

Improved scintillation time response in (Lu0.5Gd0.5)2O3:Eu3+ compared with Lu2O3:Eu3+ transparent ceramics

Hélène Rétot, Samuel Blahuta, Aurélie Bessière, Bruno Viana, Brian Lacourse, Eric Mattmann

▶ To cite this version:

Hélène Rétot, Samuel Blahuta, Aurélie Bessière, Bruno Viana, Brian Lacourse, et al.. Improved scintillation time response in (Lu0.5Gd0.5)2O3:Eu3+ compared with Lu2O3:Eu3+ transparent ceramics. Journal of Physics D: Applied Physics, 2011, 44 (23), pp.235101. 10.1088/0022-3727/44/23/235101. hal-00623794

HAL Id: hal-00623794 https://hal.science/hal-00623794

Submitted on 15 Sep 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	Improved scintillation time response in
2	$(Lu_{0.5}Gd_{0.5})_2O_3 : Eu^{3+}$ compared to $Lu_2O_3 :$
3	Eu ³⁺ transparent ceramics
4	
5	
6	
7	Hélène Rétot ^{1,2} , Samuel Blahuta ^{1,2} , Aurélie Bessière ¹ *, Bruno Viana ¹
8	Brian LaCourse ² , Eric Mattmann ²
9 10 11 12	¹ Laboratoire de Chimie de la Matière Condensée de Paris, UMR - CNRS 7574, Chimie-
13	Paristech, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05, France.
14	
15	² Saint-Gobain Cristaux et Détecteurs, 104 Route de Larchant,
16	77140 St Pierre les Nemours, France
17	
18	* tel number : +33 1 53 73 79 43 / fax number : +33 1 46 34 74 89 / e-mail : <u>aurelie-</u>
19	bessiere@chimie-paristech.fr
20	
21	
22	
23	
24	

1 Abstract

2

The scintillation properties of two sesquioxides ceramics $Lu_2O_3:Eu^{3+}$ and 3 $(Lu_{0.5}Gd_{0.5})_2O_3:Eu^{3+}$ were studied. Both ceramics present comparable transparency 4 and light yield whereas (Lu_{0.5}Gd_{0.5})₂O₃:Eu³⁺ showed an order of magnitude reduced 5 afterglow in the 3-300 ms range. A thorough study of the location and behavior of 6 Eu³⁺ dopant ions at C₂ and S₆ sites of Lu₂O₃ and (Lu_{0.5}Gd_{0.5})₂O₃ structures was carried 7 out with low temperature selective excitation of Eu^{3+} . This revealed that (i) at both C_2 8 and S₆ sites, Eu^{3+} 4f-4f lifetime is shorter in $(Lu_{0.5}Gd_{0.5})_2O_3$: Eu^{3+} than in Lu_2O_3 : Eu^{3+} 9 (ii) the host matrix $(Lu_{0.5}Gd_{0.5})_2O_3$ as compared to Lu_2O_3 favors the location of Eu³⁺ 10 at C_2 site. As decay times of Eu³⁺ in C_2 and S_6 sites are 1.0 ms and 3.8 ms 11 respectively, the preferred occupation of C_2 in $(Lu_{0.5}Gd_{0.5})_2O_3$: Eu³⁺ implies a much 12 shorter decay time for $(Lu_{0.5}Gd_{0.5})_2O_3:Eu^{3+}$ in the 3-20 ms range. Reduction of 13 14 afterglow in the 20-300 ms range is illustrated by thermally stimulated luminescence peaks presenting a highly reduced intensity for (Lu_{0.5}Gd_{0.5})₂O₃:Eu³⁺ compared to 15 $Lu_2O_3:Eu^{3+}$ implying reduced charge trapping defects in $(Lu_{0.5}Gd_{0.5})_2O_3:Eu^{3+}$ 16 17 ceramics.

18

19 Keywords: ceramics, scintillation, Computed Tomography, luminescence,
20 sesquioxide

- 21
- 22

1 Introduction

2

A scintillator is a material able to detect ionizing radiation (X, α , β , γ -rays, 3 neutrons...) and convert them into visible light. In order to obtain performant 4 5 scintillators the high energy electron-hole pairs produced after ionisation should be efficiently transferred to the luminescent center. This last stage is very material-6 dependent. One of the most important application fields of scintillation is medical 7 8 imaging. Today the main scintillating materials for medical imaging are 9 Gd₂O₂S:Pr,Ce,F [1], (Y,Gd)O₃:Eu,Pr [2] and CdWO₄ [3,4] for X-ray Computed 10 Tomography (CT) whereas BGO (Bi₄Ge₃O₁₂) [5,6], NaI:Tl [7], LYSO $((Lu, Y)SiO_5:Ce^{3+})$ [8,9] and LPS $(Lu_2Si_2O_7)$ [10,11,12] are often used for Positron 11 Emission Tomography (PET). BGO [13], LYSO [14] and CsI:Tl [13] have also been 12 13 shown useful for megavoltage X-Ray imaging (portal imaging and cone-beam CT). In 14 the aim of decreasing the radiation dose received by the patient during a scan, 15 scintillators with enhanced efficiency are being investigated. In the first stage of 16 detection, the ionizing radiation must be stopped by the scintillator within the shortest range of the material in order to produce sharp images. High density and high 17 18 effective atomic number are required for the host material. In that respect lutetium sesquioxide Lu_2O_3 constitutes one of the best possible hosts with a density ρ of 9.43 19 g/cm^3 and an effective atomic number Z_{eff} of 69. With its cubic structure it can be 20 21 synthesized as a transparent ceramics which is very advantageous to produce 22 scintillators at a lower cost. However obtaining a nanosecond fast response in Lu₂O₃ from 5d-4f emissions of dopants such as Ce^{3+} , Pr^{3+} or Tb^{3+} was found impossible due 23 to the location of the 5d levels of Ln^{3+} (Ln = Ce, Pr, Tb) inside the conduction band 24 [15]. Nevertheless Eu^{3+} 4f-4f luminescence is observed in $Lu_2O_3:Eu^{3+}$. It presents a 25

typical red luminescence that matches very well the sensitivity spectrum of 1 2 photodiode detectors and its decay time is in the order of millisecond in most hosts [16]. Lempicki *et al.* in 2002 were the first to claim the use of Lu_2O_3 : Eu³⁺ ceramics as 3 a scintillator [17]. While a typical 1-2 ms response time is considered as totally 4 5 acceptable for scintillators in X-rays CT application, longer afterglow should be 6 suppressed so that CT images do not get blurred by delayed signals. Unfortunately afterglow is often a limiting parameter in sesquioxide hosts. An afterglow of some 7 hundreds of milliseconds has been reported by several authors in Lu_2O_3 :Eu³⁺ 8 [18,19,20] as well as in Lu_2O_3 :Tb³⁺ [21]. The afterglow in sesquioxides could 9 10 originate from Frenkel defects as the structure allows easy displacement of oxygen 11 atoms. However no experimental proof has been brought up till now. Alternatively co-doping was reported as a way to reduce afterglow in some cases. Pr^{3+} [22] or Ti⁴⁺ 12 [23] co-doping in (Y,Gd)₂O₃:Eu³⁺ for instance were found to reduce persistent 13 luminescence of Eu³⁺. On the contrary Ca²⁺ addition in Lu₂O₃: Tb³⁺ [21] enhanced 14 long-lasting luminescence in the material. 15

In this work an alternate way to improve time response in Eu³⁺-doped 16 sesquioxides is reported. By heavily substituting the lutetium host cation with 17 gadolinium in Lu_2O_3 up to the composition ($Lu_{0.5}Gd_{0.5}$)₂O₃, the luminescence time 18 19 characteristics of the Eu³⁺-doped scintillating ceramics are very much improved while the density of this latter compound (about 8.4 g/cm^3) is still very favorable. In the first 20 21 part of the paper the scintillation properties including afterglow measurements of $Lu_2O_3:Eu^{3+}$ and $(Lu_{0.5}Gd_{0.5})_2O_3:Eu^{3+}$ ceramics are investigated. In the second part, the 22 selective excitation of Eu^{3+} in the two cationic sites of the structure unravels reasons 23 24 for different luminescence decay behaviors and the time reponse improvement of $(Lu_{0.5}Gd_{0.5})_2O_3:Eu^{3+}$ ceramics is discussed. 25

1

2 **Experimental Section**

3

4 Gobain Crystals. The starting powders were synthesized by an inverse coprecipitation 5 method. A solution pH = 10 of ammonia and oxalic acid was prepared. For the 6 7 synthesis of Lu₂O₃:Eu³⁺, lutetium and europium nitrates were dissolved in ionized 8 water and then added dropwise to the ammonia/oxalic acid solution while stirring. A white precipitate of $Lu_2(C_2O_4)_3:Eu^{3+}$ was formed [17]. The precipitate was washed 9 10 first with water and then with ethanol before being dried for one hour at 100°C. The powder was then fired at about 800°C. For $(Lu_{0.5}Gd_{0.5})_2O_3:Eu^{3+}$ lutetium, gadolinium 11 and europium nitrates were used. The powders structure was checked by X-ray 12 13 diffraction and showed pure bixbyite structure with space group Ia-3 (206). Initial 14 Europium concentration was 6 at% and 7 at% (via Eu₂O₃) for Lu₂O₃ and 15 $(Lu_{0.5}Gd_{0.5})_{2}O_{3}$ ceramics, respectively as this concentration range was found optimum 16 with respect to the light yield of the ceramics [24]. After grinding, pellets were prepared by pressing powders under isostatic conditions at room temperature and then 17 18 at high temperature. Finally the ceramics were pressed under isostatic conditions at 19 high temperature, before being annealed at 1000°C in air. Both ceramics are 1 cm-20 diameter large and 1 mm-thick. A Gd₂O₂S:Pr (GOS:Pr) ceramics of 10 mm- diameter 21 and 1 mm-thickness also studied in our laboratory [25] is used as an element of 22 comparison.

Total transmission was measured using a UV-VIS Cary 6000i double beam spectrophotometer. Ceramics samples were placed at the entrance of an integrating sphere. They were excited on their entire surface from the front and light transmitted and emitted in all directions behind the ceramics was collected by the integrating
 sphere.

For radioluminescence measurements the ceramics were excited by X-rays produced by a molybdenum tube operated at 50 KV and 20 mA impinging on the samples surface with a 45° angle. Light was collected at 45° angle from the surface *via* an optical fibre by a Princeton Charge Coupled Device (CCD) camera cooled at -65°C coupled with an Acton SpectraPro monochromator.

8 In thermally stimulated luminescence (TSL) experiments the ceramics were silver 9 glued on a copper sample holder attached to the cold head of a helium closed cycle 10 cryostat. They were first excited for 10 minutes through a beryllium window of the 11 cryostat by a molybdenum X-ray source operated at 50 KV and 20 mA. A Lakeshore 12 temperature controller was then used to apply a 20 K/min heating rate between 10 K 13 and 650 K. Luminescence was collected through a quartz window of the cryostat by 14 the same detection device as the one used in radioluminescence (optical fibre / 15 monochromator / CCD camera).

Afterglow was measured after X-ray excitation provided by a tungsten X-Ray tube operated at 120 kV and 13.3 mA on ceramics placed on a photodiode. Afterglow measurement was carried out with a 1 ms integration time and up to 300 ms.

Laser-excited low temperature luminescence measurements were carried out on ceramics silver glued on a copper sample holder mounted on the cold head of a closed cycle cryogenic refrigerator. The cold head was cooled to 10 K. Fluorescence and decay spectra were recorded using as excitation source an optical parametric oscillator laser (10 Hz, 8 ns) pumped by the third harmonic of a YAG:Nd laser. A Roper/Princeton Intensified Charged Couple Device (ICCD) detector was used to detect the fluorescence with a time delay up to 20 ms.

1

2 **Results**

3

1. Scintillation properties of Lu₂O₃:Eu³⁺ and (Lu_{0.5}Gd_{0.5})₂O₃:Eu³⁺ ceramics

5

4

In-line transmission of Lu₂O₃:Eu³⁺ and (Lu_{0.5}Gd_{0.5})₂O₃:Eu³⁺ ceramics were 6 measured at the main emission wavelength of Eu^{3+} , i.e. 612 nm, as 46 % and 38 %, 7 8 respectively. Though these values do not appear very high, the ceramics looked 9 transparent. Light was actually very much scattered as samples had not been polished 10 or coated with any anti-reflection layer. As the refractive index of the material is 11 rather high (1.93 and 1.95 at 612 nm for Lu₂O₃ and (Lu_{0.5}Gd_{0.5})₂O₃ respectively) a 12 surface treatment is required to avoid light losses. In order to test the ability of the as-13 prepared ceramics to serve as efficient scintillator pixels used for instance in X-ray 14 CT, their total transmission spectrum was measured and is presented in Figure 1. Let 15 us remind that total transmission was measured with an integrating sphere able to 16 collect both transmitted and scattered light at the back of the ceramics. Therefore total 17 transmission corresponds to light potentially used by a photodetector placed at the 18 back of a scintillating element made of the 1 mm-thick ceramics. Figure 1 shows that Lu₂O₃:Eu³⁺ and (Lu_{0.5}Gd_{0.5})₂O₃:Eu³⁺ ceramics present a total transmission of 81 % 19 and 83 %, respectively at the main emission wavelength of Eu^{3+} (612 nm), indicating 20 21 that the emitted photons should be efficiently extracted from the materials. Both 1 22 mm-thick ceramics, prepared here by the same procedure, show a similar and 23 satisfying optical quality in terms of total light transmission.

Note that the transmission spectra of Figure 1 show expected intra-configurational 4f-4f transition lines of Eu^{3+} . The band gaps of Lu_2O_3 and $(Lu_{0.5}Gd_{0.5})_2O_3$ precursor

1 powders were measured in a previous work as 5.6 eV and 5.4 eV, respectively [24]. 2 These values correspond to the absorption edge observed at the short-wavelength side of the spectra around 220 nm. The spectra also display two absorption bands 3 identified as low transmission dips at 245 nm / 282 nm and at 245 nm / 293 nm for 4 $Lu_2O_3:Eu^{3+}$ and $(Lu_{0.5}Gd_{0.5})_2O_3:Eu^{3+}$, respectively. However this part of the spectrum 5 is modified by the fact that emitted light is not filtered out in this measurement. In that 6 way, the total transmission spectrum at wavelengths where high absorption also 7 reflects some features of an excitation spectrum of Eu³⁺ luminescence. Thus efficient 8 absorption bands for Eu³⁺ luminescence may appear as high transmission values since 9 they imply intense luminescence of Eu^{3+} at 612 nm. Hence the spectrum in that range 10 11 can alternatively be read as two excitation bands at maxima of the transmission curve, at 233 nm / 258 nm and 235 nm / 268 nm for $Lu_2O_3:Eu^{3+}$ and 12 i.e. $(Lu_{0.5}Gd_{0.5})_2O_3:Eu^{3+}$, respectively. These values are comparable to what was 13 measured by Chen et al. on Lu₂O₃:Eu³⁺ ceramics at 245 nm and 266 nm and attributed 14 to charge transfer (CT) absorption bands of Eu^{3+} [26]. Zych *et al.* also observed a 15 double band at 245 nm and 270 nm for a Lu_2O_3 :Eu³⁺ ceramics which they attributed 16 to Eu^{3+} CT bands in the two sites of Lu_2O_3 [27]. 17

The X-ray excited radioluminescence spectra of Lu₂O₃:6%Eu³⁺ 18 and $(Lu_0 _5Gd_{0.5})_2O_3:7\%Eu^{3+}$ are shown in Figure 2 along with the radioluminescence 19 spectrum of a standard $Gd_2O_2S:Pr^{3+}$ non-transparent ceramics. The sesquioxides 20 spectra are composed of expected 4f-4f emission lines for Eu³⁺. The main line 21 corresponds to the ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition of Eu³⁺ at 612 nm and gives a bright red 22 luminescence that perfectly matches silicon photodetectors sensitivity [17]. The other 23 ${}^{5}D_{J} \rightarrow {}^{7}F_{J}$ emission lines are identified on the figure and are very similar for both 24 compounds. The integrated intensities for both $Lu_2O_3:Eu^{3+}$ and $(Lu_{0.5}Gd_{0.5})_2O_3:Eu^{3+}$ 25

ceramics are in the range of the intensity for the GOS:Pr ceramics and are similar the one to each other. However no absolute light yield value was here inferred from this comparison as the transparency of the standard and the sesquioxides is different. Pulse-height measurement, which was not available in our laboratory, or comparison with an absolute reference should be carried out in order to measure an absolute light output value. Note that the most recent work indicates a light yield as high as 70 000 photons/MeV obtained with a (Lu_{0.5}Gd_{0.5})₂O₃: 10% Eu³⁺ ceramics [28].

8 Figure 3 shows afterglow measurements of the two ceramics in part per million of the initial light output. At 300 ms $(Lu_{0.5}Gd_{0.5})_2O_3:Eu^{3+}$ ceramics presents an afterglow 9 about one order of magnitude lower than Lu₂O₃:Eu³⁺. Two parts can be distinguished 10 11 in the decays. Within the first milliseconds (up to 20 ms) the ceramics present a time response in the order of the decay time of Eu³⁺ excited states. Pseudo decay times 12 13 calculated over the two (τ_1) and three (τ_2) first points are reported in Table 1 as an element of comparison. They are reported here as "short afterglow". Both τ_1 and τ_2 are 14 shorter for $(Lu_{0.5}Gd_{0.5})_2O_3:Eu^{3+}$ than for $Lu_2O_3:Eu^{3+}$. A second part of the afterglow 15 curve can be distinguished between 50 ms and 300 ms. This part of the curves allows 16 17 us to evaluate the "long afterglow" decay times τ_3 reported in Table 1. The long afterglow decay time is again found shorter for (Lu_{0.5}Gd_{0.5})₂O₃:Eu³⁺ than for 18 $Lu_2O_3:Eu^{3+}$. 19

TSL glow curves of both ceramics between 10 K and 535 K are shown in Figure 4. The glow curve of $Lu_2O_3:Eu^{3+}$ ceramics presents a main peak at 195 K and two peaks of lower intensity at 54 K and 110 K. The inset of Figure 4 zooms into the 250 K-450 K region. In that region three peaks of much lower intensity can be distinguished at 297 K, 338 K and 375 K. At this point it is difficult to relate with certainty any specific TSL peak to the afterglow observed above. Though of low 1 intensity, the peaks of the 250 K-450 K region might contribute to the afterglow. However the afterglow at some hundred of ms in Lu₂O₃:Eu³⁺ may most probably be 2 3 related to the main TSL peak at 195 K. This hypothesis is supported by a study of Kostler *et al.* on $(Y,Gd)_2O_3:Eu^{3+}$ [22] in which the TSL curve of $(Y,Gd)_2O_3:Eu^{3+}$ was 4 found very similar in shape above 150 K to the one presented here for Lu₂O₃:Eu³⁺ 5 with a main peak at 180 K similar to our 195 K peak. By comparing the TSL curve 6 with the afterglow at 100 ms at various temperatures, they showed that the afterglow 7 8 at 100 ms was unambiguously related to the TSL peak at 180 K.

In Figure 4 the TSL glow curve of $(Lu_{0.5}Gd_{0.5})_2O_3:Eu^{3+}$ presents very similar 9 10 peaks position to Lu_2O_3 : Eu³⁺. The main peak is slightly widened in $(Lu_{0.5}Gd_{0.5})_2O_3:Eu^{3+}$ and its maximum is shifted from 195 K in $Lu_2O_3:Eu^{3+}$ to 205 K. 11 In the 250 K-450 K range, the same low intensity peaks as for $Lu_2O_3:Eu^{3+}$ might be 12 13 present too though the sensitivity is too low to detect the two last peaks at 338 K and 375 K. Defects responsible for charge trapping in both compounds are therefore 14 probably of same nature. However all peaks of $(Lu_0 \,_5Gd_0 \,_5)_2O_3$: Eu³⁺ show a strongly 15 reduced intensity compared to those of Lu₂O₃:Eu³⁺. 16

- 17
- 18 **2.** Site selective excitation of Eu³⁺
- 19

A representation of the bixbyite structure of cubic lutetium sesquioxide is shown in Figure 5. It is comparable to fluorine CaF_2 with ¹/₄ anionic vacancy. The oxygen ions constitute a face centered cubic network with oxygen vacancies located on [1 1 1] directions. Two different cationic sites with symmetry C_2 and S_6 exist in a ratio 3:1. C_2 sites are located at the center of the cubes that present two anionic vacancies on a diagonal of a face of the cube. The cations at C_2 occupy 24d Wickoff positions at (u 0 1 1/4). Two oxygen ions are at a medium distance of the C₂ cation (similar to the cation-2 oxygen distances in S₆ sites), two are at a shorter distance and two at a longer distance. The C_2 cationic site is non centro-symmetric. S_6 sites (or C_{3i}) are located at 3 4 the center of the cubes that present two anionic vacancies situated on the central diagonal of the cube. The cations occupy 8b Wickoff positions at (1/4 1/4 1/4). The six 5 oxygen ions are at equal distance from the central cation. The C_2 cationic site is 6 centro-symmetric. The centro-symmetry character of the site determines the 7 luminescence spectrum of Eu³⁺. 8

9 Up to now contradictory results were published about a possible preferential occupation of Eu^{3+} in one of the two cationic sites of the Lu₂O₃ structure. Concas *et* 10 al. [29] showed that Eu^{3+} occupy mainly C₂ sites in 10%-doped materials whereas a 11 theoretical work from Stanek et al. demonstrated that Eu³⁺ should be mainly located 12 at S₆ sites especially at low concentration [30]. Zych et al. also confirmed this 13 14 assertion and furthermore demonstrated that it is impossible to entirely remove 8b emission coming from S_6 sites in Lu₂O₃ compounds. However this author indicates 15 that 8*b* emission should be minimized in hosts like Sc_2O_3 :Eu³⁺ [31]. 16

As a general LaPorte rule, the 4f-4f dipolar electric transitions of Eu³⁺ are parity 17 forbidden. When Eu^{3+} is located at a centro-symmetric site such as S₆ these transitions 18 remain forbidden. The dipolar magnetic transitions which are anyway much weaker 19 are allowed if $\Delta J = 0, \pm 1$ while $J=0 \rightarrow J=0$ transitions are forbidden. Hence for Eu³⁺ 20 at the S₆ site at 10 K only ${}^7F_0 \rightarrow {}^5D_1$ transition in absorption and ${}^5D_0 \rightarrow {}^7F_1$ transition 21 in emission can be observed. Other ${}^{5}D_{0} \rightarrow {}^{7}F_{i}$ transitions might be observed but with 22 very weak intensity as they originate from vibronic excited states of ${}^{5}D_{0}$. On the 23 24 contrary, the C₂ site presents no symmetry inversion so that opposite parity states such 25 as 5d are admixed with 4f states. A relaxation of the selection rule therefore takes

1 place and dipolar electric transitions become partly allowed. Hence for Eu^{3+} in C₂ site 2 all the ${}^{5}D_{0} \rightarrow {}^{7}F_{j}$ transitions can be observed. Those for which $\Delta J = 0, \pm 2$ being 3 "hypersensitive" to this phenomenon are enhanced.

Luminescence spectra of $Lu_2O_3:Eu^{3+}$ and $(Lu_0 \cdot Gd_0 \cdot J_2O_3:Eu^{3+})$ ceramics were 4 recorded at 10 K by exciting the ceramics between 525 nm and 530 nm. This 5 excitation wavelength range allows excitation of Eu³⁺ via the ${}^{7}F_{0} \rightarrow {}^{5}D_{1}$ transition 6 which is allowed for Eu^{3+} at both sites. Laser excitation was used in the aim of 7 selectively exciting Eu^{3+} in C_2 or S_6 sites. At 10 K a very limited number of vibronic 8 states of ${}^{5}D_{0}$ are populated. Hence ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ transitions will be allowed for Eu³⁺ at 9 both sites whereas ${}^{5}D_{0} \rightarrow {}^{7}F_{0}$ transitions will be allowed (forced dipolar electric) for 10 Eu^{3+} in C_2 sites and forbidden for Eu^{3+} in S_6 sites. 11

The emission spectra of Lu₂O₃:Eu³⁺ for four exciting wavelengths λ_i (i = 1, 2, 3, 4) 12 located between 525 nm and 530 nm with $\lambda_1 > \lambda_2 > \lambda_3 > \lambda_4$ are shown in Figure 6. 13 They display luminescence lines corresponding to intraconfigurational 4f-4f 14 transitions from the excited ${}^{5}D_{0}$ levels of Eu^{3+} to the various spin-orbit split states ${}^{7}F_{i}$. 15 The dominant emission line at 611 nm originates from the ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ hypersensitive 16 transition of Eu^{3+} in C₂. In order to identify the possible contributions of Eu^{3+} at both 17 18 sites, the shortest wavelength range (580 nm - 605 nm) was looked upon into detail. 19 Two groups of emission lines have been distinguished : (i) a first group (group 1) of lines are present for λ_1 excitation (lowest energy) and their relative intensity decreases 20 when the excitation energy increases (λ_{exc} decreases): they are pointed out on the main 21 22 graph of Figure 6 at 581.1 nm, 587.5 nm, 593.7 nm and 600-601 nm. (ii) the second group (group 2) of lines are absent for λ_1 excitation and their relative intensity 23 24 increases when λ_{exc} decreases : they are shown in the insets of Figure 6 at 582.6 nm, 593.1 nm and 596.8 nm. The other emission lines of the 580 nm - 605 nm range are 25

1 of lower intensity and are attributed to transitions to various vibronic states of the ${}^{7}F_{1}$ 2 level.

As energy transfer is known to happen from Eu^{3+} in S_6 site to Eu^{3+} in C_2 site [31,32,33] any exciting wavelength λ_i of Figure 6 would allow the observation of the luminescence of Eu^{3+} in C_2 sites either by direct excitation of Eu^{3+} in C_2 or by excitation of Eu^{3+} in S_6 and subsequent energy transfer to Eu^{3+} in C_2 . As the lines in group 2 are not observed for λ_1 excitation, group 2 is identified as originating from Eu^{3+} in S_6 whereas group 1 lines are produced by Eu^{3+} in C_2 .

For Eu^{3+} in C₂ site the emission line at 581.1 nm being the one at the highest 9 energy is identified as the ${}^{5}D_{0} \rightarrow {}^{7}F_{0}$ transition of Eu³⁺. The three other emissions at 10 587.5 nm, 593.7 nm and 600-601 nm were attributed to transitions from ${}^{5}D_{0}$ to the 11 three Stark components of the ${}^{7}F_{1}$ level hence leading to a crystal field splitting of 369 12 cm^{-1} for the ${}^{7}F_{1}$ level. The energy positions of the ${}^{7}F_{0}$ and the split ${}^{7}F_{1}$ levels named 13 ${}^{7}F_{1a}$ ${}^{7}F_{1b}$ and ${}^{7}F_{1c}$ levels are reported in Table 2. In order to verify this attribution the 14 ${}^{5}D_{0}$ energy position and the barycenter of the ${}^{7}F_{1}$ levels were reported in Figure 7. The 15 figure displays the barycenter law - in that case, for lanthanide cations, only the spin 16 orbit interaction is considered - enounced by Antic-Fidancev [34] corresponding to 17 the position of the ${}^{7}F_{1}$ level barycenter without any effect of the crystal field in regard 18 to the position of the ${}^{5}D_{0}$ level. Data for Eu³⁺ in C₂ lie right on the line of the 19 barycenter law, which corroborates our attribution. 20

For Eu³⁺ in S₆ site, the attribution of the emission lines shown in the insets of Figure 6 is a little bit more delicate. The emission line at 582.6 nm is very close to the $^{5}D_{0} \rightarrow ^{7}F_{0}$ line of Eu³⁺ in C₂ site (581.1 nm) and one could assume that it would correspond to the $^{5}D_{0} \rightarrow ^{7}F_{0}$ transition of Eu³⁺ in S₆ site as it was reported in Y₂O₃:Eu³⁺ by Hunt and Pappalardo [35]. However this transition is forbidden and

1 would therefore appear with a somewhat lower intensity. Like several others [32,33] we would rather attribute this line to a ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ transition. Within this frame two 2 hypotheses can be drawn. In a first hypothesis (hypothesis 1), following Buijs [32], 3 4 Meijerink and Blasse [16], the lines at 582.6 nm and 593.1 nm would correspond to transitions ${}^{5}D_{0} \rightarrow {}^{7}F_{1a}$ and ${}^{5}D_{0} \rightarrow {}^{7}F_{1b}$ whereas the line at 596.8 nm would be a 5 transition from ⁵D₀ to a non-fundamental vibronic level of ⁷F₁. According to groups 6 theory the ${}^{7}F_{1}$ levels may split into only two levels, one of them being degenerated. 7 Depending on which one is degenerated two barycenter points (hypothesis 1A and 8 9 1B) were calculated as shown in Table 2. Their position is reported in Figure 7. Both 10 points seem too low regarding to the barycenter law of Antic-Fidancev. In a second hypothesis (hypothesis 2), we assume a slightly distorted S_6 site which allows the 11 three ${}^{7}F_{1}$ levels to be non-degenerated. The three lines at 582.6 nm, 593.1 nm and 12 596.8 nm would then correspond to ${}^{5}D_{0} \rightarrow {}^{7}F_{1a}$, ${}^{7}F_{1b}$, ${}^{7}F_{1c}$ transitions as reported in 13 Table 2. In that case, the barycenter point would be more properly located in Figure 7. 14 15 We therefore adopted this last hypothesis.

The emission spectra of $(Lu_{0.5}Gd_{0.5})_2O_3:Eu^{3+}$ at 10 K excited at three various 16 wavelengths in the 525 nm - 530 nm range are shown in Figure 8. They present 17 similar features to $Lu_2O_3:Eu^{3+}$ with widened lines. This is explained by the disorder 18 19 created by the substitution of one half of lutetium ions by larger gadolinium ions. By varying the excitation wavelength the spectra vary less than in the case of Lu₂O₃ 20 :Eu³⁺. One can mainly observe the transition lines of ${}^{5}D_{0} \rightarrow {}^{7}F_{0}$ at 581 nm, ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ 21 (587,7 nm, 593,4 nm and 600,2 nm) of Eu^{3+} in C₂. The energy positions of the levels 22 are reported in Table 2. They are close to values for C₂ site in Lu₂O₃. Note the 23 important fact that for Eu³⁺ in S₆ only the ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ transition can be observed at 24 582.2 nm and with a weak intensity. This shows that the occupation ratio of $\mathrm{Eu}^{^{3+}}$ in S_6 25

1 relative to C_2 is smaller in $(Lu_{0.5}Gd_{0.5})_2O_3:Eu^{3+}$ than in $Lu_2O_3:Eu^{3+}$. This difference 2 between the two compounds will be observed with even more acuity in the following 3 part of the paper (cf. Figure 10).

The decay curves at 10 K of Eu^{3+} in C₂ and S₆ sites was measured by exciting the 4 samples via the ${}^{7}F_{0} \rightarrow {}^{5}D_{0}$ line and recording the ${}^{5}D_{0} \rightarrow {}^{7}F_{1a}$ emission line. They are 5 shown in Figure 9. The decay profiles of Eu^{3+} in S₆ sites for both sesquioxides were 6 found mono-exponential with a decay time of several milliseconds. For Eu^{3+} in C_2 7 8 sites the decays may appear bi-exponential though the second exponential part reaches 9 quickly the background level. Different decay times were calculated depending on the site occupied by Eu^{3+} . In $Lu_2O_3:Eu^{3+}$ the trivalent europium at the S₆ site presents a 10 characteristic lifetime of 4.7 ms whereas its main decay time is 1.4 ms at the C_2 site. 11 These results are in line with decay times found by Zych *et al.* in $Lu_2O_3:1\%Eu^{3+}$ at 12 13 room temperature: 4.4 ms at the S_6 site and 1.4 ms at the C_2 site [31]. In $(Lu_{0.5}Gd_{0.5})_2O_3:Eu^{3+}$, the lifetimes were measured as 3.8 ms and 1.0 ms for Eu³⁺ at the 14 S₆ and C₂ sites, respectively. Hence in both host materials the decay times are much 15 shorter for Eu^{3+} at the C_2 than at the S_6 site, due to the much more symmetrical 16 character of S_6 relative to C_2 . On the other hand the $(Lu_{0.5}Gd_{0.5})_2O_3$ host contributes to 17 reducing the decay times of Eu^{3+} in both C_2 and S_6 sites which may be explained by a 18 less symmetrical environment in $(Lu_{0.5}Gd_{0.5})_2O_3$ than in Lu_2O_3 . The decay time for the 19 second part of the curves for Eu^{3+} in C_2 sites was not calculated as the signal was too 20 21 noisy. However the decay time is in the order of some milliseconds. This most probably corresponds to the energy transfer from Eu^{3+} at S₆ sites to Eu^{3+} at C₂ sites as 22 23 it was shown to take place in ref. 31.

Those different time decaying emissions should therefore contribute to the "short afterglow" of the ceramics as defined in the first paragraph. This can be visualized on

time-resolved luminescence spectra presented in Figure 10. Figure 10.A shows 1 spectra of $Lu_2O_3:Eu^{3+}$. Over the first microseconds (spectrum (a)), emission from Eu^{3+} 2 in C_2 and S_6 sites is observed. The C_2 emission dominates with the hypersensitive 5D_0 3 \rightarrow ⁷F₂ line. Over the 6-9 ms time range one can mainly observe the contribution of 4 Eu^{3+} is S₆ sites as it corresponds to the decay time period of Eu^{3+} in S₆ whereas Eu^{3+} 5 fast emission in C₂ has almost totally vanished. The ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ hypersensitive 6 transition of Eu^{3+} in C₂ site is also observed with a weak intensity. Over the 20-25 ms 7 time interval the main part of Eu^{3+} emission in both sites has decayed. Only residual 8 9 emission from both sites is observed with a similar intensity. Similar features are observed in Figure 10 B for $(Lu_{0.5}Gd_{0.5})_2O_3$: Eu³⁺ with a different ratio between C₂ and 10 S_6 due to different decay times and different repartition of Eu³⁺ ions. Most clearly a 11 main difference between $Lu_2O_3:Eu^{3+}$ and $(Lu_{0.5}Gd_{0.5})_2O_3:Eu^{3+}$ can be underlined in 12 the first microseconds in the zooms of spectra (a) : the intensity of the ${}^{5}D_{0} \rightarrow {}^{7}F_{0}$ line 13 of Eu^{3+} in S₆ is much less important in $(Lu_{0.5}Gd_{0.5})_2O_3:Eu^{3+}$ (B) than in $Lu_2O_3:Eu^{3+}$ 14 (A). Quantitatively the ratio of the emissions from the ${}^{5}D_{0} \rightarrow {}^{7}F_{0}$ line of Eu³⁺ in S₆ 15 over the ${}^{5}D_{0} \rightarrow {}^{7}F_{1a}$ line of Eu³⁺ in C₂ varies from 2.2 in Lu₂O₃:Eu³⁺ to 0.4 in 16 $(Lu_{0.5}Gd_{0.5})_2O_3:Eu^{3+}$. This shows again very clearly that the population of S₆ site over 17 C_2 by Eu^{3+} is much lower in $(Lu_{0.5}Gd_{0.5})_2O_3:Eu^{3+}$ than in $Lu_2O_3:Eu^{3+}$. 18

19

20 Discussion

21

Transparent ceramics of Lu_2O_3 : 6% Eu^{3+} and $(Lu_{0.5}Gd_{0.5})_2O_3$: 7% Eu^{3+} were prepared in a strictly identical way so that the differences between the two samples are limited to the composition. Though it is always difficult to avoid any effect of the microstructure in a ceramics sample, the two ceramics presented similar total
 transmission and light output.

By selectively exciting Eu^{3+} at the two cationic sites of the sesquioxide structure 3 we could observe emission of the dopant ion at both sites in the $Lu_2O_3:Eu^{3+}$ and in the 4 $(Lu_{0.5}Gd_{0.5})_2O_3:Eu^{3+}$ ceramics though a very different repartition of Eu^{3+} in the two 5 sites was observed according to the composition. The decay time of the emitting 6 excited ${}^{5}D_{0}$ state of Eu³⁺ was found very different from one site to the other. Light 7 emitted from the europium ions located in the non centro-symmetric C_2 site almost 8 totally decayed within $3.\tau_{C2}$, i.e. 4-5 ms in Lu₂O₃:Eu³⁺ and 3-4 ms in 9 $(Lu_{0.5}Gd_{0.5})_2O_3$: Europium ions occupying S₆ sites needed $3.\tau_{S6}$, i.e. 14-15 ms in 10 Lu_2O_3 and 11-12 ms in $(Lu_{0.5}Gd_{0.5})_2O_3:Eu^{3+}$ to emit the quasi-totality of their 11 luminescence. Hence the repartition of dopant ions amongst the C2 and S6 sites is of 12 13 great importance as far as the time response of the scintillator is concerned. Even in 14 the hypothesis where no delay is introduced by charge trapping, the sole influence of dopant repartition among the two sites affects what was measured here as the "short 15 afterglow". Indeed the afterglow measured here up to 20 ms was found more 16 important for $Lu_2O_3:Eu^{3+}$ than for $(Lu_0 \, {}_5Gd_0 \, {}_5)_2O_3:Eu^{3+}$. This is directly related with 17 the decay times of Eu^{3+} which were found shorter in $(Lu_{0.5}Gd_{0.5})_2O_3:Eu^{3+}$ than in 18 $Lu_2O_3:Eu^{3+}$ at both sites. This can be understood as the presence of gadolinium 19 20 introduces an asymmetry which may relax the selection rules for 4f-4f transitions and therefore increase the probability in $(Lu_{0.5}Gd_{0.5})_2O_3:Eu^{3+}$ of the otherwise forbidden 21 22 transitions.

Moreover, we showed that the population of S_6 sites by Eu^{3+} is much lower in (Lu_{0.5}Gd_{0.5})₂O₃:Eu³⁺ than in Lu₂O₃:Eu³⁺. As the decay of Eu³⁺ luminescence is at least 3 times longer in S₆ than in C₂ site, this fact will result in a shorter decay of Eu³⁺

luminescence measured in (Lu_{0.5}Gd_{0.5})₂O₃:Eu³⁺ compared to Lu₂O₃:Eu³⁺. The 1 different Eu^{3+} localization in sites of $(Lu_{0.5}Gd_{0.5})_2O_3:Eu^{3+}$ relative to $Lu_2O_3:Eu^{3+}$ can 2 be understood by considering the sizes of the Lu^{3+} , Gd^{3+} and Eu^{3+} cations. Levy *et al.* 3 [36] showed that in cubic sesquioxides, an isovalent cationic dopant such as Eu^{3+} 4 preferably substitutes the host cation at the C_2 site if it is smaller than the host cation 5 and at the S_6 site otherwise. This would originate from the presence around the cation 6 in C₂ of bonds both shorter and longer than the average distance whereas all the 7 distances are equal in S₆. The shorter bonds in C₂ would therefore favor the presence 8 of smaller cations. In Lu₂O₃:Eu³⁺, Eu³⁺ being larger than Lu³⁺ would preferentially 9 occupy S₆. In $(Lu_{0.5}Gd_{0.5})_2O_3$ the average cationic size is bigger than in Lu_2O_3 so the 10 affinity of Eu^{3+} for S₆ should decrease. 11

Finally we showed that the "long afterglow" was also higher in $Lu_2O_3:Eu^{3+}$ than in 12 $(Lu_{0.5}Gd_{0.5})_2O_3:Eu^{3+}$. The TSL glow curves were found consistent with this 13 observation as the TSL intensity was highly reduced in $(Lu_{0.5}Gd_{0.5})_2O_3:Eu^{3+}$ compared 14 to $Lu_2O_3:Eu^{3+}$ over the whole temperature range. However we showed that the main 15 TSL peak at around 200 K may be more specifically responsible for afterglow at 16 around 100-300 ms. Trojan et al. [20] recently showed that the afterglow in 17 $Lu_2O_3:Eu^{3+}$ was mainly related to Eu^{3+} at S₆ sites. Either the energetic location of Eu^{3+} 18 at S₆ site was more favorable to the transfer from the trap to the luminescent center or 19 the traps were located in the vicinity of Eu^{3+} at S₆ sites [20]. We showed here that 20 $(Lu_{0.5}Gd_{0.5})_2O_3:Eu^{3+}$ favored the location of Eu^{3+} ions more in C_2 sites and less in S_6 21 22 sites relative to the host Lu₂O₃. Following the argument of Trojan et al., this would 23 result in less afterglow, and that is precisely what was observed here (see Figure 3).

Alternatively the decrease of TSL intensity may be explained by a reduction in stress and therefore of defects related to Eu^{3+} introduction into the host. One can

briefly analyze the induced distortion of the Lu_2O_3 host when introducing Eu^{3+} as a 1 2 dopant relatively to distortion occurring in the $(Lu_{0.5}Gd_{0.5})_2O_3$ host. First, one can observe an increase of the measured unit cell parameter from 10.391 Å for Lu₂O₃ to 3 10.602 Å for $(Lu_{0.5}Gd_{0.5})_2O_3$, in good agreement with the variation of the ionic radii 4 of the constituent (0.95 Å, 0.938 Å and 0.848 Å for Eu³⁺, Gd³⁺ and Lu³⁺, 5 respectively). The distortion occurring when introducing Eu^{3+} ions in Lu_2O_3 can be 6 7 estimated by calculating the ratio of the lattice parameters of Eu₂O₃ (no distortion and a = 10.866 Å) and Lu₂O₃. In this case, the ratio is 4.5%. When introducing Eu³⁺ in the 8 (Lu_{0.5}Gd_{0.5})₂O₃ host, the ratio becomes 2.5%. This effect indicates that for 9 $(Lu_{0.5}Gd_{0.5})_2O_3$ compounds the introduction of Eu³⁺ occurs with limited distortions 10 11 with regard to the Lu_2O_3 host.

12

13 Conclusion

14

15 We propose a transparent ceramics prepared from the mixed sesquioxide $(Lu_{0.5}Gd_{0.5})_2O_3$ doped with trivalent europium as a potential new scintillator with 16 improved time response characteristics relative to the well-known $Lu_2O_3:Eu^{3+}$. 17 $(Lu_{0.5}Gd_{0.5})_2O_3:Eu^{3+}$ presents a density of about 8.4 g/cm³, which still lies amongst the 18 19 highest densities of existing scintillators and therefore is very favorable for efficient 20 X-rays absorption within a small thickness. The measured total transmission was 21 found close to the maximum value (81 %) while no laser quality polishing of the 22 samples has been done (this is usually the case in the scintillator field where the main 23 purpose is to extract the maximum light output).

With afterglow and TSL measurements we demonstrated the advantages of $(Lu_{0.5}Gd_{0.5})_2O_3:Eu^{3+}$ ceramics over $Lu_2O_3:Eu^{3+}$. On the one hand $(Lu_{0.5}Gd_{0.5})_2O_3:Eu^{3+}$

1 presents a faster intrinsic decay time for Eu^{3+} and on the other hand the ceramics 2 shows a reduced afterglow over the hundreds of milliseconds time range and a 3 reduced TSL intensity over the 10 K - 650 K temperature range.

These improved properties were explained in two terms. First Eu^{3+} intercalation in (Lu_{0.5}Gd_{0.5})₂O₃:Eu³⁺ most probably leads to less distortion than Eu^{3+} in Lu₂O₃:Eu³⁺ as a better cationic size match occurs. Hence less defects in the material may be susceptible to trap charges during irradiation and delay their subsequent transfer and recombination at Eu³⁺ ions. This therefore reducesTSL intensity and afterglow.

9 Secondly and most of all we demonstrated that (Lu_{0.5}Gd_{0.5})₂O₃ composition allows a different repartition of Eu^{3+} ions amongst the C_2 and S_6 cationic sites of the 10 sesquioxide structure. Eu^{3+} ions at both sites in Lu_2O_3 : Eu^{3+} and $(\text{Lu}_{0.5}\text{Gd}_{0.5})_2\text{O}_3$: Eu^{3+} 11 ceramics have been characterized in terms of energy level positions and kinetics of the 12 fluorescence by selectively exciting Eu^{3+} at the two cationic sites of the sesquioxide 13 structure. The $(Lu_{0.5}Gd_{0.5})_2O_3:Eu^{3+}$ compound was shown to greatly favor 14 intercalation of Eu^{3+} in C_2 site over S_6 . Eu^{3+} at C_2 site presents a fast decay (1 ms and 15 1.4 ms for $(Lu_{0.5}Gd_{0.5})_2O_3:Eu^{3+}$ and $Lu_2O_3:Eu^{3+}$), respectively while the decay 16 constant of Eu^{3+} at S₆ site is almost 4 times longer (3.8 ms and 4.7 ms respectively for 17 $(Lu_{0.5}Gd_{0.5})_2O_3:Eu^{3+}$ and $Lu_2O_3:Eu^{3+}$). Thus favoring the substitution by Eu^{3+} at a C_2 18 site was found to decrease the effective decay time of the ceramics. Additionally the 19 different repartition of Eu^{3+} at C_2 and S_6 sites in the two different ceramics should also 20 have an effect on afterglow as Eu^{3+} at S₆ site may be responsible for afterglow. 21 22 Further work is now required to determine with more accuracy the light yield and the 23 energy resolution of these promising scintillators.

24

1 Acknowledgment

2

The authors would like to thank Saint-Gobain Crystals and Detectors for their support and especially Northboro Research and Development Center for providing the high quality ceramics and for the afterglow measurements.

- 6
- 8

1 **References**

[1] Rossner W, Ostertag M, Jermann F 1999 J Electrochem Soc Proceedings 98 187.

[2] Greskovich CD, Cusano D, Hoffman D, Riedner RJ 1992 Am Ceram Soc Bull 711120.

- [3] Izumi S, Kamata S, Satoh K 1993 IEEE Trans Nucl Sci 40 158.
- [4] Ryzhikov V, Grynyov B, Opolonin A, Naydenov S, Lisetska O, Galkin S, Voronkin E 2007 Rad Measur 42 915.
- [5] Weber MJ, Monchamp RR 1973 J Appl Phys 44 5495.
- [6] Nestor OH, Huang CY 1975 IEEE Trans Nucl Sci 22 68.
- [7] Knoll GF 1999 Radiation Detection and Measurement.
- [8] Cooke DW, McClellan KJ, Bennett BL, Roper JM, Whittaker MT, Muenchausen
- RE, Sze RC 2000 J Appl Phys 88 7360.
- [9] Pidol L, Guillot-Noël O, Kahn-Harari A, Viana B, Pelenc D, Gourier D 2006 J.Phys Chem Solids 67 4 643.
- [10] Pauwels D, Le Masson N, Viana B, Kahn-Harari A, van Loef EVD, Dorenbos P, van Eijk CWE 2000 IEEE Trans Nucl 47 6 1787.
- [11] Pidol L, Kahn-Harari A, Viana B, Ferrand B, Dorenbos P, de Haas JTM, van EijkCWE, Virey E 2003 J Phys Cond Matter 15 12 2091.
- [12] Pidol L, Kahn-Harari A, Viana B, Virey E, Ferrand B, Dorenbos P, de HaasJTM, van Eijk CWE 2004 IEEE Trans Nucl Sci 51 3 1084.
- [13] Wang Y, Antonuk L E, Zhao Q, El-Mohri Y, Perna L 2009 Med. Phys. 36 5707.
- [14] Valais IG, Michail CM, David SL, Liaparinos PF, Fountos GP, Paschalis TV,Kandarakis IS, Panayiotakis GS 2010 IEEE Trans. Nucl. Sci. 57 3.
- [15] Viana B, Bessière A, Rétot H, Mattmann E, LaCourse B. 2011 in press, Opt.Mater., doi:10.1016/j.optmat.2010.10.021.

- [16] Blasse G, Grabmaier BC 1994 Luminescent Materials. Springer-Verlag Telos.
- [17] Lempicki A, Brecher C, Szupryczynski P, Lingertat H, Nagarkar V, Tipnis S,Miller S 2002 Nucl Instrum Meth Phys.Res A 488 579.
- [18] Brecher C, Bartram RH, Lempicki A 2004 J Lumin 106 159.
- [19] Kappers L, Bartram R, Hamilton D, Brecher C, Lempicki A 2005 Nucl Instrum Meth Phys Res A 537 443.
- [20] Trojan-Piegza J, Zych E 2010 J Phys Chem C 114 4215.
- [21] Trojan-Piegza J, Niittykoski J, Hölsä J, Zych E 2008 Chem Mater 20 2252.
- [22] Köstler W, Winnaker A, Rossner W, Grabmaier BC 1995 J Phys. Chem Solids 56 907.
- [23] Rossner W, Jermann F, Ahne S, Ostertag M 1997 J Lumin 72-74 708.
- [24] Rétot H. Phd thesis, 2009, Université Pierre et Marie Curie.
- [25] Blahuta S, Viana B, Bessière A, Mattmann E., LaCourse B 2011 Opt. Mater. In
- press. Doi : 10.1016/j.optmat.2011.02.040
- [26] Chen Q, Shi Y, An L, Chen J, Shi J 2006 J Am Ceram Soc 89 2038.
- [27] Zych E, Hreniak D, Strek W 2002 J Phys Chem B 106 3805.
- [28] Cherepy NJ, Gaume R, Podowitz SR 2010 Oral presentation at symposium on radiation measurements and applications (sorma).
- [29] Concas G, Spano G, Zych E, Trojan-Piegza J 2005 J Phys: Condens Matter 17 2597.
- [30] Stanek CR, McClellan KJ, Uberuaga BP, Sickafus KE, Levy MR, Grimes RW2007 Phys Rev B 75 134101.
- [31] Zych E, Karbowiak M, Domagala K, Hubert S 2002 J Alloys Compd 341 381.
- [32] Buijs M, Meyerink A, Blasse G 1987 J Lumin 37 9.
- [33] Garcia-Murillo A. PhD thesis, 2002 Université Claude Bernard Lyon I.

[34] Antic-Fidancev E. 2000 J Alloys Compd 300-301 2.

[35] Hunt RB, Pappalardo RG 1985 J Lumin 34 133.

[36] Levy MR, Stanek CR, Chroneos A, Grimes RW 2007 Solid State Sci 9 588.

1

- 1 Tables
- 3 Table 1 Pseudo-decay times distinguished in the afterglow curves of Lu₂O₃:Eu and
- $(Lu_{0.5}Gd_{0.5})_2O_3$: Eu ceramics.

	τ_1 (ms)	τ_2 (ms)	τ_3 (ms)
Lu ₂ O ₃ :Eu	1.1	3.9	340
(Lu _{0.5} Gd _{0.5}) ₂ O ₃ :Eu	0.9	3.1	210

- **Table 2** Energy position of Eu^{3+} levels in Lu_2O_3 :Eu and in $(Lu_{0.5}Gd_{0.5})_2O_3$:Eu (in
- 9 cm⁻¹)

Level energy	$^{7}F_{0}$	${}^{7}F_{1a}$	${}^{7}F_{1b}$	$^{7}F_{1c}$	$^{7}F_{1}$	${}^{5}D_{0}$
(cm ⁻¹) Site and compound					barycenter	
C_2 in Lu_2O_3	0	187	365	556	369	17 208
S_6 in Lu ₂ O ₃ (hyp. 1)	0	139	458	-	245 (hyp. 1A) 352 (hyp. 1B)	17 321 ³²
S_6 in Lu ₂ O ₃ (hyp. 2)	0	139	458	542	380	
C ₂ in (Lu _{0.5} Gd _{0.5}) ₂ O ₃	0	176	349	545	357	17 212

1 Figure captions

Figure 1. Total transmission spectra of Lu_2O_3 : 6% Eu^{3+} and $(Lu_{0.5}Gd_{0.5})_2O_3$: 7% Eu^{3+} ceramics. Main transitions from the fundamental level ⁷F₀ towards the indicated excited levels of Eu^{3+} are given on the figure.

5

Figure 2. X-ray excited luminescence spectra of Lu_2O_3 : 6% Eu^{3+} and $(Lu_{0.5}Gd_{0.5})_2O_3$ 7 : 7% Eu^{3+} ceramics relative to commercial GOS : Pr^{3+} . The extraction of light 8 between GOS : Pr^{3+} and sesquioxides should not be compared as sesquioxides are 9 transparent whereas GOS : Pr^{3+} is only slightly translucent.

10

```
11 Figure 3. Afterglow curves of Lu_2O_3:Eu and (Lu_{0.5}Gd_{0.5})_2O_3:Eu ceramics.
```

12

Figure 4. Thermally Stimulated Luminescence (TSL) glow curves of Lu_2O_3 : Eu and ($Lu_{0.5}Gd_{0.5})_2O_3$: Eu ceramics after X-ray irradiation at 10 K. Heating rate : 20 K / minute.

16

17 Figure 5. Cristal structure of Lu_2O_3 showing the symmetry of the two cationic sites C_2 18 and S_6 .

19

Figure 6. Laser-excited luminescence spectra of Lu_2O_3 : 6% Eu^{3+} excited at four different wavelengths between 525 nm and 530 nm with $\lambda_1 > \lambda_2 > \lambda_3 > \lambda_4$ and recorded at 10 K.

23

Figure 7. Position of the ${}^{7}F_{1}$ barycenter versus ${}^{5}D_{0}$ level (in red) for Eu $^{3+}$ in the two sites of Lu₂O₃ compared to the barycenter law (in black) from 27 . In blue are drawn the two ruled out hypothesis for position of Eu $^{3+}$ in S₆ site.

1 Figure 8. Laser-excited luminescence spectra of $(Lu_{0.5}Gd_{0.5})_2O_3 : 7\% Eu^{3+}$ excited at 2 three different wavelengths between 525 nm and 530 nm with $\lambda_1 > \lambda_2 > \lambda_3$ and 3 recorded at 10 K.

4

Figure 9. Decay profiles of ${}^{5}D_{0} \rightarrow {}^{7}F_{1a}$ emission excited at 10K *via* the ${}^{7}F_{0} \rightarrow {}^{5}D_{0}$ transition at 581.2 nm in Lu₂O₃:Eu and 581.3 nm in (Lu_{0.5}Gd_{0.5})₂O₃:Eu for Eu³⁺ in C₂ and at 582.6 nm for Lu₂O₃:Eu and 582.9 nm in (Lu_{0.5}Gd_{0.5})₂O₃:Eu for Eu³⁺ in S₆. The emission wavelengths are (i) for Lu₂O₃:Eu, 582.7 nm and 587.7 nm for Eu³⁺ in S₆ and C₂ sites, respectively (ii) for (Lu_{0.5}Gd_{0.5})₂O₃:Eu, 582.9 nm and 588.1 nm for Eu³⁺ in S₆ and C₂ sites, respectively.

12 Figure 10. Time-resolved luminescence spectra of Lu₂O₃:Eu (A) and 13 (Lu_{0.5}Gd_{0.5})₂O₃:Eu (B) ceramics recorded at 10 K for time intervals indicated on the 14 figure. Ceramics were excited via the ${}^{7}F_{0} \rightarrow {}^{5}D_{1}$ transition at 525 nm- 530 nm.

- 15
- 16

Figures

Figure 1

3 Figure 3

- 2 3

Figure 5

Figure 6

Figure 8

- 30

Figure 10

