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1Diversité, Adaptation et Développement des Plantes, Institut de Recherche pour le Développement, Université de Montpellier, UMR 232,
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3Centre d’Ecologie Fonctionnelle et Evolutive, CNRS, Université de Montpellier, UMR 5175, Montpellier 34293, France
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SUMMARY

Defining the contributions and interactions of paternal
andmaternalgenomesduringembryodevelopment is
critical to understand the fundamental processes
involved in hybrid vigor, hybrid sterility, and reproduc-
tive isolation. To determine the parental contributions
and their regulation during Arabidopsis embryo-
genesis, we combined deep-sequencing-based RNA
profiling and genetic analyses. At the 2–4 cell stage
there is a strong, genome-wide dominance of ma-
ternal transcripts, although transcripts are contrib-
uted by both parental genomes. At the globular stage
the relative paternal contribution is higher, largely due
to a gradual activation of the paternal genome. We
identified two antagonistic maternal pathways that
control these parental contributions. Paternal alleles
are initially downregulated by the chromatin siRNA
pathway, linked to DNA and histone methylation,
whereas transcriptional activation requires maternal
activity of the histone chaperone complex CAF1. Our
results define maternal epigenetic pathways control-
ling theparental contributions inplant embryos,which
are distinct from those regulating genomic imprinting.

INTRODUCTION

In most animal species, the zygote is transcriptionally quiescent,

and early embryogenesis is governed by maternal products

stored in the oocyte prior to fertilization (Andéol, 1994). Depend-

ing on the species, zygotic genome activation (ZGA) takes place

after one to several cell divisions. ZGA is a gradual process that

relies on large-scale chromatin reprogramming leading to an

increasing number of zygotically expressed genes (Tadros and

Lipshitz, 2009). Maternal transcripts and proteins inherited
from the gametes are progressively degraded, and biparental zy-

gotic transcripts gradually take over the control of development.

As a result, parental contributions to the embryonic transcrip-

tome dynamically change during early development, with an

initial maternal control that is of variable duration (1 to 15 cell

cycles) (Baroux et al., 2008; Tadros and Lipshitz, 2009). Strik-

ingly, such a maternal influence occurs in animals as evolution-

arily divergent as insects, amphibians, and mammals. Under-

standing the parental contributions and the regulation of

zygotic genome expression during early embryogenesis is

a key question in developmental and evolutionary biology.

In flowering plants, the knowledge about the regulation and

dynamics of parental contributions during early embryogenesis

remains fragmented, despite its importance in understanding

hybrid vigor, hybrid viability, parent-of-origin-dependent inter-

ploidy, and nonself pollination (xenia) effects determined by

interactions of parental genomes after fertilization (Bushell

et al., 2003; Jahnke et al., 2010; Meyer and Scholten, 2007; Pah-

lavani and Abolhasani, 2006). In flowering plants, double fertiliza-

tion produces the zygote, which develops into the embryo

(Movie S1 available online), and the endosperm, an embryo-

nurturing tissue. Both fertilization products develop within

maternal integuments, forming the seed. Genetic studies have

shown that seed development is under maternal influence

(Chaudhury and Berger, 2001), but the composite nature of the

seed makes determining the origin of maternal effects complex.

Recently, downregulation of RNA Polymerase II (PolII) in the

mature Arabidopsis egg cell revealed that the embryo developed

to the preglobular stage in absence of significant de novo tran-

scription (Pillot et al., 2010b). Thus, de novo transcription of

parental genomes is not an absolute requirement for early

embryogenesis, but the timing, dynamics, and mechanisms of

zygotic genome activation have yet to be elucidated. Reporter

and profiling studies onwhole seeds fromArabidopsis andmaize

have identified several transcripts with a dominant maternal

representation at early stages, whereas paternal transcripts

were detected only later (Baroux et al., 2001; Grimanelli et al.,
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Figure 1. Parental Contributions to the Arabidopsis Early Embryo

Transcriptome

(A) Distribution of maternal versus paternal reads covering the embryonic

transcriptome of isolated embryos. Embryos were derived from a cross

between polymorphic parents. Informative SOLiD reads (Table S1) mapping to

known SNPs were assigned to the maternal (Ler) or paternal (Col) parent.

(B) Informative reads identified 3973 and 3078 genes in the 2–4 cell and

globular transcriptomes, respectively. The graph shows a likelihood-based

gene distribution according to the proportion of maternal transcripts, q. q = 1

and q = 0 represent genes contributed only maternally or paternally, respec-

tively. Genes with 0 < q < 1 are contributed biparentally. y axis: proportion of

genes (log scale) ; x axis:q values along 1% quantiles. The full-colored circles

indicate extreme quantiles (0 % q < 0.01 and 0.99 < q % 1).
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2005; Vielle-Calzada et al., 2000). In contrast, a biparental

expression in the zygote and early embryo was shown for certain

other genes (Aw et al., 2010; Meyer and Scholten, 2007; Ron-

ceret et al., 2005, 2008; Scholten et al., 2002; Weijers et al.,

2001). Furthermore, near-saturation mutagenesis screens iden-

tified a plethora of mutations affecting embryo development at

or before the globular stage. The majority of these segregate

as zygotic recessive traits, indicating biparental contributions

to early embryogenesis (Tzafrir et al., 2004). Thus, to date there

is no clear understanding of the relative parental contributions

to plant embryogenesis nor are the mechanisms regulating the

respective contributions known.

We performed allele-specific profiling of the embryonic tran-

scriptome and quantified relative transcript contributions of the

paternal and maternal genomes in Arabidopsis embryos. We

demonstrate a strong,genome-widedominanceofmaternal tran-

scripts at early stages, althoughmany transcripts are biparentally

represented. This finding reconciles the observation made by

several laboratories of both maternal and zygotic effects during

early embryogenesis. Using reporter and profiling analyses, we

found an increasing contribution of paternal products as embryo

development proceeds,with kinetics differing on a gene-by-gene

basis. We identified two maternal epigenetic pathways, involving

the chromatin siRNA pathway and the histone chaperone

complexCAF1,whichact antagonistically to regulate thepaternal

contribution. Importantly, we show that these pathways are

distinct from those regulating genomic imprinting.
RESULTS

Analysis of Parental Contributions in Isolated
Arabidopsis Embryos
To unambiguously define the parental contributions in the early

embryo, we profiled the transcriptome of early-stage embryos

in an allele-specific manner. We dissected 2–4 cell and globular

stage embryos (Figure 1A) derived from a cross between the

polymorphic Landsberg erecta (Ler) and Columbia (Col) acces-

sions. The embryonic transcriptome was sequenced using

a SOLiD v3 platform (Figure 1; see Table S1). Reads covering

single-nucleotide polymorphisms (SNPs) (Borevitz et al., 2007)

were extracted and are referred to hereafter as informative reads

with respect to parental origin. Informative reads were used to

quantify parental contributions both globally (Figure 1A), and

for each gene individually. Genes were considered biparentally

expressed at a given stage whenever both parental alleles

were identified in the corresponding transcriptome. The classifi-

cation of genes for which only a single allelic variant was de-

tected was more ambiguous. Transcripts might be detected

from only one parent because of uniparental expression or

because of low sampling rates, which is of particular concern

for genes expressed at low levels. To circumvent this difficulty,

we made a probabilistic model describing the distribution of

genes according to the proportion of maternal transcripts, q,
(C) Composite diagram representation of the gene distribution as drawn in

(B) according to q intervals as labeled. Related to Figure S1, Table S1, and

Table S2.



which was adjusted to best-fit the observations (Experimental

Procedures). From this likelihood-based distribution, we esti-

mated the frequency of genes fitting the biparental class (0 <

q < 1, both parental alleles were detected), the paternal class

(q = 0, only the paternal alleles were detected), or the maternal

class (q = 1, only the maternal alleles were detected). In addition,

each gene could be assigned a probability of falling within each

class (Table S2). This integrated approach allowed a quantitative

and qualitative analysis of parental contributions to the embry-

onic transcriptome.

The Transcriptome of 2–4 Cell Embryos Is Maternally
Dominant despite Significant Contributions from Both
Parental Genomes
Strikingly, at the 2–4 cell embryo stage 88.4% of the informative

reads (n = 135,142) were of maternal origin (Figure 1A). This was

confirmed in an independent biological replicate (Figure S1). The

informative reads represented 3973 loci located throughout the

genome. The gene distribution drawn for q quantiles showed

a strong bias toward maternal overrepresentation (Figure 1B)

with 85% of the genes described by q > 0.75 (Figure 1C; Table

S1). Transcripts of the biparental class (0 < q < 1; 68.2% of the

identified genes) contributed strongly to this maternal domi-

nance with 54.7% genes described by 0.75 < q < 1, i.e., maternal

overrepresentation (Figure 1C and Table S1). Furthermore, our

analysis revealed 30.2% transcripts of the maternal class

(q = 1) against only 1.6% transcripts of the paternal class

(q = 0) at the 2–4 cell stage. Thus, in Arabidopsis both parental

genomes contribute to the early embryonic transcriptome but

overall it is clearly dominated by maternal transcripts.

The Paternal Contribution Is Higher at the Globular
StageConcomitantwith aGradual Activation of Paternal
Alleles
To determine how parental transcript contributions change

during embryogenesis, we extended our allele-specific profiling

to embryos at the globular stage. Although maternal dominance

was maintained, the paternal contribution increased, as shown

by 35.9% paternal reads versus 11.6% at the 2–4 cell stage (Fig-

ure 1A and Table S1). These informative reads identified 3078

loci, for which the q distribution remained skewed toward

maternal overrepresentation, although to a lesser extent than

at the 2–4 cell stage (Figure 1B). The maternal class (q = 1) rep-

resented 13.8% of the genes (versus 30.2% at the 2–4 cell

stage), and the paternal class (q = 0) increased marginally to

2.3% (versus 1.6% at the 2–4 cell stage) (Table S1). Concomi-

tantly, the biparental class increased, now comprising 83.9%

of genes, with 34.5% showing maternal overrepresentation

(0.75 < q < 1) (versus 54.7% at the 2–4 cell stage) (Figure 1C).

Importantly, the globular stage transcriptome shared 2417

genes (78.5%) with that of the 2–4 cell stage, representing

95% of the reads (Figure 2A). We analyzed the changes of

parental contributions among these shared genes by quantifying

class transitions (Figure 2B). For instance a transition from the

maternal class to the biparental or paternal class indicates de

novo activation of the paternal allele and represents 21.5%

(515) of the genes (Figure 2C). De novo activation of the maternal

allele was less prominent with only 0.8% genes, mostly because
few paternally expressed genes were identified at the 2–4 cell

stage. This analysis identified loci with a decay of one parental

transcript, with 2.5% and 9.7% showing loss of their maternal

or paternal transcripts, respectively (Figure 2C). However, most

quantitative changes occurred in the biparentally expressed

class (54.4%, 1315 genes) where the majority showed a marked

increase in the relative paternal contribution (778 genes, Fig-

ure 2D). This could result from decay of maternal RNAs, de

novo transcription of paternal alleles, or a combination of both.

To refine the timing of activation of paternal alleles, we moni-

tored paternal activity of six marker lines expressing a reporter

gene under diverse promoters active during early embryogen-

esis. The lines reflect genes with diverse cellular functions (Table

S3) and showed either early, intermediate, or late paternal

activity, respectively (e.g., RPS5A, CYCB1;1, and ET1041), but

did not appear in our allele-specific transcriptome due to the

absence of a referenced SNP in their sequence. Themarker lines

clearly showed distinct expression depending on whether they

were maternally or paternally inherited (Figure 3A and Fig-

ure S2A). We scored the number of F1 embryos showing

paternal marker expression at the same developmental stage

and in a wild-type maternal background (three to seven biolog-

ical replicates each, Table S4). For all markers the proportion

of stained embryos increased with developmental progression

(Figure 3B and Figure S2B). Consistent with our RNA profiling

results, paternal expression of the markers displayed gene-

specific activation timing (developmental stage at which the first

expression was detected) and kinetics (incremental increase in

the fraction of progeny showing expression). For instance, in

a Lermaternal background the paternal ET1041marker showed

only 4% stained embryos at the 2–4 cell stage, whereas the

RPS5A andGRP23markers showed 58%and 67%, respectively

(Figure 3B). In contrast, maternally transmitted markers showed

consistent expression in essentially all embryos, even at earliest

stages (Figures S2A and S2C).

Taken together with the transcriptome study, these findings

strongly suggest that paternally inherited alleles—even those

that are detectable at a very early stage—are activated gradually

after fertilization. This is consistent with the previous observa-

tions made for individual genes in Arabidopsis, and reconciles

earlier, apparently conflicting reports. Whether maternal loci

follow similar or different activation kinetics cannot be easily

resolved because of the potential importance of maternal carry-

over. Nevertheless, our observations are reminiscent of the

gradual, de novo, expression of zygotic genes reported in

animals (Tadros and Lipshitz, 2009).

Maternal KRYPTONITE Activity Controls Paternal
Contribution in the Early Embryo
In our marker analyses we observed that expression was influ-

enced by the maternal genotype (i.e., the accession) (Fig-

ure S2B). This indicated a maternal control of paternal expres-

sion as suggested previously (Ngo et al., 2007). The gradual

increase in paternal allele expression might reflect the progres-

sive release of a silencing mechanism. In Arabidopsis, silent

chromatin is enriched in histone H3 dimethylated at lysine 9

(H3K9me2), a modification principally deposited by the SUVH4

histone methyltransferase KRYPTONITE (KYP) (Jackson et al.,
Cell 145, 707–719, May 27, 2011 ª2011 Elsevier Inc. 709



Figure 2. Dynamic Changes of Parental

Contributions during Embryo Development

(A) Venn diagrams showing the number of genes

identified by informative reads and shared

between 2–4 cell and globular embryo tran-

scriptomes. Global coverage for specific genes is

indicated in brackets. Common genes are covered

by the majority of reads (90%–95%).

(B) The transition tables describe the changes for

common genes in the parental class (P, B, M, see

legend) that occurred during development (2–4

cell/globular transition).

(C) Subsets of class transitions illustrate dynamic

changes in allele representation as indicated

(activation/de novo expression and decreased

expression/decay of one parental allele) during

developmental progression. Note that ‘‘decay’’

may correspond to a decrease in SNP coverage

falling below detection threshold rather than an

absolute loss of transcript. The % are the sum of

the % genes in (B) falling into the gray transitions.

(D) A vast majority of common genes (54.4%) is

biparentally represented at both stages. The

proportion of maternal transcripts (q) was calcu-

lated for 1125 common genes sequenced on both

alleles and plotted as indicated (left). The inter-

pretation of relative changes toward higher

paternal or maternal representation is shown

(right). The inset shows the number of genes with

changes in q values > 10% (dashed lines). A total

of 245 genes showed no or <10% change. Related

to Table S1 and Table S2.
2002). To investigate the possibility that maternal KYP regulates

the activity of paternal alleles, we quantified reporter gene

expression in seeds resulting from a cross between a maternal

kyp mutant and wild-type pollen carrying the marker. For all

reporters tested, lack of maternal KYP activity significantly

increased the proportion of embryos showing early paternal

reporter activity (before the 16-cell embryo stage) (Figures 4A

and 4B, Figure S2A, and Table S4). We confirmed the maternal

effect of the kyp mutation on the endogenous AGP18 locus by

allele-specific RT-PCR (Figure 4C). These data strongly suggest

a role for maternal KYP activity in repressing the transcription of

paternal alleles during early embryogenesis.

To investigate the maternal effect of the kyp mutation at the

genome-wide level, we performed allele-specific profiling of

2–4 cell embryos dissected from crosses between maternal

kyp (Ler) and paternal wild-type (Col) parents (Table S1).

Embryos inheriting maternal kyp (kypm/KYPp) showed a strong

increase in the proportion of paternal reads (35.9% versus

11.6% in 2–4 cell stage wild-type embryos) (Figure 4D and repli-

cate Figure S1) resulting in a similar paternal contribution as in
710 Cell 145, 707–719, May 27, 2011 ª2011 Elsevier Inc.
wild-type embryos at the globular stage

(36.1%; Figure 1A). Informative reads in

kypm/KYPp embryos identified 3125

genes (Table S1) for which the q distribu-

tion was shifted toward a higher paternal

representation compared to wild-type

embryos at the 2–4 cell stage (Figure 4E).
Notably, the proportion of the paternal class increased markedly

(10.3% at q = 0, versus 1.6% in wild-type 2–4 cell embryos, Fig-

ure 4F) whereas the proportion of genes in the maternal class

diminished (Figure 4F). In addition, genes in the biparental class

(0 < q < 1) showed a higher paternal contribution compared to

wild-type embryos at the 2–4 cell stage (shifted distribution Fig-

ure 4E; less maternally dominant genes Figure 4F). Thus, the

maternal kyp mutation affected a large number of genes

throughout the genome, resulting in a higher paternal contribu-

tion to the early embryonic transcriptome.

Importantly, 2461 of these 3125 genes were common to the

wild-type transcriptome of embryos at the same stage and

were covered by 94.6% of the informative reads (Figure S3B).

This suggests that the maternal kyp mutation does not drasti-

cally alter the 2–4 cell stage embryonic transcriptome, but

instead modifies the relative parental contributions of genes

normally expressed at this stage. Interestingly, the maternal

kyp mutation induced class transitions similar to those induced

by developmental progression (Figures S3C–S3E compared to

Figures 2B–2D). The changes in the relative contribution of



Figure 3. Gradual Activation of Paternal Markers during Early Embryo Development

(A) Representative panel showing differential expression of the marker tested (Table S3 and Table S4), here MET333 reporting AGP18 expression, when

transmitted maternally (left) or paternally (right), as monitored by histochemical detection of GUS (blue substrate).

(B) Expression of the paternal markers was scored as the proportion of embryos showing GUS staining at a given developmental stage in a wild-type maternal

background. Two-tailed Fisher’s exact tests were used to assess differences between two consecutive developmental classes: *p < 0.05; **p < 0.01; ***p < 0.001;

****p < 0.0001. Error bars represent standard error between independent biological replicates.

Related to Figure S2, Table S3, and Table S4.
biparental class geneswere highly correlated (Figure 4G), except

for a subgroup (158 genes) showing a higher increase of the

paternal contribution in kypm/KYPp 2–4 cell embryos as com-

pared to wild-type globular embryos (Figure 4G). The analysis

also identified genes showing again or a lossof oneparental tran-

script (Figure S3D).We conservatively estimate that thematernal

kypmutation induces an increased paternal andmaternal contri-

bution for 1307 and 117 genes, respectively (Figure S3F).

Taken together these results strongly suggest that maternal

KYP activity downregulates early transcription of many paternal,

and some maternal, alleles of loci throughout the genome. This

maternal control may be progressively released during embryo-

genesis, leading to the gradual activation of the paternal genome.

The Chromatin siRNA Pathway Maternally Controls
the Paternal Contribution to the Early Embryo
Because KYP-dependent H3K9me2 in Arabidopsis is linked

to non-CG DNA methylation, we verified the effects of muta-

tions in DOMAIN REARRANGED METHYLTRANSFERASE2

(DRM2) and CHROMOMETHYLASE3 (CMT3), two genes that
control non-CG methylation (Feng et al., 2010). Similar to kyp,

both mutations inherited maternally resulted in precocious

activation of the paternally inherited markers (Figure 5A and

Figures S4A and S4B). By contrast, maternal mutations in

either METHYLTRANSFERASE1 (MET1) or DECREASED DNA

METHYLATION1 (DDM1), involved in the maintenance of CG

DNA methylation (Feng et al., 2010), had no consistent effect

(Figure S4C). Thus, non-CG but not CG DNA methylation partic-

ipates in the transcriptional repression of paternal marker genes.

In Arabidopsis, DNA and histone methylation can be mediated

by small-interfering RNAs (siRNAs) via the chromatin siRNA

pathway, also known as the RNA-directed DNA methylation

(RdDM) pathway (Brodersen and Voinnet, 2006). To determine

whether the RdDM pathway plays a role in the maternal repres-

sion of paternal alleles, we tested mutations in the following

RdDM components: NRPD1a (PolIV), NRPD1b (PolV/NRPE1),

DCL3, RDR2, and AGO4 (Table S3). When inherited maternally,

all these mutations allowed an earlier and stronger detection

of paternally transmitted markers (Figure 5A). By contrast,

the dcl2-1 mutant, which affects a distinct siRNA-dependent
Cell 145, 707–719, May 27, 2011 ª2011 Elsevier Inc. 711



Figure 4. Maternal KYP Activity Controls Parental Contributions to the Early Embryo

(A) Histochemical staining for GUS activity from a paternally inherited embryomarker (MET333), showing the typical stained and unstained seeds as scored in the

graphs in (B).

(B) Expression of paternal markers, in wild-type Ler or kyp-2maternal backgrounds scored as described in Figure 3. See also Figure S3A, Table S3, and Table S4.

(C) Allele-specific RT-PCR of endogenous gene AGP18 paternal transcripts in siliques harvested 1–5 days after pollination (dap) inheriting a maternal kyp

mutation, as compared to the wild-type. Selective amplification of the paternal allele (p, top), amplification of maternal and paternal alleles (m + p, middle), control

amplification of paternally expressed PHE1 mRNA (bottom).

(D–G) Allele-specific transcriptome profiling in isolated 2–4 cells embryos inheriting amaternal kyp-2mutation compared to 2–4 cell wild-type embryos. Data and

legends are as in Figure 1.

712 Cell 145, 707–719, May 27, 2011 ª2011 Elsevier Inc.



silencing pathway (Brodersen and Voinnet, 2006), did not alter

the activation kinetics of the paternal reporters (Figure 5A).

Importantly, paternal inheritance of mutant KYP, CMT3, or

NRPD1b components showed no effect on paternal marker

expression (Figure S4D), confirming a specific maternal role for

the RdDM pathway in paternal marker regulation.

Several lines of evidence indicate that derepression of the

paternal reporters was not linked to their transgenic nature. First,

we confirmed precocious detection of paternal transcripts for

the endogenous AGP18 locus in embryos inheriting a maternal

kyp mutation using allele-specific RT-PCR (Figure 4C). Second,

several transgenic reporters under the control of transposon

enhancers active in pollen (Slotkin et al., 2009) remained pater-

nally undetectable in embryos inheriting a maternal cmt3 muta-

tion (Figure S4E), whereas ectopic maternal activation of the

same reporters was reported in cmt3 embryo sacs (Pillot et al.,

2010a). Consistently, the profiling confirmed that the kyp muta-

tion did not massively derepress transposons and repeats in

the embryo (Table S1). Together with the genome-wide analysis

of over 3000 endogenous loci in kypm/KYPp embryos, these

results indicate that the maternally inherited components of the

RdDM pathway are involved in controlling the genome-wide

transcriptional dynamics of paternally inherited alleles.

Consistent with the proposed global role for the RdDM

pathway in transcriptional control in early embryos, we observed

that nrpd1a1b mutant zygotes showed an abnormally high level

of active PolII in their nucleus (Figure 5B). This was associated

with abnormal deposition of the repressive H3K9me2 marks

(Figure S5). The epigenetic and transcriptional states of zygotic

nuclei in this RdDM mutant is thus in stark contrast to wild-

type zygotes, which have a relatively quiescent transcriptional

state (Pillot et al., 2010b).

Surprisingly, despite their effect on gene expression, RdDM

mutants have not been reported to cause embryo lethality.

However, this does not exclude subtle defects and, indeed,

transient patterning defects were observed in embryos lacking

maternal CMT3 activity (Pillot et al., 2010b). Similarly, early kyp

embryos showed abnormal division planes in the embryo and

suspensor cells, suggesting a role in early embryonic patterning

(Figure S6).

Ovules Are Enriched in 24 nt siRNAs Targeting
Gene-Coding Sequences
Our results suggest a novel role for the RdDM pathway in the

regulation of genic regions, as this pathway had previously

been associated mostly with transposon and repeat silencing.

To verify the presence of maternal small RNAs targeting

protein-coding regions, we profiled a library of small RNAs
(D) Distribution of maternal versus paternal reads as in Figure 1A.

(E) q distribution as in Figure 1B. A total of 3125 genes were identified by inform

(F) Composite diagram representation of the gene distribution in (E) as in Figure

(G) Scatter plot distribution of 811 biparental-class genes commonly detected in w

The difference in maternal contribution between stages (qglobular� q2–4 cell) or geno

values were calculated for each transcript as follows: maternal reads/maternal + p

wild-type 2-4 cell embryos. Blue frame: genes with a correlated increased paterna

genes are delineated according to their relative maternal contribution (q) in kypm/K

R2 = 0.17; (158 genes); and (ii), y = 0.41x + 0.02 ; R2 = 0.20 (653 genes).

Related to Figure S1, Figures S3B–S3F, Table S1, and Table S2.
generated from manually dissected mature ovules before fertil-

ization.We reasoned that if this were amaintenancemechanism,

the siRNAs had to be produced before fertilization. Our analysis

revealed a large fraction of siRNAs targeting genic regions

(comprising protein-coding sequences [CDS] and 500 bp of

putative 50 regulatory regions of genes) in ovules as compared

to whole inflorescence (Lu et al., 2005) (Figures 6A and 6B).

This increase was not due to 21 nucleotide (nt) sRNAs (repre-

sented mainly by DCL1-dependent miRNAs and siRNAs) but

was associated with the 24 nt fraction, whose biogenesis is

dependent on PolIV, RDR2, and DCL3 (Brodersen and Voinnet,

2006). Overrepresentation of 24 nt siRNAs derived from CDS in

ovules was correlated with the transcriptional control of indi-

vidual loci mediated by maternal KYP activity in the embryo:

genes showing a transition from maternal expression in the

wild-type to biallelic or paternal expression in kypm/KYPp

embryos (kyp-responsive genes; Figure 6C) showed significantly

more matching siRNAs than genes that remained maternally ex-

pressed in kypm/KYPp embryos (kyp-unresponsive; Figure 6C).

This finding is consistent with a role of the 24 nt siRNAs in regu-

lating paternally inherited alleles.

Maternal CAF-1 and Histone H3 Turnover Regulate
Transcriptional Activation of Paternal Alleles
Mutant analyses showed that lack of maternal RdDM compo-

nents induced the precocious transcriptional activation of

paternal alleles. It is unknown whether paternal alleles are in

a state permissive to transcription or whether additional epige-

netic reprogramming events are necessary for their activation.

In the course of our genetic screen for mutants affecting paternal

reporter expression, we identified MULTIPLE SUPPRESSOR

OF IRA1 (MSI1) (Hennig et al., 2003) to be necessary for their

expression. In embryos inheriting a maternal msi1 mutation,

the activation of paternal reporter genes was markedly delayed

(Figures 7A and 7B and Figure S7A) compared to wild-type

embryos. Reduction of paternal transcript levels inmsi1mutants

was confirmed by RT-PCR for the endogenous GRP23 locus

(Figure 7C).

MSI1 participates in several protein complexes including the

CAF1 complex, a component of chromatin organization ensuring

mitotic stability (Ono et al., 2006). CAF1 is formed by FASCIATA1

(FAS1), FAS2, and MSI1, and functions as an H3/H4-specific

chaperone facilitating nucleosome assembly during replication

(Hennig et al., 2005; Kaya et al., 2001). Consistently, maternal

loss of another subunit of the CAF1 complex, FAS2, showed

a similar effect as msi1 (Figure 7A and Figure S7B). MSI1 is

also a subunit of the MEA-FIE Polycomb group (PcG) complex

active in seeds (Köhler et al., 2003), but a mutation affecting
ative reads in mutant embryos.

1C.

ild-type 2–4 cell embryos, globular embryos, and 2–4 cell kypm/KYPp embryos.

type (q2–4 cell WT� q 2–4 cell kyp/KYP) is plotted on the x and y axis, respectively. q

aternal reads. Differences >0mean a higher paternal contribution compared to

l contribution in both globular and kypm/KYPp 2–4 cell embryos. Two groups of

YPp embryos as indicated (red, blue). Linear regressions: (i), y = 0.47x + 0.54 ;
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Figure 5. A Functional RdDM Pathway Is

Required for Maternal Control of Paternal

Embryo Markers and Maintenance of Tran-

scriptional Quiescence in the Zygote

(A) Expression of paternal markers in embryos,

scored as in Figure 3 and Figure 4, in maternal

mutant backgrounds lacking activity of RdDM

components as indicated. See also Figure S4,

Figure S6, Table S3, Table S4, and Table S5.

(B) Immunolocalization of the active form of RNA

polymerase II (H5) in PolIV/PolV mutant zygotes

(nrpd1a1b) compared to the wild-type (WT). DNA

was counterstained with DAPI. See also Figure S5.
the MEDEA (MEA) subunit had no effect on paternal expression

at the globular stage (Figure S7C). These results strongly

suggest that the CAF1 complex is maternally required to activate

transcription of the paternal genome, likely via histone turnover.

CAF1 may regulate the incorporation of specific histone variants

controlling transcriptional activity in plants, as it is the case

in animals. For example, in the animal germ line H3.3 variants

are incorporated at actively transcribed loci (Ooi et al., 2006).
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A similar role may be proposed in plants,

because we observed that maternal

mutations affecting the H3.3 variants

HTR4 and HTR5 (Okada et al., 2005)

significantly delayed the activation of

paternal markers in the embryo (Fig-

ure S7D). These results indicate a role

for CAF1 and H3/H3.3 turnover in the

transcriptional activation of paternal—

and possibly maternal—alleles after

fertilization.

DISCUSSION

We provided a genome-wide view of the

parental contributions to early embryo-

genesis in Arabidopsis. At early stages,

the maternal transcriptome clearly pre-

dominates: although 68% of the genes

are biparentally expressed, their maternal

transcripts are overrepresented. Further,

>30% of the genes show an exclusively

maternal contribution. During the transi-

tion from the 2–4 cell to the globular stage

the paternal contribution increases. We

showed that these parental contributions

are maternally controlled by two antago-

nistic regulatory pathways regulating the

onset of paternal and, at least partially,

maternal zygotic transcription. Maternal

dominance at early stages results from

downregulation of paternal alleles at

loci throughout the genome via the chro-

matin siRNA pathway, linked to RNA-

directed DNA and histone methylation.

In addition, transcriptional activation of
paternal alleles involves histone exchange, possibly via the

replacement of H3.3 variants, for which rapid turnover is

observed after fertilization (Ingouff et al., 2010). Release of

silencing might also involve passive DNA-demethylation during

mitoses or the activity of DNA- or histone-demethylases.

Although additional investigations are required to refine the

mechanistic role of these events in the control of the zygotic

genome, our results suggest that flowering plants evolved



Figure 6. Ovules Are Enriched in Small RNAs Targeting Genic Regions

(A) Deep sequencing of small RNA (sRNAs) from mature ovules reveals increased targeting to genic regions (comprising protein coding sequences (CDS) and

putative 50-regulatory regions 500 bp upstream of ATG) as compared to sRNAs from inflorescence (pie charts). Size distribution of CDS-targeted sRNAs showed

an increase in the 24 nt fraction in ovules as compared to inflorescence sRNA libraries (histogram).

(B) Comparative mapping of sRNA distribution in inflorescence (upper line) and ovules (lower line) libraries, exemplified by chromosome 1 (top), with a 400 kb

zoom (middle), and 40 kb zoom (bottom). Boxes represent protein coding units (genes). CDS-specific 24 nt sRNAwere distributed between + and� strands in the

proportion of 63(+):37(�) in the ovule library.

(C) Average number of 24 nt siRNA per locus for maternal- and biparental-class genes showing no significant changes (kyp-unresponsive genes) or reduced q

values (increased paternal contribution) in kypm/KYPp embryos compared towild-type (kyp-responsive genes). t test p values (table and graph, *p < 0.01) refers to

differences in siRNA mean number between groups.
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Figure 7. The Maternal CAF1 Nucleosome Assembly Complex Controls Paternal Gene Activation

(A) Paternal marker expression in msi1 or fas2 maternally mutant embryos compared to wild-type.

(B) Paternal marker expression scored as in Figure 3, Figure 4, and Figure 5, in msi1 or fas2 maternal background. See also Figure S7, Table S3, Table S4, and

Table S5.

(C) Allele-specific RT-PCR shows reduced endogenous GRP23 paternal transcript levels in siliques collected 2–5 dap inheriting a maternalmsi1-2 mutation, as

compared to the wild-type. Selective amplification of the paternal allele (p), or of both maternal and paternal alleles (m + p), control amplification of paternally

expressed PHE1.
strategies to regulate early embryogenesis that are similar to

those described in animals (Baroux et al., 2008; Tadros and

Lipshitz, 2009).

Maternal Effect and Zygotic Functions during Early
Embryogenesis
The relative contribution and dynamic changes of parental tran-

scripts we observed in early Arabidopsis embryos may result

from a combination of de novo transcription postfertilization and

transcripts carried over from the egg or sperm, although their

respective abundance is unknown. 1331 and 621 genes with

respective maternal and paternal contributions (of 3399 and

1482 represented on the ATH1 microarray) were consistently de-

tected as present in egg- or sperm-specific microarray experi-

ments (Borges et al., 2008; Wuest et al., 2010). Although these
716 Cell 145, 707–719, May 27, 2011 ª2011 Elsevier Inc.
overlaps between pre- and postfertilization transcriptomes indi-

cate a carryover from egg and sperm cells, potentially influencing

early embryo development (Bayer et al., 2009; Pillot et al., 2010b),

the expression status of these genes in the early embryo remains

unknown.Formany loci, storedanddenovoexpressed transcripts

likely coexist during early embryogenesis (Tadros and Lipshitz,

2009), as it was shown by chromosomal deletions in Drosophila

(DeRenzis et al., 2007).Whenever exactly these genesmay be ex-

pressed, the vast majority of transcripts are derived from the

maternal genome, providing extensive maternal control over early

development, explaining the existence of numerous maternal

effectgenes (reviewed inBarouxetal., 2008).However, it is equally

clear that there is a paternal contribution to early embryogenesis

from many loci, sometimes exclusively, consistent with paternal

effect and zygotic genes acting early after fertilization (Bayer



etal., 2009,MeyerandScholten,2007;Ronceretetal., 2005,2008;

Scholten et al., 2002; Tzafrir et al., 2004; Weijers et al., 2001).

Epigenetic Pathways Controlling Parental Contributions
Are Distinct from Those Regulating Genomic Imprinting
In plants and mammals, certain genes are regulated by genomic

imprinting and are expressed monoallelically only from one

parental allele (reviewed inRaissiget al., 2011).Onecould imagine

that for maternally expressed, imprinted loci, the RdDM pathway

repressing paternal alleles stays in place throughout develop-

ment, thus leading to monoallelic maternal expression. However,

the maternal regulatory pathways we uncovered complement—

and act beyond—the regulation of genes by genomic imprinting:

neither KYP nor CMT3 regulates the imprinted FIS2 locus (Jullien

et al., 2006b). Conversely, we determined that dcl3, a mutation

affecting the RdDM pathway, does not alter paternal silencing of

the imprinted MEA gene, nor do mutations affecting the CAF1

subunit FAS2 (Table S5). Instead, the MEA-FIE PcG complex

maintains silencing of the paternal MEA allele via H3K27 methyl-

ation (Baroux et al., 2006; Jullien et al., 2006a). This complex is

not required for global repressionof thepaternal genomebecause

a mutation affecting the MSI1 PcG subunit did not show preco-

cious activation of paternal markers, but instead had a delaying

effect. Thus, the maternal mechanisms controlling the timing of

paternal genomeactivationdescribedhere aredistinct from those

regulating genomic imprinting. Furthermore, although parental

contributions were described in the late endosperm (Hsieh

et al., 2011), their regulation at early stages still needs to be

elucidated at a genome-wide level. Possibly, different transcrip-

tional controls are in place because the endosperm is actively

transcribed soon after fertilization (Aw et al., 2010; Pillot et al.,

2010b), owing to its differential targeting by a global DNA

demethylase pathway that may counteracts the RdDM pathway

(Gehring et al., 2009; Hsieh et al., 2009).

The RdDM Pathway Plays a Role in Early Seed
Development
We have shown that maternal mutations affecting the PolIV

subunit NRPD1a de-repressed the activity of paternal markers

and modified the transcriptional status of the zygotic genome.

Thus, we propose that PolIV-dependent 24 nt maternal siRNAs

epigenetically control the transcriptional status of paternal, and

possibly also maternal, loci throughout the genome. Whether

an epigenetic dimorphism establishes differential susceptibility

of the parental alleles to siRNA-based regulation is a challenging

question that remains to be addressed. Maternal siRNAs were

recently detected at later stages of seed development in the

endosperm (Mosher et al., 2009), and thus our findings extend

their role to early stages of embryogenesis, particularly in regu-

lating protein-coding sequences. The endosperm and its pro-

genitor, the central cell, or alternatively maternal sporophytic

tissue (Olmedo-Monfil et al., 2010) have recently been proposed

as a potential source of mobile maternal siRNAs driving silencing

in the egg cell and the embryo (reviewed, e.g., in Bourc’his and

Voinnet, 2010; Feng et al., 2010), an attractive hypothesis await-

ing confirmation.

Perturbation of the maternal RdDM pathway leads to transient

patterning defects as reported for embryos lacking maternal
CMT3 (Pillot et al., 2010b) or, as described here, KYP activity.

Thus, the pathway seems to fine-tune the expression of early

patterning genes. Alternatively, phenotypic aberrations might

be revealed in embryos inheriting a divergent paternal genome

distinct from the maternal background, which provides the

epigenetic control on zygotic genome expression. Further

studies are awaited to determine if RdDM mutants might repre-

sent sensitized backgrounds to hybridization and how these

maternal pathways affect out-breeding species. Maternal

siRNAs, particularly those targeting transposable elements,

have been proposed to act in heterosis and inter-specific hybrid-

ization (Chen, 2010; Martienssen, 2010). Twenty-four nucleotide

siRNAs targeting coding regions are also downregulated in

hybrid offspring (Groszmann et al., 2011). Our data suggest

that siRNA-based mechanisms also target protein-coding

sequences of the early embryonic genome, to control chro-

matin-based parental interactions during the epigenetic reprog-

ramming that occurs after fertilization.

EXPERIMENTAL PROCEDURES

Plant Material

Arabidopsis thaliana accessions Columbia-0 (Col), Landsberg erecta (Ler),

C24, WS or Nossen (No) were used as wild-type controls according to the

mutant’s background. The marker lines and mutants are listed in Table S3

and genotyping assays are described in Extended Experimental Procedures.

Embryonic cDNA Libraries, Sequencing, and Allele-Specific

Transcriptome Analysis

The full method is described in Extended Experimental Procedures. In brief,

embryos were released from the seeds by gentle pressure and isolated under

an inverted microscope using a microcapillary. Total RNA was extracted using

the PicoPure RNA Isolation Kit (Arcturus) and 300–700 pg was amplified in

a linear fashion using theWT-Ovation Pico RNA Amplification System (NuGEN

Technologies). After second strand cDNA synthesis and library preparation, 50

bases sequence reads were generated by SOLiD v3 (Applied Biosystems) and

aligned to the Arabidopsis Col genome (TAIR8.0). Unique reads mapping full

length in the exome were sorted for the presence of Ler annotated polymor-

phisms (Borevitz et al., 2007).

Theanalysisofparental contributionswasperformedusinga likelihood-based

model fitting best the observed distribution of maternal and paternal reads per

transcripts. A detailed explanation is provided in Extended Experimental

Procedures.

Marker Gene Analysis

The activity of paternal markers following crosses to wild-type or mutant

females was assayed by histochemical staining of the uidA reporter gene

product (the GUS enzyme) as described in Extended Experimental

Procedures. The number of GUS-positive progeny was scored for each devel-

opmental stage and differenceswere assessed using two-tailed Fisher’s exact

test. For allele-specific RT-PCR, LNA-modified primers targeting a SNP from

one parental transcript were used. Details on the reactions and primer

sequences are provided in Extended Experimental Procedures.

Profiling of Small RNAs in Ovules

In brief, total RNA was extracted from dissected mature ovules (Peiffer et al.,

2008) and a small RNA library was prepared and sequenced using Illumina

Genome Analyzer. After filtering, reads were mapped against Arabidopsis

Col reference sequence (TAIR 8) and compared to inflorescence small RNA

reads (Lu et al., 2005), analyzed using the same procedure. Mapping, occur-

rence information, normalization, and graphical displays were computed using

R. Genic regions and repeat target analysis was done using TAIR 8 genome

release and ftp://ftpmips.helmholtz-muenchen.de/plants/cress/.
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Whole-Mount Immunolocalization

Immunodetection was performed essentially as described (Pillot et al., 2010b),

using antibodies from Abcam: anti-H3K9me2 (#ab1220) and anti-phosphoS2

RNA PolII [H5] (#ab24758) specific to the active form of PolII (Palancade and

Bensaude, 2003). Images were captured on a laser scanning confocal micro-

scope (Leica SP2) and maximum-intensity projections of selected optical

sections generated. Details are provided in ExtendedExperimental Procedures.

ACCESSION NUMBERS

Data from embryo SOLiD profiling are accessible under GEO accession

number GSE24198. Data from ovule small RNA profiling are accessible under

GEO accession number GSE28627. Sequence data from this article can be

found in theArabidopsisGenome Initiative orGenBank/EMBLdatabases under

the following accession numbers: At5g13960 (KRYPTONITE), At5g14620

(DRM2), At5g15380 (DRM1), At1g69770 (CMT3), At5g49160 (MET1),

At5g66750 (DDM1), At4g11130 (RDR2), At3g43920 (DCL3), At3g03300

(DCL2), At2g27040 (AGO4), At1g63020 (NRPD1A/POLIVA), At2g40030

(NRPD1b/NRPE1/POLV), At5g58230 (MSI1), At5g64630 (FAS1), At5g64630

(FAS2), At1g02580 (MEDEA), At4g40030 (HTR4), At4g40040 (HTR5),

At4g37450 (AGP18), At4g02060 (PROLIFERA), At4g37490 (CYCB1;1),

At3g11940 (RPS5a), At2g241500 (LACHESIS), At1g10270 (GRP23).
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figures, five tables, and one movie and can be found with this article online at
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Supplemental Information

EXTENDED EXPERIMENTAL PROCEDURES

Plant Material
Arabidopsis thaliana accessions Columbia-0 (Col), Landsberg erecta (Ler), C24, WS or Nossen (No) were used as wild-type controls

depending on the mutant investigated. The reporter lines used are listed in Table S3 with the corresponding reference. The pAtRP-

S5A:uidA reporter was reconstructed in a different vector backbone (pCAMBIA1391Z) using the same promoter as originally

described (Weijers et al., 2001) and transformed into the Ler accession. The mutants used are listed and referenced in Table S3.

All mutants were homozygous for a recessive null mutation except for ddm1-2/DDM1, met1-3/MET1, msi1-2/MSI1 and mea-2/

MEA. For the latter, heterozygousmutants were genotyped in a segregating population. For ddm1-2 a cleaved amplified polymorphic

sequence (CAPS) marker (gift from E. Richards) was used. A 100 bp amplicon produced with the primers 50-gttggacagtgtggta
aattccgct-30 and 50-gagctacgagccatgggtttgtgaaacgta-30 (Tm 56�C, 40 cycles) was ethanol precipitated and digested with RsaI

(NEB, Ipswich CA, USA) for 3 hr at 37�C. msi1-2/MSI1, mea-2/MEA, met1-3/MET1 plants were genotyped as described (Baroux

et al., 2006; Hennig et al., 2003; Saze et al., 2003). For the htr4-1 mutant (line N582765, T-DNA insertion in the second exon of

At4g40030) (Okada et al., 2005), abolished transcription was verified by RT-PCR using the primers 50-tggctcgtaccaag-
caaaccgctcg-30 and 50-acggactagcctctgaaatggcagtt-30 (Tm 62�C, 35 cycles), targeting exon2 and exon 3, respectively. Equal

loading was controled by amplifying ACTIN11 mRNA as described (Baroux et al., 2006).

Preparation of Embryonic cDNA Libraries and Sequencing
For embryo isolation 3–5 siliques resulting from crosses between Lerwild-type or kyp-2/kyp-2 (Ler) mutantmothers andCol wild-type

fathers were harvested 2.5 days (2–4 cell embryos) and 4 days (globular) after pollination. Seeds were dissected and immersed in

20 ml isolation buffer (first-strand cDNA synthesis buffer [Invitrogen], 1.6 U/ml RNase Out [Invitrogen], 1 mM DTT), in a round-bottom

2ml Eppendorf tube. Seeds were gently crushed with a plastic pestle to release the embryos. 400 ml isolation buffer was added to the

extract and 5 x 50 ml droplets were placed on 6-well printed slides previously coated with 1% BSA. 50 ml fresh isolation buffer was

placed on the remaining well for washing the isolated embryos (see below).

One slide was placed on an inverted microscope (Nikon TMS) and the droplets were screened at magnification 10x. Embryos were

isolated with a siliconized, manually drawn, and freshly BSA-coated glass capillary fixed to a micromanipulator and linked to a 200 ml

pipette with a rubber tube. The calibration wheel of the pipette was used to create a slight vacuum in the capillary to collect the

embryos with as little solution as possible. The embryos were released in a clean drop of buffer and collected again (in ca. 2–3 ml)

before release in 100 ml RNA extraction buffer. For profiling of wild-type transcriptomes (Ler x Col) 28 and 4 embryos at the 2–4

cell stage and globular stage, respectively, were isolated. 25 mutant embryos from kyp-2 x Col crosses were isolated. Plants

were grown, crossed and harvested at the same time. RNA extraction was performed using the PicoPure RNA Isolation Kit (Arcturus)

according to the manufacturer’s instructions. Quality of the total embryonic RNA was assessed using Agilent RNA 6000 Pico Kit on

the Agilent 2100 BioAnalyzer (Agilent Technologies, Germany) and we estimated a yield of 700 pg to 4 ng total RNA in each sample.

300–700 pg of total RNA was amplified using the WT-Ovation Pico RNA Amplification System (NuGEN Technologies, USA). The

amplification technology is inspired from Philipps and Eberwine (1996) and performs a linear isothermal amplification of mRNA

species. Unlike PCR-based exponential amplification, this linear amplification approach is carried out by replication of only the orig-

inal transcripts, not replication of copies. Amplification of our samples produced 6–10 mg single-stranded cDNA. To create the

second strand, poly(A) tails were added to 1 mg of the amplified cDNA library (10 pMol DNA ends) using 20U of Terminal Transferase

(New England Biolabs, USA) and 0.2 mM dATPs in the provided buffer. The second strand was amplified during 1 PCR cycle on

a thermal cycler (3000 at 95�C, 2 min at 50�C, 20 min at 72�C) using the Ex Taq Polymerase (TaKaRa, Japan) and oligo(dT)12-18 Primer

(Invitrogen).

Typically 200–500 ng of cDNA was used for SOLiD system’s express fragment library preparation. Using the Covaris S2 system

(Covaris, Inc.), cDNA (0.5–3 kb) was sheared into 80–130 bp short fragments according to the protocol. The ends of the target

DNA were repaired and subsequently ligated to SOLiD P1 and P2 adaptors. After ligation the library was enriched by PCR (7 cycles)

and a size selecting gel was run to remove any short fragments. The resulting ligated population was the SOLiD Fragment Library

ready for emulsion PCR. Emulsion PCR reactions were performed according to the manufacturer’s recommendation (Applied Bio-

systems, USA) by mixing 170 pg libraries with 0.8 billion 1 mm-diameter beads with P1 primers (ABI) covalently attached to their

surfaces. Sequence reads of 50 bases length were generated by SOLiD v3 (Applied Biosystems, USA).

Allele-Specific Transcriptome Analysis
50 base reads generated by SOLiD v3 were aligned to the TAIR8.0 version of the Arabidopsis Col genome using the SOLiD System

Analysis Pipeline Tool (Corona Lite 4.0r2.0, Applied Biosystems, USA), allowing up to 4 color-space mismatches with the additional

rule ‘‘count valid adjacent errors as single errors.’’ For transcriptome profiles, reads were excluded if they mapped to more than one

genomic position, mapped at splice junctions or were partially overlapping. Consequently, full-length reads uniquely mapping inside

a transcript were taken.

Arabidopsis Ler SNPs (ftp://ftp.Arabidopsis.org/Polymorphisms/Ecker_ler.homozygous_snp.txt) (Borevitz et al., 2007) were used

to identify reads matching Ler sequences. We only used SNPs that were biallelic and have exactly one defined allele for Col and one
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defined allele for Ler. Under such constraints, we removed 24 SNPs from the published list for our calling procedure. To assign the

reads to a Ler or Col allele, we used the SNP calling pipeline (consensus caller) of Corona Lite 4.0r2.0. This procedure delivers the

number of readsmatching the reference sequence and the alternative sequencewhen at least 3 alternative alleles could be found. For

each base change (alternative sequence) at a given position, probability and confidence scores are calculated and are used by the

calling algorithm to categorize heterozygous and homozygous SNPs. In addition, the alternative sequence must be met by at least 3

reads with independent starting points. Consequently, in our case SNPs sequenced from one parent only (for instance Ler if Col is

used as the reference) would not be detected. To correct for this, we ran the SNP calling procedure twice, using a reciprocal set-up

where the reference sequence was either Ler or Col. To this aim, we generated two references with the new SNP list: one with the Col

allele at all 304,978 genomic positions and one with the Ler allele. Next, we checked for inconsistencies and only SNP calls showing

the exact predicted Ler or Col base were taken, SNP calls showing a different base were excluded (32 SNPs). To calculate the

coverage at each SNP position, the results from the reciprocal SNP calling were merged, choosing the read count with highest

number of unique start points then highest coverage. To calculate the allele-specific coverage (Col, Ler), the coverage per SNPs

per transcript was added following a procedure to eliminate redundant read counts, when those were covering 2 (or more) SNP.

The procedure consisted in (1) sorting the SNPs by highest number of unique start points first, highest number of coverage second,

(2) SNPs were interrogated, starting with the highest covered SNP, for their position and only SNPs more than 49 bp apart from

a previously chosen SNP are kept, (3) we summarized Col- and Ler-specific coverage and start points of all SNPs kept. When

SNPs matched an annotation with two or more entries (transcript version), the entry with the highest coverage was used for calcu-

lating the transcript level.

Analysis of the Parental Distribution of Embryonically Expressed Genes Covered by SOLiD Reads
We assume that all gene expression patterns are either biparental, uniparental maternal, or uniparental paternal. A gene with both

maternal and paternal transcripts is necessarily biparentally expressed. However, when transcripts from a single parent are detected

but only a few reads have been sequenced, it is not immediately clear whether the gene is uni- or biparentally expressed, and the

probability of missing one parental contribution in the sample needs to be considered. The relative probability of being uni- versus

biparentally expressed was obtained using the following analysis. We note q the proportion of maternal transcripts: q = 0 for only

paternal expression, q = 1 for only maternal expression and 0 < q < 1 for biparental expression. We build a model to adjust the distri-

bution of q.We note qpat, qmat, qbip the proportion of genes that are paternally, maternally, or biparentally expressed, respectively. We

assume that q values for genes that are biparentally expressed is Beta distributed (with parameters qa and qb). We notemi and pi the

observed number of paternal and maternal transcripts for gene i. We note m and p the vector of all mi and pi and q the vector of

parameters to be estimated. The likelihood of the data can then be written:

Lðm;p j qÞ=
Y
i

8><
>:

qpat + qbip
R 1

0
bðqa; qb; xÞBðpi; x;0Þdx ifmi = 0

qbip
R 1

0
bðqa; qb; xÞBðpi +mi; x;miÞdx ifmipi>0

qmat + qbip
R 1

0
bðqa; qb; xÞBðmi; x;miÞdx if pi = 0

(1)

where b(qa, qb ; x) denotes the probability to draw x in a Beta distribution with parameters qa and qb and where B(n, x; k) denotes the

probability to draw k success among n trials with a probability of success x (i.e., in a binomial distributionwith parameters n and x). For

consistency, we assume that the mode of q distribution for biparentally expressed genes is not 0 or 1, which entails that qa > 1 and

qb > 1. If no maternal transcripts are present, the gene may be paternally (with probability qpat) or biparentally expressed (with prob-

ability qbip). In the latter case, the probability to not sample any maternal transcript is evaluated by the corresponding binomial distri-

bution integrated over the distribution of q within the biparentally expressed genes (the Beta distribution). This leads to the first line of

Equation 1. Similar reasoning yields the two other lines in the equation. The relative probability of being uni- versus biparentally ex-

pressed can then be calculated. A gene with no maternal transcript is exclusively paternally expressed with probability

Pi =
1

1+
R 1

0
b
�bqa; bqb; x�Bðpi; x; 0Þdx

(2)

and biparentally expressedwith probabilityBi = 1 –Pi. Similarly, a genewith no paternal transcript is exclusively maternally expressed

with probability

Mi =
1

1+
R 1

0
b
�bq

a
; bqb; x�Bðmi; x;miÞdx

(3)

and biparentally expressed with probability Bi = 1 –Mi. In Equations 2 and 3, the hat denotes themaximum likelihood estimates of the

parameters that have been obtained by maximizing Lðm;p j qÞ. We performed this analysis independently for the three samples
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analyzed (2–4 cell wild-type embryos, globular embryos, and 2–4 cell kyp/KYP embryos). Pi, Mi, and Bi values for all genes are

provided in Table S2.

To obtain a global view of the variations of the parental expression between the samples analyzed, we computed transition

matrices. More precisely, we computed the overall proportion of genes being maternally, biparentally or paternally expressed in

sample 1 becomingmaternally, biparentally or paternally expressed in sample 2. For instance the proportion of maternally expressed

genes in 2–4 cell wild-type embryos (WT24) becoming biparentally expressed in Globular embryos (WT Glob) was computed as:

X# genes

i = 1

MiðWT24ÞBiðWTGlobÞ; (4)

whereMi and Bi are given by Equations 2 and 3. Thus, these transition matrices account for the uncertainty of assigning each gene to

maternal, biparental, or paternal categories. Two matrices were computed, for (2–4 cell wild-type -> globular) and (2–4 cell wild-type

-> 2–4 cell kyp/KYP) transitions.

Histochemical Detection of the uidA Reporter Gene Product (GUS Staining)
Developing siliques were cut longitudinally and fixed in ice-cold 90% acetone for < 1 hr at �20�C. After washing three times with

100 mM phosphate buffer (100 mM Na2HPO4, 100 mM NaH2PO4), the tissue was immersed in staining solution (0.1% Triton

X-100, 10 mM EDTA, 0.5 mM Ferrocyanide, 0.5 mM Ferricyanide and 4 mM 5 -bromo-4-chloro-3-indolyl-beta-d-glucuronic acid cy-

clohexyl-ammonium salt (X-gluc, Biosynth AG, Staad, CH) in 100mMphosphate buffer) and vacuum-infiltrated for 5min. The staining

reaction was carried out for 2 days at 37�C except for ET1041 (4 days) and pGRP23:uidA (2 hr). The staining solution was removed

and the samples mounted in clearing solution (40 g of chloralhydrate (Sigma, Steinheim, DE) dissolved in 5 ml Glycerol, 1 ml Lactic

acid, and 10 ml water).

Quantification of Paternal Reporter Gene Expression following Crosses
Wild-type andmutant plants were pollinated with the marker lines listed in Table S3, 2 days after emasculation. In the case ofmsi1-2/

MSI1 and C24, however, pollination was carried out 1 day after emasculation to limit the formation of autonomous seed development

(Hennig et al., 2003). Developing siliqueswere harvested at different days after pollination and stained as described above. The seeds

showing GUS staining were scored under a Leica HC microscope (Leica Microsystems, Wetzler GMBH, DE) or Zeiss Axio Imager

microscope (Carl Zeiss MicroImaging GmbH, DE). Imaging was done with a CCD camera (Magnafire - Optronics, Goletta, USA)

and images edited using Graphic Converter (lemkeSOFT). The seeds were scored according to four classes corresponding to the

following developmental stages: zygote to 4 cell stage (embryo proper), octant to 16 cell stage, globular stage, and heart stage.

In the case of msi1-2/MSI1 and C24, the earliest class (zygote to 4 cell stage) was not considered because of potential bias due

to parthenogenetic embryo development in the msi1 mutant (Guitton and Berger, 2005). Average and standard error of the relative

proportion of GUS staining seeds in the different developmental classes were calculated from independent biological replicates

(Table S4). For each replicate, wild-type and mutant samples were processed in parallel (cross, GUS staining, scoring) to ensure

comparable results. Differences in the number of GUS-positive seeds, either between wild-type and mutant samples or between

consecutive developmental stages, were tested for statistical significance using the two-tail Fisher’s exact test (http://www.

langsrud.com/fisher.htm). The details of the scoring results are given in Table S4.

Allele-Specific RT-PCR
Total RNA was isolated (Trizol reagent, Invitrogen) from siliques collected at 2, 3, 4, and 5 days after pollination and treated with

DNase I (Invitrogen). cDNA was produced using SuperSript III (Invitrogen) and polyT primers following the manufacturer’s instruc-

tions. AGP18 (At4g37450) CDS shows a single-nucleotide polymorphism (SNP) between the Ler and Col ecotypes. An LNA-modified

primer was designed (AGP18-Col-R: 50-gcagttggagttttcgccggagc+c-30) (‘‘+’’ before the base indicates the LNA modified base) that,

together with a nonspecific primer (AGP18-F50-ggccaatctcctatctcttctccga-30) specifically amplifies the Col allele. In a cross between

a wild-type Ler or kyp-2 female and a Col pollen donor, this primer pair specifically detects the paternal Col allele following 40 cycles

with 62�C annealing temperature. As an internal control, both parental alleles were amplified using AGP18-F and AGP18-R (50-
gcagttggactttttgccggagct-30). Similarly, a SNP in GRP23 (At1g10270) allowed distinguishing the C24 maternal and Ler paternal

alleles in crosses between C24 wild-type or msi1-2 females and Ler pollen donors. GRP23-Ler-R (50-cggtggctgttgccctgccgt+c-30)
and GRP23-F (50- gcaggtcaaacagcaggaggag-30) specifically amplified the paternal Ler allele using 39 cycles with 63�C annealing

temperature. Amplification of both parental alleles was obtained using GRP23-F and GRP23-R (50-cggtggctgttgccctgccgtt-30)
primers. Control PCR reactions were carried out on samples without reverse transcriptase to confirm the absence of genomic

DNA. RT-PCR analysis of the PHE1 gene was done using primers described previously (Köhler et al., 2005) and 36 cycles of ampli-

fication with 62�C annealing temperature.
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Profiling of Ovule Small RNAs
Mature ovules were collected using a custommicro-pump (Peiffer et al., 2008), avoiding contamination by placenta and silique valve

tissues. Total RNA was extracted using the Trizol reagent according to the manufacturer’s instructions. A small RNA library was

prepared and sequenced using current Illumina Genome Analyzer protocols (http://www.illumina.com). Approx. 10 millions reads

were obtained, which were filtered for adaptator removal, size (reads between 19 and 27 nt were conserved), mismatches, and re-

dondancy using custom PERL scripts and the MEGA-BLAST algorythm (http://blast.ncbi.nlm.nih.gov/). The library finally contained

1,193,800 unique reads, which were mapped against Arabidopsis Col reference sequence (TAIR 8) using the BOWTIE software

(http://bowtie-bio.sourceforge.net/index.shtml) (Langmead et al., 2009). The same prodecure was used to analyze a 995,650 read

inflorescence small RNA library, sequenced by B. Meyers’ group (library code: FLR, http://mpss.udel.edu/at/tiny_library.php?

lib=1) (Lu et al., 2005). Mapping and occurrence informations, after normalization of both libraries to 1 million, were compiled and

graphical displays were produced using R. For relative CDS and repeat targeting analysis, two different reference databases

(indexes), CDS and Repeats, were built based on TAIR 8 information (ftp://ftp.Arabidopsis.org/home/tair/Genes/

TAIR8_genome_release/) and repeat annotation available (ftp://ftpmips.helmholtz-muenchen.de/plants/cress/), and compared after

mapping with BOWTIE.

Whole-Mount Immunolocalization
All antibodies were obtained from Abcam (Cambridge, UK). The H5 (#ab24758) raised against the active form of PolII specifically

targets the CTD of the main sub-unit of PolII when it is phosphorylated on serine 2, which occurs during transcript elongation. As

shown previously (Palancade and Bensaude, 2003), the CTD phosphorylation pattern is modified as PolII engages in transcript elon-

gation and the H5 antibody detects Pol II molecules during active transcription. Chromatin analysis was performed using H3K9me2

(#ab1220) or H3K9me3 (#ab71999) antibodies. Young siliques were fixed for 3 to 4 hr in 4% paraformaldehyde in 1xPBS with 2%

Triton, washed twice in 1xPBS. Young seeds were dissected and embedded in acrylamide on slides as described (Bass et al.,

1997). Samples were digested with 1% driselase, 0,5% cellulase, 1% pectolyase (all from Sigma) in 1XPBS with 1%BSA for

25 min to 1 hr at 37�C, subsequently rinsed 3 times in 1xPBS, and permeabilized for 1 to 2 hr in 1xPBS with 2% Triton. The primary

antibodies were applied at the following dilutions: 1:400 for H3K9me2 and H3K9me3; 1:200 for H5, overnight at 4�C. The slides were

washed day-long in 1xPBS, 0,2% Triton, and coated with secondary antibody (Alexa Fluor 488 conjugate, Molecular Probes) used at

a 1:400 dilution. After washing in 1xPBS; 0,2% Triton for aminimum of 6 hr, the slides were incubated with DAPI (1ug/ml in 1xPBS) for

1h, washed for 1h in 1xPBS, and mounted in PROLONG medium (Molecular Probes). Images were captured on a laser scanning

confocal microscope (Leica SP2) equipped for DAPI (405nm) and FITC (488 nm) excitation and either 40X or 63X objectives.

Maximum-intensity projections of selected optical sections were generated, and edited using Graphic Converter (lemkeSOFT).
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Figure S1. Replicate Transcriptome Profiling from Wild-Type and Mutant Embryos at the 2–4 Cell Stage, Related to Figure 1 and Figure 4

Allele-specific profiling of wild-type and kyp/KYP mutant embryos at the 2-4 cell stage was performed in two independent replicates (independent embryo

collection, RNA extraction, amplification and sequencing).

(A) The replicate transcriptomes show overall good correlation. The transcript levels describing the embryonic transcriptomes of replicates #1 and #2were plotted

in log2 scale and the Spearman correlation is indicated.

(B) The parental read distribution is similar in each replicate. The distribution of paternal (blue) and maternal (red) reads is presented as in Figure 1. the number of

informative reads and genes identified is indicated. Replicates #1 are those reproduced in Figure 1. Because of better coverage in thewild-type, the allele-specific

analysis was carried out in depth for replicates #1.

(C) The genes identified by informative reads overlap well between replicates. Common genes are covered by the majority of reads (89.6%–93.5% of replicates

#2). The Venn diagrams show the overlap between the informative transcriptomes (i.e., identified by informative reads covering SNP regions) of each replicates.

Note that the lack of overlap does not necessarily indicate lack of expression but coverage below our detection threshold on the selected SNPs (i.e., genes

appearing specific to one replicate can show read coverage in regions outside the SNPs). The genes common between replicates are covered by amajority of the

reads: the 2077 common genes in WT replicates are covered by 93.5% reads of replicate #2 ; the 2548 common genes in kyp/KYP replicates are covered by

89.6% reads of replicate #2.
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Figure S2. Maternal and Paternal Expression of Embryo Markers in Wild-Type, Related to Figure 3

(A) Differential expression of the indicated reporter transgenes (Table S3), when transmitted maternally (right panel) or paternally (left panel) was detected using

histochemical detection of the uidA gene product (GUS) at different stages.

(B) Quantification of paternal expression in Arabidopsis accessions. The proportion of seeds showing GUS staining (relative staining) was compared in the

progeny of crosses between wild-type plants from the indicated accessions: Landsberg erecta (Ler), Columbia (Col), C24, Nossen (No), and the indicated marker

lines. Error bars represent standard error (SE). Detailed analysis is provided in Table S4.

(C) Quantification of maternal and paternal expression. The proportion of seeds showing GUS staining (relative staining) was compared in the progeny of

reciprocal crosses between wild-type and the indicated marker lines. SE, standard error. (rep), replicates. n, total number of seeds scored. See also Table S4.
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Figure S3. Derepression of Paternal Markers andChanges of Parental Contributions Induced by aMaternal kypMutation, Related to Figure 4

(A) Embryos showing GUS staining were scored in the progeny of crosses betweenwild-type (Ler) or kyp-2mutant females and the indicated paternal markers, at

the developmental stages indicated above the graphs. Two-tailed Fisher’s exact tests were carried out to assess the differences between wild-type and mutant

samples. The levels of significance are indicated (*: p < 0,05; **: p < 0,01; ***: p < 0,001; ****: p < 0,0001). Error bars represent SE. Detailed analysis is provided in

Table S4.

(B) Venn diagrams show the number of genes shared between the SNP-tagged transcriptomes (see Experimental Procedures) of 2-4 cell WT and 2-4 cell kyp/KYP

embryos. Genes specifically detected in one sample only are covered by 5% reads, as indicated. Genes commonly detected in both samples, by contrast, are

covered by the majority of reads (95%).

(C) The transition tables describe the changes for the common genes in the parental-class distributions (P, B, M, see legend in gray box) that were induced by

a maternal kyp mutation (2-4 cell WT > 2-4 cell kyp/KYP transition). The transition matrices were calculated using parental-class probabilities (Pi, Bi, Mi) as

described in Experimental Procedures.

(D) Several subsets of class transitions clearly illustrate cases of (i) activation/de novo expression and (ii) decreased expression /loss of one parental allele in our

transcriptomes. Note that loss may correspond to a decrease in SNP coverage (see Experimental Procedures) falling below our detection threshold, rather than

the absolute loss of transcript. The % indicated is the sum of the % genes in (C) falling in the gray transitions.

(E) A large fraction of common genes (45.4%) remain in the biparental class in both genotypes. The proportion of maternal transcripts was calculated for the 940

common genes effectively sequenced on both alleles. The calculated q values were plotted as indicated (left panel). The scheme (right panel) show the relative

changes in parental contributions toward either higher paternal or higher maternal representation. Only genes with changes deviating from 10% (above/below

dashed lines) were counted. 263 genes showed no or less than 10% change.

(F) The table summarizes the number of genes affected on either the maternal or the paternal allele in embryos inheriting a maternal kypmutation. Shown are the

genes with a novel contribution of one parental allele (de novo) in mutant embryos as reported in (D) and biparental-class genes showing a relative increase of one

parental contribution as shown in E. Note that for the latter, only genes are counted that show a change >10% compared to in wild-type embryos (genes above/

below the red lines).
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Figure S4. Maternal CMT3 and DRM2, but not MET1 and DDM1, Control Early Expression of Paternally Transmitted Markers, Related to

Figure 5
Additional control experiments showing maternal but not paternal effect of RdDM mutations and absence of effects on transposon enhancer trap markers.
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(A) Embryos showing GUS staining were scored in the progeny of crosses betweenwild-type (Col or Ler) or mutant females and the indicated paternal markers, at

the developmental stages indicated above the graphs. Two-tailed Fisher’s exact tests were carried out to assess the differences between wild-type and mutant

samples. The levels of significance are indicated (*: p < 0,05; **: p < 0,01; ***: p < 0,001; ****: p < 0,0001). Error bars represent SE. Detailed analysis is provided in

Table S4.

(B) The drm1-1,drm2-1 double mutant line contains aGUS transgene (see allele reference Table S3), a GFP embryo marker was therefore used to test the role of

these genes on paternal gene activation. Paternal expression of pDRN:GFP observed 1.5 days after pollination is shown, longer exposure was used to visualize

the young embryo devoided of GFP signal (outlined). The proportion of GFP positive embryos was scored in the progeny of the indicated crosses, 1.5 days after

pollination. Stage distributions were similar amongmutant and control populations, ranging from the zygote to octant stages. dcl3-1, Col, cmt3-7 and Ler females

were also tested in parallel as controls. Two-tailed Fisher’s exact tests were carried out to assess the differences between wild-type and mutant samples. The

levels of significance are indicated (**: p < 0,01; ***: p < 0,001;****: p < 0,0001). Error bars represent SE. Detailed analysis is provided in Table S4. Marker and

mutant lines are described in Table S3.

(C) Embryos showing positive GUS staining were scored in the progeny of crosses between wild-type (Ler), met1-3/MET1 or ddm1-2/DDM1 females and the

indicated paternal markers, at different developmental stages as noted below graphs. Two-tailed Fisher’s exact tests were carried out to assess the differences

between wild-type and mutant samples. The levels of significance are indicated (*: p < 0,05; **: p < 0,01). Error bars represent SE. Detailed analysis is provided in

Table S4.

(D) Absence of paternal effects of kyp and nrpd1bmutations on paternally transmitted markers. The proportion of seeds showing GUS staining (relative staining)

was compared in the progeny of crosses between wild-type females and male with or without the mutations, together with the paternal markers lines, as

indicated. n, total number of seeds scored. Two-tailed Fisher’s exact tests showed no significant differences (ns). Error bars represent SE.

(E) Paternally transmitted transposon enhancer trap lines are not reactivated in seeds derived from kyp, cmt3 or rdr2 mothers. Paternally transmitted enhancer

trap line ET7209 monitoring expression of AtLine3 family transposon (Slotkin et al., 2009), as for ET10306 (Atlantys1) and ET11075 (Athila3), did not show

expression in the early seed in most cases, as described (Slotkin et al., 2009) (left picture). Faint staining at the suspensor base was detected occasionally (right

picture, arrow), and scored as GUS positive. Strong pollen staining was detected in all lines (inset in left picture). The table displays the proportion of early seeds

(zygote to globular stages) showing GUS staining in crosses between wild-type or mutant females and three transposon GUSmarker lines, as indicated. Staining

in the embryo proper was never observed, and the percentage of seed with signal at suspensor base (see right picture) remained below 10% for all mutants

tested. n, total number of seeds scored. Two-tailed Fisher’s exact tests showed no significant differences (ns). Error bars represent SE.
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Figure S5. Control Immunodetection of H3K9me2 Showing Absence of Signals in kyp Embryos and Altered Distribution of nrpd1 Mutant

Embryos, by Contrast to H3K9me3 which Remain Unaffected in Both Mutants, Related to Figure 5

(A–G) Immunolocalization of histone H3 di-methylation on lysine 9 (H3K9me2) shows a strong signal in heterochromatic chromocenters in wild-type (A and B),

while almost no signal in kyp-2, as described previously (Jackson et al., 2004) (C and D), and an altered, dispersed signal in nrpd1a-1/nrpd1b-11 (nrpd1a1b)

double mutant nuclei (E–G).

(H and I) Immunolocalization of histone H3 tri-methylation on lysine 9 (H3K9me3) showed that, by contrast to H3K9me2, H3K9me3 is present in both somatic

(tegument, H) and embryonic chromatin (I). Specifically, it is homogenously distributed in euchromatin as described previously (Turck et al., 2007; Sung et al.,

2006) in both wild-type, kyp-2 and nrpd1a-1/nrpd1b-11 backgrounds. en, endosperm. emb, embryo. The DNA was counterstained with DAPI.
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Figure S6. Transient Patterning Defects in kyp Mutant Embryos, Related to Figure 4

Wild-type (Ler) and kyp-2mutant early embryos were cleared using Herr’s solution. Representative examples of the abnormal phenotypes observed in kyp-2 are

shown. Wild-type and abnormal phenotypical classes were scored in independent plants (rep.).
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Figure S7. Maternal MSI1 and FAS2, but not MEA, Control the Activation of Paternally Transmitted Markers and Require Maternal H3.3

Variants, Related to Figure 7

(A) Embryos showingGUS staining were scored in the progeny of crosses betweenwild-type (Ler),msi1-2 females and the indicated paternal markers, at different

developmental stages. Two-tailed Fisher’s exact tests were carried out to assess the differences between the wild-type and mutant samples. The levels of

significance are indicated (*: p < 0,05; **: p < 0,01; ***: p < 0,001; ****: p < 0,0001). Error bars represent SE. Detailed analysis is provided in Table S4.
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(B) Embryos showing GUS staining were scored in the progeny of crosses between wild-type (No) or fas2 females and the indicated paternal markers, at different

developmental stages. Quantifications displayed as above. Detailed analysis is provided in Table S4.

(C)MEA does not delay expression of paternally transmittedmarkers at the globular stage. Embryos showingGUS staining were scored in the progeny of crosses

between wild-type (Ler) ormea-2/ MEA females and the indicated paternal markers, at the globular stage. Two-tailed Fisher’s exact tests showed no significant

differences. Detailed analysis is provided in Table S4.

(D) Maternal histone H3.3 variants control the activation of paternal markers. The graphs show embryos scored for GUS staining following crosses between wild-

type (Col) or mutant females and the indicated paternal markers. Two-tailed Fisher’s exact tests were carried out to assess the differences between wild-type and

mutant samples as in A. Error bars represent SE. htr4 and htr5 are loss of function mutants in the HTR4 and HTR5 genes, which are close homologs encoding

a H3.3 variant and likely show functional redundancy (Okada et al., 2005, Table S3). Absence ofHTR4 (At4g40030) mRNA in htr4-1 insertion allele was confirmed

by RT-PCR (see gel picture) performed on young siliques from wild-type (WT) and htr4-1 (htr4) plants using intron-spanning primers. ACTIN11 (ACT11) was

amplified as a loading control. Amplification on genomic DNA (gDNA) is shown in the gel picture to the left.
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