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AROUND THE CIRCULAR LAW

CHARLES BORDENAVE AND DJALIL CHAFAÏ

Abstract. These expository notes are centered around the circular law theorem, which
states that the empirical spectral distribution of a n×n random matrix with i.i.d. entries
of variance 1/n tends to the uniform law on the unit disc of the complex plane as the
dimension n tends to infinity. This phenomenon is the non-Hermitian counterpart of the
semi circular limit for Wigner random Hermitian matrices, and the quarter circular limit
for Marchenko-Pastur random covariance matrices. We present a proof in a Gaussian
case, due to Silverstein, based on a formula by Ginibre, and a proof of the universal
case by revisiting the approach of Tao and Vu, based on the Hermitization of Girko, the
logarithmic potential, and the control of the small singular values. Beyond the finite
variance model, we also consider the case where the entries have heavy tails, by using
the objective method of Aldous and Steele borrowed from randomized combinatorial
optimization. The limiting law is then no longer the circular law and is related to the
Poisson weighted infinite tree. We provide a weak control of the smallest singular value
under weak assumptions, using asymptotic geometric analysis tools. We also develop a
quaternionic Cauchy-Stieltjes transform borrowed from the Physics literature.
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These expository notes are split in seven sections and an appendix. Section 1 introduces
the notion of eigenvalues and singular values and discusses their relationships. Section 2
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2 CHARLES BORDENAVE AND DJALIL CHAFAÏ

states the circular law theorem. Section 3 is devoted to the Gaussian model known as
the Complex Ginibre Ensemble, for which the law of the spectrum is known and leads to
the circular law. Section 4 provides the proof of the circular law theorem in the universal
case, using the approach of Tao and Vu based on the Hermitization of Girko and the
logarithmic potential. Section 5 presents some models related to the circular law and
discusses an algebraic-analytic interpretation via free probability. Section 6 is devoted to
the heavy tailed counterpart of the circular law theorem, using the objective method of
Aldous and Steele and the Poisson Weighted Infinite Tree. Finally, section 7 lists some
open problems. The notes end with appendix A devoted to a novel general weak control of
the smallest singular value of random matrices with i.i.d. entries, with weak assumptions,
well suited for the proof of the circular law theorem and its heavy tailed analogue.

1. Two kinds of spectra

The eigenvalues of A ∈ Mn(C) are the roots in C of its characteristic polynomial
PA(z) := det(A − zI). We label them λ1(A), . . . , λn(A) so that |λ1(A)| ≥ · · · ≥ |λn(A)|
with growing phases. The spectral radius is |λ1(A)|. The eigenvalues form the algebraic
spectrum of A. The singular values of A are defined by

sk(A) := λk(
√
AA∗)

for all 1 ≤ k ≤ n, where A∗ = Ā⊤ is the conjugate-transpose. We have

s1(A) ≥ · · · ≥ sn(A) ≥ 0.

The matrices A,A⊤, A∗ have the same singular values. The 2n× 2n Hermitian matrix

H(A) :=

(
0 A
A∗ 0

)

has eigenvalues s1(A),−s1(A), . . . , sn(A),−sn(A). This turns out to be useful because the

mapping A 7→ H(A) is linear in A, in contrast with the mapping A 7→
√
AA∗. Geometri-

cally, the matrix A maps the unit sphere to an ellipsoid, the half-lengths of its principal
axes being exactly the singular values of A. The operator norm or spectral norm of A is

‖A‖2→2 := max
‖x‖2=1

‖Ax‖2 = s1(A) while sn(A) = min
‖x‖2=1

‖Ax‖2.

The rank of A is equal to the number of non-zero singular values. If A is non-singular
then si(A

−1) = sn−i(A)
−1 for all 1 ≤ i ≤ n and sn(A) = s1(A

−1)−1 = ‖A−1‖−1
2→2.

A

Figure 1. Largest and smallest singular values of A ∈ M2(R). Taken from [33].

Since the singular values are the eigenvalues of a Hermitian matrix, we have variational
formulas for all of them, often called the Courant-Fischer variational formulas [76, Th.
3.1.2]. Namely, denoting Gn,i the Grassmannian of all i-dimensional subspaces, we have

si(A) = max
E∈Gn,i

min
x∈E

‖x‖2=1

‖Ax‖2 = max
E,F∈Gn,i

min
(x,y)∈E×F

‖x‖2=‖y‖2=1

〈Ax, y〉.

Most useful properties of the singular values are consequences of their Hermitian nature
via these variational formulas, which are valid on Rn and on Cn. In contrast, there are no
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such variational formulas for the eigenvalues in great generality, beyond the case of normal
matrices. If the matrix A is normal1 (i.e. A∗A = A∗A) then for every 1 ≤ i ≤ n,

si(A) = |λi(A)|.
Beyond normal matrices, the relationships between the eigenvalues and the singular values
are captured by a set of inequalities due to Weyl [136]2, which can be obtained by using
the Schur unitary triangularization3, see for instance [76, Theorem 3.3.2 page 171].

Theorem 1.1 (Weyl inequalities). For every n× n complex matrix A and 1 ≤ k ≤ n,

k∏

i=1

|λi(A)| ≤
k∏

i=1

si(A). (1.1)

The reversed form
∏n

i=n−k+1 si(A) ≤ ∏n
i=n−k+1 |λi(A)| for every 1 ≤ k ≤ n can be

deduced without much difficulty (exercise!). Equality is achieved for k = n and we have

n∏

k=1

|λk(A)| = |det(A)| =
√

|det(A)||det(A∗)| = |det(
√
AA∗)| =

n∏

k=1

sk(A). (1.2)

By using majorization techniques which can be found for instance in [76, Section 3.3],
one may deduce from Weyl’s inequalities that for every real valued function ϕ such that
t 7→ ϕ(et) is increasing and convex on [sn(A), s1(A)], we have, for every 1 ≤ k ≤ n,

k∑

i=1

ϕ(|λi(A)|) ≤
k∑

i=1

ϕ(si(A)), (1.3)

see [76, Theorem 3.3.13]. In particular, taking k = n and ϕ(t) = t2 gives

n∑

i=1

|λi(A)|2 ≤
n∑

i=1

si(A)
2 = Tr(AA∗) =

n∑

i,j=1

|Ai,j|2. (1.4)

We define the empirical eigenvalues and singular values measures by

µA :=
1

n

n∑

k=1

δλk(A) and νA :=
1

n

n∑

k=1

δsk(A).

Note that µA and νA are supported respectively in C and R+. There is a rigid determi-
nantal relationship between µA and νA, namely from (1.2) we get

∫
log |λ| dµA(λ) =

1

n

n∑

i=1

log |λi(A)|

=
1

n
log |det(A)|

=
1

n

n∑

i=1

log(si(A))

=

∫
log(s) dνA(s).

This identity is at the heart of the Hermitization technique used in sections 4 and 6.

1In these notes, the word normal is always used in this way, and never as a synonym for Gaussian.
2Horn [74] showed a remarkable converse to Weyl’s theorem: if a sequence s1 ≥ · · · ≥ sn of non-negative

real numbers and a sequence λ1, . . . , λn of complex numbers of non increasing modulus satisfy to all Weyl’s
inequalities (1.1) then there exists A ∈ Mn(C) with eigenvalues λ1, . . . , λn and singular values s1, . . . , sn.

3If A ∈ Mn(C) then there exists a unitary matrix U such that UAU∗ is upper triangular.



4 CHARLES BORDENAVE AND DJALIL CHAFAÏ

In the sequel, we say that a sequence of probability measures (ηn)n≥1 on C (respectively

on R) tends weakly to a probability measure η, and we denote ηn  η, when for all
continuous and bounded function f : C → R (respectively f : R → R) we have

lim
n→∞

∫
f dηn =

∫
f dη.

This type of convergence does not capture the behavior of the support and of the moments.
Since s1(·) = ‖·‖2→2 we have for any A,B ∈ Mn(C) that

s1(AB) ≤ s1(A)s1(B) and s1(A+B) ≤ s1(A) + s1(B). (1.5)

The singular values are quite regular functions of the matrix entries. For instance, the
Courant-Fischer formulas imply that the mapping A 7→ (s1(A), . . . , sn(A)) is 1-Lipschitz
for the operator norm and the ℓ∞ norm in the sense that for any A,B ∈ Mn(C),

max
1≤i≤n

|si(A)− si(B)| ≤ s1(A−B). (1.6)

Recall that Mn(C) or Mn(R) are Hilbert spaces for the scalar product A ·B = Tr(AB∗).
The norm ‖·‖2 associated to this scalar product, called the trace norm4, satisfies to

‖A‖22 = Tr(AA∗) =
n∑

i=1

si(A)
2 = n

∫
s2 dνA(s). (1.7)

The Hoffman-Wielandt inequality for the singular values states that for all A,B ∈ Mn(C),
n∑

i=1

(si(A)− si(B))2 ≤ ‖A−B‖22. (1.8)

In other words the mapping A 7→ (s1(A), . . . , sn(A)) is 1-Lipschitz for the trace norm and
the Euclidean 2-norm. See [76, equation (3.3.32)] and [75, Theorem 6.3.5] for a proof.

Example 1.2 (Spectra of non-normal matrices). The eigenvalues depend continuously on
the entries of the matrix. It turns out that for non-normal matrices, the eigenvalues are
more sensitive to perturbations than the singular values. Among non-normal matrices,
we find non-diagonalizable matrices, including nilpotent matrices. Let us recall a striking
example taken from [120] and [11, Chapter 10]. Let us consider A,B ∈ Mn(R) given by

A =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
0 0 0 · · · 1
0 0 0 · · · 0




and B =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
0 0 0 · · · 1
κn 0 0 · · · 0




where (κn) is a sequence of positive real numbers. The matrix A is nilpotent, and B is a
perturbation with small norm (and rank one!):

rank(A−B) = 1 and ‖A−B‖2→2 = κn.

We have λ1(A) = · · · = λκn(A) = 0 and thus

µA = δ0.

In contrast, Bn = κnI and thus λk(B) = κ
1/n
n e2kπi/n for all 1 ≤ k ≤ n which gives

µB  Uniform{z ∈ C : |z| = 1}
as soon as κ

1/n
n → 1 (this allows κn → 0). On the other hand, from the identities

AA∗ = diag(1, . . . , 1, 0) and BB∗ = diag(1, . . . , 1, κ2n)

4Also known as the Hilbert-Schmidt norm, the Schur norm, or the Frobenius norm.
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we get s1(A) = · · · = sn−1(A) = 1, sn(A) = 0 and s1(B) = · · · = sn−1(B) = 1, sn(B) = κn
for large enough n, and therefore, for any choice of κn, since the atom κn has weight 1/n,

νA  δ1 and νB  δ1.

This example shows the stability of the limiting distribution of singular values under an
additive perturbation of rank 1 of arbitrary large norm, and the instability of the limiting
eigenvalues distribution under an additive perturbation of rank 1 of arbitrary small norm.

Beyond square matrices, one may define the singular values s1(A), . . . , sm(A) of a rect-

angular matrix A ∈ Mm,n(C) with m ≤ n by si(A) := λi(
√
AA∗) for every 1 ≤ i ≤ m.

The famous Singular Value Decomposition (SVD, see [76, Th. 3.3.1]) states then that

A = UDV ∗

where U and V are the unitary matrices of the eigenvectors of AA∗ and A∗A and where
D = diag(s1(A), . . . , sn(A)) is a m×n diagonal matrix. The SVD is at the heart of many
numerical techniques in concrete applied mathematics (pseudo-inversion, regularization,
low dimensional approximation, principal component analysis, etc). Note that if A is
square then the Hermitian matrix H := V DV ∗ and the unitary matrix W := UV ∗ form
the polar decomposition A =WH of A. Note also that if W1 and W2 are unitary matrices
then W1AW2 and A have the same singular values.

We refer to the books [76] and [62] for more details on basic properties of the singu-
lar values and eigenvalues of deterministic matrices. The sensitivity of the spectrum to
perturbations of small norm is captured by the notion of pseudo-spectrum. Namely, for a
matrix norm ‖·‖ and a positive real ε, the (‖·‖, ε)-pseudo-spectrum of A is defined by

Λ‖·‖,ε(A) :=
⋃

‖A−B‖≤ε

{λ1(B), . . . , λn(B)}.

If A is normal then its pseudo-spectrum for the operator norm ‖·‖2→2 coincides with the
ε-neighborhood of its spectrum. The pseudo-spectrum can be much larger for non-normal
matrices. For instance, if A is the nilpotent matrix considered earlier, then the asymptotic
(as n → ∞) pseudo-spectrum for the operator norm contains the unit disc if κn is well
chosen. For more, see the book [133].

2. Quarter circular and circular laws

The variance of a random variable Z on C is Var(Z) = E(|Z|2)−|E(Z)|2. Let (Xij)i,j≥1

be an infinite table of i.i.d. random variables on C with variance 1. We consider the square
random matrix X := (Xij)1≤i,j≤n as a random variable in Mn(C). We write a.s., a.a., and
a.e. for almost surely, Lebesgue almost all, and Lebesgue almost everywhere respectively.

We start with a reformulation in terms of singular values of the classical Marchenko-
Pastur theorem for the “empirical covariance matrix” 1

nXX
∗. This theorem is universal

in the sense that the limiting distribution does not depend on the law of X11.

Theorem 2.1 (Marchenko-Pastur quarter circular law). a.s. νn−1/2X  Q2 as n → ∞,

where Q2 is the quarter circular law5 on [0, 2] ⊂ R+ with density x 7→ π−1
√
4− x21[0,2](x).

The n−1/2 normalization factor is easily understood from the law of large numbers:
∫
s2 dνn−1/2X(s) =

1

n2

n∑

i=1

si(X)2 =
1

n2
Tr(XX∗) =

1

n2

n∑

i,j=1

|Xi,j |2 → E(|X1,1|2). (2.1)

The central subject of these notes is the following counterpart for the eigenvalues.

5Actually, it is a quarter ellipse rather than a quarter circle, due to the normalizing factor 1/π. However,
one may use different scales on the horizontal and vertical axes to see a true quarter circle, as in figure 2.
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Theorem 2.2 (Girko circular law). a.s. µn−1/2X  C1 as n→ ∞, where C1 is the circular
law6 which is the uniform law on the unit disc of C with density z 7→ π−11{z∈C:|z|≤1}.

Note that if Z is a complex random variable following the uniform law on the unit disc
{z ∈ C : |z| ≤ 1} then the random variables Re(Z) and Im(Z) follow the semi circular
law on [−1, 1], but are not independent. Additionally, the random variables |Re(Z)| and
|Im(Z)| follow the quarter circular law on [0, 1], and |Z| follows the law with density
ρ 7→ 1

2ρ1[0,1](ρ). We will see in section 5 that the notion of freeness developed in free
probability is the key to understand these relationships. An extension of theorem 2.1 is
the key to deduce theorem 2.2 via a Hermitization technique, as we will see in section 4.

The circular law theorem 2.2 has a long history. It was established through a sequence
of partial results during the period 1965–2009, the general case being finally obtained by
Tao and Vu [132]. Indeed Mehta [98] was the first to obtain a circular law theorem for
the expected empirical spectral distribution in the complex Gaussian case, by using the
explicit formula for the spectrum due to Ginibre [51]. Edelman was able to prove the same
kind of result for the far more delicate real Gaussian case [40]. Silverstein provided an ar-
gument to pass from the expected to the almost sure convergence in the complex Gaussian
case [78]. Girko worked on the universal version and came with very good ideas such as the
Hermitization technique [52, 54, 56, 57, 58]. Unfortunately, his work was controversial due
to a lack of clarity and rigor7. In particular, his approach relies implicitly on an unproved
uniform integrability related to the behavior of the smallest singular values of random
matrices. Bai [10] was the first to circumvent the problem in the approach of Girko, at
the price of bounded density assumptions and moments assumptions8. Bai improved his
approach in his book written with Silverstein [11]. His approach involves the control of

the speed of convergence of the singular values distribution. Śniady considered a universal
version beyond random matrices and the circular law, using the notion of ∗-moments and
Brown measure of operators in free probability, and a regularization by adding an inde-
pendent Gaussian Ginibre noise [120]. Goldsheid and Khoruzhenko [15] used successfully
the logarithmic potential to derive the analogue of the circular law theorem for random
non-Hermitian tridiagonal matrices. The smallest singular value of random matrices was
the subject of an impressive activity culminating with the works of Tao and Vu [127]
and of Rudelson and Vershynin [113], using tools from asymptotic geometric analysis and
additive combinatorics (Littlewood-Offord problems). These achievements allowed Götze
and Tikhomirov [63] to obtain the expected circular law theorem up to a small loss in the
moment assumption, by using the logarithmic potential. Similar ingredients are present
in the work of Pan and Zhou [101]. At the same time, Tao and Vu, using a refined bound
on the smallest singular value and the approach of Bai, deduced the circular law theorem
up to a small loss in the moment assumption [128]. As in the works of Girko, Bai and
their followers, the loss was due to a sub-optimal usage of the Hermitization approach.
In [132], Tao and Vu finally obtained the full circular law theorem 2.2 by using the full
strength of the logarithmic potential, and a new control of the count of the small singular
values which replaces the speed of convergence estimates of Bai. See also their synthetic
paper [129]. We will follow essentially their approach in section 4 to prove theorem 2.2.

6It is not customary to call it instead the “disc law”. The terminology corresponds to what we actually
draw: a circle for the circular law, a quarter circle (actually a quarter ellipse) for the quarter circular law,
even if it is the boundary of the support in the first case, and the density in the second case. See figure 2.

7Girko’s writing style is also quite original, see for instance the recent paper [59].
8. . . I worked for 13 years from 1984 to 1997, which was eventually published in Annals of Probability.

It was the hardest problem I have ever worked on. Zhidong Bai, interview with Atanu Biswas in 2006 [36].
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2.1 and 2.2 in the complex Gaussian case (Complex Ginibre Ensemble) for
a single matrix with n = 800. The bottom graphic shows the Voronöı
tessellation of the spectrum. One of the striking fact behind this graphic is
the remarkable stability of the numerical algorithms despite the sensitivity
of the spectrum of non-normal matrices (numerical self regularization). The

Śniady regularization of Brown measure theorem [120] at work?
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The a.s. tightness of µn−1/2X is easily understood since by Weyl’s inequality we obtain
∫

|λ|2 dµn−1/2X(λ) =
1

n2

n∑

i=1

|λi(X)|2 ≤ 1

n2

n∑

i=1

si(X)2 =

∫
s2 dνn−1/2X(s).

The convergence in the couple of theorems above is the weak convergence of probability
measures with respect to continuous bounded functions. We recall that this mode of
convergence does not capture the convergence of the support. It implies only that a.s.

lim
n→∞

s1(n
−1/2X) ≥ 2 and lim

n→∞
|λ1(n−1/2X)| ≥ 1.

However, following [14, 12, 11] and [13, 101], if E(X1,1) = 0 and E(|X1,1|4) <∞ then a.s.9

lim
n→∞

s1(n
−1/2X) = 2 and lim

n→∞
|λ1(n−1/2X)| = 1.

The asymptotic factor 2 between the operator norm and the spectral radius indicates in
a sense that X is a non-normal matrix asymptotically as n → ∞ (note that if X11 is
absolutely continuous then X is absolutely continuous and thus XX∗ 6= X∗X a.s. which
means that X is non-normal a.s.). The law of the modulus under the circular law has
density ρ 7→ 2ρ1[0,1](ρ) which differs completely from the shape of the quarter circular law

s 7→ π−1
√
4− s2 1[0,2](s), see figure 2. The integral of “log” for both laws is the same.

 0
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 0.6
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x

ModuleCircleLaw
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Figure 3. Comparison between the quarter circular distribution of theo-
rem 2.1 for the singular values, and the modulus under the circular law of
theorem 2.2 for the eigenvalues. The supports and the shapes are different.
This difference indicates the asymptotic non-normality of these matrices.
The integral of the function t 7→ log(t) is the same for both distributions.

3. Gaussian case

This section is devoted to the case where X11 ∼ N (0, 12I2). From now on, we denote G
instead of X in order to distinguish the Gaussian case from the general case. We say that
G belongs to the Complex Ginibre Ensemble. The Lebesgue density of the n× n random
matrix G = (Gi,j)1≤i,j≤n in Mn(C) ≡ Cn×n is

A ∈ Mn(C) 7→ π−n2
e−

∑n
i,j=1 |Aij |2 = π−n2

e−Tr(AA∗) (3.1)

9The argument is based on Gelfand’s formula: if A ∈ Mn(C) then |λ1(A)| = limk→∞ ‖Ak‖1/k for
any sub-multiplicative matrix norm ‖·‖ (e.g. operator or trace norm). In the same spirit, the Yamamoto

theorem states that limk→∞ si(A
k)1/k = |λi(A)| for every 1 ≤ i ≤ n, see [76, Theorem 3.3.21].
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where A∗ the conjugate-transpose of A. This law is unitary invariant, in the sense that if U
and V are n×n unitary matrices then UGV and G are equally distributed. If H1 and H2

are two independent copies of GUE10 then (H1 + iH2)/
√
2 has the law of G. Conversely,

the matrices (G+G∗)/
√
2 and (G−G∗)/

√
2i are independent and belong to the GUE.

The singular values ofG are the square root of the eigenvalues of the positive semidefinite
Hermitian matrix GG∗. The matrix GG∗ is a complex Wishart matrix, and belongs to
the complex Laguerre Ensemble (β = 2). The empirical distribution of the singular values

of n−1/2G tends to the Marchenko-Pastur quarter circular distribution (Gaussian case in
theorem 2.1). This section is rather devoted to the study of the eigenvalues of G, and in
particular to the proof of the circular law theorem 2.2 in this Gaussian settings.

Lemma 3.1 (Diagonalizability). For every n ≥ 1, the set of elements of Mn(C) with
multiple eigenvalues has zero Lebesgue measure in Cn×n. In particular, the set of non-
diagonalizable elements of Mn(C) has zero Lebesgue measure in Cn×n.

Proof. If A ∈ Mn(C) has characteristic polynomial

PA(z) = zn + an−1z
n−1 + · · ·+ a0,

then a0, . . . , an−1 are polynomials of the entries of A. The resultant R(PA, P
′
A) of PA, P

′
A,

called the discriminant of PA, is the determinant of the (2n−1)×(2n−1) Sylvester matrix
of PA, P

′
A. It is a polynomial in a0, . . . , an−1. We have also the Vandermonde formula

|R(PA, P
′
A)| =

∏

i<j

|λi(A)− λj(A)|2.

Consequently, A has all eigenvalues distinct if and only if A lies outside the proper poly-
nomial hyper-surface {A ∈ Cn×n : R(PA, P

′
A) = 0}. �

Since G is absolutely continuous, we have a.s. GG∗ 6= G∗G (non-normality). Addition-
ally, lemma 3.1 gives that a.s. G is diagonalizable with distinct eigenvalues. Following
Ginibre [51] – see also [99, Chapter 15] and [47, Chapter 15] – one may then compute the
joint density of the eigenvalues λ1(G), . . . , λn(G) of G by integrating (3.1) over the eigen-
vectors matrix. The result is stated in theorem 3.2 below. The law of G is invariant by
the multiplication of the entries with a common phase, and thus the law of the spectrum
of G has also the same property. In the sequel we set

∆n := {(z1, . . . , zn) ∈ Cn : |z1| ≥ · · · ≥ |zn|}.
Theorem 3.2 (Spectrum law). (λ1(G), . . . , λn(G)) has density n!ϕn1∆n where

ϕn(z1, . . . , zn) =
π−n2

1!2! · · · n! exp
(
−

n∑

k=1

|zk|2
)

∏

1≤i<j≤n

|zi − zj|2.

In particular, for every symmetric Borel function F : Cn → R,

E[F (λ1(G), . . . , λn(G))] =

∫

Cn

F (z1, . . . , zn)ϕn(z1, . . . , zn) dz1 · · · dzn.

We will use theorem 3.2 with symmetric functions of the form

F (z1, . . . , zn) =
∑

i1,...,ik distinct

f(zi1) · · · f(zik).

The Vandermonde determinant comes from the Jacobian of the diagonalization, and can
be interpreted as an electrostatic repulsion. The spectrum is a Gaussian determinantal
point process, see [77, Chapter 4].

10Up to a scaling factor, a random n×n Hermitian matrix H belongs to the Gaussian Unitary Ensemble
(GUE) when its density is proportional toH 7→ exp(− 1

2
Tr(H2)) = exp(− 1

2

∑n
i=1 |Hii|

2−
∑

1≤i<j≤n |Hij |
2).

Equivalently (Hii, Hij)1≤i≤n,i<j≤n are independent with Hii ∼ N (0, 1) and Hij ∼ N (0, 1
2
I2) for i 6= j.
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Theorem 3.3 (k-points correlations). Let z ∈ C 7→ γ(z) = π−1e−|z|2 be the density of the
standard Gaussian N (0, 12I2) on C. Then for every 1 ≤ k ≤ n, the “k-point correlation”

ϕn,k(z1, . . . , zk) :=

∫

Cn−k

ϕn(z1, . . . , zk) dzk+1 · · · dzn

satisfies

ϕn,k(z1, . . . , zk) =
(n− k)!

n!
π−k2γ(z1) · · · γ(zk) det [K(zi, zj)]1≤i,j≤k

where

K(zi, zj) :=
n−1∑

ℓ=0

(ziz
∗
j )

ℓ

ℓ!
=

n−1∑

ℓ=0

Hℓ(zi)Hℓ(zj)
∗ with Hℓ(z) :=

1√
ℓ!
zℓ.

In particular, by taking k = n we get

ϕn,n(z1, . . . , zn) = ϕn(z1, . . . , zn) =
1

n!
π−n2

γ(z1) · · · γ(zn) det [K(zi, zj)]1≤i,j≤n.

Proof. Calculations made by [99, Chapter 15 page 271 equation 15.1.29] using
∏

1≤i<j≤n

|zi − zj |2 =
∏

1≤i<j≤n

(zi − zj)
∏

1≤i<j≤n

(zi − zj)
∗

and

det
[
zi−1
j

]

1≤i,j≤n
det
[
(z∗j )

i−1
]
1≤i,j≤n

=
1

n!
det [K(zi, zj)]1≤i,j≤n.

�

Recall that if µ is a random probability measure on C then Eµ is the deterministic
probability measure defined for every bounded measurable f by

∫
f dEµ := E

∫
f dµ.

Theorem 3.4 (Mean circular Law). Eµn−1/2G  C1 as n → ∞, where C1 is the circular
law i.e. the uniform law on the unit disc of C with density z 7→ π−11{z∈C:|z|≤1}.

Proof. From theorem 3.3, with k = 1, we get that the density of EµG is

ϕn,1 : z 7→ γ(z)

(
1

n

n−1∑

ℓ=0

|Hℓ|2(z)
)

=
1

nπ
e−|z|2

n−1∑

ℓ=0

|z|2ℓ
ℓ!

.

Following Mehta [99, Chapter 15 page 272], some calculus gives for every compact C ⊂ C

lim
n→∞

sup
z∈C

∣∣nϕn,1(
√
nz)− π−11[0,1](|z|)

∣∣ = 0.

The n in front of ϕn,1 is due to the fact that we are on the complex plane C = R2 and
thus d

√
nxd

√
ny = ndxdy. Here is the start of the elementary calculus: for r2 < n,

er
2 −

n−1∑

ℓ=0

r2ℓ

ℓ!
=

∞∑

ℓ=n

r2ℓ

ℓ!
≤ r2n

n!

∞∑

ℓ=0

r2ℓ

(n+ 1)ℓ
=
r2n

n!

n+ 1

n+ 1− r2

while for r2 > n,

n−1∑

ℓ=0

r2ℓ

ℓ!
≤ r2(n−1)

(n − 1)!

n−1∑

ℓ=0

(
n− 1

r2

)ℓ

≤ r2(n−1)

(n− 1)!

r2

r2 − n+ 1
.

By taking r2 = |√nz|2 we obtain the convergence of the density uniformly on compact
subsets, which implies in particular the weak convergence. �
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The sequence (Hk)k∈N forms an orthonormal basis (orthogonal polynomials) of square
integrable analytic functions on C for the standard Gaussian on C. The uniform law on
the unit disc (known as the circular law) is the law of

√
V e2iπW where V and W are

i.i.d. uniform random variables on the interval [0, 1]. This point of view can be used to
interpolate between complex Ginibre and GUE via Girko’s elliptic laws, see [89, 80, 20].

We are ready to prove the complex Gaussian version of the circular law theorem 2.2.

Theorem 3.5 (Circular law). a.s. µn−1/2G  C1 as n → ∞, where C1 is the circular law
i.e. the uniform law on the unit disc of C with density z 7→ π−11{z∈C:|z|≤1}.

Proof. We reproduce Silverstein’s argument, published by Hwang [78]. The argument is
similar to the proof of the strong law of large numbers for i.i.d. random variables with
finite fourth moment. It suffices to establish the result for compactly supported continuous
bounded functions. Let us pick such a function f and set

Sn :=

∫

C

f dµn−1/2G and S∞ := π−1

∫

|z|≤1
f(z) dxdy.

Suppose for now that we have

E[(Sn − ESn)
4] = O(n−2). (3.2)

By monotone convergence (or by the Fubini-Tonelli theorem),

E

∞∑

n=1

(Sn − ESn)
4 =

∞∑

n=1

E[(Sn − ESn)
4] <∞

and consequently
∑∞

n=1 (Sn − ESn)
4 < ∞ a.s. which implies limn→∞ Sn − ESn = 0 a.s.

Since limn→∞ ESn = S∞ by theorem 3.4, we get that a.s.

lim
n→∞

Sn = S∞.

Finally, one can swap the universal quantifiers on ω and f thanks to the separability of
(Cc(C,R), ‖·‖∞). To establish (3.2), we set

Sn − ESn =
1

n

n∑

i=1

Zi with Zi := f
(
λi

(
n−1/2G

))
.

Next, we obtain, with
∑

i1,...
running over distinct indices in 1, . . . , n,

E
[
(Sn − ESn)

4
]
=

1

n4

∑

i1

E[Z4
i1 ]

+
4

n4

∑

i1,i2

E[Zi1Z
3
i2 ]

+
3

n4

∑

i1,i2

E[Z2
i1Z

2
i2 ]

+
6

n4

∑

i1,i2,i3

E[Zi1Zi2Z
2
i3 ]

+
1

n4

∑

i1,i2,i3,i3,i4

E[Zi1Zi3Zi3Zi4 ].

The first three terms of the right hand side are O(n−2) since max1≤i≤n |Zi| ≤ ‖f‖∞.
Finally, some calculus using the expressions of ϕn,3 and ϕn,4 provided by theorem 3.3
allows to show that the remaining two terms are also O(n−2). See Hwang [78, p. 151]. �

Following Kostlan [86] (see also Rider [107] and [77]) the integration of the phases in
the joint density of the spectrum given by theorem 3.2 leads to theorem 3.6 below.
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Theorem 3.6 (Layers). If Z1, . . . , Zn are independent with Z2
k ∼ Γ(k, 1) for every k, then

(|λ1(G)|, . . . , |λn(G)|) d
= (Z(1), . . . , Z(n))

where Z(1), . . . , Z(n) is the non-increasing reordering of the sequence Z1, . . . , Zn.

Note that (
√
2Zk)

2 ∼ χ2(2k) which is useful for
√
2G. Since Z2

k
d
= E1 + · · ·+Ek where

E1, . . . , Ek are i.i.d. exponential random variables of unit mean, we get, for every r > 0,

P
(
|λ1(G)| ≤

√
nr
)
=

∏

1≤k≤n

P

(
E1 + · · · +Ek

n
≤ r2

)

The law of large numbers suggests that r = 1 is a critical value. The central limit theorem
suggests that

∣∣λ1(n−1/2G)
∣∣ behaves when n ≫ 1 as the maximum of i.i.d. Gaussians, for

which the fluctuations follow the Gumbel law. A quantitative central limit theorem and
the Borel-Cantelli lemma provides the follow result. The full proof is in Rider [107].

Theorem 3.7 (Convergence and fluctuation of the spectral radius).

P
(
lim
n→∞

|λ1(n−1/2G)| = 1
)
= 1.

Moreover, if γn := log(n/2π)− 2 log(log(n)) then

√
4nγn

(
|λ1(n−1/2G)| − 1−

√
γn
4n

)
d−→

n→∞
G

where G is the Gumbel law with cumulative distribution function x 7→ e−e−x
on R.

The convergence of the spectral radius was obtained by Mehta [99, chapter 15 page 271
equation 15.1.27] by integrating the joint density of the spectrum of theorem 3.2 over the
set

⋂
1≤i≤n{|λi| > r}. The same argument is reproduced by Hwang [78, pages 149–150].

Let us give now an alternative derivation of theorem 3.4. From theorem 3.7, the sequence
(Eµn−1/2G)n≥1 is tight and every adherence value µ is supported in the unit disc. From
theorem 3.2, such a µ is rotationally invariant, and from theorem 3.6, the image of µ by
z ∈ C 7→ |z| has density r 7→ 2r1[0,1](r) (use moments!). Theorem 3.4 follows immediately.

It is remarkable that the large eigenvalues in modulus of the complex Ginibre ensemble
are asymptotically independent, which gives rise to a Gumbel fluctuation, in contrast with
the GUE and its delicate Tracy-Widom fluctuation, see [80] for an interpolation.

Remark 3.8 (Real Ginibre Ensemble). Ginibre considered also in his paper [51] the case
where C is replaced by R or by the quaternions. These cases are less understood than the
complex case due to their peculiarities. Let us focus on the Real Ginibre Ensemble, studied
by Edelman and his collaborators. The expected number of real eigenvalues is equivalent to√

2n/π as n→ ∞, see [41], while the probability that all the eigenvalues are real is exactly

2−n(n−1)/4, see [40, Corollary 7.1]. The expected counting measure of the real eigenvalues,
scaled by

√
n, tends to the uniform law on the interval [−1, 1], see [41, Theorem 4.1] and

figures 5. The eigenvalues do not have a density in Cn, except if we condition on the
real eigenvalues, see [40]. The analogue of the weak circular law theorem 3.4 was proved
by Edelman [41, Theorem 6.3]. More information on the structure of the Real Ginibre
Ensemble can be found in [2], [27], and [47, Chapter 15] and references therein.

On overall, one can remember that the Complex Ginibre Ensemble is in a way “simpler”
than the GUE while the Real Ginibre Ensemble is “harder” than the GOE.

Real Ginibre ≥ GOE ≥ GUE ≥ Complex Ginibre
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Figure 4. Spectral radius empirical distribution and mean-variance Gum-
bel fit, in the Complex Gaussian case X11 ∼ N (0, 12I2), and in the Bernoulli

case X11 ∼ 1
2(δ−1 + δ1), for a spectral radius sample. The convergence

seems slow even for the Complex Gaussian case, making the Gumbel fits
not convincing. However, one can point out that the scale is quite tight.

Figure 5. Histograms of real eigenvalues of 800 i.i.d. copies of n−1/2X
with n = 300. The left hand side graphic corresponds to the standard real
Gaussian case X11 ∼ N (0, 1), while the right hand side graphic corresponds
to the symmetric Bernoulli case X11 ∼ 1

2 (δ−1 + δ1). See remark 3.8.



14 CHARLES BORDENAVE AND DJALIL CHAFAÏ

Remark 3.9 (Quaternionic Ginibre Ensemble). The quaternionic Ginibre Ensemble was
considered at the origin by Ginibre [51]. It has been recently shown [19] by using the
logarithmic potential that there exists an analogue of the circular law theorem for this
ensemble, in which the limiting law is supported in the unit ball of the quaternions field.

4. Universal case

This section is devoted to the proof of the circular law theorem 2.2 following [132]. The
universal Marchenko-Pastur theorem 2.1 can be proved by using powerful Hermitian tech-
niques such as truncation, centralization, the method of moments, or the Cauchy-Stieltjes
trace-resolvent transform. It turns out that all these techniques fail for the eigenvalues of
non-normal random matrices. Indeed, the key to prove the circular law theorem 2.2 is to
use a bridge pulling back the problem to the Hermitian world. This is called Hermitization.

Actually, and as we will see in sections 5 and 6, there is a non-Hermitian analogue of the
method of moments called the ∗-moments, and there is an analogue of the Cauchy-Stieltjes
trace-resolvent in which the complex variable is replaced by a quaternionic type variable.

4.1. Logarithmic potential and Hermitization. Let P(C) be the set of probability
measures on C which integrate log |·| in a neighborhood of infinity. The logarithmic po-
tential Uµ of µ ∈ P(C) is the function Uµ : C → (−∞,+∞] defined for all z ∈ C by

Uµ(z) = −
∫

C

log |z − λ| dµ(λ) = −(log |·| ∗ µ)(z). (4.1)

For instance, for the circular law C1 of density π−11{z∈C:|z|≤1}, we have, for every z ∈ C,

UC1(z) =

{
− log |z| if |z| > 1,
1
2 (1− |z|2) if |z| ≤ 1,

(4.2)

see e.g. [115]. Let D′(C) be the set of Schwartz-Sobolev distributions. We have P(C) ⊂
D′(C). Since log |·| is Lebesgue locally integrable on C, the Fubini-Tonelli theorem implies
that Uµ is Lebesgue locally integrable on C. In particular, Uµ <∞ a.e. and Uµ ∈ D′(C).

Let us define the first order linear differential operators in D′(C)

∂ :=
1

2
(∂x − i∂y) and ∂ :=

1

2
(∂x + i∂y) (4.3)

and the Laplace operator ∆ = 4∂∂ = 4∂∂ = ∂2x + ∂2y . Each of these operators coincide
on smooth functions with the usual differential operator acting on smooth functions. By
using Green’s or Stockes’ theorems, one may show, for instance via the Cauchy-Pompeiu
formula, that for any smooth and compactly supported function ϕ : C → R,

∫

C

∆ϕ(z) log |z| dxdy = −2πϕ(0) (4.4)

where z = x+ iy. Now (4.4) can be written, in D′(C),

∆ log |·| = −2πδ0

In other words, − 1
2π log |·| is the fundamental solution of the Laplace equation on R2. Note

that log |·| is harmonic on C \ {0}. It follows that in D′(C),

∆Uµ = −2πµ. (4.5)

This means that for every smooth and compactly supported “test function” ϕ : C → R,
∫

C

∆ϕ(z)Uµ(z) dxdy = −2π

∫

C

ϕ(z) dµ(z)

where z = x+iy. This means that − 1
2πU· is the Green operator on R2 (Laplacian inverse).

Lemma 4.1 (Unicity). For every µ, ν ∈ P(C), if Uµ = Uν a.e. then µ = ν.
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Proof. Since Uµ = Uν in D′(C), we get ∆Uµ = ∆Uν in D′(C). Now (4.5) gives µ = ν
in D′(C), and thus µ = ν as measures since µ and ν are Radon measures. Note more
generally that the lemma remains valid if Uµ = Uν + h for some harmonic h ∈ D′(C). �

If A is a n×n complex matrix and PA(z) := det(A−zI) is its characteristic polynomial,

UµA
(z) = −

∫

C

log |λ− z| dµA(λ) = − 1

n
log |det(A− zI)| = − 1

n
log |PA(z)|

for every z ∈ C \ {λ1(A), . . . , λn(A)}. We have also the alternative expression11

UµA
(z) = − 1

n
log det(

√
(A− zI)(A− zI)∗) = −

∫ ∞

0
log(t) dνA−zI(t). (4.6)

One may retain from this determinantal Hermitization that for any A ∈ Mn(C),

knowledge of νA−zI for a.a. z ∈ C ⇒ knowledge of µA

Note that from (4.5), for every smooth compactly supported function ϕ : C → R,

2π

∫
ϕdµA =

∫

C

(∆ϕ) log |PA| dxdy.

The identity (4.6) bridges the eigenvalues with the singular values, and is at the heart of
the following lemma, which allows to deduce the convergence of µA from the one of νA−zI .
The strength of this Hermitization lies in the fact that contrary to the eigenvalues, one can
control the singular values with the entries of the matrix using powerful methods such as
the method of moments or the trace-resolvent Cauchy-Stieltjes transform. The price paid
here is the introduction of the auxiliary variable z. Moreover, we cannot simply deduce
the convergence of the integral from the weak convergence of νA−zI since the logarithm
is unbounded on R+. We circumvent this problem by requiring uniform integrability. We
recall that on a Borel measurable space (E, E), a Borel function f : E → R is uniformly
integrable for a sequence of probability measures (ηn)n≥1 on E when

lim
t→∞

lim
n→∞

∫

{|f |>t}
|f | dηn = 0. (4.7)

We will use this property as follows: if ηn  η as n→ ∞ for some probability measure η
and if f is continuous and uniformly integrable for (ηn)n≥1 then f is η-integrable and

lim
n→∞

∫
f dηn =

∫
f dη.

Remark 4.2 (Uniform integrability in probability). When (ηn)n≥1 are random probability
measures, we say that f is uniformly integrable in probability when for any ε > 0,

lim
t→∞

lim
n→∞

P

(∫

|f |>t
|f | dηn > ε

)
= 0.

This will be helpful for the heavy tailed case of section 6 together with lemma 4.4 below,
in order to circumvent the lack of almost sure bounds on small singular values.

Remark 4.3 (Weak convergence in probability). Let E be a topological space such as R

or C equipped with its Borel σ-field E. Let (ηn)n≥1 be a sequence of random probability

measures on (E, E) and η be a probability measure on (E, E). We say that ηn  η as
n→ ∞ in probability if for all bounded continuous function f : E → R, and for all ε > 0,

lim
n→∞

P

(∣∣∣∣
∫
f dηn −

∫
f dη

∣∣∣∣ > ε

)
= 0.

This mode of convergence is implied by the a.s. weak convergence.

11Girko uses the name “V -transform of µA”, where V stands for “Victory”.
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The idea of using Hermitization goes back at least to Girko [53]. However, the proofs
of lemmas 4.4 and 4.5 below are inspired from the approach of Tao and Vu [132].

Lemma 4.4 (Girko Hermitization). Let (An)n≥1 be a sequence of complex random ma-
trices where An is n×n for every n ≥ 1, defined on a common probability space. Suppose
that for a.a. z ∈ C, there exists a probability measure νz on [0,∞) such that

(i) a.s. νAn−zI  νz as n→ ∞
(ii) a.s. (respectively in probability) log is uniformly integrable for (νAn−zI)n≥1

Then there exists a probability measure µ ∈ P(C) such that

(j) a.s. (respectively in probability) µAn  µ as n→ ∞
(jj) for a.a. z ∈ C,

Uµ(z) = −
∫ ∞

0
log(s) dνz(s).

Proof. Let us give first the proof when (ii) holds a.s. Let z and ω be such that (i-ii) hold.
For every 1 ≤ k ≤ n, define

an,k := |λk(An − zI)| and bn,k := sk(An − zI)

and set ν := νz. Note that µAn−zI = µAn ∗ δ−z. Thanks to the Weyl inequalities (1.1)
and to the assumptions (i-ii), one can use lemma 4.5 below, which gives that (µAn)n≥1 is
tight, that log |z − ·| is uniformly integrable for (µAn)n≥1, and that

lim
n→∞

UµAn
(z) = −

∫ ∞

0
log(s) dνz(s) =: U(z).

Consequently, a.s. if µ is an adherence value of (µAn)n≥1 then µ ∈ P(C) and Uµ = U a.e.
Now, since U does not depend on µ, by lemma 4.1, a.s. (µAn)n≥1 has a unique adherence

value µ, and since (µn)n≥1 is tight, µAn  µ as n→ ∞ by the Prohorov theorem. Finally,
by (4.5), µ is deterministic since U is deterministic, and (j-jj) hold. This achieves the
proof when (ii) holds a.s. The “in probability” version follows the same lines. �

Note the remarkable swap of quantifiers on z and ω in lemma 4.4 allowed by the de-
terministic nature of the limit. The following lemma is in a way the skeleton of proof of
lemma 4.4. It states essentially a propagation of a uniform logarithmic integrability for a
couple of triangular arrays, provided that a logarithmic majorization holds between the
arrays. We skip the elementary yet lengthy proof which can be found in [23, Lemma C2].

Lemma 4.5 (Logarithmic majorization and uniform integrability). Let (an,k)1≤k≤n and
(bn,k)1≤k≤n be two triangular arrays in [0,∞). Define the discrete probability measures

µn :=
1

n

n∑

k=1

δan,k
and νn :=

1

n

n∑

k=1

δbn,k
.

If the following properties hold

(i) an,1 ≥ · · · ≥ an,n and bn,1 ≥ · · · ≥ bn,n for n≫ 1,

(ii)
∏k

i=1 an,i ≤
∏k

i=1 bn,i for every 1 ≤ k ≤ n for n≫ 1,
(iii)

∏n
i=k bn,i ≤

∏n
i=k an,i for every 1 ≤ k ≤ n for n≫ 1,

(iv) νn  ν as n→ ∞ for some probability measure ν,
(v) log is uniformly integrable for (νn)n≥1,

then

(j) log is uniformly integrable for (µn)n≥1 (in particular, (µn)n≥1 is tight),

(jj) we have, as n→ ∞,
∫ ∞

0
log(t) dµn(t) =

∫ ∞

0
log(t) dνn(t) →

∫ ∞

0
log(t) dν(t),
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and in particular, for every adherence value µ of (µn)n≥1,∫ ∞

0
log(t) dµ(t) =

∫ ∞

0
log(t) dν(t).

Remark 4.6 (Logarithmic potential and Cauchy-Stieltjes transform). We may define the
Cauchy-Stieltjes transform mµ : C → C ∪ {∞} of a probability measure µ on C by

mµ(z) :=

∫

C

1

λ− z
dµ(λ).

Since 1/|·| is Lebesgue locally integrable on C, the Fubini-Tonelli theorem implies that
mµ(z) is finite for a.a. z ∈ C, and moreover mµ is locally Lebesgue integrable on C and
thus belongs to D′(C). Suppose now that µ ∈ P(C). The logarithmic potential is related
to the Cauchy-Stieltjes transform via the identity

mµ = 2∂Uµ

in D′(C). In particular, since 4∂∂ = 4∂∂ = ∆ as operators on D′(C), we obtain, in D′(C),

2∂mµ = −∆Uµ = −2πµ.

Thus we can recover µ from mµ. Note that for any ε > 0, mµ is bounded on

Dε = {z ∈ C : dist(z, supp(µ)) > ε}.
If supp(µ) is one-dimensional then one may completely recover µ from the knowledge of
mµ on Dε as ε → 0. If supp(µ) is not one-dimensional then one needs the knowledge of
mµ inside the support to recover µ. If A ∈ Mn(C) then mµA

is the trace of the resolvent

mµA
(z) = Tr((A− zI)−1)

for every z ∈ C \ {λ1(A), . . . , λn(A)}. The lack of a Hermitization identity expressing the
Cauchy-Stieltjes transform mµA

in terms of singular values explains the advantage of UµA

over mµA
for non-Hermitian matrices.

Remark 4.7 (Logarithmic potential and logarithmic energy). The term “logarithmic po-
tential” comes from the fact that Uµ is the electrostatic potential of µ viewed as a distri-
bution of charged particles in the plane C = R2 [115]. The so called logarithmic energy of
this distribution of charged particles, defined by

E(µ) :=
∫

C

Uµ(z) dµ(z) = −
∫

C

∫

C

log |z − λ| dµ(z)dµ(λ), (4.8)

is equal, up to a sign, to the Voiculescu free entropy of µ in free probability theory [134].
The circular law minimizes µ 7→ E(µ) under a second moment constraint [115].

4.2. Proof of the circular law. The proof of theorem 2.2 is based on the Hermitization
lemma 4.4. The part (i) of lemma 4.4 is obtained from corollary 4.9 below.

Theorem 4.8 (Convergence of singular values with additive perturbation). Let (Mn)n≥1

be a deterministic sequence such that Mn ∈ Mn(C) for every n. If νMn  ρ as n→ ∞ for
some probability measure ρ on C then there exists a probability measure νρ on R+ which
depends only on ρ and such that a.s. νn−1/2X+Mn

 νρ as n→ ∞.

Theorem 4.8 appears as a special case of the work of Dozier and Silverstein for informa-
tion plus noise random matrices [38]. Their proof relies on powerful Hermitian techniques
such as truncation, centralization, trace-resolvent recursion via Schur block inversion, lead-
ing to a fixed point equation for the Cauchy-Stieltjes transform of νρ. It is important to
stress that νρ does not depend on the law of X11 (recall that X11 has unit variance). One
may possibly produce an alternative proof of theorem 4.8 using free probability theory.

Corollary 4.9 (Convergence of singular values). For all z ∈ C, there exists a probability
measure νz depending only on z such that a.s. νn−1/2X−zI  νz as n→ ∞.
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For completeness, we will give in subsection 4.5 a proof of corollary 4.9. Note also that
for z = 0, we recover the quarter circular Marchenko-Pastur theorem 2.1.

It remains to check the uniform integrability assumption (ii) of lemma 4.4. From
Markov’s inequality, it suffices to show that for all z ∈ C, there exists p > 0 such that a.s.

lim
n→∞

∫
s−p dνn−1/2X−zI(s) <∞ and lim

n→∞

∫
sp dνn−1/2X−zI(s) <∞. (4.9)

The second statement in (4.9) with p ≤ 2 follows from the strong law of large numbers

(2.1) together with (1.6), which gives si(n
−1/2X−zI) ≤ si(n

−1/2X)+ |z| for all 1 ≤ i ≤ n.
The first statement in (4.9) concentrates most of the difficulty behind theorem 2.2. In

the next two subsections, we will prove and comment the following couple of key lemmas
taken from [132] and [128] respectively.

Lemma 4.10 (Count of small singular values). There exists c0 > 0 and 0 < γ < 1 such
a.s. for n≫ 1 and n1−γ ≤ i ≤ n− 1 and all M ∈ Mn(C),

sn−i(n
−1/2X +M) ≥ c0

i

n
.

Lemma 4.10 is more meaningful when i is close to n1−γ . For i = n − 1, it gives only a
lower bound on s1. The linearity in i corresponds to what we can expect on spacing.

Lemma 4.11 (Polynomial lower bound on least singular value). For every a, d > 0, there
exists b > 0 such that if M is a deterministic complex n×n matrix with s1(M) ≤ nd then

P(sn(X +M) ≤ n−b) ≤ n−a.

In particular there exists b > 0 which may depend on d such that a.s. for n≫ 1,

sn(X +M) ≥ n−b.

For ease of notation, we write si in place of si(n
−1/2X−zI). Applying lemmas 4.10-4.11

with M = −zI and M = −z√nI respectively, we get, for any c > 0, z ∈ C, a.s. for n≫ 1,

1

n

n∑

i=1

s−p
i ≤ 1

n

n−⌊n1−γ⌋∑

i=1

s−p
i +

1

n

n∑

i=n−⌊n1−γ⌋+1

s−p
i

≤ c−p
0

1

n

n∑

i=1

(n
i

)p
+ 2n−γnbp.

The first term of the right hand side is a Riemann sum for
∫ 1
0 s

−p ds which converges as soon
as 0 < p < 1. We finally obtain the first statement in (4.9) as soon as 0 < p < min(γ/b, 1).
Now the Hermitization lemma 4.4 ensures that there exists a probability measure µ ∈ P(C)
such that a.s. µY  µ as n→ ∞ and for all z ∈ C,

Uµ(z) = −
∫ ∞

0
log(s) dνz(s).

Since νz does not depend on the law of X11 (we say that it is then universal), it follows
that µ also does not depend on the law of X11, and therefore, by using the circular law
theorem 3.5 for the Complex Ginibre Ensemble we obtain that µ is the uniform law on the
unit disc. Alternatively, following Pan and Zhou [101, Lemma 3], it is possible to avoid
the knowledge of the Gaussian case by computing the integral of

∫∞
0 log(s) dνz(s) which

should match the formula for the logarithmic potential of the uniform law on the unit disc.
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4.3. Count of small singular values. This subsection is devoted to lemma 4.10 used
in the proof of theorem 2.2 to check the uniform integrability assumption in lemma 4.4.

Proof of lemma 4.10. We follow the original proof of Tao and Vu [132]. Up to increasing
γ, it is enough to prove the statement for all 2n1−γ ≤ i ≤ n − 1 for some γ ∈ (0, 1) to be
chosen later. To lighten the notations, we denote by s1 ≥ · · · ≥ sn the singular values of
Y := n−1/2X +M . We fix 2n1−γ ≤ i ≤ n − 1 and we consider the matrix Y ′ formed by
the first m := n− ⌈i/2⌉ rows of

√
nY . Let s′1 ≥ · · · ≥ s′m be the singular values of Y ′. By

the Cauchy-Poincaré interlacing12, we get

n−1/2s′n−i ≤ sn−i

Next, by lemma 4.13 we obtain

s′−2
1 + · · · + s′−2

n−⌈i/2⌉ = dist−2
1 + · · ·+ dist−2

n−⌈i/2⌉,

where distj := dist(Rj ,Hj) is the distance from the jth row Rj of Y ′ to Hj, the subspace
spanned by the other rows of Y ′. In particular, we have

i

2n
s−2
n−i ≤

i

2n
s′−2
n−i ≤

n−⌈i/2⌉∑

j=n−⌈i⌉
s′−2
j ≤

n−⌈i/2⌉∑

j=1

dist−2
j . (4.10)

Now Hj is independent of Rj and dim(Hj) ≤ n − i
2 ≤ n − n1−γ , and thus, for the choice

of γ given in the forthcoming lemma 4.12,

∑

n≫1

P




n−1⋃

i=2n1−γ

n−⌈i/2⌉⋃

j=1

{
distj ≤

√
i

2
√
2

}
 <∞

(note that the exponential bound in lemma 4.12 kills the polynomial factor due to the
union bound over i, j). Consequently, by the first Borel-Cantelli lemma, we obtain that
a.s. for n≫ 1, all 2n1−γ ≤ i ≤ n− 1, and all 1 ≤ j ≤ n− ⌈i/2⌉,

distj ≥
√
i

2
√
2
≥

√
i

4

Finally, (4.10) gives s2n−i ≥ (i2)/(32n2), i.e. the desired result with c0 := 1/(4
√
2). �

Lemma 4.12 (Distance of a random vector to a subspace). There exist γ > 0 and δ > 0
such that for all n ≫ 1, 1 ≤ i ≤ n, any deterministic vector v ∈ Cn and any subspace H
of Cn with 1 ≤ dim(H) ≤ n− n1−γ, we have, denoting R := (Xi1, . . . ,Xin) + v,

P

(
dist(R,H) ≤ 1

2

√
n− dim(H)

)
≤ exp(−nδ).

The exponential bound above is obviously not optimal, but is more than enough for our
purposes: in the proof of lemma 4.10, a large enough polynomial bound on the probability
suffices.

Proof. The argument is due to Tao and Vu [132, Proposition 5.1]. We first note that if H ′

is the vector space spanned by H, v and ER, then dim(H ′) ≤ dim(H) + 2 and

dist(R,H) ≥ dist(R,H ′) = dist(R′,H ′),

where R′ := R−E(R). We may thus directly suppose without loss of generality that v = 0
and that E(Xik) = 0. Then, it is easy to check that

E(dist(R,H)2) = n− dim(H)

12If A ∈ Mn(C) and 1 ≤ m ≤ n and if B ∈ Mm,n(C) is obtained from A by deleting r := n−m rows,
then si(A) ≥ si(B) ≥ si+r(A) for every 1 ≤ i ≤ m. In particular, [sm(B), s1(B)] ⊂ [sn(A), s1(A)], i.e. the
smallest singular value increases while the largest singular value is diminished. See [76, Corollary 3.1.3]
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(see computation below). The lemma is thus a statement on the deviation probability of
dist(R,H). We first perform a truncation. Let 0 < ε < 1/3. Markov’s inequality gives

P(|Xik| ≥ nε) ≤ n−2ε.

Hence, from Hoeffding’s deviation inequality13, for n≫ 1,

P

(
n∑

k=1

1{|Xik |≤nε} < n− n1−ε

)
≤ exp(−2n1−2ε(1− n−ε)2) ≤ exp(−n1−2ε).

It is thus sufficient to prove that the result holds by conditioning on

Em := {|Xi1| ≤ nε, . . . , |Xim| ≤ nε} with m := ⌈n− n1−ε⌉.
Let Em[ · ] := E[ · |Em;Fm] denote the conditional expectation given Em and the filtration
Fm generated by Xi,m+1, . . . ,Xi,n. Let W be the subspace spanned by

H, u = (0, . . . , 0,Xi,m+1, . . . ,Xi,n), w = (Em[Xi1], . . . ,Em[Xim], 0, . . . , 0).

Then, by construction dim(W ) ≤ dim(H) + 2 and W is Fm-measurable. We also have

dist(R,H) ≥ dist(R,W ) = dist(Y,W ),

where Y = (Xi1 − λ, . . . ,Xim − λ, 0, . . . , 0) = R− u− w and λ = Em[Xi1]. Next we have

σ2 := Em

[
Y 2
1

]
= E

[(
Xi1 − E

[
Xi1

∣∣ |Xi1| ≤ nε
])2 ∣∣∣ |Xi1| ≤ nε

]
= 1− o(1).

Now, let us consider the disc D := {z ∈ C : |z| ≤ nε} and define the Dm → R+ convex
function f : x 7→ dist((x, 0, . . . , 0),W ). From the triangle inequality, f is 1-Lipschitz:

|f(x)− f(x′)| ≤ dist(x, x′).

We deduce from Talagrand’s concentration inequality14 that

Pm(|dist(Y,W )−Mm| ≥ t) ≤ 4 exp

(
− t2

16n2ε

)
, (4.11)

where Mm is the median of dist(Y,W ) under Em. In particular,

Mm ≥
√

Emdist2(Y,W )− cnε.

Also, if P denotes the orthogonal projection on the orthogonal of W , we find

Emdist2(Y,W ) =

m∑

k=1

Em

[
Y 2
k

]
Pkk

= σ2

(
n∑

k=1

Pkk −
n∑

k=m+1

Pkk

)

≥ σ2(n− dim(W )− (n−m))

≥ σ2
(
n− dim(H)− n1−ε − 2

)

We choose some 0 < γ < ε. Then, from the above expression for any 1/2 < c < 1 and

n≫ 1, Mm ≥ c
√
n− dim(H). We choose finally t = (c−1/2)

√
n− dim(H) in (4.11). �

The following lemma, taken from [132, Lemma A4], is used in the proof of lemma 4.10.

13If X1, . . . , Xn are independent and bounded real r.v. with di := max(Xi) − min(Xi), and if Sn :=
X1 + · · ·+Xn, then P(Sn − ESn ≤ tn) ≤ exp(−2n2t2/(d21 + · · ·+ d2n)) for any t ≥ 0. See [95, Th. 5.7].

14If X1, . . . , Xn are i.i.d. r.v. on D := {z ∈ C : |z| ≤ r} and if f : Dn → R is convex, 1-Lipschitz, with

median M , then P(|f(X1, . . . , Xn)−M | ≥ t) ≤ 4 exp(− t2

16r2
) for any t ≥ 0. See [124] and [88, Cor. 4.9].
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Lemma 4.13 (Rows and trace norm of the inverse). Let 1 ≤ m ≤ n. If A ∈ Mm,n(C)
has full rank, with rows R1, . . . , Rm and R−i := span{Rj : j 6= i}, then

m∑

i=1

si(A)
−2 =

m∑

i=1

dist(Ri, R−i)
−2.

Proof. The orthogonal projection of R∗
i on the subspace R−i is B

∗(BB∗)−1BR∗
i where B

is the (m−1)×n matrix obtained from A by removing the row Ri. In particular, we have

|Ri|22 − dist2(Ri, R−i)
2 =

∣∣B∗(BB∗)−1BR∗
i

∣∣2
2
= (BR∗

i )
∗(BB∗)−1BR∗

i

by the Pythagoras theorem. On the other hand, the Schur block inversion formula states
that if M is a m×m matrix then for every partition {1, . . . ,m} = I ∪ Ic,

(M−1)I,I = (MI,I −MI,Ic(MIc,Ic)
−1MIc,I)

−1. (4.12)

Now we take M = AA∗ and I = {i}, and we note that (AA∗)i,j = RiR
∗
j , which gives

((AA∗)−1)i,i = (RiR
∗
i − (BR∗

i )
∗(BB∗)−1BR∗

i )
−1 = dist2(Ri, R−i)

−2.

The desired formula follows by taking the sum over i ∈ {1, . . . ,m}. �

Remark 4.14 (Local Wegner estimates). Lemma 4.10 says that νn−1/2X−zI([0, η]) ≤ η/C

for every η ≥ 2Cn−γ. In this form, we see that lemma 4.10 is an upper bound on the
counting measure nνn−1/2X−zI on a small interval [0, η]. This type of estimate has already
been studied. Notably, an alternative proof of lemma 4.10 can be obtained following the
work of [45] on the resolvent of Wigner matrices.

4.4. Smallest singular value. This subsection is devoted to lemma 4.11 which was used
in the proof of theorem 2.2 to get the uniform integrability in lemma 4.4. We start with
a comment. Let (Yn)n≥1 be any sequence of random matrices where Yn takes its values
in Mn(C), defined on a common probability space (Ω,A,P). For every ω ∈ Ω, the set
∪n≥1{λ1(Yn(ω)), . . . , λn(Yn(ω))} is at most countable and has thus zero Lebesgue measure.
Therefore, for all ω ∈ Ω and a.a. z ∈ C, we have sn(Yn(ω)−zI) > 0 for all n ≥ 1. Lemma
4.11 implies that for Yn = X +M this holds for all z ∈ C, a.s. on ω, and n≫ 1.

The full proof of lemma 4.11 by Tao and Vu in [128] is based on Littlewood-Offord type
problems. The main difficulty is the possible presence of atoms in the law of the entries (in
this case X is non-invertible with positive probability). Regarding the assumptions, the
finite second moment hypothesis on X11 is not crucial and can be considerably weakened.
For the sake of simplicity, we give here a simplified proof when the law of X11 has a
bounded density on C or on R (which implies that X +M is invertible with probability
one). In lemma A.1 in Appendix A, we prove a general statement of this type at the
price of a weaker probabilistic estimate which is still good enough to obtain the uniform
integrability “in probability” required by lemma 4.4.

Proof of lemma 4.11 with bounded density assumption. It suffices to show the first state-
ment since the last statement follows from the first Borel-Cantelli lemma used with a > 1.

For every x, y ∈ Cn and S ⊂ Cn, we set x · y := x1y1 + · · · + xnyn and ‖x‖2 :=
√
x · x

and dist(x, S) := miny∈S ‖x− y‖2. Let R1, . . . , Rn be the rows of X +M and set

R−i := span{Rj ; j 6= i}
for every 1 ≤ i ≤ n. The lower bound in lemma 4.15 gives

min
1≤i≤n

dist(Ri, R−i) ≤
√
n sn(X +M)

and consequently, by the union bound, for any u ≥ 0,

P(
√
n sn(X +M) ≤ u) ≤ n max

1≤i≤n
P(dist(Ri, R−i) ≤ u).
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Let us fix 1 ≤ i ≤ n. Let Yi be a unit vector orthogonal to R−i. Such a vector is not unique,
but we may just pick one which is independent of Ri. This defines a random variable on
the unit sphere Sn−1 = {x ∈ Cn : ‖x‖2 = 1}. By the Cauchy-Schwarz inequality,

|Ri · Yi| ≤ ‖πi(Ri)‖2‖Yi‖2 = dist(Ri, R−i)

where πi is the orthogonal projection on the orthogonal complement of R−i. Let νi be the
distribution of Yi on Sn−1. Since Yi and Ri are independent, for any u ≥ 0,

P(dist(Ri, R−i) ≤ u) ≤ P(|Ri · Yi| ≤ u) =

∫

Sn−1

P(|Ri · y| ≤ u) dνi(y).

Let us assume that X11 has a bounded density ϕ on C. Since ‖y‖2 = 1 there exists an

index j0 ∈ {1, . . . , n} such that yj0 6= 0 with |yj0|−1 ≤ √
n. The complex random variable

Ri ·y is a sum of independent complex random variables and one of them is Xij0 yj0 , which
is absolutely continuous with a density bounded above by

√
n ‖ϕ‖∞. Consequently, by a

basic property of convolutions of probability measures, the complex random variable Ri ·y
is also absolutely continuous with a density ϕi bounded above by

√
n ‖ϕ‖∞, and thus

P(|Ri · y| ≤ u) =

∫

C

1{|s|≤u}ϕi(s) ds ≤ πu2
√
n ‖ϕ‖∞.

Therefore, for every b > 0, we obtain the desired result (the O does not depend on M)

P(sn(X +M) ≤ n−b−1/2) = O(n3/2−2b).

This scheme remains indeed valid in the case where X11 has a bounded density on R. �

Lemma 4.15 (Rows and operator norm of the inverse). Let A be a complex n×n matrix
with rows R1, . . . , Rn. Define the vector space R−i := span{Rj : j 6= i}. We have then

n−1/2 min
1≤i≤n

dist(Ri, R−i) ≤ sn(A) ≤ min
1≤i≤n

dist(Ri, R−i).

Proof of lemma 4.15. The argument, due to Rudelson and Vershynin, is buried in [113].
Since A and A⊤ have same singular values, one can consider the columns C1, . . . , Cn of A
instead of the rows. For every column vector x ∈ Cn and 1 ≤ i ≤ n, the triangle inequality
and the identity Ax = x1C1 + · · ·+ xnCn give

‖Ax‖2 ≥ dist(Ax,C−i) = min
y∈C−i

‖Ax− y‖2 = min
y∈C−i

‖xiCi − y‖2 = |xi|dist(Ci, C−i).

If ‖x‖2 = 1 then necessarily |xi| ≥ n−1/2 for some 1 ≤ i ≤ n and therefore

sn(A) = min
‖x‖2=1

‖Ax‖2 ≥ n−1/2 min
1≤i≤n

dist(Ci, C−i).

Conversely, for every 1 ≤ i ≤ n, there exists a vector y with yi = 1 such that

dist(Ci, C−i) = ‖y1C1 + · · ·+ ynCn‖2 = ‖Ay‖2 ≥ ‖y‖2 min
‖x‖2=1

‖Ax‖2 ≥ sn(A)

where we used the fact that ‖y‖22 = |y1|2 + · · ·+ |yn|2 ≥ |yi|2 = 1. �

Remark 4.16 (Assumptions for the control of the smallest singular value). In the proof
of lemma 4.11 with the bounded density assumption, we have not used the assumption on
the second moment of X11 nor the assumption on the norm of M .

4.5. Convergence of singular values measure. This subsection is devoted to corollary
4.9. The proof is divided into five steps.
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Step One: Concentration of singular values measure. First, it turns out that it is sufficient
to prove the convergence to νz of Eνn−1/2X−z. Indeed, for matrices with independent rows,
there is a remarkable concentration of measure phenomenon. More precisely, recall that
the total variation norm of f : R → R is defined as

‖f‖TV := sup
∑

k∈Z
|f(xk+1)− f(xk)|,

where the supremum runs over all sequences (xk)k∈Z such that xk+1 ≥ xk for any k ∈ Z.
If f = 1(−∞,s] for some s ∈ R then ‖f‖TV = 1, while if f has a derivative in L1(R),

‖f‖TV =
∫
|f ′(t)| dt. The following lemma is extracted from [26], see also [69].

Lemma 4.17 (Concentration for the singular values empirical measure). If M is a n×n
complex random matrix with independent rows (or with independent columns) then for any
f : R → R going to 0 at ±∞ with ‖f‖TV ≤ 1 and every t ≥ 0,

P

(∣∣∣∣
∫
f dνM − E

∫
f dνM

∣∣∣∣ ≥ t

)
≤ 2 exp

(
−2nt2

)
.

Proof. If A,B ∈ Mn(C) and if FA(·) := νA((−∞, ·)) and FB(·) := νB((−∞, ·)) are the
cumulative distribution functions of the probability measures νA and νB then it is easily
seen from the Lidskii inequality for singular values15 that

‖FA − FB‖∞ ≤ rank(A−B)

n
.

Now for a smooth f : R → R, we get, by integrating by parts,
∣∣∣∣
∫
f dνA −

∫
f dνB

∣∣∣∣ =
∣∣∣∣
∫

R

f ′(t)(FA(t)− FB(t)) dt

∣∣∣∣ ≤
rank(A−B)

n

∫

R

|f ′(t)| dt.

Since the left hand side depends on at most 2n points, we get, by approximation, for every
measurable function f : R → R with ‖f‖TV ≤ 1,

∣∣∣∣
∫
f dνA −

∫
f dνB

∣∣∣∣ ≤
rank(A−B)

n
. (4.13)

From now on, f : R → R is a fixed measurable function with ‖f‖TV ≤ 1. For every row
vectors x1, . . . , xn in Cn, we denote by A(x1, . . . , xn) the n×nmatrix with rows x1, . . . , xn
and we define F : (Cn)n → R by

F (x1, . . . , xn) :=

∫
f dµA(x1,...,xn).

For any i ∈ {1, . . . , n} and any row vectors x1, . . . , xn, x
′
i of C

n, we have

rank(A(x1, . . . , xi−1, xi, xi+1, . . . , xn)−A(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn)) ≤ 1

and thus

|F (x1, . . . , xi−1, xi, xi+1, . . . , xn)− F (x1, . . . , xi−1, x
′
i, xi+1, . . . , xn)| ≤

1

n
.

Finally, the desired result follows from the McDiarmid-Azuma-Hoeffding concentration
inequality for bounded differences16 applied to the function F and to the random variables
R1, . . . , Rn (the rows of M). �

15 If A,B ∈ Mn(C) with rank(A − B) ≤ k, then si−k(A) ≥ si(B) ≥ si+k(A) for any 1 ≤ i ≤ n with
the convention si ≡ ∞ if i < 1 and si ≡ 0 if i > n. This allows the extremes to blow. See [76, Th. 3.3.16].

16If X1, . . . , Xn are independent r.v. in X1, . . . ,Xn and if f : X1 × · · · × Xn → R is a measurable
function then P(|f(X1, . . . , Xn)− Ef(X1, . . . , Xn)| ≥ t) ≤ 2 exp(−2t2/(c21 + · · ·+ c2n)) for any t ≥ 0, where
ck := supx,x′∈Dk

|f(x)− f(x′)| and Dk := {(x, x′) : xi = x′
i for all i 6= k}. We refer to McDiarmid [95].
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Step Two: Truncation and centralization. In the second step, we prove that it is sufficient
to prove the convergence for entries with bounded support. More precisely, we define

Yij = Xij1{|Xij |≤κ},

where κ = κn is a sequence growing to infinity. Then if Y = (Yij)1≤i,j≤n, we have from
Hoffman-Wielandt inequality (1.8),

1

n

n∑

k=1

∣∣∣sk(n−1/2Y − zI)− sk(n
−1/2X − zI)

∣∣∣
2
≤ 1

n2

∑

1≤i,j≤n

|Xij |21{|Xij |>κ}.

By assumption E|Xij|21{|Xij |>κ} goes to 0 as κ goes to infinity. Hence, by the law of large
numbers, the right hand side of the above inequality converges a.s. to 0. On the left hand
side we recognize the square of the WassersteinW2 coupling distance17 between νn−1/2Y−zI
and νn−1/2X−zI . Since the convergence inW2 distance implies weak convergence, we deduce
that it is sufficient to prove the convergence of Eνn−1/2Y−zI to νz.

Next, we turn to the centralization by setting

Zij = Yij − EYij = Yij − EX111{|X11|≤κ}.

Then if Z = (Zij)1≤i,j≤n, we have from the Lidskii inequality for singular values,

max
t>0

∣∣νn−1/2Y−zI([0, t]) − νn−1/2Z−zI([0, t])
∣∣ ≤ rank(Y − Z)

n
≤ 1

n
.

In particular, it is sufficient to prove the convergence of Eνn−1/2Z−zI to νz.
In summary, in the remainder of this subsection, we will allow the law of X11 to depend

on n but we will assume that

EX11 = 0 , P(|X11| ≥ κn) = 0 and E|X11|2 = σ2n, (4.14)

where κ = κn is a sequence growing to infinity and σ = σn goes to 1 as n goes to infinity.

Step Three: Linearization. We use a popular linearization technique: we remark the iden-
tity of the Cauchy-Stieltjes transform, for η ∈ C+,

mν̌
n−1/2X−zI

(η) =
1

2n
Tr(H(z) − ηI)−1, (4.15)

where ν̌(·) = (ν(·) + ν(−·))/2 is the symmetrized version of a measure ν, and

H(z) :=

(
0 n−1/2X − z

(n−1/2X − z)∗ 0

)
.

Through a permutation of the entries, this matrix H(z) is equivalent to the matrix

B(z) = B − q(z, 0) ⊗ In

where

q(z, η) :=

(
η z
z̄ η

)

and for every 1 ≤ i, j ≤ n,

Bij :=
1√
n

(
0 Xij

X̄ji 0

)
.

Note that B(z) ∈ Mn(M2(C)) ≃ M2n(C) is Hermitian and its resolvent is denoted by

R(q) = (B(z)− ηI2n)
−1 = (B − q(z, η) ⊗ In)

−1.

17The W2 distance between two probability measures η1, η2 on R is W2(η1, η2) := minE(|X1 −X2|
2)1/2

where the inf runs over the set of r.v. (X1, X2) on R × R with X1 ∼ η1 and X2 ∼ η2. In the case where
η1 = 1

n

∑n
i=1 δai

with 0 ≤ ai ր and η2 = 1
n

∑n
i=1 δbi with 0 ≤ bi ր then W2(η1, η2)

2 = 1
n

∑n
i=1(ai − bi)

2.
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Then R(q) ∈ Mn(M2(C)) and, by (4.15), we deduce that

mν̌
n−1/2X−zI

(η) =
1

2n
TrR(q).

We set

R(q)kk =

(
ak(q) bk(q)
ck(q) dk(q)

)
∈ M2(C).

It is easy to check that

a(q) :=
1

n

n∑

k=1

ak(q) =
1

n

n∑

k=1

dk(q) and b(q) :=
1

n

n∑

k=1

bk(q) =
1

n

n∑

k=1

c̄k(q), (4.16)

(see the forthcoming lemma 4.18). So finally,

mν̌
n−1/2X−zI

(η) = a(q) (4.17)

Hence, in order to prove that Eνn−1/2X−zI converges, it is sufficient to prove that Ea(q)
converges to, say, α(q) which, by tightness, will necessarily be the Cauchy-Stieltjes trans-
form of a symmetric measure.

Step Four: Approximate fixed point equation. We use a resolvent method to deduce an
approximate fixed point equation satisfied by a(q). Schur’s block inversion (4.12) gives

Rnn =

(
1√
n

(
0 Xnn

X̄nn 0

)
− q −Q∗R̃Q

)−1

,

where Q ∈ Mn−1,1(M2(C)),

Qi =
1√
n

(
0 Xni

X̄in 0

)

and, with B̃ = (Bij)1≤i,j≤n−1, B̃(z) = B̃ − q(z, 0) ⊗ In−1,

R̃ = (B̃ − q ⊗ In−1)
−1 = (B̃(z)− ηI2(n−1))

−1

is the resolvent of a minor. We denote by Fn−1 the smallest σ-algebra spanned by the

variables (Xij)1≤i,j≤n−1. We notice that R̃ is Fn−1-measurable and is independent of Q.
If En[ · ] := E[ · |Fn−1], we get, using (4.14) and (4.16)

En

[
Q∗R̃Q

]
=

∑

1≤k,ℓ≤n−1

En

[
Q∗

kR̃kℓQℓ

]

=
σ2

n

n−1∑

k=1

(
ãk 0

0 d̃k

)

=
σ2

n

n−1∑

k=1

(
ãk 0
0 ãk

)
,

where

R̃kk =

(
ãk b̃k
c̃k d̃k

)
.

Recall that B̃(z) is a minor of B(z). We may thus use interlacing as in (4.13) for the
function f = (· − η)−1, and we find

∣∣∣∣∣

n−1∑

k=1

ãk −
n∑

k=1

ak

∣∣∣∣∣ ≤ 2

∫

R

1

|x− η|2 dx = O

(
1

Im(η)

)
.
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Hence, we have checked that

En

[
Q∗R̃Q

]
=

(
a 0
0 a

)
+ ε1,

with ‖ε1‖2 = o(1) (note here that q is fixed). Moreover, if we define

ε2 := En

[(
Q∗R̃Q− En

[
Q∗R̃Q

])∗(
Q∗R̃Q− En

[
Q∗R̃Q

])]

then, since
∥∥∥R̃
∥∥∥
2
≤ Im(z)−1, an elementary computation gives

‖ε2‖2 = O

(
1

nIm(z)2

)
= o(1).

Also, we note by lemma 4.17 that a(q) is close to its expectation:

E|a(q)− Ea(q)|2 = O

(
1

nIm(z)2

)
= o(1).

Thus, the matrix

D =
1√
n

(
0 Xnn

X̄nn 0

)
−Q∗R̃Q− E

(
a 0
0 a

)

has a norm which converges to 0 in expectation as n→ ∞. Now, we use the identity

Rnn +

(
q + E

(
a 0
0 a

))−1

= RnnD

(
q + E

(
a 0
0 a

))−1

.

Hence, since the norms of

(
q + E

(
a 0
0 a

))−1

and Rnn are at most Im(η)−1, we get

ERnn = −
(
q + E

(
a 0
0 a

))−1

+ ε

with ‖ε‖2 = o(1). In other words, using exchangeability,

E

(
a b
b̄ a

)
= −

(
q + E

(
a 0
0 a

))−1

+ ε.

Step Five: Unicity of the fixed point equation. From what precedes, any accumulation

point of E

(
a b
b̄ a

)
is solution of the fixed point equation

(
α β
β̄ α

)
= −

(
q +

(
α 0
0 α

))−1

, (4.18)

with α = α(q) ∈ C+. We find

α =
α+ η

|z|2 − (α+ η)2
.

Hence, α is a root of a polynomial of degree 3. For any z ∈ C+, it is simple to check that
this equation has a unique solution in C+ which can be explicitly computed. Alternatively,
we know from (4.17) and Montel’s theorem that η ∈ C+ 7→ α(q(z, η)) ∈ C+ is analytic. In
particular, it is sufficient to check that there is a unique solution in C+ for η = it, with
t > 0. To this end, we also notice from (4.17) that α(q) ∈ iR+ for q = q(z, it). Hence, if
h(z, t) = Im(α(q)), we find

h =
h+ t

|z|2 + (h+ t)2
.

Thus, h 6= 0 and

1 =
1 + th−1

|z|2 + (h+ t)2
.
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The right hand side in a decreasing function in h on (0,∞) with limits equal to +∞ and
0 at h→ 0 and h→ ∞. Thus, there is a unique solution of the above equation.

We have thus proved that E

(
a b
b̄ a

)
converges. The proof of corollary 4.9 is over.

4.6. The quaternionic resolvent: an alternative look at the circular law.

Motivation. The aim of this subsection is to develop an efficient machinery to analyze the
spectral measures of a non-Hermitian matrix which avoids a direct use of the logarithmic
potential and the singular values. This approach is built upon methods in the physics
literature, e.g. [46, 66, 112, 111]. As we will see, it is a refinement of the linearization
procedure used in the proof of corollary 4.9. Recall that the Cauchy-Stieltjes transform of
a measure ν on R is defined, for η ∈ C+, as

mν(η) =

∫

R

1

x− η
dν(x).

The Cauchy-Stieltjes transform characterizes every probability measure on R, and actually,
following Remark 4.6, every probability measure on C. However, if the support of the
measure is not one-dimensional, then one needs the knowledge of the Cauchy-Stieltjes
transform inside the support, which is not convenient. For a probability measure on C, it
is tempting to define a quaternionic Cauchy-Stieltjes transform. For q ∈ H+, where

H+ :=

{(
η z
z̄ η

)
, z ∈ C, η ∈ C+

}
,

we would define

Mµ(a) =

∫

C

((
0 λ
λ̄ 0

)
− q

)−1

dµ(λ) ∈ H+.

This transform characterizes the measure: in D′(C),

lim
t↓0

(∂Mµ(q(z, it))12 = −πµ,

where ∂ is as in (4.3) and

q(z, η) :=

(
η z
z̄ η

)
.

If A ∈ Mn(C) is normal then MµA
can be recovered from the trace of a properly defined

quaternionic resolvent. If A is not normal, the situation is however more delicate and
needs a more careful treatment.

Definition of quaternionic resolvent. For further needs, we will define this quaternionic
resolvent in any Hilbert space. Let H be an Hilbert space with inner product 〈·, ·〉. We
define the Hilbert space H2 = H × Z/2Z. For x = (y, ε) ∈ H2, we set x̂ = (y, ε + 1). In

particular, this transform is an involution ˆ̂x = x. There is the direct sum decomposition
H2 = H0 ⊕H1 with Hε = {x = (y, ε) : y ∈ H}.

For A be an operator defined on a dense domain D(A) ⊂ H. This operator can be
extended to an operator on D(A) ⊗ Z/2Z by setting Ax = (ay, ε), for all x = (y, ε) ∈
D(A) ⊗ Z/2Z (in other word we extend A by A ⊗ I2). We define the operator B in
D(B) = D(A)⊗ Z/2Z by

Bx =

{
A∗x̂ if x ∈ H0

Ax̂ if x ∈ H1.

For x ∈ H, if Πx : H2 → C2 denotes the orthogonal projection on ((x, 0), (x, 1)), for
x, y ∈ D(A), we find

Bxy := ΠxBΠ∗
y =

(
0 〈x,Ay〉

〈x,A∗y〉 0

)
∈ M2(C).
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The operator B will be called the bipartized operator of A, it is an Hermitian operator (i.e.
for all x, y ∈ D(B), 〈Bx, y〉 = 〈x,By〉). If B is essentially self-adjoint (i.e. it has a unique
self-adjoint extension), we may define the quaternionic resolvent of A for all q ∈ H+ as

RA(q) = (B − IH ⊗ q)−1

Indeed, if q = q(z, η), we note that RA is the usual resolvent at η of the essentially self-
adjoint operator B(z) = B − IH ⊗ q(z, 0). Hence RA inherits the usual properties of
resolvent operators (analyticity in η, bounded norm). We define

RA(q)xy := ΠxRA(q)Π
∗
y.

If H is separable and (ei)i≥1 is a canonical orthonormal basis of H, we simply write Rij

instead of RA(q)eiej , i, j ∈ V . Finally, if A ∈ Mn(C), we set

ΓA(q) =
1

n

n∑

k=1

RA(q)kk.

If A is normal then it can be checked that R(q)kk ∈ H+ and ΓA(q) = MµA
(q). However,

if A is not normal, this formula fails to hold. However, the next lemma explains how to
recover anyway µA from the resolvent.

Lemma 4.18 (From quaternionic transform to spectral measures). Let A ∈ Mn(C) and
q = q(z, η) ∈ H+. Then,

ΓA(q) =

(
a(q) b(q)
b̄(q) a(q)

)
∈ H+.

Moreover,

mν̌A−z
(η) = a(q)

and, in D′(C),

µA = − 1

π
lim

q(z,it):t↓0
∂b(q).

Proof. For ease of notation, assume that z = 0 and set τ(·) = 1
nTr(·). If P is the permu-

tation matrix associated to the permutation σ(2k − 1) = k, σ(2k) = n+ k, we get

(B − IH ⊗ q)−1 = P ∗
(
−η A
A∗ −η

)−1

P = −P
(
η(η2 −AA∗)−1 A(η2 −A∗A)−1

A∗(η2 −AA∗)−1 η(η2 −A∗A)−1

)
P.

Hence,

ΓA(q) = −
(

ητ(η2 −AA∗)−1 τ
(
A(η2 −A∗A)−1

)

τ
(
A∗(η2 −AA∗)−1

)
ητ(η2 −A∗A)−1

)
.

Notice that

mν̌A(η) =
1

2

∫
1

x− η
− 1

x+ η
dνA(x)

=

∫
η

x2 − η2
dνA(x)

=

∫
η

x− η2
dµAA∗(x)

= ητ(AA∗ − η2)−1.

Note also that µA∗A = µAA∗ implies that

τ(η2 −AA∗)−1 = τ(η2 −A∗A)−1.
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Finally, since τ is a trace,

τ
(
A(η2 −A∗A)−1

)
= τ

(
(η2 −A∗A)−1A

)

= τ((η2 −A∗A)−1A)∗

= τ(A∗(η2 −AA∗)−1).

Applying the above to A− z, we deduce the first two statements.
For the last statement, we write
∫

log |s+ it| dνA−z(s) =
1

2

∫
log(s2 + t2) dνA−z(s) =

1

2
τ log((A− z)(A− z)∗ + t2).

Hence, from Jacobi formula (see remark 4.6 for the definition of ∂ and ∂)

∂

∫
log |s+ it| dνA−z(s) =

1

2
τ
(
((A− z)(A− z)∗ + t2)−1∂((A− z)(A− z)∗ + t2)

)

= −1

2
τ
(
((A− z)(A− z)∗ + t2)−1(a− z)

)

= −1

2
b(q(z, it)).

The function
∫
log |s+ it| dνA−z(s) decreases monotonically to

∫
log(s) dνA−z(s) = −UµA

(z)

as t ↓ 0. Hence, in distribution,

µA = lim
t↓0

2

π
∂∂

∫
log |s+ it| dνA−z(s).

The conclusion follows. �

Girko’s Hermitization lemma revisited. There is a straightforward extension of Girko’s
lemma 4.4 that uses the quaternionic resolvent.

Lemma 4.19 (Girko Hermitization). Let (An)n≥1 be a sequence of complex random ma-
trices defined on a common probability space where An takes its values in Mn(C). Assume
that for all q ∈ H+, there exists

Γ(q) =

(
a(q) b(q)
b̄(q) a(q)

)
∈ H+

such that for a.a. z ∈ C, η ∈ C+, with q = q(z, η),

(i’) a.s. ΓAn(q) converges to Γ(q) as n→ ∞
(ii) a.s. (respectively in probability) log is uniformly integrable for (νAn−zI)n≥1

Then there exists a probability measure µ ∈ P(C) such that

(j) a.s. (respectively in probability) µAn  µ as n→ ∞
(jj’) In D′(C),

µ = − 1

π
lim

q(z,it):t↓0
∂b(q).

Note that using lemma 4.18, assumption (i′) implies assumption (i) of lemma 4.4 : the
limit probability measure νz is characterized by

mν̌z(η) = a(q).

The potential interest of lemma 4.19 lies in the formula for µ. It avoids any use the
logarithmic potential.
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Concentration. The quaternionic resolvent enjoys a simple concentration inequality, ex-
actly as for the empirical singular values measure.

Lemma 4.20 (Concentration for the quaternionic resolvent). If A is a random matrix in
Mn(C) with independent rows (or columns) then for any q = q(z, η) ∈ H+ and t ≥ 0,

P(‖ΓA(q)− EΓA(q)‖2 ≥ t) ≤ 2 exp

(
−nIm(η)2t2

8

)
.

Proof. Let M,N ∈ Mn(C) with bipartized matrices B,C ∈ M2n(C). We have

‖ΓM (q)− ΓN (q)‖2 ≤
4 rank(M −N)

nIm(η)
. (4.19)

Indeed, from the resolvent identity, for any q ∈ H+,

D = RM (q)−RN (q) = RM (q)(C −B)RN (q).

It follows that D has rank r ≤ rank(B − C) = 2 rank(M − N). Also, recall that the
operator norm of D is at most 2Im(η)−1. Hence, in the singular values decomposition

D =
r∑

i=1

siuiv
∗
i

we have si ≤ 2Im(η)−1. If Πk : C2n → C2 is the orthogonal projection on span{e2k−1, e2k},
then

ΓM (q)− ΓN (q) =
1

n

n∑

k=1

ΠkDΠ∗
k =

1

n

r∑

i=1

si

n∑

k=1

(Πkui)(Πkvi)
∗.

Using Cauchy-Schwartz inequality,

‖ΓM (q)− ΓN (q)‖2 ≤
1

n

r∑

i=1

si

√√√√
(

n∑

k=1

‖Πkui‖22

)(
n∑

k=1

‖Πkvi‖22

)
=

1

n

r∑

i=1

si.

We obtain precisely (4.19). The remainder of the proof is now identical to the proof of
lemma 4.17: we express ΓA(q)−EΓA(q) has a sum of bounded martingales difference. �

Computation for the circular law. As pointed out in [112], the circular law is easily found
from the quaternionic resolvent. Indeed, using lemma 4.20 and the proof of corollary 4.9,
we get, for all q ∈ H+, a.s.

lim
n→∞

Γn−1/2X(q) = Γ(q) =

(
α(q) β(q)
β̄(q) α(q)

)
,

where, from (4.18),

Γ = −(q + diag(Γ))−1 18.

In the proof of corollary 4.9, we have checked that for η = it, α(q) = ih(z, t) ∈ iR+ where

1 =
1 + th−1

|z|2 + (h+ t)2
.

We deduce easily that

lim
t↓0

h(z, t) =

{√
1− |z|2 if |z| ≤ 1

0 otherwise.

Then, from

β(q) =
−z

|z|2 − (a(q) + η)2
,

18This equation is the analog of the fixed point equation satisfied by the Cauchy-Stieltjes transform m
of the semi circular law: m(η) = −(η +m(η))−1.
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we find

lim
q(z,it):t↓0

β(q) =

{
−z if |z| ≤ 1

0 otherwise.

As lemma 4.19 dictates, if we compose by −π−1∂ we retrieve the circular law.

5. Related models and free probability interpretation

It is worthwhile to mention that as for the Fourier transform, the pointwise convergence
of logarithmic potentials along a sequence of probability measures to the logarithmic po-
tential of a probability measure implies the weak convergence of the sequence. We need
however some tightness. This is captured by the following lemma.

Lemma 5.1 (From converging potentials to weak convergence). If (µn)n≥1 is a sequence

in P(C) and if µ ∈ P(C) are such that Uµn(z) → Uµ(z) as n → ∞ for a.a. z ∈ C and

limn→∞
∫
{z∈C:|z|>r}log |z| dµn(z) <∞ for some r ≥ 1, then µn  µ as n→ ∞.

Proof. The function log |·| is uniformly locally integrable for the sequence (µn)n≥1. It

follows then by dominated convergence that ∆Uµn tends to ∆Uµ as n→ ∞, in D′(C). �

It is worthwhile to state the following lemma, which can be seen as a variant of the
Hermitization lemma 4.4. It is also a slight generalization of [132, Lemma 3.1].

Lemma 5.2 (Replacement principle). Let (An)n≥1 and (Bn)n≥1 be two sequences where
An and Bn are random variables in Mn(C). If for a.a. z ∈ C, a.s.

(k) limn→∞UµAn
(z)− UµBn

(z) = 0
(kk) log is uniformly integrable for νAn−zIn and νBn−zIn

then a.s. µAn − µBn  0 as n→ ∞.

Using the replacement principle, Tao and Vu have proved in [132] that the universality
of the limit spectral measures of random matrices goes far beyond the circular law. It is
stated here in a stronger form than the original version, see [22].

Theorem 5.3 (Universality principle for sums of matrices). Let X and G be the random
matrices considered in sections 3 and 4 obtained from infinite tables with i.i.d. entries.
Consider a deterministic sequence (Mn)n≥1 such that Mn ∈ Mn(C) and for some p > 0,

lim
n→∞

∫
xp dνMn(s) <∞.

Then a.s. µn−1/2X+Mn
− µn−1/2G+Mn

 0 as n→ ∞.

5.1. Related models. We give a list of models related to the circular law theorem 2.2.

Sparsity. The circular law theorem 2.2 may remain valid if one allows the entries law to
depend on n. This extension contains for instance sparse models in which the law has an
atom at 0 with mass pn → 1 at a certain speed, see [63, 128, 137].

Outliers. The circular law theorem 2.2 allows the blow up of an arbitrary (asymptotically
negligible) fraction of the extremal eigenvalues. Indeed, it was shown by Silverstein [119]

that if E(|X11|4) < ∞ and E(X11) 6= 0 then the spectral radius |λ1(n−1/2X)| tends to
infinity at speed

√
n and has a Gaussian fluctuation. This observation of Silverstein is the

base of [31], see also the ideas of Andrew [8]. More recently, Tao studied in [125] the outliers
produced by various types of perturbations including general additive perturbations.
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Sum and products. The scheme of proof of theorem 2.2 (based on Hermitization, loga-
rithmic potential, and uniform integrability) turns out to be quite robust. It allows for
instance to study the limit of the empirical distribution of the eigenvalues of sums and
products of random matrices, see [22], and also [64] in relation with Fuss-Catalan laws.
We may also mention [100]. The crucial step lies in the control of the small singular values.

Cauchy and the sphere. It is well known that the ratio of two independent standard real
Gaussian variables is a Cauchy random variable, which has heavy tails. The complex
analogue of this phenomenon leads to a complex Cauchy random variable, which is also the
image law by the stereographical projection of the uniform law on the sphere. The matrix
analogue consists in starting from two independent copies G1 and G2 of the Complex
Ginibre Ensemble, and to consider the random matrix Y = G−1

1 G2. The limit of µY was
analyzed by Forrester and Krishnapur [48]. Note that Y does not have i.i.d. entries.

Random circulant matrices. The eigenvalues of a non-Hermitian circulant matrix are linear
functionals of the matrix entries. Meckes [97] used this fact together with the central limit
theorem in order to show that if the entries are i.i.d. with finite positive variance then the
scaled empirical spectral distribution of the eigenvalues tends to a Gaussian law. We can
easily imagine a heavy tailed version of this phenomenon with α-stable limiting laws.

Single ring theorem. Let D ∈ Mn(R+) be a random diagonal matrix and U, V ∈ Mn(C)
be two independent Haar unitary matrices, independent of D. The law of X := UDV ∗

is unitary invariant by construction, and νX = µD (it is a random SVD). Assume that
µD tends to some limiting law ν as n → ∞. It was conjectured by physicists that µX
tends to a limiting law which is supported in a centered ring of the complex plane, i.e.
a set of the form {z ∈ C : r ≤ |z| ≤ R}. Under some additional assumptions, this was
proved by Guionnet, Krishnapur, and Zeitouni [67] by using the Hermitization technique
and specific aspects such as the Schwinger-Dyson non-commutative integration by parts.
Guionnet and Zeitouni have also obtained the convergence of the support in a more recent
work [68]. The Complex Ginibre Ensemble is a special case of this unitary invariant model.

Large deviations and logarithmic potential with external field. The circular law theorem
3.5 for the Complex Ginibre Ensemble can be seen as a special case of the circular law
theorem for unitary invariant random matrices with eigenvalues density proportional to

(λ1, . . . , λn) 7→ exp

(
− 1

2n

n∑

i=1

V (λi)

)
∏

i<j

|λi − λj |2

where V : C 7→ R is a smooth potential growing enough at infinity. Since

exp

(
− 1

2n

n∑

i=1

V (λi)

)
∏

i<j

|λi − λj|2 = exp


− 1

2n

n∑

i=1

V (λi) +
1

2

∑

i<j

log |λi − λj |




we discover an empirical version of the logarithmic energy functional E(·) defined in (4.8)
penalized by the “external” potential V . Indeed, it has been shown by Hiai and Petz [104]
(see also Ben Arous and Zeitouni [18]) that the Complex Ginibre Ensemble satisfies a large
deviation principle at speed n2 for the weak topology on the set of symmetric probability
measures (with respect to conjugacy), with good rate function given by

µ 7→ 1

2

(
E(µ) +

∫
V dµ

)
− 3

8
=

1

4

∫∫
(V (z) + V (λ)− 2 log |λ− z|) dµ(z)dµ(λ) − 3

8
.

This rate function achieves its minimum 0 at point µ = C1. This is coherent with the fact
that the circular law C1 is the minimum of the logarithmic energy among the probability
measures on C with fixed variance, see the book of Saff and Totik [115]. Note that this
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large deviation principle gives an alternative proof of the circular law for the Ginibre
Ensemble thanks to the first Borel-Cantelli lemma.

Dependent entries. According to Girko, in relation to his “canonical equation K20”, the
circular law theorem 2.2 remains valid for random matrices with independent rows pro-
vided some natural hypotheses [55]. A circular law theorem is available for randomMarkov
matrices including the Dirichlet Markov Ensemble [23], and random matrices with i.i.d.
log-concave isotropic rows19 [1]. Another Markovian model consists in a non-Hermitian
random Markov generator with i.i.d. off-diagonal entries, which gives rise to a new limiting
spectral distribution, possibly not rotationally invariant, which can be interpreted using
free probability theory, see [24]. Yet another model related to projections in which each
row has a zero sum is studied in [125]. To end up this tour, let us mention another kind of
dependence which comes form truncations of random matrices with depend entries such
as Haar unitary matrices. Namely, let U be distributed according to the uniform law on
the unitary group Un (we say that U is Haar unitary). Dong, Jiang, and Li have shown in
[37] that the empirical spectral distribution of the diagonal sub-matrix (Uij)1≤i,j≤m tends
to the circular law if m/n → 0, while it tends to the arc law (uniform law on the unit
circle {z ∈ C : |z| = 1}) if m/n→ 1. Other results of the same flavor can be found in [79].

Tridiagonal matrices. The limiting spectral distributions of random tridiagonal Hermitian
matrices with i.i.d. entries are not universal and depend on the law of the entries, see [105]
for an approach based on the method of moments. The non-Hermitian version of this
model was studied by Goldsheid and Khoruzhenko [61] by using the logarithmic potential.
Indeed, the tridiagonal structure produces a three terms recursion on characteristic poly-
nomials which can be written as a product of random 2× 2 matrices, leading to the usage
of a multiplicative ergodic theorem to show the convergence of the logarithmic potential
(which appears as a Lyapunov exponent). In particular, neither the Hermitization nor the
control the smallest and small singular values are needed here. Indeed the approach relies
on a version of the converging potential lemma 5.1. Despite this apparent simplicity, the
structure of the limiting distributions may be incredibly complicated and mathematically
mysterious, as shown on the Bernoulli case by the physicists Holz, Orland, and Zee [73].

5.2. Free probability interpretation. As we shall see, the circular law and its exten-
sions have an interpretation in free probability theory, a sub-domain of operator algebra
theory. Before going further, we should recall briefly certain classical notions of operator
algebra. We refer to Voiculescu, Dykema and Nica[135] for a complete treatment of free
non-commutative variables, see also the book by Anderson, Guionnet, and Zeitouni for the
link with random matrices [7]. In the sequel, H is an Hilbert space and we consider a pair
(M, τ) where M is an algebra of bounded operators on H, stable by the adjoint operation
∗, and where τ : M → C is a linear map such that τ(1) = 1, τ(aa∗) = τ(a∗a) ≥ 0.

Definition of Brown measure. For a ∈ M, define |a| =
√
aa∗. For b self-adjoint element

in M, we denote by µb the spectral measure of b: it is the unique probability measure on
the real line satisfying, for any integer k ∈ N,

τ(bk) =

∫
tkdµb(t).

Also, if a ∈ M, we define

νa = µ|a|.

19An absolutely continuous probability measure on Rn is log-concave if its density is e−V with V convex.
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Then, in the spirit of (4.6), the Brown measure [30] of a ∈ M is the unique probability
measure µa on C, which satisfies for almost all z ∈ C,

∫
log |z − λ| dµa(λ) =

∫
log(s) dνa−z(s).

In distribution, it is given by the formula20

µa =
1

2π
∆

∫
log(s) dνa−z(s). (5.1)

The fact that the above definition is indeed a probability measure requires a proof, which
can be found in [71]. Our notation is consistent: first, if a is self-adjoint, then the Brown
(spectral) measure coincides with the spectral measure. Secondly, if M = Mn(C) and
τ := 1

nTr is the normalized trace on Mn(C), then we retrieve our usual definition for νA
and µA. It is interesting to point out that the identity (5.1) which is a consequence of
the definition of the eigenvalues when M = Mn(C) serves as a definition in the general
setting of von Neumann algebras.

Beyond bounded operators, and as explained in Brown [30] and in Haagerup and Schultz
[71], it is possible to define, for a class M̄ ⊃ M of closed densely defined operators affiliated
with M, a probability measure on C called the Brown spectral measure of a ∈ M̄.

Failure of the method of moments. For non-Hermitian matrices, the spectrum does not
necessarily belong to the real line, and in general, the limiting spectral distribution is
not supported in the real line. The problem here is that the moments are not enough
to characterize laws on C. For instance, if Z is a complex random variable following the
uniform law Cκ on the centered disc {z ∈ C; |z| ≤ κ} of radius κ then for every r ≥ 0,
E(Zr) = 0 and thus Cκ is not characterized by its moments. Any rotational invariant law
on C with light tails shares with Cκ the same sequence of null moments. One can try to
circumvent the problem by using “mixed moments” which uniquely determine µ by the
Weierstrass theorem. Namely, for every A ∈ Mn(C), if A = UTU∗ is the Schur unitary
triangularization of A then for every integers r, r′ ≥ 0 and with z = x+ iy and τ = 1

nTr,
∫

C

zrzr
′
dµA(z) =

n∑

i=1

λri (A)λi(A)
r′

= τ(T rT
r′
) 6= τ(T rT ∗r′) = τ(ArA∗r′).

Indeed equality holds true when T = T ∗, i.e. when T is diagonal, i.e. when A is normal.
This explains why the method of moments looses its strength for non-normal operators.
To circumvent the problem, one may think about using the notion of ⋆-moments. Note
that if A is normal then for every word Aε1 · · ·Aεk where ε1, . . . , εn ∈ {1, ∗}, we have
τ(Aε1 · · ·Aεk) = τ(Ak1A∗k2) where k1, k2 are the number of occurrence of A and A∗.

⋆-distribution. The ⋆-distribution of a ∈ M is the collection of all its ⋆-moments:

τ(aε1aε2 · · · aεn),
where n ≥ 1 and ε1, . . . , εn ∈ {1, ∗}. The element c ∈ M is circular when it has the ⋆-

distribution of (s1+ is2)/
√
2 where s1 and s2 are free semi circular variables with spectral

measure of Lebesgue density x 7→ 1
π

√
4− x21[−2,2](x).

The ⋆-distribution of a ∈ M allows to recover the moments of |a− z|2 = (a− z)(a− z)∗
for all z ∈ C, and thus νa−z for all z ∈ C, and thus the Brown measure µa of a. Actually,
for a random matrix, the ⋆-distribution contains, in addition to the spectral measure, an
information on the eigenvectors of the matrix.

We say that a sequence of matrices (An)n≥1 where A takes it values in Mn(C) converges
in ⋆-moments to a ∈ M, if all ⋆-moments converge to the ⋆-moments of a ∈ M. For

20The quantity exp

∫
log(t) dµ|a|(t) is known as the Fuglede-Kadison determinant of a ∈ M, see [49].
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example, if G ∈ Mn(C) is our complex Ginibre matrix, then a.s. as n → ∞, n−1/2G
converges in ⋆-moments to a circular element.

Discontinuity of the Brown measure. Due to the unboundedness of the logarithm, the
Brown measure µa depends discontinuously on the ⋆-moments of a [21, 120]. The limiting
measures are perturbations by “balayage”. A simple counter example is given by the
matrices of example 1.2. For random matrices, this discontinuity is circumvented in the
Girko Hermitization by requiring a uniform integrability, which turns out to be a.s. satisfied
the random matrices n−1/2X in the circular law theorem 2.2.

However, Śniady [120, Theorem 4.1] has shown that it is always possible to regularize the
Brown measure by adding an additive noise. More precisely, if G is as above and (An)n≥1

is a sequence of matrices where An takes its values in Mn(C), and if the ⋆-moments of An

converge to the ⋆-moments of a ∈ M as n → ∞, then a.s. n → ∞ µAn+tn−1/2G converges
to µa+tc, c is circular element free of a. In particular, by choosing a sequence tn going
to 0 sufficiently slowly, it possible to regularize the Brown measure: a.s. µAn+tnn−1/2G
converges to µa. Note that the universality theorem 5.3 shows that the same result holds
if we replace G by our matrix X. We refer to Ryan [114] and references therein for the
analysis of the convergence in ⋆-moments. See also the forthcoming book of Tao [126].

6. Heavy tailed entries and new limiting spectral distributions

This section is devoted to the study of the analogues of the quarter circular and circu-
lar law theorems 2.1-2.2 when X11 has an infinite variance (and thus heavy tails). The
approach taken from [26] involves many ingredients including the Hermitization of section
4. To lighten the notations, we often abridge A− zI into A− z for an operator or matrix
A and a complex number z.

6.1. Heavy tailed analogs of quarter circular and circular laws. We now come
back to an array X := (Xij)1≤i,j≤n of i.i.d. random variables on C. We lift the hypothesis
that the entries have a finite second moment: we will assume that,

• for some 0 < α < 2,

lim
t→∞

tαP(|X11| ≥ t) = 1, (6.1)

• as t→ ∞, the conditional probability

P

(
X11

|X11|
∈ ·

∣∣ |X11| ≥ t

)

converges to a probability measure on the unit circle S1 := {z ∈ C : |z| = 1}.
The law of the entries belongs then to the domain of attraction of an α-stable law. An
example is obtained when |X11| and X11/|X11| are independent with |X11| = |S| where S
is real symmetric α-stable. Another example is given by X11 = εW−1/α with ε and W
independent such that ε is supported in S1 while W is uniform on [0, 1].

The interest on this type of random matrices has started with the work of the physicists
Bouchaud and Cizeau [28]. One might think that the analog of the Ginibre ensemble is a
matrix with i.i.d. α-stable entries. It turns out that this random matrix ensemble is not
unitary invariant and there is no explicit expression for the distribution of its eigenvalues.
This lack of comparison with a canonical ensemble makes the analysis of the limit spectral
measures more delicate. We may first wonder what is the analog of the quarter circular
law theorem 2.1. This question has been settled by Belinschi, Dembo and Guionnet [16].

Theorem 6.1 (Singular values of heavy tailed randommatrices). There exists a probability
measure να on R+ such that a.s. νn−1/αX  να as n→ ∞.
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Figure 6. Spectrum of a single n× n matrix n−1/αX with n = 4000 and

i.i.d. heavy tailed entries with X11
d
= εU−1/α with α = 1 and U uniform

on [0, 1] and ε uniform on {−1, 1} independent of U .

This probability measure να depends only on α. It does not have a known explicit closed
form but has been studied in [17, 25, 16]. We know that να has a bounded continuous
density fα on R+, which is analytic on some neighborhood of ∞. The explicit value of
fα(x) is only known for x = 0. But, more importantly, we have

lim
t→∞

tα+1fα(t) = α.

In particular, να inherits the tail behavior of the entries:

lim
t→∞

tανα([t,∞)) = 1.

The measure να is a perturbation of the quarter circular law: it can be proved that να
converges weakly to the quarter circular law as α converges to 2. Contrary to the finite
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variance case, the n−1/α normalization cannot be understood from the computation of
∫
s2 dνn−1/αX(s) =

1

n1+1/α

n∑

i,j=1

|Xij |2

since the later diverges. A proof of the tightness of νn−1/αX requires some extra care that
we will explain later on. However, at a heuristic level, we may remark that if R1, . . . , Rn

denotes the rows of n−1/αX then for each k,

‖Rk‖22 =
1

n2/α

n∑

i=1

|Xki|2

converges weakly to a non-negative α
2 -stable random variable. Hence the n−1/α normal-

ization stabilizes the norm of each row of X.
Following [26], we may also investigate the behavior of the eigenvalues of X. Here is

the analogue of the circular law theorem 2.2 for our heavy tailed entries matrix model.

Theorem 6.2 (Eigenvalues of heavy tailed random matrices). There exists a probability
measure µα on C such that in probability µn−1/αX  µα as n→ ∞. Moreover, if X12 has
a bounded density, then the convergence is almost sure.

We believe that theorem 6.2 can be upgraded to an a.s. weak convergence, but our
method does not catch this due to slow “in probability” controls on small singular values.

Again, the measure µα depends only on α and is not known explicitly. However, it is
isotropic and has a bounded continuous density with respect to Lebesgue measure dxdy
on C: dµα(z) = gα(|z|)dxdy. The value of gα(r) is explicit for r = 0. As r → ∞, the tail
behavior of gα is up to multiplicative constant equivalent to

r2(α−1)e−
α
2
rα .

This exponential decay is quite surprising and contrasts with the power tail behavior of
fα. It indicates that X is typically far from being a normal matrix. Also, we see that the
eigenvalues limit spectrum is more concentrated than the singular values limit spectrum.
In fact, in the finite variance case, the phenomenon is already present: the quarter circular
law has support [0, 2] while the circular law has support the unit disc. Again, the measure
is µα is perturbation of the circular law: µα converges weakly to the circular law as α
converges to 2.

The proof of theorem 6.2 will follow the general strategy of Girko’s Hermitization.
Lemma 4.4 gives a characterization of the limit measure in terms of its logarithmic po-
tential. Here, it turns out to be not so convenient in order to analyze the measure µα.
We will rather use the quaternionic version of Girko’s Hermitization, i.e. lemma 4.19. For
statement (i′) in lemma 4.19, we will prove a generalized version of theorem 6.1.

Theorem 6.3 (Singular values of heavy tailed random matrices). For all z ∈ C there
exists a probability measure να,z on R+ such that a.s. νn−1/αX−z  να,z as n → ∞.
Moreover, with the notations used in lemma 4.19, for all q = q(z, η) ∈ H+, there exists
Γ(q) ∈ H+, such that a.s. Γn−1/αX(q) converges to Γ(q) and Γ(q)11 = mν̌α,z(η).

Objective method - sparse random graphs and trees. The strategy for proving theorem 6.3,
borrowed from [26], will differ significantly from the proof of theorem 2.1. We will prove

that n−1/αX converges in some sense, as n → ∞, to a limit random operator A defined
in the Hilbert space ℓ2(N). This will be done by using the “objective method” initially
developed by Aldous and Steele in the context of randomized combinatorial optimization,
see [6]. We build an explicit operator on Aldous’ Poisson Weighted Infinite Tree (PWIT)

and prove that it is the local limit of the matrices n−1/αX in an appropriate sense. While
Poisson statistics arises naturally as in all heavy tailed phenomena, the fact that a tree
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structure appears in the limit is roughly explained by the observation that non-vanishing
entries of the rescaled matrix n−1/αX can be viewed as the adjacency matrix of a sparse
random graph which locally looks like a tree. In particular, the convergence to PWIT
is a weighted-graph version of familiar results on the local tree structure of Erdős-Rényi
random graphs.

Free probability. We note finally that it is possible to associate to the PWIT a natural
operator algebra M with a tracial state τ . Then for some operator a affiliated to M, the
probability measure µα is equal to the Brown measure µa of a, and να = µ|a| = νa is the
singular value measure of a. See the work of Aldous and Lyons [5, 93, Example 9.7 and
Subsection 5], and the recent work of Male [94].

6.2. Tightness and uniform integrability.

Large singular values. We first prove the a.s. tightness of the sequences (µn−1/αX)n≥1 and
(νn−1/αX−z)n≥1 with z ∈ C. It is sufficient to prove that for some p > 0, for all z ∈ C a.s.

lim
n→∞

∫
sp dνn−1/αX−z(s) <∞. (6.2)

From (1.6), for any A ∈ Mn(C), with have si(A− z) ≤ si(A) + |z| and thus
∫
sp dνn−1/αX−z(s) ≤

∫
(x+ |z|)p dνn−1/αX(s).

Moreover, from 1.3 we get, for any p > 0,
∫

|λ|p dµn−1/αX(λ) ≤
∫
sp dνn−1/αX(s).

In summary, it it is sufficient to prove that for some p > 0, a.s.

lim
n→∞

∫
sp dνn−1/αX(s) <∞. (6.3)

and (6.2) will follow. We shall use the following Schatten bound: for all 0 < p ≤ 2,

∫
sp dνA(s) ≤

1

n

n∑

k=1

‖Rk‖p2.

for every A ∈ Mn(C), where R1, . . . , Rn are the rows of A (for a proof, see Zhan [138,
proof of Theorem 3.32]). The above inequality is an equality if p = 2 (for p > 2, the

inequality is reversed). For our matrix, A = n−1/αX, we find

∫
|s|p dνn−1/αX(s) ≤ 1

n

n∑

k=1

(
1

n2/α

n∑

i=1

|Xki|2
) p

2

.

The strategy of proof of (6.3) is now clear: the right hand side is a sum of i.i.d. variables,

and from (6.1), Yk,n = n−2/α
∑n

i=1 |Xki|2 is the domain attraction of a non-negative α/2-
stable law. We may thus expect, and it is possible to prove, that for p small enough,

lim
n→∞

EY 4p
k,n <∞.

Then, the classical proof of the strong law of large numbers for independent random
variables bounded in L4 implies (6.3).
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Uniform integrability. We will prove statement (ii) of lemma 4.19 in probability. Fix
z ∈ C. Using (6.2), we shall prove the uniform integrability in probability of min(0, log)
for (νn−1/αX−z)n≥1

. From Markov’s inequality, it is sufficient to prove that for some c > 0,

lim
t→∞

lim
n→∞

P

(∫
s−c dνn−1/αX−z(s) > t

)
= 0. (6.4)

Arguing as in the finite variance case, the latter will in turn follow from two lemmas:

Lemma 6.4 (Lower bound on least singular value). For all d ≥ 0, there exist b, c ≥ 0
such that if M ∈ Mn(C) is deterministic with ‖M‖2 ≤ nd, then for n≫ 1,

P(sn(X +M) ≤ n−b) ≤ c

√
log n

n
.

The next lemma asserts that the i-th smallest singular of the randommatrix n−1/αX+M

is at least of order (i/n)2α/(α+2) in a weak sense. This is not optimal but enough.

Lemma 6.5 (Count of small singular values). There exist 0 < γ < 1 and c0 > 0 such
that for all M ∈ Mn(C), there exists an event Fn such that limn→∞ P(Fn) = 1 and for all
n1−γ ≤ i ≤ n− 1 and n≫ 1,

E
[
s−2
n−i(n

−1/αX +M)
∣∣∣ Fn

]
≤ c0

(n
i

) 2
α
+1
.

Let us first check that these two lemmas imply (6.4) (and thus statement (ii) of lemma

4.19). Let us define the event En := Fn ∩ {sn(n−1/αX − z) ≥ n−b}. Let us define also

En[ · ] := E[ · |En].

Since the event En has probability tending 1, the proof of (6.4) would follow from

lim
n→∞

En

[∫
x−p dνn−1/αX−z(s)

]
<∞.

For simplicity, we write si instead si(n
−1/αX−zI). Since sn ≥ n−b has probability tending

to 1, by lemma 6.5, for all n1−γ ≤ i ≤ n− 1,

En

[
s−2
n−i

]
≤

E
[
s−2
n−i

∣∣∣ Fn

]

P(sn ≥ n−b)
≤ c1

(n
i

) 2
α
+1
.

Then, for 0 < p ≤ 2, using Jensen inequality, we find

En

[∫
s−p dνn−1/αX−z(s)

]
=

1

n

⌊n1−γ⌋∑

i=0

En

[
s−p
n−i

]
+

1

n

n−1∑

i=⌊n1−γ⌋+1

En

[
s−p
n−i

]

≤ n−γnpb +
1

n

n−1∑

i=⌊n1−γ⌋+1

En

[
s−2
n−i

] p
2

≤ n−γ+pb +
1

n

n∑

i=1

c−p
1

(n
i

)( 2
α
+1)(p

2
)
.

In this last expression we discover a Riemann sum. It is uniformly bounded if p < γ/b
and p < 2α/(α + 2). The uniform bound (6.4) follows.

Proof of lemma 6.4. The probability that s1(X) ≥ n1+p is upper bounded by the prob-
ability that one of the entries of X is larger that np. From Markov’s inequality and the
union bound, for p large enough, this event has probability at most 1/n. In particular,
s1(X +M) ≤ s1(X) + s1(M) is at most 2nq for q = max(p, d) with probability at least
1− 1/n. The statement is then a corollary of lemma A.1. Note: a simplified proof in the
bounded density case may be obtained by adapting the proof of lemma 4.11 (see [26]). �
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Sketch of proof of lemma 6.5. We now comment the proof of lemma 6.5, the detailed ar-
gument is quite technical and is omitted here. It can be found in extenso in [26]. First,
as in the finite variance case, the proof reduces to derive a good lower bound on

dist2(X1,W ) = 〈X1, PX1〉,
where X1 is the first row of X, W is a vector space of Co-dimension n − d ≥ n1−γ (in
Rn or Cn) and P is the orthogonal projection on the orthogonal of W . However, in the
finite variance case, dist2(X1,W ) concentrates sharply around its average: n − d. Here,
the situation is quite different, for instance if W = vect(en−d+1, . . . , en), we have

(n − d)−
2
αdist2(X1,W ) = (n− d)−

2
α

n−d∑

i=1

|X1i|2.

and thus (n− d)−
2
αdist2(X1,W ) is close in distribution to a non-negative α/2-stable ran-

dom variable, say S.
On the other hand, if U is a n× n unitary matrix uniformly distributed on the unitary

group (normalized Haar measure), and if W is the span of the last d row vectors, then it

can be argued than dist2(X1,W ) is close in distribution to c(n−d)n 2
α
−1S. Hence, contrary

to the finite variance case, the order of magnitude of the distance of X1 to the vector space
W depends on the geometry of W with respect to the coordinate basis. We have proved
some lower bound on this distance which are universal on W . More precisely, for any
0 < γ < α/4, there exists c1 > 0, such that for some event Gn with P(Gc

n) ≤ c1n
−(1−2γ)/α,

E
[
dist−2(X1,W )

∣∣ Gn

]
≤ c1(n− d)−

2
α .

The above holds for n − d ≥ n1−γ . We have crucially used the fact that for all p > 0,
ES−p is finite, i.e. the non-negative α/2-stable law is flat in the neighborhood of 0.

Note: the result implies that the vector space W = vect(en−d+1, . . . , en) reaches the
worst possible order of magnitude. Unfortunately, the upper bound on the probability of
the event Gc

n is not good enough, and we also have to define the proper event Fn given in
lemma 6.5. This event Fn satisfies P(F c

n) ≤ c exp(−nδ) for some δ > 0 and c > 0. �

6.3. The objective method and the Poisson Weighted Infinite Tree (PWIT).

Local convergence. We now describe our strategy to obtain the convergence of EΓn−1/αX .
It is an instance of the objective method : we prove that our sequence of random matrices
converges locally to a limit random operator. To do this, we first notice that a n × n
complex matrix M can be identified with a bounded operator in ℓ2(N) = {(xk)k∈N ∈ CN :∑

k |xk|2 <∞}, by setting,

Mei =

{∑n
j=1Mjiej if 1 ≤ i ≤ n

0 otherwise.

With an abuse of notation, without further notice, we will identify our matrices with their
associated bounded operator in ℓ2(N). The precise notion of convergence that we will use
is the following.

Definition 6.6 (Local convergence). Let D(N) be the set of compactly supported elements
of ℓ2(N). Suppose (An) is a sequence of bounded operators on ℓ2(N) and A is a linear
operator on ℓ2(N) with domain D(A) = D(N). For any u, v ∈ N we say that (An, u)
converges locally to (A, v), and write

(An, u) → (A, v)

if there exists a sequence of bijections σn : N → N such that

• σn(v) = u
• for all φ ∈ D(N), limn→∞ σ−1

n Anσnφ = Aφ in ℓ2(N).
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With a slight abuse of notation we have used the same symbol σn for the linear isometry
σn : ℓ2(N) → ℓ2(N) induced in the obvious way. Note that the local convergence is
the standard strong convergence of the operator σ−1

n Anσn to A. This re-indexing of N
preserves a distinguished element. It is a local convergence in the following way, if P (x, y)
is a non-commutative polynomial in C, then the definition implies

〈eu, P (An, A
∗
n)eu〉 → 〈ev, P (A,A∗)ev〉.

We shall apply this definition to random operators An and A on ℓ2(N): to be precise, in
this case we say that (An, u) → (A, v) in distribution if there exists a random bijection σn
as in definition 6.6 such that σ−1

n Anσnφ converges in distribution to Aφ, for all φ ∈ D(N),
where a random vector ψn ∈ ℓ2(N) converges in distribution to ψ if

lim
n→∞

Ef(ψn) = Ef(ψ)

for all bounded continuous functions f : ℓ2(N) → R. Finally, we may without harm replace
N by an infinite countable set V . All definitions carry over by considering any bijection
from N to V : namely ℓ2(V ), for v ∈ V , the unit vector ev, D(V ) and so on.

The Poisson Weighted Infinite Tree (PWIT). We now define our limit operator on an
infinite rooted tree with random edge-weights, the Poisson weighted infinite tree (PWIT)
introduced by Aldous [4], see also [6].

The PWIT is the random weighted rooted tree defined as follows. The vertex set of the
tree is identified with Nf := ∪k≥1N

k by indexing the root as N0 = ø, the offsprings of the
root as N and, more generally, the offsprings of some v ∈ Nk as (v1), (v2), . . . ∈ Nk+1 (for
short notation, we write (v1) in place of (v, 1)). In this way the set of v ∈ Nn identifies
the nth generation. We then define T as the tree on Nf with (non-oriented) edges between
the offsprings and their parents (see figure 7).

· · ·

· · ·
· · ·

· · ·

· · ·

· · ·

o

1 2 3 4

11 12 13

111 112 113 114

ξ1
ξ2

ξ3 ξ4

ξ11 ξ12 ξ13

ξ111
ξ112 ξ113 ξ114

21 22 23

ξ21 ξ22 ξ23

Figure 7. Representation of the PWIT.

We denote by Be(1/2) the Bernoulli probability distribution 1
2δ0 + 1

2δ1. Also, recall
that by assumption limt→∞ P(X11/|X11| ∈ · | |X11| ≥ t) = θ(·), a probability measure on
the unit circle S1. Now, assign marks to the edges of the tree T according to a collection
{Ξv}v∈Nf of independent realizations of the Poisson point process with intensity measure
(2ℓ) ⊗ θ ⊗ Be(1/2) on R+ × S1 × {0, 1}, where ℓ denotes the Lebesgue measure on R+.
Namely, starting from the root ø, let Ξø = {(y1, ω1, ε1), (y2, ω2, ε2), . . . } be ordered in
such a way that 0 ≤ y1 ≤ y2 ≤ · · · , and assign the mark (yi, ωi, εi) to the offspring of
the root labeled i. Now, recursively, at each vertex v of generation k, assign the mark
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(yvi, ωvi, εvi) to the offspring labeled vi, where Ξv = {(yv1, ωv1, εv1), (yv2, ωv2, εv2), . . . }
satisfy 0 ≤ yv1 ≤ yv2 ≤ · · · . The Bernoulli mark εvi should be understood as an orientation
of the edge {v, vi}: if εvi = 1, the edge is oriented from vi to v and from v to vi otherwise.

We may define a random operator A on D(Nf ) by the formula, for all v ∈ Nf\{ø}
Aev =

∑

k≥1

(1− εvk)ωvky
−1/α
vk evk + εvωa(v)y

−1/α
v ea(v) (6.5)

where a(v) denotes the ancestor of v, while

Aeø =
∑

k≥1

(1− εk)ωvky
−1/α
k ek.

This defines a proper operator on D(Nf ). Indeed, since {yv1, yv2, . . . } is an homogeneous
Poisson point process of intensity 2 on R+: we have a.s. limk→∞ yvk/k = 2. We thus find
for v ∈ Nf\{ø}

‖Aev‖22 =
∑

k≥1

(1− εvk)y
−2/α
vk + εa(v)y

−2/α
v <∞,

and similarly with ‖Aeø‖2.
Theorem 6.7 (Local convergence to PWIT). In distribution (n−1/αX, 1) → (A, ø).

Sketch of proof. We start with some intuition behind theorem 6.7. The presence of Poisson
point processes is an instance of the Poisson behavior of extreme ordered statistics. If
V11 ≥ V12 ≥ · · · ≥ V1n is the ordered statistics of vector (|X11|, . . . , |X1n|) then, it is
well-known that the random variable in the space of non-increasing infinite sequences

n−1/α(V11, V12, . . . , V1n, 0, . . .)

converges weakly, for the finite dimensional convergence, to
(
x
−1/α
1 , x

−1/α
2 , . . .

)
(6.6)

where x1 ≤ x2 ≤ . . . are the points of an homogeneous Poisson point process of intensity
1 on R+. As observed by LePage, Woodroofe and Zinn [90], this fact follows easily from
a beautiful representation for the order statistics of i.i.d. random variables. Namely, if
G(u) = P(|X11| > u) is (one minus) the distribution function of |X11|, then

(V11, . . . , V1n)
d
=
(
G−1(x1/xn+1), . . . , G

−1(xn/xn+1)
)
,

where G−1(u) = inf{y > 0 : G(y) ≤ u}, u ∈ (0, 1). To obtain the convergence to (6.6), it

remains to notice that G−1(u) ∼ u−1/α as u→ 0, and xn ∼ n a.s. as n→ ∞.
More generally, we may reorder non-increasingly the vector

((X11,X11), (X12,X21), . . . , (X1n,Xn1)),

and find a permutation π ∈ Sn such that
∥∥(X1π(1),Xπ(1)1)

∥∥
2
≥
∥∥(X1π(2),Xπ(2)1)

∥∥
2
≥ · · · ≥

∥∥(X1π(n),Xπ(n)1)
∥∥
2
.

Then, the random variable (in the space of infinite sequences in C2 of non-increasing norm)

n−1/α
(
(X1π(1),Xπ(1)1), (X1π(2),Xπ(2)1), . . . , (X1π(n),Xπ(n)1), (0, 0), . . .

)

converges weakly, for the finite dimensional convergence, to
(
(ε1w1y

−1/α
1 , (1 − ε1)w1y

−1/α
1 ), (ε2w2y

−1/α
2 , (1 − ε2)w2y

−1/α
2 ), . . .

)
. (6.7)

In particular, we may define a bijection σn in Nf , such that σn(ø) = 1, σn(k) = π(k) if
k 6= π−1(1), and σn arbitrary otherwise. Then, for this sequence σn, we may check that

n−1/ασ−1
n Xσneø converges weakly to Aeø in ℓ2(Nf ).



AROUND THE CIRCULAR LAW 43

This is not good enough since we aim at the convergence for all φ ∈ D(Nf ), not only
eø. In particular, the above argument does not explain the presence of a tree in the
limit operator. We notice however that from what precedes, only the entries such that
|Xij | ≥ δn1/α will matter for the operator convergence (for some small δ > 0). By
assumption,

P(|Xij | ≥ δn1/α) =
c

n
,

where c = c(n) ∼ δ−1/α. In other words, if we define G as the oriented graph on {1, . . . , n}
such that the oriented edge (i, j) is present if |Xij | ≥ δn1/α then G is an oriented Erdős-
Rényi graph (each oriented edge is present independently of the other and with equal
probability). An elementary computation shows that the expected number of oriented
cycles in G containing 1 and of length k is equivalent to ck/n. This implies that there
is no short cycles in G around a typical vertex. At a heuristic level, this locally tree-like
structure of random graphs is thus responsible for the presence of the infinite tree T in
the limit.

We are not going to give the full proof of theorem 6.7. For details, we refer to [25, 26].
The strategy is as follows. For integer m, define Jm = ∪m

k=0{1, · · · ,m}k ⊂ Nf and consider
the matrix A|m obtained as the projection of the random operator A on Jm. We prove that
for all integer m, there exists an injection πm from Jm to {1, . . . , n} such that πm(ø) = 1
and the projection of n−1/αX on πm(Jm) converges weakly to A|m. The conclusion of
theorem 6.7 follows by extracting a sequence mn going to infinity such that the latter
holds.

To construct such injection πm, we explore the entries of X: we first consider the m
largest entries of the vector in (C2)m, ((X12,X21), . . . , (X1n,Xn1)), whose indices are de-
noted by i1, . . . , im. We then look at the m-largest entries of ((Xi1j,Xji1))j 6=(1,i1,...,ik)

,

whose indices are i1,1, . . . , i1,m. We repeat this procedure iteratively until we have dis-
covered |Jm| indices, and we define the injection πm as πm(v) = iv. The fact that the

restriction of n−1/αX to (iv)v∈Jm converges weakly to A|m can be proved by developing
the ideas presented above. �

Continuity of quaternionic resolvent for local convergence. Note that theorem 6.7 will have
a potential interest for us, only if we know how to link the local convergence of definition
6.6 to the convergence of the quaternionic resolvent introduced in subsection 4.6.

Recall that an operator B on a dense domain D(B) is Hermitian if for all x, y ∈ D(B),
〈x,By〉 = 〈Bx, y〉. This operator will be essentially self-adjoint if there is a unique self-
adjoint operator B1 on D(B1) ⊃ D(B) such that for all x ∈ D(B), B1x = Bx (i.e. B1 is
an extension of B).

Lemma 6.8 (From local convergence to resolvents). Assume that (An) and A satisfy the
conditions of definition 6.6 and (An, u) → (A, v) for some u, v ∈ N. If the bipartized
operator B of A is essentially self-adjoint, then, for all q ∈ H+,

RAn(q)uu → RA(q)vv .

Proof. Fix z ∈ C and let Bn(z) = Bn − q(z, 0) ⊗ I, where Bn is bipartized operator
of An. By construction, for all φ ∈ D(B) = D(N × Z/2Z), σ−1

n Bn(z)σnφ converges to
B(z)φ (this is the strong operator convergence). The proof is then a direct consequence
of [106, Theorem VIII.25(a)]: in this framework, the strong operator convergence implies
the strong resolvent convergence. Namely, for all φ,ψ ∈ D(B) and η ∈ C+,

〈φ, (σ−1
n Bn(z)σn − ηI)−1ψ〉 → 〈φ, (B(z) − ηI)−1ψ〉.

We conclude by applying this to φ,ψ ∈ {ev , ev̂}. �
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Remark 6.9 (A non-self-adjoint Hermitian operator). A key assumption in the above
lemma is the essential self-adjointness of the bipartized limit operator. A local limit of
Hermitian matrices will necessary be Hermitian. It may not however be always the case
that the limit is essentially self-adjoint. Since any bounded Hermitian operator is essen-
tially self-adjoint, for an example, we should look for an unbounded operator. Let (ak)k∈N
be a sequence on R+ and define on D(N), for k ≥ 2,

Bek = akek+1 + ak−1ek−1.

while Be1 = a1e2. In matrix form, B is a tridiagonal symmetric infinite matrix. The
work of Stieltjes [123] implies that B will be essentially self-adjoint if and only if

lim
n→∞

∑

k≥n

a−1
k = ∞.

6.4. Skeleton of the main proofs. All ingredients have finally been gathered. The
skeleton of proof of theorems 6.2, 6.3 and the characterization of µα and να,z is as follows:

(1) By lemma 4.20, for all q ∈ H+, a.s. , in norm,

Γn−1/αX(q)− EΓn−1/αX(q) → 0

(2) Since X has exchangeable rows, for all q ∈ H+,

EΓn−1/αX(q) = ERn−1/αX(q)11

(3) We prove in subsection 6.5 that the bipartized operator B of the random operator
A of subsection 6.3 is a.s. essentially self-adjoint

(4) It follows by theorem 6.7 and lemma 6.8,

lim
n→∞

EΓn−1/αX(q) = ERA(q)øø =

(
a(q) b(q)
b̄(q) a(q)

)

(5) By lemma 4.18, a.s. νn−1/αX−z  να,z as n→ ∞, where να,z is characterized by

mν̌α,z(η) = a(q)

(6) We know from subsection 6.2 that statement (ii) of lemma 4.19 holds for n−1/αX
in probability. Then, in probability, µn−1/αX  µα as n → ∞, where µα is
characterized by, in D′(C),

µα = − 1

π
lim

q(z,it):t↓0
∂b(q)

(7) We analyze in subsection 6.5 RA(q)øø to obtain the properties of να,z and µα.
(8) Finally, when X12 has a bounded density we improve the convergence to almost

sure (in subsection 6.6).

6.5. Analysis of the limit operator. This subsection is devoted to items 3 and 7 which
appear above in the skeleton of proof of theorems 6.2 and 6.3.

Self-adjointness. Here we check the self-adjointness of the bipartized operator B of A.

Proposition 6.10 (Self-adjointness of bipartized operator on PWIT). Let A be the ran-
dom operator defined by (6.5). With probability one, B is essentially self-adjoint.

This proposition relies on the following criterion of self-adjointness (see [26] for a proof).

Lemma 6.11 (Criterion of self-adjointness of the bipartized operator). Let κ > 0 and
T = (V,E) be an infinite tree on Nf and (wuv, wvu){v,u}∈E be a collection of pairs of
weight in C such that for all u ∈ C,

∑

v:{u,v}∈E
|wuv|2 + |wvu|2 <∞.
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Define the operator on D(V ) as

Aeu =
∑

v:{u,v}∈E
wvuev.

Assume also that there exists a sequence of connected finite subsets (Sn)n≥1 in V , such
that Sn ⊂ Sn+1, ∪nSn = V , and for every n and v ∈ Sn,∑

u/∈Sn:{u,v}∈E

(
|wuv|2 + |wvu|2

)
≤ κ.

Then the bipartized operator B of A is essentially self-adjoint.

We will use a simple lemma on Poisson processes (for a proof [25, Lemma A.4]).

Lemma 6.12 (Poisson process tail). Let κ > 0, 0 < α < 2 and let 0 < x1 < x2 < · · · be
a Poisson process of intensity 1 on R+. If we define

τ := inf

{
t ∈ N :

∞∑

k=t+1

x
−2/α
k ≤ κ

}

then Eτ is finite and goes to 0 as κ goes to infinity.

Proof of proposition 6.10. For κ > 0 and v ∈ Nf , we define

τv = inf{t ≥ 0 :
∞∑

k=t+1

|yvk|−2/α ≤ κ}.

The variables (τv) are i.i.d. and by lemma 6.12, there exists κ > 0 such that Eτv < 1. We
fix such κ. Now, we put a green color to all vertices v such that τv ≥ 1 and a red color
otherwise. We consider an exploration procedure starting from the root which stops at
red vertices and goes on at green vertices. More formally, define the sub-forest T g of T
where we put an edge between v and vk if v is a green vertex and 1 ≤ k ≤ τv. Then, if
the root ø is red, we set S1 = Cg(T ) = {ø}. Otherwise, the root is green, and we consider
T g
ø = (V g

ø , E
g
ø ) the subtree of T g that contains the root. It is a Galton-Watson tree with

offspring distribution τø. Thanks to our choice of κ, T g
ø is almost surely finite. Consider

Lg
ø the leaves of this tree (i.e. the set of vertices v in V g

ø such that for all 1 ≤ k ≤ τv, vk
is red). The following set satisfies the condition of Lemma 6.11:

S1 = V g
ø

⋃

v∈Lg
ø

{1 ≤ k ≤ τv : vk}.

We define the outer boundary of {ø} as

∂τ{ø} = {1, . . . , τø}
and for v = (i1, . . . , ik) ∈ Nf\{ø} we set

∂τ{v} = {(i1, . . . , ik−1, ik + 1)} ∪ {(i1, . . . , ik, 1), . . . , (i1, . . . , ik, τv)}.
For a connected set S, its outer boundary is

∂τS =

(
⋃

v∈S
∂τ{v}

)
\S.

Now, for each vertex u1, . . . , uk ∈ ∂τS1, we repeat the above procedure to the rooted
subtrees Tu1 , . . . , Tuk

. We set

S2 = S1
⋃

∪1≤i≤kC
b(Tui).

Iteratively, we may thus almost surely define an increasing connected sequence (Sn) of
vertices with the properties required for lemma 6.11. �
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Computation of resolvent. As explained in section 6.4, the properties of the measures µα
and να,z can be deduced from the analysis of the limit resolvent operator. Resolvent are
notoriously easy to compute on trees. More precisely, let T = (V,E) be a tree and A,B
be as in lemma 6.11 and let ø ∈ V be a distinguished vertex of V (in graph language, we
root the tree T at ø). For each v ∈ V \{ø}, we define Vv ⊂ V as the set of vertices whose
unique path to the root ø contains v. We define Tv = (Vv, Ev) as the subtree of T spanned
by Vv. We may consider Av, the projection of A on Vv, and Bv the bipartized operator of
Av. Finally, we note that if B is self-adjoint then so is Bv(z) for every z ∈ C. The next
lemma is an operator analog of the Schur inversion by block formula (4.12).

Lemma 6.13 (Resolvent on a tree). Let A,B be as in lemma 6.11. If B is self-adjoint
then for any q = q(z, η) ∈ H+,

RA(q)øø = −
(
q +

∑

v∼ø

(
0 wøv

wvø 0

)
R̃A(q)vv

(
0 wvø

wøv 0

))−1

,

where R̃A(q)vv := ΠvRBv (q)Π
∗
v, and RBv (q) = (Bv(z)− η)−1 is the resolvent of Bv.

We come back to our random operator A defined on the PWIT and its quaternionic
resolvent RA(q). We analyze the random variable

RA(q)øø :=

(
a(z, η) b(z, η)
b′(z, η) c(z, η)

)
.

The random variables a(z, η) solves a nice recursive distribution equation (RDE). This type
of recursion equation is typical of combinatorial observable defined on random rooted trees.
More precisely, we define the measure on R+,

Λα =
α

2
x−

α
2
−1dx.

Lemma 6.14 (Recursive distribution equation). For all q = q(z, η) ∈ H+, if Lq is the
distribution on C+ of a(z, η) then Lq solves the equation in distribution:

a
d
=

η +
∑

k≥1 ξkak

|z|2 −
(
η +

∑
k≥1 ξkak

)(
η +

∑
k≥1 ξ

′
ka

′
k

) , (6.8)

where a, (ak)k∈N and (a′k)k∈N are i.i.d. with law Lq independent of {ξk}k∈N, {ξ′k}k∈N two
independent Poisson point processes on R+ with intensity Λα.

Moreover, with the same notation,

b
d
=

−z
|z|2 −

(
η +

∑
k≥1 ξkak

)(
η +

∑
k≥1 ξ

′
ka

′
k

) . (6.9)

Proof. This is sa simple consequence of lemma 6.13. Indeed, for k ∈ N, we define Tk
as the subtree of T spanned by kNf . With the notation of lemma 6.13, for k ∈ N,
RBk

(q) = (Bk(z)− η)−1 is the resolvent operator of Bk and set

R̃A(q)kk = ΠkRBk
(q)Π∗

k =

(
ak bk
b′k ck

)
.
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Then, by lemma 6.13, we get

R(q)øø = −


q +

∑

k≥1

(
0 εkwky

−1/α
k

(1− εk)wky
−1/α
k 0

)(
ak bk
b′k ck

)(
0 (1− εk)wky

−1/α
k

εkwky
−1/α
k 0

)


−1

= −
(
U +

(∑
k(1− εk)y

−2/α
k ck 0

0
∑

k εky
−2/α
k ak

))−1

= D−1

(
η +

∑
k εky

−2/α
k ak −z

−z̄ η +
∑

k(1− εk)y
−2/α
k ck

)
,

with

D := |z|2 −



η +
∑

k≥1

εky
−2/α
k ak







η +
∑

k≥1

(1− εk)y
−2/α
k ck



.

Now the structure of the PWIT implies that

(j) ak and ck have common distribution Lq

(jj) the variables (ak, ck)k∈N are i.i.d.

Also the thinning property of Poisson point processes implies that

(jjj) {εky−2/α
k }k∈N and {(1− εk)y

−2/α
k }k∈N are independent Poisson point process with

common intensity Λα.

�

Even if (6.8) looks complicated at first sight, for η = it, it is possible to solve it explicitly.
First, for t ∈ R+, a(z, it) is pure imaginary and we set

h(z, t) = Im(a(z, it)) = −ia(z, it) ∈ (0, t−1].

The crucial ingredient, is a well-known and beautiful lemma. It can be derived form a rep-
resentation of stable laws, see e.g. LePage, Woodroofe, and Zinn [90] and also Panchenko
and Talagrand [102, Lemma 2.1].

Lemma 6.15 (Poisson-stable magic formula). Let {ξk}k∈N be a Poisson process with
intensity Λα. If (Yk) is an i.i.d. sequence of non-negative random variables, independent

of {ξk}k∈N, such that E[Y
α
2

1 ] <∞ then
∑

k∈N
ξkYk

d
= E[Y

α
2

1 ]
2
α

∑

k∈N
ξk

d
= E[Y

α
2

1 ]
2
αS,

where S is the positive α
2 -stable random variable with Laplace transform for all x ≥ 0,

E exp(−xS) = exp
(
−Γ
(
1− α

2

)
x

α
2

)
. (6.10)

Proof of lemma 6.15. Recall the formulas, for y ≥ 0, η > 0 and 0 < η < 1 respectively,

y−η = Γ(η)−1

∫ ∞

0
xη−1e−xydx and yη = Γ(1− η)−1η

∫ ∞

0
x−η−1(1− e−xy)dx. (6.11)

From the Lévy-Khinchin formula we deduce that, with s ≥ 0,

E exp

(
−s
∑

k

ξkYk

)
= exp

(
E

∫ ∞

0
(e−xsY1 − 1)βx−

α
2
−1dx

)

= exp
(
−Γ
(
1− α

2

)
s

α
2 E[Y

α
2

1 ]
)
.

�
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Hence, by lemma 6.15, we may rewrite (6.8) as

h
d
=

t+ yS

|z|2 + (t+ yS)(t+ yS′)
, (6.12)

where S and S′ are i.i.d. variables with common Laplace transform (6.10) and the function

y = y(|z|2, t) = E[hα/2]2/α is the unique solution of the equation in y:

1 = E

(
ty−1 + S

|z|2 + (t+ yS)(t+ yS′)

)α
2

.

(since the left hand side is decreasing in y, the solution is unique). In the above equations,
it is also possible to consider the limits as t ↓ 0.

As explained in section 6.4, this implies that, in D′(C), µα is equal to

− 1

π
lim
t↓0

Eb(·, it).

Using (6.9), after a simple computation, we find that the density gα of µα at z is

1

π

(
y2∗(|z|2)− 2|z|2y∗(|z|2)y′∗(|z|2)

)
E

SS′

(|z|2 + y2∗(|z|2)SS′)2

where y∗(r) = y(r) is the unique solution

1 = E

(
S

r + y2SS′

)α
2

.

After more computations, it is even possible to study the regularity of y∗, find the explicit
solution at 0, and an asymptotic equivalent as r → ∞. All these results can then be
translated into properties of µα. We will not pursue here these computation which are
done in [26]. We may simply point out that µα converges weakly to the circular law as
α → 2, is a consequence of the fact that the non-negative α/2-stable random variable

S/Γ(1− α/2)2/α converges to a Dirac mass as α→ 2 (see (6.10)).

6.6. Improvement to almost sure convergence. Let να,z be as in theorem 6.3. In
order to improve the convergence to a.s., it is sufficient to prove that for all z ∈ C, a.s.

lim
n→∞

Uµ
n−1/αX

(z) = L where L := −
∫ ∞

0
log(s) dνα,z(s).

We have already proved that this convergence holds in probability. It is thus sufficient to
prove that there exists a deterministic sequence Ln such that a.s.

lim
n→∞

(
Uµ

n−1/αX
(z)− Ln

)
= 0. (6.13)

Now, thanks to the bounded density assumption and remark 4.16, one may use lemma
4.11 for the matrix X − n1/αzI in order to show that that there exists a number b > 0
such that a.s. for n≫ 1,

sn(n
−1/αX − zI) ≥ n−b.

Similarly, up to an increase of b if needed, we also get from (6.2) that a.s. for n≫ 1,

s1(n
−1/αX − zI) ≤ nb.

Now, we consider the function

fn(x) = 1{n−b≤|x|≤nb} log(x).

From what precedes, a.s. for n≫ 1,

Uµ
n−1/αX

(z) = −
∫ ∞

0
log(s) dνn−1/αX−zI(s) = −

∫ ∞

0
fn(s) dνn−1/αX−zI(s). (6.14)
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The total variation of fn is bounded by c log n for some c > 0. Hence by lemma 4.17, if

Ln := E

∫
fn(s)dνn−1/αX−zI(s),

then we have,

P

(∣∣∣∣
∫
fn(s)dνn−1/αX−zI(s)− Ln

∣∣∣∣ ≥ t

)
≤ 2 exp

(
−2

nt2

(c log n)2

)
.

In particular, from the first Borel-Cantelli lemma, a.s.,

lim
n→∞

(∫
fn(s) dνn−1/αX−zI(s)− Ln

)
= 0.

Finally, using (6.14), we deduce that (6.13) holds almost surely.

7. Open problems

We list in this section some open problems related to the circular law theorem.

Universality of Gaussian Ensembles. The universality dogma states that if a real or com-
plex functional of X is enough symmetric and depend on enough entries then it is likely
that this functional behaves asymptotically (n → ∞) like in the Gaussian case (Ginibre
Ensemble here) as soon as the first moments of X11 match certain Gaussian moments
(depends on the functional). This can be understood as a sort of non-linear central limit
theorem. Among interesting functionals, we find for instance the following:

• spectral radius (has Gumbel fluctuations for the Complex Ginibre Ensemble)
• argument of λ1(X) (is uniform on [0, 2π] for the Complex Ginibre Ensemble)

• law of λn(n
−1/2X) (see [47, Chapter 15] for the Complex Ginibre Ensemble). The

square of the smallest singular value sn(n
−1/2G)2 of the Complex Ginibre Ensemble

follows an exponential law [39] and this result is asymptotically universal [131]
• gap probabilities and Voronöı cells (see [3] and [60] for the Ginibre Ensemble)
• linear statistics of µX (some results are available such as [109, 110, 27, 108])

• empirical distribution of the real eigenvalues of n−1/2X when X11 is real (tends to
uniform law on [−1, 1] for the Real Ginibre Ensemble)

• unitary matrix in the polar decomposition (Haar unitary for the Complex Ginibre).
• if X11 has infinite fourth moment then the eigenvalues of largest modulus blow up
and are asymptotically independent (Poisson statistics at some scale);

• a large deviation principle for µX at speed n2 which includes as a special case the
one obtained for the Complex Ginibre Ensemble by Hiai and Petz [104] (see also
Ben Arous and Zeitouni [18]) and references therein. The analogous question for
Hermitian models (Wigner and GUE) is also open. The answer depends on the
chosen scale, the class of deviations, and the topology.

One may group most of these functionals by considering the spectrum as a point process.
It is also possible to consider universality beyond i.i.d. entries models. For instance,

if X has exchangeable entries as a random vector of Cn2
and if X satisfies to suitable

mean-variance normalizations, then we expect that EµX tends to the circular law due to a
Lindeberg type phenomenon, see [34] for the Hermitian case (Wigner). Similarly, if X, as

a random vector of Cn2
, is log-concave (see footnote 19) and isotropic (i.e. its covariance

matrix is identity) then we expect that EµX tends to the circular law, see [1] for i.i.d.
log-concave rows. Since the indicator of a convex set is a log-concave measure, one may
think about the Birkhoff polytope (convex envelope of permutation matrices) and ask if
the circular law holds for random uniform doubly stochastic matrices, see [32] and [35].
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Variance profile. We may consider the matrix Y defined as Yij = Xijσ(i/N, j/N) where
σ : [0, 1]2 → [0, 1] is a measurable function. The measure µn−1/2Y should converge a.s. to
a limit probability measure µσ on C. For finite variance Hermitian matrices, this question
has been settled by Khorunzhy, Khoruzhenko, Pastur and Shcherbina [85], for heavy tailed
Hermitian matrices, by Belinschi, Dembo, Guionnet [16]. Girko has also results on the
singular values of random matrices with variance profile.

Elliptic laws. We add some dependence in the array (Xij)i,j≥1 : we consider an infinite
array (Xij ,Xji)1≤i<j≤n of i.i.d. pairs of complex random variables, independent of (Xii)i≥1

an i.i.d. sequence of random variables. Assume that Var(X12) = Var(X21) = 1 and
Cor(X12,X21) = t ∈ {z ∈ C : |z| ≤ 1}. There is a conjectured universal limit for µn−1/2X
computed by Girko [53], called the elliptic law. This model interpolates between Hermitian

and non-Hermitian random matrices. When X =
√

(1 + τ)/2H1 + i
√

(1− τ)/2H2, with
0 ≤ τ ≤ 1 and H1,H2 two independent GUE, this model has been carefully analyzed by
Bender in [20], see also Ledoux [89] and Johansson [80].

Oriented r-regular graphs and Kesten-McKay measure. Random oriented graphs are host
of many open problems. For example, for integers n ≥ r ≥ 3, an oriented r-regular graph
is a graph on n vertices such that all vertices have r incoming and r outgoing oriented
edges. Consider the adjacency matrix A of a random oriented r-regular graph sampled
from the uniform measure (there exists suitable simulation algorithms using matchings of
half edges). It is conjectured that as n→ ∞, a.s. µA converges to the probability measure

1

π

r2(r − 1)

(r2 − |z|2)21{|z|<
√
r} dxdy.

It turns out that this probability measure is also the Brown measure of the free sum of r
unitary, see Haagerup and Larsen [70]. The Hermitian (actually symmetric) version of this
measure is known as the Kesten-McKay distribution for random non-oriented r-regular
graphs, see [84, 96]. We recover the circular law when r → ∞ up to renormalization.

Invertibility of random matrices. The invertibility of random matrices is one of the keys
behind the circular law theorem 2.2. Let us consider the case were X11 is Bernoulli
1
2(δ−1+δ1). A famous conjecture by Spielman and Teng (related to their work on smoothed
analysis of algorithms [122, 121]) states that there exists a constant 0 < c < 1 such that

P(
√
n sn(X) ≤ t) ≤ t+ cn

for n≫ 1 and any small enough t ≥ 0. This was almost solved by Rudelson and Vershynin
[113] and Tao and Vu [131]. In particular, taking t = 0 gives P(sn(X) = 0) = cn. This
positive probability of being singular does not contradict the asymptotic invertibility since
by the first Borel-Cantelli lemma, a.s. sn(X) > 0 for n ≫ 1. Regarding the constant c
above, it has been conjectured years ago that

P(sn(X) = 0) =

(
1

2
+ o(1)

)n

.

This intuition comes from the probability of equality of two rows, which implies that
P(sn(X) = 0) ≥ (1/2)n. Many authors contributed to the analysis of this difficult nonlin-
ear discrete problem, starting from Komlós, Kahn, and Szemerédi. The best result to date
is due to Bourgain, Vu, and Wood [29] who proved that P(sn(X) = 0) ≤

(
1/
√
2 + o(1)

)n
.

Roots of random polynomials. The random matrix X has i.i.d. entries and its eigenvalues
are the roots of its characteristic polynomial. The coefficients of this random polynomial
are neither independent nor identically distributed. Beyond random matrices, let us con-
sider a random polynomial P (z) = a0+ a1z+ · · ·+ anz

n where a0, . . . , an are independent
random variables. By analogy with random matrices, one may ask about the behavior as
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n → ∞ of the roots λ1(P ), . . . , λn(P ) of P in C and in particular the behavior of their
empirical measure 1

n

∑n
i=1 δλi(P ). The literature on this subject is quite rich and takes its

roots in the works of Littlewood and Offord, Rice, and Kac. We refer to Shub and Smale
[118], Azäıs and Wschebor [9], and Edelman and Kostlan [42, 43] for (partial) reviews.
As for random matrices, the case where the coefficients are real is more subtle due to the
presence of real roots. Regarding the complex case, the zeros of Gaussian analytic func-
tions is the subject of a recent monograph [77] in connection with determinantal processes.
Various cases are considered in the literature, including the following three families:

• Kac polynomials, for which (ai)0≤i≤n are i.i.d.

• Binomial polynomials, for which ai =
√(

n
i

)
bi for all i and (bi)0≤i≤n are i.i.d.

• Weyl polynomials, for which ai =
1√
i!
bi for all i and (bi)0≤i≤n are i.i.d.

Geometrically, the complex number z is a root of P if and only if the vectors (1, z, . . . , zn)
and (a0, a1, . . . , an) are orthogonal in Cn+1, and this connects the problem to Littlewood-
Offord type problems [91] and small balls probabilities. Regarding Kac polynomials, Kac
[82, 81] has shown in the real Gaussian case that the asymptotic number of real roots is
about 2

π log(n) as n→ ∞. Kac obtained the same result when the coefficients are uniformly
distributed [83]. Hammersley [72] derived an explicit formula for the k-point correlation
of the roots of Kac polynomials. Shparo and Shur [117] have shown that the empirical
measure of the roots of Kac polynomials with light tailed coefficients tends as n → ∞ to
the uniform law one the unit circle {z ∈ C : |z| = 1} (the arc law). If the coefficients
are heavy tailed then the limiting law concentrates on the union of two centered circles,
see [65] and references therein. Regarding Weyl polynomials, various simulations and
conjectures have been made [50, 44]. For instance, if (bi)0≤i≤n are i.i.d. standard Gaussian,
it was conjectured that the asymptotic behavior of the roots of the Weyl polynomials is
analogous to the Ginibre Ensemble. Namely, the empirical distribution of the roots tends
as n → ∞ to the uniform law on the centered disc of the complex plane (circular law),
and moreover, in the real Gaussian case, there are about 2

π

√
n real roots as n → ∞ and

their empirical distribution tends as n → ∞ to a uniform law on an interval, as for the
real Ginibre Ensemble, see Remark 3.8. The complex Gaussian case was considered by
Leboeuf [87] and by Peres and Virág [103], while the real roots of the real Gaussian case
were studied by Schehr and Majumdar [116]. Beyond the Gaussian case, one may try
to use the companion matrix21 of P and the logarithmic potential approach. Numerical
simulations reveal strange phenomena depending on the law of the coefficients but we
ignore it they are purely numerical. Note that if the coefficients are all real positive then
the roots cannot be real positive. The heavy tailed case is also of interest (rings?).

Appendix A. Invertibility of random matrices with independent entries

This appendix is devoted to the proof of a general statement (lemma A.1 below) on
the smallest singular value of random matrix models with independent entries. It follows
form lemma A.1 below that if X = (Xij)1≤i,j≤n is a random matrix with i.i.d. entries such

as X11 is not constant and E(|X11|κ) < ∞ for some arbitrarily small real number κ > 0,
then for any γ > 0 there exists are real number β > 0 such that for any n ≫ 1 and any
deterministic matrix M ∈ Mn(C) with s1(M) ≤ nγ ,

lim
n→∞

P(sn(X +M) ≤ n−β) = 0.

Both the assumptions and the conclusion are strictly weaker than the result of Tao and Vu.
It is enough for the proof of the circular law in probability and its heavy tailed analogue.

21The companion matrix M of Q(z) := c0 + c1z + · · · + cn−1z
n−1 + zn is the n × n matrix with null

entries except Mi,i+1 = 1 and Mn,i = ci−1 for every licit i. The characteristic polynomial of M is Q.
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Lemma A.1 (Smallest singular value of matrices with independent entries). Let (Xij)1≤i,j≤n

be a random matrix with independent entries in C (without any integrability assumptions)
such that for some a, b > 0 and all 1 ≤ i, j ≤ n,

P(|Xij | ≤ a) > b.

Then, there exists c = c(a, b) ≥ a such that for any M ∈ Mn(C), s≫ 1, t ≤ 1,

P

(
sn(X +M) ≤ t√

n
; s1(X +M) ≤ s

√
n

)
≤ c

√
log(cs/σ)

σ

(
ts2

σ2
+

1√
n

)
,

where 1/0 = ∞ and

σ2 := min
1≤i,j≤n

Var
(
Xij1{|Xij |≤a}

)
.

The proof of lemma A.1 follows mainly from [92, 113]. These works have already been
used in the proof of the circular law, notably in [63]. As we shall see, the term 1/

√
n

comes from the rate of convergence in the Berry-Esseen Theorem. Following [92], it could
probably be improved by using finer results on the Littlewood-Offord problem [130]. Note
however, that it is sufficient in the perspective of proving convergence in probability of
spectral measures.

We emphasize that there is not any moments assumption on the entries in lemma A.1.
However, (weak) moments assumptions may be used in order to obtain an upper bound
on the quantity P(s1(X +M) ≥ s

√
n). Also, the variance (of the truncated variables) σ

may depend on n : this allows to deal with sparse matrix models (not considered here).
For the proof of the circular law and its heavy tailed analogue, lemma A.1 can be used

typically with t = σ2/(s2
√
n) and s = na large enough such that with high probability

s1(X +M) ≤ s
√
n. In contrast with the Tao and Vu result, lemma A.1 cannot provide a

summable bound usable with the first Borel-Cantelli lemma due to the presence of 1/
√
n.

Let us give the idea behind the proof of lemma A.1. A geometric intuition says that
the smallest singular value of a random matrix can be controlled by the minimum of the
distances of each row to the span of the remaining rows. The distance of a vector to a
subspace can be controlled with the scalar product of the vector with a unit norm vector
belonging to the orthocomplement of the subspace. Also, when the entries of the matrix
are independent, this boils down by conditioning to the control of a small ball probability
involving a linear combination of independent random variables. The coefficients in this
combination are the components of the orthogonal vector. The asymptotic behavior of
this small ball probability depends in turn on the structure of these coefficients. When
the coefficients are well spread, we expect an asymptotic Gaussian behavior thanks to the
central limit theorem, more precisely its quantitative weighted version called the Berry-
Esseen theorem. We will follow this scheme while keeping the geometric picture in mind.

The proof of lemma A.1 is divided into two parts which correspond to a subdivision of
the unit sphere Sn−1 of Cn. Namely, for some real positive parameters δ, ρ > 0 that will
be fixed later, we define the set of sparse vectors

Sparse := {x ∈ Cn : card(supp(x)) ≤ δn}
and we split the unit sphere Sn−1 into a set of compressible vectors and the complementary
set of incompressible vectors as follows:

Comp := {x ∈ Sn−1 : dist(x,Sparse) ≤ ρ} and Incomp := Sn−1 \ Comp.

We will use the variational formula, for A ∈ Mn(C),

sn(A) = min
x∈Sn−1

‖Ax‖2 = min

(
min

x∈Comp
‖Ax‖2, min

x∈Incomp
‖Ax‖2

)
. (A.1)
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Compressible vectors. Our treatment of compressible vectors differs significantly from [92,
113]. We start with a variation around lemma 4.12.

Lemma A.2 (Distance of a random vector to a small subspace). There exist ε, c, δ0 > 0
such that for all n ≫ 1, all 1 ≤ i ≤ n, any deterministic vector v ∈ Cn and any subspace
H of Cn with 1 ≤ dim(H) ≤ δ0n, we have, denoting C := (X1i, . . . ,Xni) + v,

P
(
dist(C,H) ≤ εσ

√
n
)
≤ exp(−cn).

Proof. First, from Hoeffding’s deviation inequality,

P

(
n∑

k=1

1{|Xki|≤a} ≤
nb

2

)
≤ exp

(
−nb

2

2

)
.

It is thus sufficient to prove the result by conditioning on

Em := {|X1i| ≤ a, . . . , |Xmi| ≤ a} with m := ⌈nb/2⌉.
Let Em[ · ] := E[ · |Em;Fm] denote the conditional expectation given Em and the filtration
Fm generated by Xm+1,i, . . . ,Xn,i. Let W be the subspace spanned by H, v, and the
vectors u := (0, . . . , 0,Xm+1,i, . . . ,Xn,i) and

w :=
(
E
[
X1i

∣∣ |X1i| ≤ a
]
, . . . ,E

[
Xmi

∣∣ |Xmi| ≤ a
]
, 0, . . . , 0

)
.

By construction dim(W ) ≤ dim(H) + 3 and W is Fm-measurable. We note also that

dist(C,H) ≥ dist(C,W ) = dist(Y,W ),

where

Y :=
(
X1i − E

[
X1i

∣∣ |X1i| ≤ a
]
, . . . ,Xmi − E

[
Xmi

∣∣ |Xmi| ≤ a
]
, 0, . . . , 0

)
= C − u− v−w.

By assumption, for 1 ≤ k ≤ m,

EmYk = 0 and Em|Yk|2 ≥ σ2.

Let D = {z : |z| ≤ a}. We define the function f : Dm → R+ by

f(x) = dist((x1, . . . , xm, 0, . . . , 0),W ).

This function is convex and 1-Lipschitz. Hence, Talagrand’s concentration inequality gives

Pm(|dist(Y,W )−Mm| ≥ t) ≤ 4 exp

(
− t2

16a2

)
,

where Mm is the median of f under Pm. In particular,

Mm ≥
√

Emdist2(Y,W )− ca.

Also, if P denotes the orthogonal projection on the orthogonal of W , we find

Emdist2(Y,W ) =
m∑

k=1

Em|Yk|2Pkk

≥ σ2

(
n∑

k=1

Pkk −
n∑

k=m+1

Pkk

)

≥ σ2(n− dim(H)− 3− (n−m))

≥ σ2
(
nb

2
− dim(H)− 3

)
.

The latter, for n large enough, is lower bounded by cσ2n if δ0 = b/4. �
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Let 0 < ε < 1 and s ≥ 1 be as in lemma A.2. We set from now on

ρ =
ε

4s
min(1, σ),

(in particular, ρ ≤ 1/4). The parameter δ is still to be specified: at this stage, we
simply assume that δ < δ0. We note that if A ∈ Mn(C) and y ∈ Cn is such that
supp(y) ⊂ π ⊂ {1, . . . , n}, then we have

‖Ay‖2 ≥ ‖y‖2sn(A|π),

where A|π is the n×|π| matrix formed by the columns of A selected by π. We deduce that

min
x∈Comp

‖Ax‖2 ≥
3

4
min

π⊂{1,...,n}:|π|=⌊δn⌋
sn(A|π)− ρs1(A). (A.2)

However, by Pythagoras theorem, for any x ∈ C|π|,

∥∥A|πx
∥∥2
2
=

∥∥∥∥∥
∑

i∈π
xiCi

∥∥∥∥∥

2

2

=
∑

i∈π
|xi|2dist2(Ci,Hi) ≥ min

i∈π
dist2(Ci,Hi)

∑

i∈π
|xi|2

where Ci is the i-th column of A and Hi := span{Cj : j ∈ π, j < i}. In particular,

sn(A|π) ≥ min
i∈π

dist(Ci,Hi),

Now, we apply this bound to A = X +M . Since Hi has dimension at most nδ and is
independent of Ci, by lemma A.2, the event that,

min
i∈π

dist(Ci,Hi) ≥ εσ
√
n,

has probability at least 1− n exp(−cn) for n≫ 1. Hence

P
(
sn((X +M)|π) ≤ εσ

√
n
)
≤ n exp(−cn).

Therefore, using the union bound and our choice of ρ, we deduce from (A.2)

P

(
min

x∈Comp
‖(X +M)x‖2 ≤

εσ

2

√
n ; s1(X +M) ≤ s

√
n

)
≤
(

n

⌊δn⌋

)
ne−cn = en(H(δ)−c+o(1)) ,

with H(δ) := −δ log δ − (1 − δ) log(1 − δ). Therefore, if δ is chosen small enough so that
H(δ) < c, we have proved that for some c1 > 0,

P

(
min

x∈Comp
‖(X +M)x‖2 ≤

εσ

2

√
n ; s1(X +M) ≤ s

√
n

)
≤ exp(−c1n). (A.3)

Incompressible vectors: invertibility via distance. We start our treatment of incompressible
vectors with two key observations from [113].

Lemma A.3 (Incompressible vectors are spread). Let x ∈ Incomp. There exists a subset
π ⊂ {1, . . . , n} such that |π| ≥ δn/2 and for all i ∈ π,

ρ√
n
≤ |xi| ≤

√
2

δn
.

Proof. For π ⊂ {1, . . . , n}, we denote by Pπ the orthogonal projection on span{ei; i ∈ π}.
Let π1 = {k : |xk| ≤

√
2/(δn)} and π2 = {k : |xk| ≥ ρ/

√
n}. Since ‖x‖22 = 1, we have

|πc1| ≤
δn

2
.

Note also that

‖x− Pπ2x‖2 =
∥∥Pπc

2
x
∥∥
2
≤ ρ.
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Hence, the definition of incompressible vectors implies that |π2| ≥ δn. We put π = π1∩π2.
From what precedes,

|π| ≥ n− |πc1| − |πc2| ≥ n− δn

2
− (n− δn) =

δn

2
.

�

Lemma A.4 (Invertibility via average distance). Let A be a random matrix taking its
values in Mn(C), with columns C1, . . . , Cn, and for some arbitrary 1 ≤ k ≤ n, let Hk be
the span of all these columns except Ck. Then, for any t ≥ 0,

P

(
min

x∈Incomp
‖Ax‖2 ≤

tρ√
n

)
≤ 1

δn

n∑

k=1

P(dist(Ck,Hk) ≤ t).

Proof. Let x ∈ Sn−1, from Ax =
∑

k Ckxk, we get

‖Ax‖2 ≥ max
1≤k≤n

dist(Ax,Hk) = max
1≤k≤n

|xk|dist(Ck,Hk).

Now if x ∈ Incomp and π is as in lemma A.3, we get

‖Ax‖2 ≥
ρ√
n
max
k∈π

dist(Ck,Hk).

Then, the conclusion follows from the fact that for any reals y1, . . . , yn and 1 ≤ m ≤ n,

1{max1≤k≤m yk≤t} ≤
1

m

m∑

k=1

1{yk≤t} ≤
1

m

n∑

k=1

1{yk≤t}.

�

The strength of lemma A.4 lies in the fact that the control of ‖Ax‖2 over all incom-
pressible vectors is done by an average of the distance between the columns of A.

Incompressible vectors: small ball probability. Now, we come back to our matrix X +M :
let C be the k-th column of X +M and H be the span of all columns but C. Our goal in
this subsection is to establish the bound, for all t ≥ 0,

P
(
dist(C,H) ≤ ρt ; s1(X +M) ≤ s

√
n
)
≤ c

√
log ρ

σ

(
t+

1√
n

)
. (A.4)

To this end, we also consider a random vector ζ taking its values in Sn−1 ∩H⊥, which is
independent of C. Such a random vector ζ is not unique, we just pick one and we call it
the orthogonal vector (to the subspace H). We have

dist(C,H) ≥ |〈ζ, C〉|. (A.5)

Lemma A.5 (The random orthogonal vector is Incompressible). For our choice of ρ, δ
and c1 as in (A.3), we have

P
(
ζ ∈ Comp ; s1(X +M) ≤ s

√
n
)
≤ exp(−c1n).

Proof. Let A ∈ Mn−1,n(C) be the matrix obtained from (X +M)∗ by removing the k-th
row. Then, by construction : Aζ = 0, s1((X +M)∗) = s1(X +M), and

min
x∈Comp

‖Ax‖2 ≥ min
x∈Comp

‖(X +M)∗x‖2.

The left hand side (and thus the right hand side) is zero if ζ ∈ Comp. In particular,

P
(
ζ ∈ Comp ; s1(X +M) ≤ s

√
n
)
≤ P

(
min

x∈Comp
‖(X +M)∗x‖2 = 0 ; s1((X +M)∗) ≤ s

√
n

)
.

It remains to notice that obviously (A.3) holds with (X +M) replaced by (X +M)∗.
Indeed the statistical assumptions are the same on X +M and (X +M)∗. �
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We have reached now the final preparation step before the use of the Berry-Esseen
theorem. This step consists in the reduction to a case where for a fixed set of coordinates,
both the components of ζ and the random variables Xik+Mik are well controlled. Namely,
if ζ ∈ Incomp, let π ⊂ {1, . . . , n} be as in lemma A.3 associated to vector ζ. Then
conditioned on {ζ ∈ Incomp}, from Hoeffding’s deviation inequality, the event that

∑

i∈π
1{|Xik |≤a} ≥

|π|b
2

≥ δbn

4
,

has conditional probability at least 1−exp(−|π|2b2/2) ≥ 1−exp(−cn) (recall that ζ hence
π are independent of C). In summary, by lemma A.5 and (A.5), in order to prove (A.4),
it is sufficient to prove that for all t ≥ 0,

Pm(|〈ζ, C〉| ≤ ρt) ≤ c

σ

√
|log ρ|
n

(t+ 1).

where Pm(·) = P(·|Em,Fm) is the conditional probability given Fm the σ-algebra generated
by all variables but (X1k, . . . ,Xmk), m = ⌊δbn/4⌋, and the event

Em =

{
ρ√
n
≤ |ζi| ≤

√
2

δn
; 1 ≤ i ≤ m

}
⋃

{|Xik| ≤ a; 1 ≤ i ≤ m}.

We may write

〈ζ, C〉 =
n∑

i=1

ζ̄i〈C, ei〉 =
m∑

i=1

ζ̄iXik + u,

where u ∈ Fm is independent of (X1k, . . . ,Xmk). It follows that

Pm(|〈ζ, C〉| ≤ ρt) ≤ sup
z∈C,π⊂{1,...,m}

Pm

(∣∣∣∣∣
∑

i∈π
ζ̄i(Xik − EmXik)− z

∣∣∣∣∣ ≤ ρt

)
. (A.6)

The idea, originated from [92], is now to use the rate of convergence given by the Berry-
Esseen theorem to upper bound this last expression.

Lemma A.6 (Small ball probability via Berry-Esseen theorem). There exists c > 0 such
that if Z1, . . . , Zn are independent centered complex random variables, then for all t ≥ 0,

sup
z∈C

P

(∣∣∣∣∣

n∑

i=1

Zi − z

∣∣∣∣∣ ≤ t

)
≤ ct√∑n

i=1 E(|Zi|2)
+

c
∑n

i=1 E(|Zi|3)
(
∑n

i=1 E(|Zi|2))3/2
.

Proof. Let τ2 =
∑n

i=1 E|Zi|2, then either
∑n

i=1 E(ReZi)
2 or

∑n
i=1 E(ImZi)

2 is larger or
equal to τ2/2. Also

P

(∣∣∣∣∣

n∑

i=1

Zi − z

∣∣∣∣∣ ≤ t

)
≤ P

(∣∣∣∣∣

n∑

i=1

Re(Zi)−Re(z)

∣∣∣∣∣ ≤ t

)

and similarly with Im. Hence, up to loosing a factor 2, we can assume with loss of
generality that the Zi’s are real random variables. Then, if G is a real centered Gaussian
random variable with variance τ2, Berry-Esseen theorem asserts that

sup
t∈R

∣∣∣∣∣P
(

n∑

i=1

Zi ≤ t

)
− P(G ≤ t)

∣∣∣∣∣ ≤ c0τ
−3/2

n∑

i=1

E(|Zi|3).

In particular, for all t ≥ 0 and x ∈ R,

P

(∣∣∣∣∣

n∑

i=1

Zi − x

∣∣∣∣∣ ≤ t

)
≤ P(|G− x| ≤ t) + 2c0τ

−3/2
n∑

i=1

E(|Zi|3).

We conclude by using the fact that G has a density upper bounded by 1/
√
2πτ2. �
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Define L = 1
2 log2

2
δρ2 . Note that for our choice of ρ, δ, for some constant c = c(a, b),

L ≤ c|log ρ|.

For 1 ≤ j ≤ L, we define

πj =

{
1 ≤ i ≤ m :

2j−1ρ√
n

≤ |ζi| ≤
2jρ√
n

}
.

From the pigeonhole principle, there exists j such that |πj | ≥ m/L. We have

σ2j =
∑

i∈πj

|ζi|2Em(|Xik − Em(Xik)|2) ≥
22j−2ρ2σ2|πj |

n
.

and,
∑

i∈πj

|ζi|3Em(|Xik − Em(Xik)|3) ≤
2jaρ√
n
σ2j .

We deduce by (A.6) and lemma A.6 that (by changing the value of c), for all t ≥ 0,

Pm(|〈ζ, C〉| ≤ ρt) ≤ cρt

σj
+
c2jaρ

σj
√
n

≤ ct
√
n

σ
√

|πj |
+

c

σ
√

|πj |

≤ c
√

|log ρ|
σ

(
t+

1√
n

)
.

The proof of (A.4) is complete.

Proof of lemma A.1. All ingredient have now been gathered. By lemma A.4 and (A.4) we
find, for all t ≥ 0,

P

(
min

x∈Incomp
‖(X +m)x‖2 ≤

ρ2t√
n

; s1(X +M) ≤ s
√
n

)
≤ c

√
|log ρ|
σ

(
t+

1√
n

)
.

Using our choice of ρ, we obtain for some new constant c > 0,

P

(
min

x∈Incomp
‖(X +m)x‖2 ≤

t√
n

; s1(X +M) ≤ s
√
n

)
≤ c

√
log(cs/σ)

σ

(
ts2

σ2
+

1√
n

)
.

The desired result follows then by using (A.1) and (A.3). �
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