based on provisional authorization. In
Proceedings of the ACM International Conference on Computer and Communications Security
(CCS), Athens, Greece.

MENEZES, A., OORSCHOT, P., AND VANSTONE, S. 1996. Handbook of Applied Cryptography. CRC Press,
Boca Raton, FL.

MERKLE, R. 1989. A certified digital signature—Advances in cryptology. In Proceedings of Crypto,
Santa Barbara, CA.

MICROSOFT, WINDOWS MICROSOFT MEDIA 9. http://www.microsoft.com/windows/windowsmedia/.
MIKLAU, G. AND SUCIU, D. 2002. Containment and equivalence for an XPath fragment. In Proceed-

ings of the ACM International Conference on Principles of Database Systems (PODS), Madison,
WI.

MIKLAU, G. AND SUCIU, D. 2003. Controlling access to published data using cryptography. In
Proceedings of the 29th International Conference on Very Large Databases (VLDB), Berlin,
Germany.

NG, W., OOI, B., TAN, K., AND ZHOU, A. 2003. Peerdb: A p2p-based system for distributed data
sharing. In Proceedings of the IEEE International Conference on Data Engineering, Bangalore,
India.

ODRL. The Open Digital Rights Language Initiative. http://odrl.net/.
PENG, F., AND CHAWATHE, S. 2003. XPath queries on streaming data. In Proceedings of the ACM

SIGMOD International Conference on Management of Data, San Diego, CA.
RAY, I., RAY, I., AND NARASIMHAMURTHI, N. 2002. A cryptographic solution to implement access-

control in a hierarchy and more. In Proceedings of the 9th ACM Symposium on Access-Control
Models and Technologies (SACMAT), New York.

RAY, I. AND RAY, I. 2002. Using compatible keys for secure multicasting in e-commerce. In Pro-
ceedings of the 16th International Parallel and Distributed Processing Symposium (IPDPS), FL.

SAX PROJECT. Simple API for XML. http://www.saxproject.org/.
SCHNEIER, B. 1996. Applied Cryptography, 2nd ed., Wiley, New York.
SMARTRIGHT. The SmartRight Content Protection System. http://www.smartright.org/
TCPA. Trusted computing platform alliance. http://www.trustedcomputing.org/
TOLANI, P. AND HARITSA, J. 2002. XGRIND: A query-friendly XML compressor. In Proceedings of

the 18th International Conference on Data Engineering (ICDE), San Jose, CA.
TOXGENE. The ToX XML Data Generator. http://www.cs.toronto.edu/tox/toxgene/.
UW XML. UW XML Data Repository. http://www.cs.washington.edu/research/xmldatasets/.
VINGRALEK, R. 2002. GnatDb: A small-footprint, secure database system. In Proceedings of the

28th W3C International Conference on Very Large Databases (VLDB), Hong Kong.
W3C DOM. DOM: Document Object Model. http://www.w3.org/DOM.
W3C PICS. PICS: Platform for Internet Content Selection. http://www.w3.org/PICS.

ACM Transactions on Information and System Security, Vol. 10, No. 4, Article 16, Pub. date: January 2008.

Dynamic Access-Control Policies on XML Encrypted Data • 16:37

W3C XMLENC. XML Encryption Requirements, http://www.w3.org/TR/xml-encryption-req
XACML. OASIS eXtensible access-control Markup Language (XACML). http://docs.oasis-

open.org/xacml/2.0/access control-xacml-2.0-core-spec-os.pdf.
XRML. XrML eXtendible rights Markup Language. http://www.xrml.org/

Received September 2005; revised July 2006 and February 2007; accepted May 2007

ACM Transactions on Information and System Security, Vol. 10, No. 4, Article 16, Pub. date: January 2008.

