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Abstract

Linear digital signal processing consists in convo-
luting the input sampled signal with the discrete
version of the impulse response of a filter designed
by an expert. More than often, a unique impulse re-
sponse does not represent the complete knowledge
of the expert who should have proposed more than
one appropriate filter. In a recent paper, we have
proposed an extension of the finite impulse response
filtering that able to represent the fact that the fil-
ter is imprecisely known. This extension leads to
compute an interval-valued filtered signal. In this
paper, we propose a natural follow-up of this work
by considering interval-valued input signals and re-
placing the Choquet integral by the Sipo§ integral.

Keywords: Linear filtering, interval-valued signal,
Choquet and Sipos integrals, capacities, imprecise
knowledge.

1. Introduction

In signal processing, filtering consists of modifying
a real input signal by blocking pre-specified partic-
ular components (usually frequency components or
random components). By contrast with an analog
filter, which directly operates on a continuous sig-
nal, a digital filter operates on digital samples and
performs a mathematical manipulation that results
in output samples having theoretically pre-required
properties. Since the digital samples to be pro-
cessed are usually obtained by sampling a contin-
uous signal and since the output samples are gen-
erally converted in a continuous output signal via
a D/A converter, most digital filters are designed
to mimic analog filters. More precisely, the pre-
required properties of the output digital signal are
specified in the continuous domain.

Finite impulse response (FIR) filtering is one of
the most popular method due to the low complexity
of the algorithms it involves and the high simplicity
of the representation it carries on. The mathemat-
ical manipulation involved in FIR filtering consists
of convolving the input samples with a particular
digital signal called the impulse response of the fil-
ter. The ability of the mathematical manipulation
to achieve the desired filtering is strongly linked
with the ability of the user to specify the appro-
priate impulse response of the filter. Despite the
expertise most of users have developed, this spec-
ification still represents a difficulty. To answer to
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this difficulty, a skilled practitioner usually defines
an objective criterion (e.g. a distance between a
desired output and the filtered output in different
situations) and selects the FIR that optimizes this
predefined criterion. However, the objectivity of the
criterion is still debatable. In fact, slightly changing
the criterion (e.g. moving from a Ly to a Ly dis-
tance) more often than not leads to a strong change
in the selected FIR. Another appropriate answer to
the difficulty of defining a specific FIR is defining a
set of possible appropriate impulse response. Such
a filtering algorithm would naturally lead to a set of
filtered outputs. Replacing a single FIR by a set of
FIR can lead, as a drawback, to a drastic increase
of the the filtering algorithm’s complexity, partic-
ularly if the cardinality of this set is infinite (e.g.
when representing the set of all low-pass Butter-
worth filters having a cutoff frequency that belongs
to an interval [finin, fmaz]). In a recent article [?],
we have proposed a set-valued filtering method hav-
ing an algorithmic complexity which is comparable
to the complexity of usual filtering algorithms. The
method we propose is based on representing a con-
vex set of FIR by a convex capacity and extending
the convolution operation by the use of the Choquet
integral. Our algorithm computes the upper and
lower bounds of an interval-valued filtered output
which is the convex set of all the values that would
have been obtained by using the conventional ap-
proach with all the FIR belonging to the considered
set. Moreover, as shown in [?], the imprecision of
the output can be used as a marker of the random
noise of the input signal, or more precisely, on the
influence of this noise on the statistical variations
in the output.

In [?], the approach we propose is based on
the asymmetric Choquet integral. It sometimes
leads to interval-valued output that are not spe-
cific enough for some applications e.g. automatic
control. In this article, we propose two extensions
of this work. First, we propose to generalize these
filtering method to interval-valued inputs. This ex-
tension aims at accounting for a known imprecision
due to error-calibration of the measurement process,
or for a known statistical error by means of confi-
dence intervals. The signal to be filtered can also be
interval-valued because it is the output of a previous
interval-valued filtering process. Second, we pro-
pose to consider the symmetric Choquet integral (or
Sipos integral) instead of the asymmetric Choquet
integral. This replacement leads to more specific



interval-valued outputs. Moreover, we show that
the interval-valued output given by the symmetric
approach is always symmetrically distributed in the
the interval-valued output given by the asymmetric
approach.

This article is organized as follows. Section 77
presents the framework and notations. Section 77
deals with symmetric and asymmetric Choquet in-
tegrals. Section 7?7 recalls some basis on Minkowski
additive and subtractive operations for intervals.
Section 77 proposes to extend imprecise expecta-
tion operators proposed in [?] to intervals and in-
troduces a new expectation operator based on the
Sipo$ integral. Section ?? presents some experi-
ments to illustrate most of the properties mentioned
in this paper.

2. Framework and notations

Let X = (X,)n=1,..~ be a sequence of N digi-
tal samples of a signal. The set {1,---, N} will be
denoted (2. Hence X can be viewed as a real func-
tion on a finite set 2. The set of these functions is
denoted V. Let p = (p;)icz be the finite impulse
response of the considered filter!. The computa-
tion of Y}, the k-th component of the filter output,
is given by Y, = 25:1 Pk—nXn. When the im-
pulse response is positive and has a unitary gain
(Vi € Z, p; > 0and ), , p; = 1), it can be consid-
ered as a probability mass function inducing a prob-
ability measure P on each subset A of Z by P(A) =
> ica pi- This special type of impulse responses are
often called summative kernels [?], or simply ker-
nels, when used to ensure interplay between contin-
uous and discrete domains. Thus, computing Y} is
equivalent to computing a discrete expectation op-
erator involving a probability measure P} induced
by (pk—n)nez, the probability distribution obtained
by translating the probability distribution p over k:
Vi = SN pr_nX, = Ep,(X). According to this
interpretation, the probability Py defines a prob-
abilistic neighborhood of the k-th sample. As the
impulse response is finite, it has a bounded support,
ie. AN € N, i € [-N,N] = p; = 0. This bounded
support will be referred to throughout this paper as
the radius of the summative kernel.

The approach we propose in [?] is to compute
an interval-valued signal containing all outputs of
filtering process involving a coherent family of con-
ventional linear filters. This approach is based on
an extension of the expectation operator involving
an asymmetric Choquet integral.

3. Symmetric and asymmetric Choquet
integral

: P(Q) — [0,1]
0 (@ is the empty set of

A capacity v is a set function v
such that v(@) =

IThe impulse response of the filter being finite, 3K € Z
such that Vi > K, p; = 0. The general formulation is easier
to be manipulated.
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2), v(2) =1, and VA € B = v(A) < v(B).
v®, the conjugate capacity of v, is a capacity
defined by VA € P(Q), v°(A) = 1 — v(A9)
where A€ denotes the complementary set of A
in Q. A capacity v is concave if and only if
VA, B € P(Q), v(AUB)+v(ANB) < v(A)+v(B).
The core of a concave capacity v is core(v) =
{P probalility on P(2) such that P(A) <
v(A), VA e P(Q)}.

Let X = (X,,)n=1,...,~ be areal function on Q. (-)
denotes the permutation function on 2 such that X
is a non decreasing function, i.e. X() <... < X(y).

If X is a positive real function then the Choquet
integral of X with respect to the capacity v is:

ZXm

where Vi € €2, A(;) is the subset of ) defined by
A(i) = {(’L), cey (N)} and A(N+1) =g

If X is a real function then there exists two pos-
sibilities for extending the Choquet integral: the
asymmetric Choquet integral, also called Choquet
integral, and the symmetric Choquet integral, also
called Sipo$ integral.

Let r be the index such that

X(l) < ... < X(r) < 0 < X(r+1) < ... <

X(n)- Hence two positive fonctions can be defined.
X~ is the function defined by Vn € Q, X, =
maz(—X,,0) and XT is the function defined by
vn € Q, X;; = maz(X,,0). Thus, Vn € Q,
X, =X -X.

The asymmetric Choquet integral of the function
X with respect to a capacity v is:

Co(X) = Cy(XT) = Cpe (X7).

The Sipo$ integral of the function X with respect
to a capacity v is:

Sy(X) = Cp(XT) — Cu(X 7).

An important property of these asymmetric and
symmetric Choquet integrals will be used in the se-
quel: C,y(X) and S, (X) are monotonic with respect
to X.

n) - 'U(A(nJrl) ))

4. Minkowski additive operations for real
intervals and interval-valued vectors

4.1. Real intervals

The real intervals are denoted [x] = [z,T] where
2 (rsp. T) is the lower (rsp. upper) bound of the
interval [x]. The set of all real intervals is denoted
IR.

e The Minkowski addition of two intervals [z] and

[ylis [z] © [y] = [z + 3,7+ 7.
e The dual Minkowski addition of two intervals
(2] and [y] is [2] B [y] = [min(z + 7,7 +

y), maz(z +7,T + y)].

If 0 € [y], then the Minkowski addition can be
interpreted as a dilatation and the dual Minkowski
addition can be interpreted as an erosion [?].



e The Minkowski subtraction of two intervals [z]
and [y is [z] © [y] = [2,7] & [-7,~y| = [z -
Y, T — Q] :

e The dual Minkowski subtraction of two inter-
vals [z] and [y] is [¢] B [y] = [z, Z] B[y, —y] =

Note that the H operator is identical to the dif-
ference operator defined by Hukahara in [?] when
[a] = [b] ® [x] has a solution.

4.2. Interval-valued vectors

In this paper, we consider interval-valued discrete
functions, which can be represented by interval-
valued vectors [X]:

X] = (few7T) oy [ Ta) )

where ¢ is the transposition function on vectors.
The set of interval-valued vectors is denoted IV'.

Considering the interval-valued vector [X] € TV,
the two following real vectors can be defined:
X = (21, 7x_n)t and X = (T, - ,Tn)" .

Based on these two vectors, we extend the nota-
tion [z,T] to vectors by denoting: [X] = [X, X] =
{Y € VIX <Y < X} where X < Y if and
only if X,, <Y, ¥n € {1,...,N}. We also ex-
tend the Minkowski operators to vectors by denot-
ing: V[X],[Y] € IV, [Z] = [X]O[Y] the interval-
valued vector such that Vn € , [z,] = [2,]0[yn]
with ¢ € {®,H, 0,8},

5. Imprecise expectation operators

As remarked in Section ?7, filtering a real signal
can be seen as an expectation operation involving a
probability measure based on the impulse response
of the filter. Since the core of a concave capacity
is a convex set of probabilities, a capacity allows
an imprecise representation of a probability mea-
sure, i.e. an ill-known impulse response. In this
section, we define two imprecise expectation opera-
tors E and d that extend the usual expectation E
operator to concave capacities. Those two imprecise
expectation operators have an imprecise output rep-
resenting the sets of output that should have been
obtained by using an expectation operator based on
a probability measure belonging to the considered
convex set. These two outputs correspond to two
different filtering contexts.

We first achieve these extensions to real valued
discrete functions. We then generalize these exten-
sions to interval-valued discrete functions.

Let us first recall a classical result proved by D
Denneberg [?]:

Proposition 1 If v is a concave capacity then

e VX eV, Cy(X)= sup Ep(X),
Pecore(v)

VX eV, Che(X)= inf Ep(X),
Pecore(v)
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o VX € Va éUC(X) S CV”U(X)a

where Ep(X) it the usual expectation of the func-
tion X based on the probability measure P.

5.1. Interval-valued expectation operators
for real functions

According to Proposition ??, for any function X €
V the interval [Cye (X), C,y(X)] always exists while
either [Sye (X)), Sy (X)] or [Sy(X), Sye (X)) exists.
The extension E is based on the Choquet integral
while the extension  is based on the Sipos integral.

Definition 1

E, (X) = [Ce (X), G, (X)] S
E(X) [mln(s ( )aSv( ))’max(SUC(X)aSv(X))]'

The properties of operator Ev are presented in
[?]. We point out a certain number of these prop-
erties here. Let v be a concave capacity. If, for
all probabilities P € core(v), all the expecta-
tions Ep(X) are equal, then Cye(X) = Cy(X). If
X is a function equal to a constant value ¢ then
Coe(X) =Cy(X) =c.

As shown in [?] the following result holds:
E’U(X) = EU(X+) QE’U(X_)

Finally, by construction, if X € V is a positive
function, then the asymmetric Choquet integral and
the Sipos integral coincide with the Choquet inte-

gral, and thus E, (X) = d,(X).
Proposition 2

Proof: VX €V, Cpe(X) < Cp(X
functions Xt and X~ we have

Sy(X) = Cu(XT) — Cu(X7) < Cu(XT
CUC(X_) = éU(X)a

v

), so using the

) _

Spe(X) = Cpe(XT) — Cpe(X7) < Cu(XT) —
Cv(Xi) = CV’U(X )

ch X) - CUC(XJr) - Cvc(Xi) > CUC(XJr) -
Cuo(X7) = Cpe(X),

Coe(X) = Sp(X) = Cupe(XT) — Cy(X7) —
Cup(XT) +Cy(X7) = Cpe(XT) = Oy (XT) <0,

So we have proved that Cpe(X)

INIA

min(S,(X), Sye (X)) and maz(S,(X), Sye (X))
Cp(X). m

Proposition 3 VX € V, the inclusion H,(X) C
EVU(X) is symmetric i.e. Cy(X) —S(X) = §(X) -
Cype (X).

Proof: The inclusion is symmetric if and only if

Co(X) =S =8—Cpe(X) and Cy(X) - S = S —
ve (X).
Let v be a capacity,
Co(X) = (X+)—CUC(X’)
:gv(X ) (Xi)‘i’cv(Xi)*Cvc(Xi)
= 5y(X) + (Co(X7) = Cpe (XT)).



Note that if we consider v¢ then Cye (X
(Cv(Xi) - CUC (Xi))

So we have Cy(X) — Sy(X) = Spe (X) — Cpe (X)

Co(X) = Cy(XF) = Cpe(X7)

= Cy(XT) = Coe (X +) + Coe (X )—Cvc(Xf)

= Sye (X) + (Cu(XF) = Cpe(X

Che X):CUC( )—C (X~ )

= CLX) ) + G )~ ()
Therefore C'U(X) — S’Uc (X) = S’U(X) — Ce (X). m

The previous proposition can be summarized in

the following figure:
(Cy — Cype)(X7)

TN
Cpe(X)

[ 1

T ]
S(X)  S(X)

(Cv - Cvc)(X+)

(Cy — Cupe)(XT)  (Cp = Cue)(X7)

with S(X) = min(S,e QX ), Sy (X
5(X) = maz(Sye ( ); Su(X)-

A straightforward corollary of this proposition is

X)) and

that d,(X) and E, (X) have the same middle value.
Proposition 4 (C, —Cye)(X7) = (Cp — Cpe)(XT)
if and only if S = Sye(X) =S5 = S,(X).

Proof:

Spe (X) = Sy(X) =

Cpe(XT) = Cpe(X7) = [Cup(XT) = Cy(X )] =

(Cpe — C)(XT) = (Cpe — Cp)(X 7).

For X € V, if the interval d,(X) is reduced to
a real value, then this value is the center of the
interval E, (X).
Proposition 5
q,(X) =E,(X*)BE,(X").
Proof: We have E,(XT) = [Cye(XT),Cy (X )]
and E,(X7) = [Coe(X7),Cu(X )]- ex
the definition of B, the lower bound of E, (X
(X7) is min(Cpe(XF) = Cpe(X7),C,
»(X 7)) and its upper bound is max(Cye
Cue(X7), C, (X*) — Cy(X7)). Thus, E
E,(X")=4,(X). m
Therefore, due to the definition of the dual
Minkovski subtraction, [z] = d,(X) is the solution
of either E,(X+)®[2] = B,(X~) or ,(X")&[2] =
E, (XT), ie H,(X) is the quantity that should be
added to the interval-valued expectation of the pos-
itive (negative) part of the function to obtain the
interval-valued expectation of the negative (positve)
part of the function.

Hence using
B
(X*) -
(XF) -
(XH) B

=l

OO

U

460

5.2. Interval-valued expectation operators
for interval-valued functions

Let [X] = [X,X] € IV be an interval-valued vec-
tor. We propose a three steps construction of the
interval-valued expectations E, ([X]) and d,([X]) in
order to be coherent with the imprecise representa-
tion of both the function and the impulse response
of the considered filter.

The first step of this construction consists in gen-
eralizing to interval-valued vectors the definition of
the functions X and X .

As a preliminary remark, note that, for all X €
[X], there exists a decomposition X = XT — X .
Considering the fact that X € [X] entails X < X <
X, Xt = X V0 is the lower bound of X and Xt =
X V0 is its upper bound, V being the maximum
computed coordinate by coordinate, and 0 being the
function that equals 0 for all ¢ € 2. Similarly when
considering X, X~ > X~ = (—X)V0,and X~ <
X = (-X) V0. To summarize, VX € [X], XT <
Xt<X and X" <X~ <X .

The generalization we propose is the natural
interval-based extension of this definition.

Definition 2 If [X] is an interval-valued wvector,
then the interval-valued vectors [X~] and [XT] are:

o [X7] = max(—[X],[0])

o [XT] =max([X],[0])
where max(—[X], [0]) = {(=Y) VOY" € [X]} and
maz([X], [0]) = {Y" VO]Y" € [X]}.

According to the previous definition, [Xt] =
XT,X7], [X7] = [X~,X ] and using the defi-
nition of the Minkowski subtraction we have the
following relation.

Proposition 6

X] = [XT]o[X7].

The second step of the construction needs the ex-
tension of the operator E to positive interval-valued
vectors.

Definition 3 Let [X] = [X, X|. € IV be a positive
interval-valued vector (i.e. max([X],0) = [X]), the
interval-valued expectation of [X| with respect to the
capacity v 1s:

[Cvc (K)’ CU (Y)]

Proposition 7 _
vX € [X], E,(X) € E,([X]), _
vy € E,([X]), 3X € [X] such that y € E, (X).

Proof: The first inclusion of the Proposition can
be easily proven by considering the monotony of the
Choquet integral associated tothe fact that X € [X]
entails X < X < X.



The proof of the second inclusion is less staight-
forward. Let y be an element of the interval
E,([X]). Let X be a vector of [X]. If y € E,(X)
then the proof is ended. If not, let z = min(|ly —
Co(X), [y = Coe(X)]). Let Z be the vector whose
elements are equal to z. By construction, either
y€E, (X +2Z)orycE, (X —Z). Since the Cho-
quet integral is an increasing function, by construc-
tion (X + Z) € [X] and (X — Z) € [X], which ends
the proof. B

For the third step, it seems natural to define the
interval-valued expectation operators for interval-
valued vectors as follows:

Definition 4

o([X]) = [Coe (X), Co(X)]

(X)) =

The Property 7?7 of inclusion still holds for
interval-valued vectors.

[€af} e

Proposition 8

q,(1X]) € E,([X]).
Proof: It is sufficient to prove that Sye (X)
and S,(X) belong to [Cye(X),Cy(X)]. Consider-

ing Proposition 7?7 and the fact that the Choquet
integral is monotonic with respect to its integrand,
we can write the following inequalities:

o Spe(X) < Cu(X) < Cu(X) and
Spe(X) > Cpe(X)  which  implies
Sye (X) € [Cpe(X), Co(X))]. o

e 9,(X) < Cy(X) and  5,(X) >
Che (_7 ) 2> Cue(X)  which  implies

w(X) € [Coe(X), Cp(X))]

Note that the fact that d,([X]) is symmetrically
distributed in E,([X]) (Proposition ??) does not
hold for an interval-valued input. However, the de-
composition principle presented in [?] and Proposi-
tion 77 still holds.

Proposition 9

L ((XF) © E, (X))
(X)) BE,(X7))

Proof: Let [X] be an interval-valued vector
and [X*] and [X~] the decomposition proposed

in Proposition ?7: [X] = [XT]© [X7] ie. X =
X -:7 X and YV: 7+ fVX __ Therefore,
E,(X]) = [Coc(X),Co(X)] = [Coe(XT) -
Cv(yi)a CU(YJF) - CUC (Ki)]
Considering
E,([X*]) = [Coe (XT),Cu(X )] and
EU([Xi]) = [Cvc (K7)7CU(7_)],

()
[min(Sye (X), 8u(X)), maz(Sye (X), 5,(X))].
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Figure 1: Original signal (black) superimposed on
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L 004
2
5
§ 0.02}
0
-1 -0.5 0 05 o1
time 1n sec.

Figure 2: Gaussian filter.

and the definition of the Minkowski subtraction we
obtain E,(1X*]) O E,(1X ) =
_ _+ _
[Cvc(z-i_) - CU(X ); CU(X ) - CUC(K )]
The proof of the second equality is similar when
considering the dual Minkowski subtraction. B

6. Experiments

This section aims at illustrating the different prop-
erties of the imprecise-valued filtering method we
propose. This experiment is based on considering
a synthetic signal of the form x(t) = ktcos(wt) de-
graded by additive gaussian noise whose standard
deviation increases with time (i.e. the noise is not
stationary) as depicted in Figure ?7?.

The filter we use is a low-pass Gaussian filter with
a standard deviation equal to 10 times the sampling
period (see Figure 7?). In this experiment, we sup-
pose the filter to be correctly calibrated to filter the
additive noise — even if this hypothesis is not true
since the noise is not stationary.

On one hand, we achieve a precise filtering of the
discrete signal by using a standard (Dirac) sampling
of the Gaussian impulse response. On the other
hand, we achieve an imprecise filtering by using a
discrete capacity designed to account for the fact
that the sampling kernel is unknown. The core of
the capacity contains all the discrete impulse re-
sponses that would have been obtained by sampling
the Gaussian impulse response with a sampling ker-
nel that respects the Shannon sampling theorem i.e.
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Figure 3: Precise signal filtered with the asymmetric
Choquet integral based approach.

whose bandwidth is less than half the sampling pe-
riod (see [?]).

In the first part of the experiment, we consider
filtering the above defined noisy precise signal by
using both the asymmetric and the symmetric Cho-
quet based approaches. Figures 7?7 and ??7 show
a zoomed window (see Figure ?7) of the result of
this experiment. On both Figures, the original sig-
nal is plotted in dotted black, the noisy signal is
plotted in cyan, the precise output of the precise
filter is plotted in black and the imprecise output
of the capacity-based filter is plotted in red (lower
value) and blue (upper value). For both approaches,
the output of the precise filter (plain black line) is
always included in the output of the imprecise fil-
ter (since the capacity dominates the probability
measure induced by the discrete impulse response).
However, the original signal does not fully belongs
to the interval-valued filtered signals. In fact, since
the continuous Gaussian filter is not appropriate for
filtering the whole continuous signal, none of the
discrete filters represented by the considered capac-
ity is appropriate to filter the discrete signal. As
can be easily remarked, by comparing Figure 77
with Figure ??, the Sipo$ -based approach leads to
a more specific signal when the signal value is near
0 compared to the Choquet-based approach. This
comparison is more straightforward by looking on
Figure ??. In fact, in the Sipo$ -based approach,
the value 0 has a special role of breaking point.
This special role is particularly relevant for design-
ing feedback filters in automatic control processes
since a maximal specificity of the output value of
the filter is required when the process is close to the
nominal equilibrium point.

In the second part of the experiment, the in-
put signal is imprecise. More precisely, we suppose
we know the fact that the standard deviation of
the additive noise increases with time. Within the
classical approach, this knowledge would have been
used by empirically modifying the bandwidth of the
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Figure 4: Precise signal filtered with the symmetric
Choquet (Sipos) integral based approach.
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Figure 5: Comparison of the signal filtered with
the asymmetric Choquet integral (blue-upper, red-
lower) and the symmetric Choquet integral (dotted
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Figure 6: Imprecise signal filtered with the asymet-
ric Choquet integral based approach.
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Figure 7: Imprecise signal filtered with the symetric
Choquet (Sipos) integral based approach.

Gaussian filter. Within our approach, we use this
knowledge to construct, for each sample of the sig-
nal to be filtered, a 60% confidence interval. We
thus construct an interval-valued noisy signal that
should contain 60% of the real values of the original
signal. Figures 7?7 and ?7 show a zoomed window
of the result of this experiment. The color coding
used in Figures 7?7 and 7?7 is the same than in Fig-
ures 7?7 and ??. The Sipos -based filtered signal is
included in the Choquet-based filtered signal (the
Sipos -based filtered signal is represented in dotted
lines in Figure ??). All the remarks done in the first
part of the experiment (with the precise signal) still
hold with the second part of the experiment, except
that, since the noise is accounted by the interval-
valued input, the original signal fully belongs to the
interval-valued outputs, for both approaches.

7. Conclusion

In this paper, we have proposed two extensions of
the imprecise-valued filtering method we have pre-
viously proposed in [?]. This method allows repre-
senting a partial lack of knowledge about the im-
pulse response of the filter to be used. It consists
in replacing the classical single precise impulse re-
sponse by a set of impulse responses that is consis-
tent with the user’s expert knowledge. The set of
impulse responses is represented by a concave ca-
pacity and the aggregation operator used in linear
filtering is replaced by a Choquet integral. Due to
these replacements, the computational complexity
of this new approach is comparable to the complex-
ity of the classical approach. The first extension
concerns the use of the Sipos integral. This ex-
tension leads to a filtering approach that achieve
a kind of compensation between positive and nega-
tive part of the signal. The obtained signal is thus
more specific near a nominal equilibrium point than
the previous approach proposed in [?]. The second
extension allows the use of the imprecise filtering
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approach with imprecise inputs. In fact, the input
of a filter can be imprecise either because this signal
is the output of another imprecise filter (and thus it
allows iterative filtering methods), or because this
imprecision accounts for a known (calibrated) im-
precision or for imprecision due to quantification.
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