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ABSTRACT 

 

Mutations in the electrogenic Cl
-
/H

+
 exchanger ClC-5 gene CLCN5 are frequently associated 

with Dent disease, an X-linked recessive disorder affecting the proximal tubules. Here, we 

investigate the consequences in X. laevis oocytes and in HEK293 cells of 9 previously 

reported, pathogenic, missense mutations of ClC-5, most of them which are located in regions 

forming the subunit interface. Two mutants trafficked normally to the cell surface and to early 

endosomes, and displayed complex glycosylation at the cell surface like wild-type ClC-5, but 

exhibited reduced currents. Three mutants displayed improper N-glycosylation, and were non-

functional due to being retained and degraded at the endoplasmic reticulum. Functional 

characterization of four mutants allowed us to identify a novel mechanism leading to ClC-5 

dysfunction in Dent disease. We report that these mutant proteins were delayed in their 

processing and that the stability of their complex glycosylated form was reduced, causing 

lower cell surface expression. The early endosome distribution of these mutants was normal. 

Half of these mutants displayed reduced currents, whereas the other half showed abolished 

currents. Our study revealed distinct cellular mechanisms accounting for ClC-5 loss-of-

function in Dent disease. 

 

Page 2 of 36

John Wiley & Sons, Inc.

Human Mutation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

3 

 

KEY WORDS 

 

Dent disease; Chloride/proton exchanger; CLCN5; ClC-5; processing. 

Page 3 of 36

John Wiley & Sons, Inc.

Human Mutation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

4 

 

INTRODUCTION 

 

Dent disease is an X-linked recessive renal tubular disorder characterized by low-

molecular-weight proteinuria (LMWP), hypercalciuria, nephrocalcinosis, and progressive 

renal failure. Inactivating mutations of CLCN5 cause Dent disease (MIM# 300009). However, 

defects in OCRL1, the gene encoding a phosphatidylinositol-4,5-bisphosphate-5-phosphatase, 

have also been found in a subset of patients with Dent disease (MIM# 300555) [Hoopes, et 

al., 2005; Ludwig, et al., 2006]. 

CLCN5 encodes the electrogenic Cl
-
/H

+
 exchanger ClC-5 [Picollo and Pusch, 2005; 

Scheel, et al., 2005]. In the kidney, ClC-5 expression has been observed in the proximal 

tubule, in the α- and β-intercalated cells of the collecting duct, and at lower levels in the thick 

ascending limb of Henle’s loop [Devuyst, et al., 1999; Gunther, et al., 1998].  Because ClC-5 

colocalizes with v-type H
+
-ATPase in renal proximal tubular subapical endosomes, the central 

hypothesis advanced to explain the endocytosis defect in Dent disease is that ClC-5 may 

provide shunt conductance in early endosomes thus permitting intraluminal acidification by v-

type H
+
-ATPase, and that loss-of-function of ClC-5 would therefore impair endosomal 

acidification, a crucial step in normal endosomal function [Devuyst, et al., 1999; Dowland, et 

al., 2000; Gunther, et al., 1998; Piwon, et al., 2000; Sakamoto, et al., 1999; Suzuki, et al., 

2006]. However, recently, Jentsch’s group has provided evidence that modulation of the 

chloride concentration during proton transport by the exchanger activity of ClC-5 plays a 

crucial role in endocytosis, rather than endosomal acidification [Novarino, et al., 2010]. A 

small fraction of ClC-5 is also present at the apical surface of proximal tubule cells where it 

may play a crucial role in mediating the protein-protein interactions required for receptor-

mediated endocytosis [Wang, et al., 2005]. ClC-5 has indeed been found to associate with 

cofilin, a protein involved in the depolymerization of actin in the vicinity of endosomes, with 
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the PDZ-domain protein NHERF2, and with KIF3B, a member of the kinesin superfamily 

[Hryciw, et al., 2003; Reed, et al., 2010]. It has also been shown to interact in heterologous 

expression systems with the ubiquitin protein ligases WWP2 and Nedd4-2, which by 

ubiquitinating ClC-5 at his PY-motif leads to its internalization by endocytosis [Hryciw, et al., 

2006a; Hryciw, et al., 2004; Schwake, et al., 2001]. However, the recent work of Rickheit et 

al. on different mouse models demonstrated that in vivo the PY-motif-dependent 

ubiquitylation of ClC-5 is not required for proximal tubular endocytosis [Rickheit, et al., 

2010]. 

Recent studies of the functional consequences of naturally-occurring CLCN5 

mutations revealed that several different mechanisms underlie the ClC-5 loss-of-function in 

patients with Dent disease [Grand, et al., 2009; Ludwig, et al., 2005; Smith, et al., 2009]. On 

the basis of functional data, mutations were classified into different groups in previous studies 

by us and others [Grand, et al., 2009; Smith, et al., 2009]. A first group of mutations lead to 

endoplasmic reticulum retention, and degradation of the mutant proteins as they are 

misfolded. These amino acid substitutions were all located in helices forming the interface 

between the two subunits [Smith, et al., 2009]. Very similarly, we demonstrated that 

mutations located along α-helices at quite some distance from the interface were also trapped 

in the endoplasmic reticulum [Grand, et al., 2009]. These mutations were associated with 

reduced protein expression and impaired N-glycosylation. A second group of mutations lead 

to ClC-5 proteins that are devoid of electrical activity and fail to enhance endosomal 

acidification [Smith, et al., 2009]. A third group of mutations are associated with reduction of 

currents at the cell surface, reduction of plasma membrane expression and alterations in 

endosomal targeting [Smith, et al., 2009]. These mutant proteins were nevertheless able to 

support endosomal acidification. Finally, we described another type of mutations that caused 
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reduced currents. The mutant proteins trafficked normally to the cell surface and to early 

endosomes, and displayed complex glycosylation at the cell surface [Grand, et al., 2009].  

These data do not rule out the possibility that other mechanisms may also contribute to 

the disease, because the functional aspects of numerous CLCN5 mutations have not yet been 

fully investigated. We therefore decided to investigate the functional consequences of nine 

previously-reported ClC-5 missense mutations, by focusing on amino acid substitutions, most 

of which are clustered at the interface between the two subunits or at the periphery of the 

subunit interface. 
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MATERIALS AND METHODS 

 

Molecular Biology 

ClC-5 mutants (Table 1) were synthesized from human wild-type ClC-5 (GenBank 

NG_007159.2) extracellularly HA tagged, and subcloned into the pTLN expression vector (a 

generous gift of Pr. T. J. Jentsch, MDC/FMP, Berlin, Germany) for expression in X. laevis 

oocytes, or into the peGFP expression vector for expression in HEK293 cells. The HA epitope 

(YPYDVPDYA) is introduced into the extracellular loop of ClC-5 between transmembrane 

domains B and C [Dutzler, et al., 2002]. Experimental studies have shown that the HA epitope 

does not interfere with ClC-5 function [Schwake, et al., 2001]. Site-directed mutagenesis was 

performed with the Quickchange site-directed mutagenesis kit (Stratagene, La Jolla, CA, 

USA). All constructs were fully sequenced.  

 

Expression in Xenopus laevis oocytes 

Capped cRNA were synthesized in vitro from wild-type and mutant ClC-5 expression 

vectors linearized with MluI using the SP6 mMessage mMachine Kit (Ambion, Austin, TX, 

USA). Defolliculated Xenopus leavis oocytes were injected with 20 ng of the different 

cRNAs. The oocytes were then kept at 17°C in modified Barth’s solution containing (in mM): 

88 NaCl, 1 KCl, 0.41 CaCl2, 0.32 Ca(NO3)2, 0.82 MgSO4, 10 HEPES, pH 7.4 and gentamycin 

(20 µg/ml).  

 

Electrophysiology 

Five days after injection, two-electrode voltage-clamp experiments were performed at 

room temperature using a TEV-200A amplifier (Dagan, Minneapolis, MN, USA) and PClamp 

8 software (Axon Instruments, Union City, CA, USA). Pipettes were pulled from borosilicate 
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glass (Harvard Apparatus, Edenbridge, Kent, UK) using a puller (Sutter Instrument Co., 

Novato, CA, USA), and filled with 3 M KCl. Pipette resistances were less than 1 MΩ. 

Currents were recorded in ND96 solution containing (in mM): 96 NaCl, 2 KCl, 1.5 CaCl2, 1 

MgCl2, 5 HEPES, pH 7.4. Currents were recorded in response to a voltage protocol consisting 

of 20 mV steps from –100 mV to +100 mV during 800 ms from a holding potential of –30 

mV. 

 

Surface labelling of oocytes 

Experiments were essentially performed according to the method of Zerangue et al. 

with slight modifications [Zerangue, et al., 1999]. Oocytes were incubated for 30 minutes in 

ND96 with 1% Bovine Serum Albumin (BSA) at 4°C to block unspecific binding, and were 

then incubated for 60 minutes with a rat monoclonal anti-HA antibody (1 µg/ml, 3F10, Roche 

Diagnostics, Meyland, France) in 1% BSA/ND96 at 4°C. The oocytes were then washed eight 

times with 1% BSA/ND96 at 4°C, before being incubated for 45 minutes with a peroxidase-

conjugated affinity-purified F(ab’)2 fragment goat anti-rat antibody (2 µg/ml, Jackson 

ImmunoResearch, West Grove, PA, USA) in 1% BSA/ND96 at 4°C. The oocytes were 

washed six times with 1% BSA/ND96 at 4°C, and then six times in ND96 without BSA at 

4°C. Individual oocytes were placed in 50 µl of SuperSignal Elisa Femto Maximum 

Sensitivity Substrate Solution (Pierce, Rockford, IL, USA) and, after an equilibration period 

of 1 minute, chemiluminescence was quantified in a Turner TD-20/20 luminometer (Turner 

Designs, Sunnyvale, CA, USA) by integrating the signal over a period of 10 seconds.  
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Cell culture and transfection 

HEK293 cells were grown in Dulbecco’s modified Eagle’s medium (DMEM) 

(GIBCO, Invitrogen, CA, USA) supplemented with 10% fetal bovine serum, penicillin 

(100 IU/ml), and streptomycin (100 µg/ml) at 37°C in 5% CO2. The cells were transiently 

transfected using Fugene 6 according to the Manufacturer’s instructions (Roche Diagnostics, 

Meyland, France). 

 

Immunocytochemistry 

Transfected HEK293 cells were plated on 12-mm diameter Petri dishes. Cells were 

then fixed in 4% paraformaldehyde, and permeabilized with 0.3% Triton. Nonspecific binding 

sites were blocked with 16% goat serum solution. The primary antibodies used were mouse 

anti-HA (Sigma, St Louis, MO, USA), rabbit anti-EEA1 (Sigma, St Quentin Fallavier, 

France), rabbit anti-calnexin (Stressgen, Ann Arbor, MI, USA). FITC-conjugated goat anti-

mouse (Jackson ImmunoResearch, West Grove, PA, USA), TRITC-conjugated goat anti-

rabbit (Jackson ImmunoResearch, West Grove, PA, USA), or Cy5-conjugated streptavidin 

(Sigma, St Quentin Fallavier, France) were added to the cells as secondary antibodies. 

Labeled cells were analyzed with a Zeiss LSM 510 confocal laser scanning microscope. 

Image analysis was performed by using ImageJ and Photoshop CS2 (Adobe, San Jose, CA, 

USA). 

 

Surface biotinylation of HEK293 cells 

Forty-eight hours after transfection, cells were placed on ice and rinsed twice with a 

cold rinsing solution containing PBS, 100 µM CaCl2 and 1 mM MgCl2. The cells were then 

incubated at 4°C for 1 h with PBS and 1.5 mg/ml NHS-biotin (Pierce, Rockford, IL, USA). 

They were incubated in quenching solution containing 0.1% BSA diluted in PBS, and rinsed 3 
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times with the rinsing solution. After lysis in a solution containing 20 mM Tris HCl, 2 mM 

EDTA, 2 mM EGTA, 30 mM NaF, 30 mM NaPPi, 1% Triton, 0.1% SDS and a protease 

inhibitor mix (Complete, Roche Diagnostics, France), equal amounts of proteins were 

precipitated at 4°C overnight using streptavidin-agarose beads (Pierce, Rockford, IL, USA). 

Samples were then centrifuged at 2,500 x g for 2 min at 4°C with TLB solution containing 

50 mM Tris-HCl, pH 7.4, 100 mM NaCl, 5 mM EDTA and the protease inhibitor mix.  

 

Protein isolation 

For the isolation of total cell lysates from HEK293, the cells were incubated for 

10 min on ice with the lysis solution. Samples were centrifuged at 13,000 rpm for 5 minutes. 

The protein concentration in the supernatant was quantified using a protein assay 

quantification kit (BCA Protein Kit Assay, Pierce, Rockfort, IL, USA). 

 

Western blot analysis 

The proteins were separated on an 8% SDS-PAGE gel and transferred to PVDF 

membranes. Primary rat anti-HA monoclonal antibody (3F10, Roche Diagnostics, Meyland, 

France), rabbit anti-GAPDH monoclonal antibody (Abcam, Cambridge, UK), and secondary 

peroxidase-conjugated goat anti-rat antibody (Jackson ImmunoResearch, West Grove, PA, 

USA) were diluted in TBS-blocking solution. Detection was performed using the ECL 

Western Blotting Substrate (Pierce, Rockford, IL, USA). 

 

Pulse-chase assays 

 Prior to the experiment, HEK 293 cells were transiently transfected with plasmid DNA 

using Fugene 6 reagent as described above. 24 h later they were incubated in cysteine- and 

methionine-free DMEM starvation media for 1 h. The starvation medium was removed and 
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replaced with DMEM labeling medium containing [
35

S]methionine/cysteine labeling mix. 

Cells were then rinsed three times with PBS, and another three times with normal growth 

medium before being returned to normal growth medium for the duration of the chase to the 

specified time points. Cells were washed twice with ice-cold PBS, and incubated on ice for 

1 h in lysis buffer with a mixture of protease inhibitors, after which solubilized extracts were 

collected for immunoprecipitation. Proteins were immunoprecipitated with mouse anti-HA 

antibody (Sigma, St Louis, MO, USA), resolved with SDS-PAGE, blotted onto nitrocellulose, 

and revealed by autoradiography. 

 

Statistics 

Results are shown as mean ± SEM. n indicates the number of experiments. Statistical 

significance was analyzed by applying a paired Student’s t-test using SigmaStat software 

(SPSS, Erkrath, Germany). P < 0.05 was considered significant. 

Page 11 of 36

John Wiley & Sons, Inc.

Human Mutation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

12 

 

RESULTS 

 

We first examined the electrophysiological properties of wild-type (WT) and ClC-5 

mutants by expressing them in X. laevis oocytes. WT ClC-5 displayed strongly outwardly-

rectifying currents, as previously reported (Fig. 1A and B) [Friedrich, et al., 1999; Grand, et 

al., 2009; Picollo and Pusch, 2005; Scheel, et al., 2005; Smith, et al., 2009; Steinmeyer, et al., 

1995]. Compared to oocytes injected with WT ClC-5, oocytes expressing the W547G mutant 

(c.1714T>G; p.W547G) displayed a significant reduction by 67% (n = 28) in current 

amplitude (Fig. 1A and 2). The S244L (c.806C>T; p.S244L) and L278F (c.910G>C; 

p.L278F) mutants showed current reductions of 75% (n = 13) and 63% (n = 6) respectively, 

which was consistent with previous reports (Fig. 1 and 2) [Igarashi, et al., 1998; Lloyd, et al., 

1996; Lloyd, et al., 1997; Smith, et al., 2009]. Despite this reduced current amplitude, the 

voltage dependence of the currents with these mutants resembled those of WT ClC-5 (Fig. 1). 

In contrast, currents in oocytes injected with the L225P (c.750T>C; p.L225P) (n = 11), 

G260V (c.855G>T; p.G260V) (n = 8), Y272C (c.891A>G; p.Y272C) (n = 8), N340K 

(c.1096C>A; p.N340K) (n = 21), G513R (c.1612G>C; p.G513R) (n = 7), and K546E 

(c.1712A>G; p.K546E) mutants (n = 6) were not significantly different from those observed 

in non-injected oocytes (Fig. 1 and 2). 

We and other authors have previously shown that several CLCN5 missense mutations 

reduce or abolish ClC-5 currents at the plasma membrane as a result of reduced trafficking of 

the protein to the cell surface or to enhanced endoplasmic reticulum retention and the 

resulting increased protein degradation [Grand, et al., 2009; Ludwig, et al., 2005; Smith, et al., 

2009]. To further elucidate the mechanisms leading to altered currents, we next investigated 

the cell surface targeting of WT and mutant ClC-5 proteins in X. leavis oocytes. Levels of the 

S244L and Y272C mutants in the plasma membrane were comparable (Fig. 2). Thus, the 
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significant decrease in current amplitudes in the S244L mutant, and the loss of electrical 

activity in the Y272C mutant (Fig. 1A and B, Fig. 2) cannot be ascribed to reduced protein 

trafficking to the cell surface. In contrast, the G260V, L278F, K546E, and W547G mutants all 

showed reductions of 25-50% in their surface expression, and no surface expression at all was 

detected with the L225P, N340K, and G513R mutants. The change in electrical activity 

observed with these latter ClC-5 mutants could be explained by the abolition or impairment of 

cell-surface expression due to mis-targeting (Fig. 1A and B, Fig. 2) or altered protein 

expression.  

To check their protein expression, total cell lysates isolated from HEK293 cells 

transiently transfected with either WT or mutant ClC-5 were subjected to a western blot 

analysis (Fig. 3). In our previous study, we reported positive western blot staining for the 90-

kDa core-glycosylated and the 100-kDa complex glycosylated forms of WT ClC-5  [Grand, et 

al., 2009]. We also showed that the 90-kDa ClC-5 protein displays high mannose 

glycosylation, and is retained in the endoplasmic reticulum, and that the plasma membrane 

ClC-5 component displays complex glycosylation [Grand, et al., 2009]. Here, when an 

equivalent amount of proteins was loaded in each lane, no significant difference in density or 

size could be detected between WT ClC-5 and the S244L and Y272C mutants. In contrast, the 

100-kDa complex glycosylated form/90-kDa core-glycosylated form ratio was significantly 

reduced by ~50% for the G260V, L278F, K546E and W547G mutants versus WT ClC-5. 

Thus, the decreased currents in the S244L and Y272C mutants were not attributable to 

differing levels of protein expression. However, the altered currents in the L278F, G260V, 

K546E and W547E mutants could be attributable to reduced amounts of the complex 

glycosylated component, which could result from changes in the post-translational processing 

or from an increase in the turnover of the mutant proteins (Fig. 3). In contrast, only the 90-

kDa core-glycosylated form of ClC-5 was detected in the L225P, N340K, and G513R mutants 
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(Fig. 3). The abolition of conduction and surface expression in these latter mutants can be the 

consequence of a rapid degradation of the proteins within the cell. These results are similar to 

what we had previously reported for other ClC-5 mutants [Grand, et al., 2009]. 

We then compared the stability and the maturation of one out of the four similar 

mutants showing a reduction of ~50% of the 100-kDa complex glycosylated form/90-kDa 

core-glycosylated form of ClC-5 (G260V, Fig. 3) and one out of the three similar mutants 

showing only the 90-kDa core-glycosylated form of ClC-5 (L225P, Fig. 3) with those of WT 

ClC-5, by tracing the sorting and delivery of newly synthesized proteins from the 

endoplasmic reticulum to Golgi compartments by means of a pulse-chase analysis. We 

observed that the WT ClC-5 protein migrated as the 90-kDa core-glycosylated form 

immediately after pulse labeling (Fig. 4A). The 100-kDa complex glycosylated form, which 

was barely visible at the end of the pulse period, increased in amount during the first hour of 

chase, and became the predominant form by 2 hours (Fig. 4A). Kinetic analysis (Fig. 4B-C) 

revealed a progressive decrease in the 90-kDa immature form of the WT ClC-5 protein, with 

half-life of 1.5 hours (n = 3), and a progressive increase in the 100-kDa mature form of the 

WT ClC-5 protein (n = 3). The decrease represents the conversion of the immature form to 

the mature form as well as the degradation of the immature form of ClC-5 protein. Likewise, 

the G260V mutant protein was initially converted from the core-glycosylated form to the 

complex glycosylated form, like WT ClC-5 (Fig. 4A). The degradation of the immature form 

of WT ClC-5 and the G260V mutant followed the same kinetic (Fig. 4B, n = 3), but the 

conversion of the G260V mutant into its mature, complex glycosylated form was significantly 

slower than that of WT ClC-5 (Fig. 4B-C, n = 3). Furthermore, there was significant reduction 

between WT ClC-5 and the G260V mutant in the maximum amount of the mature form at 4 

hours of chase (Fig. 4B, n = 3). In contrast to the G260V mutant, the L225P mutant was 

initially synthesized as the 90-kDa core-glycosylated form, but had not acquired complex 
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sugars at any of the time intervals, and so was not converted into the mature form during the 

chase (Fig. 4A). The half-life of the immature form of L225P was 50% shorter than that of 

WT ClC-5 (Fig. 4B, n = 3).  

Overall, our results demonstrate that the G260V, L278F, K546E and W547G 

mutations lead to a delay in the maturation and to a decrease of the stability of the mature, 

complex glycosylated form of ClC-5, whereas the L225P, N340K and G513R mutations 

abolish the maturation of ClC-5. 

In the light of the above findings, we next investigated the behavior of the different 

ClC-5 mutants at the cellular level by assessing their subcellular distribution by means of 

immunostaining and confocal microscopy in transiently-transfected HEK293 cells. As 

expected from previous reports, WT ClC-5 colocalized with biotinylated cell-surface proteins, 

and with the early endosomes marker EEA1 (Fig. 5) [Dowland, et al., 2000; Grand, et al., 

2009; Smith, et al., 2009; Suzuki, et al., 2006]. A similar distribution was found for the 

Y272C and the W547G mutants (Fig. 5), and for the S244L, G260V, L278F, and K546E 

mutants (data not shown). In contrast to WT ClC-5, the L225P, N340K, and G513R mutants 

were retained in the endoplasmic reticulum compartment, as indicated by their colocalization 

with the endoplasmic reticulum marker calnexin, and were excluded from the plasma 

membrane (Fig. 5). To further explore the plasma membrane expression of the mutant ClC-5, 

we performed cell surface biotinylation experiments (Fig. 6). No significant difference could 

be detected between the surface fraction containing WT ClC-5, and that containing the S244L 

mutant (n = 3). In contrast, the abundance of the G260V mutant at the cell surface was 

significantly lower than that of WT ClC-5 (n = 3). Surface biotinylation experiments also 

showed that the G513R was excluded from the surface biotinylated protein fraction (n = 3) 

(Fig. 6). Overall, the endoplasmic reticulum retention of the L225P, N340K, and G513R 

mutants was compatible with abolition of their conduction and surface expression, which is 
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likely to result in rapid degradation of these proteins within the cell, as shown by our pulse-

chase analysis conducted on the L225P mutant in HEK293 cells.  

The functional effects of the CLCN5 mutations we studied are summarized in Table 1. 
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DISCUSSION 

  

We performed functional, biochemical, and cell-biology analyses in X. laevis oocytes 

and in HEK293 cells of nine CLCN5 pathogenic missense mutations that had been described 

before [Anglani, et al., 2006; Hoopes, et al., 2004; Igarashi, et al., 1998; Lloyd, et al., 1996; 

Ramos-Trujillo, et al., 2007; Tosetto, et al., 2006]. 

The G260V, Y272C, L278F, G513R, K546E, and W547G mutations are located in 

helix H, in the loop between helices H and I, in helix I, and in helices O and Q, respectively 

(Fig. 7). Helices H, I, O and Q are involved in the formation of the dimer interface, as are 

helices B and P [Dutzler, et al., 2002; Dutzler, et al., 2003; Wu, et al., 2003]. Previous 

published modeling studies of ClC-5 based on the crystal structures of two prokaryotic ClCs 

suggested that ClC-5 missense mutations clustering at the dimer interface would cause a loss 

of electrical activity by disrupting the assembly of the homodimers [Smith, et al., 2009; Wu, 

et al., 2003]. This would result in the formation of misfolded proteins in the endoplasmic 

reticulum, and their rapid degradation within the cell. Alternatively, mutations of residues 

positioned in a subgroup at the periphery of the dimer interface would be associated with 

residual currents at the cell surface, because they would induce a relatively minor disruption 

of the protein structure. Our results using the L278F and the G513R mutations are consistent 

with these modeling studies. On the one hand, despite reduced cell surface expression, the 

L278F mutant exhibited residual activity and its early endosomal distribution was similar to 

that of WT ClC-5. It should be noted that the amino acid substitution is located in helix I at 

the periphery of the subunit interface. On the other hand, the G513R mutant showed no 

functional expression in electrophysiological recordings, and was improperly N-glycosylated 

due to being retained on the endoplasmic reticulum. However, in contrast to this mutant, the 

Y272C mutants were normally N-glycosylated, properly targeted to the plasma membrane 
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and to the early endosomes like WT ClC-5, and displayed reduced electrical activity. 

Furthermore, the G260V, K546E and W547G mutants also escaped endoplasmic reticulum 

retention and subsequent degradation, as shown by their complex glycosylation and plasma 

membrane expression. Like the L278F mutant, the cell surface expression of the mature, 

complex glycosylated form of these mutants was, however, reduced. Our results indicate that 

this may be explained by a delay in the maturation and by a decreased stability of the mature 

form of ClC-5. These mutant proteins were also distributed in the early endosomes. 

Interestingly, the reduction of currents correlated with the decreased surface expression of the 

mature forms for the L278F and the W547G mutants. In contrast, despite a comparable 

decreased level expression of their mature form at the plasma membrane like the L278F and 

W547G mutants, we failed to record any currents with the G260V and K546E mutants, 

indicating that these mutants ClC-5 displayed abolished electrical activity. Taken together, 

these results demonstrate that mutation of a residue located at the interface may cause less 

protein-folding defects than expected from previous published modeling data even though 

they are positioned at the interface between the two subunits [Smith, et al., 2009; Wu, et al., 

2003]. 

The S244L mutation was shown to severely reduce currents, and was associated with 

unaffected trafficking to the plasma membrane and to the early endosomes, and unaltered N-

glycosylation. This mutation is located in helix G (Fig. 7), a helix that is not involved in the 

formation of the transporter interface, or the transport pathways of Cl
-
 or H

+
 [Chen and 

Hwang, 2008; Dutzler, et al., 2002; Dutzler, et al., 2003]. Further studies are required to 

assess the exact mechanism responsible for the reduced electrical activity of the S244L 

mutant. 

Finally, the L225P and N340K mutants showed no functional expression in 

electrophysiological recordings, and were improperly N-glycosylated as a result of being 
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retained in the endoplasmic reticulum by quality control systems. Moreover, pulse-chase 

analysis of the L225P mutant demonstrated early degradation of the mutant protein. Results 

for these mutations, which are located in helices F and J (Fig. 7), are in accordance with our 

previous data and show that amino acid substitutions located within α-helices at quite some 

distance from the transporter interface enhance protein degradation, probably by distorting the 

structure of the α-helices, and preventing the proper folding of the monomer [Grand, et al., 

2009]. Defects in protein folding and processing have been shown to be involved in the 

pathogenesis of several inherited disorders [Gregersen, et al., 2006]. One well-known 

example is cystic fibrosis, which is caused by mutations in the cystic fibrosis transmembrane 

conductance regulator (CFTR) gene encoding a chloride channel. Many mutant forms of the 

CFTR are misfolded, achieve only partial N-glycosylation, and are retained and degraded 

within the endoplasmic reticulum. Thus, the mechanism of transporter dysfunction identified 

for the type-II mutations appears to be similar to the mechanisms responsible for most cases 

of cystic fibrosis. 

 Recently, we found that two types of ClC-5 mutants can be distinguished [Grand, et 

al., 2009]. Here, in the line with our functional analysis, we demonstrated that five mutations 

(L225P, S244L, Y272C, N340K and G513R) corresponded to these two types of CLCN5 

mutations (Table 1). However, in addition, our data also revealed that four mutations (G260V, 

L278F, K546E and W547G) could be grouped to form a novel type of CLCN5 mutations. 

These type-III mutations (Table 1) enhance a delay in the processing of ClC-5, a decrease of 

the stability of its mature, complex glycosylated form, a reduction of its cell surface 

expression, and a reduction of currents at the plasma membrane. The distribution of these 

mutants in the early endosomes is normal.  

Another interesting aspect of our study is that 6 out of the 9 mutants were associated 

with expression at the cell surface in HEK293 transfected cells. Although ion conduction 
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through ClC-5 is thought not to be physiologically relevant at the cell surface, several recent 

studies in transfected proximal tubule cells have demonstrated that the ClC-5 population at the 

brush border is a rate-limiting step in receptor-mediated endocytosis by mediating protein-

protein interactions with a variety of proteins essential for renal reabsorption [Hryciw, et al., 

2006b]. In the case of the type-III mutants, one could speculate that their lower abundance at 

the plasma membrane could severely reduce the endocytosis by altering protein-protein 

interactions that are required in the formation of the endocytic macromolecular complex. The 

ClC-5 type-I mutants should not prevent these interactions, because they displayed normal 

protein expression and subcellular localization. However, these mutants displayed reduced 

(S244L) and abolished currents (Y272C). As a consequence, one may explain the presence of 

Dent disease in patients carrying these mutations by altered endosomal acidification leading 

to impaired receptor-mediated endocytosis, due to alteration of the function of v-type H
+
-

ATPase caused by reduced or abolished chloride shunt conductance. Alternatively, one may 

also hypothesize that chloride accumulation in early endosomes could be compromised due to 

decreased electrical activity of ClC-5. In the view of the recent work of Novarino et al., this 

could also lead to altered endocytosis. Further experiments are needed to confirm these 

hypothesis. 

 Numerous in vitro studies have shown that dysfunctional channels or transporters can 

be rescued by pharmacological therapy. For example, this is the case for CFTR in patients 

with cystic fibrosis [Kerem, 2005]. Chemical and molecular chaperones have been shown to 

allow class-II CFTR mutants to escape from degradation in the endoplasmic reticulum and to 

be transported to the cell surface. Several compounds have also been found to directly activate 

class-III and class-IV CFTR mutants that display defective regulation and conduction at the 

plasma membrane, respectively. The findings of this study, together with previous data from 

the functional analysis of ClC-5 mutations in Dent disease, provide new clues for future 
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studies [Grand, et al., 2009; Ludwig, et al., 2005; Smith, et al., 2009]. A major challenge for 

such studies will be to find specific therapeutic drugs that are able to restore sufficient ClC-5 

function in patients with Dent disease. 
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FIGURE LEGENDS 

 

Figure 1. Electrophysiological characterization of WT and mutant ClC-5 in X. laevis oocytes. 

A: Steady-state current-voltage relationships obtained in ND96 solution (pH 7.4). Each data 

point represents the mean ± SEM for at least 6 oocytes from three different oocyte batches. 

For clarity, not all the mutants are represented. B: Representative original voltage-clamp 

recordings obtained from oocytes expressing WT ClC-5 and mutant ClC-5, and from non-

injected oocytes under same conditions as described in A. WT, oocytes injected with wild-

type ClC-5; NI, Non-Injected oocytes. 

 

Figure 2. Currents/cell surface expression relationship for WT and mutants ClC-5 in X. laevis 

oocytes. Currents at +100 mV are from the same data as in Fig. 1A. For cell surface 

expression, the values (measured in RLU: Relative Light Units) were normalized to those of 

WT ClC-5 in the same batch of oocytes. Each column represents the mean ± SEM for at least 

6 oocytes for current recordings, and at least 60 oocytes from three different batches of 

oocytes for the surface expression. *, P < 0.001 is the difference between WT or mutant 

ClC-5 vs NI. #, P < 0.001 is the difference between NI or mutant ClC-5 vs WT ClC-5. WT, 

oocytes injected with wild-type ClC-5; NI, Non-Injected oocytes. 

 

Figure 3. Western blot analysis of total expression levels of WT and mutants ClC-5 in 

HEK293 transfected cells.  Total cell lysates were isolated from untransfected HEK293 cells 

or HEK293 transfected cells. Calnexin was used as the loading marker of the samples. WT, 

HEK293 cells transfected with wild-type ClC-5; UT, Untransfected HEK293 cells. 
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Figure 4. Pulse-chase analysis of WT and mutant ClC-5 in HEK293 transfected cells. A: WT 

and mutant ClC-5 were metabolically labeled for 3 h, and chased for 0 h, 1 h, 2 h and 4 h. The 

ClC-5 proteins were then immunoprecipitated by anti-HA antibody, and run on SDS-PAGE 

gel followed by autoradiography. B: Quantitative analysis of immature WT and mutant ClC-

5. C: Quantitative analysis of mature WT and mutant ClC-5. *, P < 0.05 is the difference 

between WT ClC-5 vs mutant ClC-5. 

 

Figure 5. Immunocytochemical localization of WT and mutant ClC-5 in HEK293-transfected 

cells.  ClC-5 expression was detected by green fluorescence. Organelles were stained with one 

of three markers: biotin (plasma membrane), EEA1 (early endosomes), calnexin (endoplasmic 

reticulum), and were detected by red fluorescence. The yellow fluorescence indicates that the 

two proteins overlap. Scale bars, 5 µm. 

 

Figure 6. Cell surface expression of WT and mutant ClC-5 in HEK293 transfected cells. 

Results are shown as western blot analysis of the surface biotinylated protein fraction (S) or 

total cell lysates (T). UT, untransfected HEK293 cells; WT, HEK293 cells transfected with 

wild-type ClC-5. 

 

Figure 7. Amino acid sequence alignment of several ClCs showing the positions of the 

CLCN5 mutations characterized in this study. The conserved regions are shown in bold and 

highlighted in gray. Mutations are shown above the sequences. The alignment was performed 

using BioEdit. 
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Table 1. Summary of the mutations in the CLCN5 gene studied in patients with Dent disease. 

Nucleotide change
a Amino acid 

change
 

Position in 

protein 

structure 

Currents 
Surface 

expression 
Intracellular localization N-Glycosylation 

 
 

   
Endoplasmic 

reticulum 

Early 

endosomes 
 

WT   + + + + Complex 

Type-I        

 c.731C>T p.S244L Helix G Reduced + + + Complex 

 c.815A>G p.Y272C Loop H-I - + + + Complex 

Type-II        

 c.674T>C p.L225P Helix F - - + - Core 

 c.1020C>A p.N340K Helix J - - + - Core 

 c.1538G>A p.G513R Helix O - - + - Core 

Type-III        

 c.779G>T p.G260V Helix H - Reduced + + Complex, reduced 

 c.834G>C p.L278F Helix I Reduced Reduced + + Complex, reduced 

 c.1637A>G p.K546E Helix Q - Reduced + + Complex, reduced 

 c.1639T>G p.W547G Helix Q Reduced Reduced + + Complex, reduced 

 
a
Nucleotide numbering refers to the cDNA numbering with +1 being the A of the ATG translation initiation codon in the reference sequence, 

according to journal guidelines (www.hgvs.org/mutnomen). Codon 1 is the initiation codon. Human wild-type ClC-5 GenBank assession number 

is NG_007159.2. 
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