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Grid Orientation Effect in coupled Finite Volume Schemes

R. Eymard, C. Guichard and R. Masson.

September 14, 2011

Abstract

The numerical simulation of two-phase flow in a porous medium may lead, when using
structured grids, to the apparition of the so-called Grid Orientation Effect (GOE). We propose
in this paper a procedure to eliminate this phenomenon, based on the use of new fluxes
with a new stencil in the discrete version of the convection equation, without changing the
discrete scheme for computing the pressure field. A mathematical study, based on a weak BV
inequality using the new fluxes, shows the convergence of the modified scheme in a particular
case. Finally, numerical results show the efficiency and the accuracy of the method.

1 Introduction

In the 1980’s, numerous papers have been concerned with the so-called grid orientation effect, in
the framework of oil reservoir simulation. This effect is due to the anisotropy of the numerical
diffusion induced by the upstream weighting scheme, and the computation of a pressure field,
solution to an elliptic equation in which the diffusion coefficient depends on the value of the
convected unknown. This problem has been partly solved in the framework of industrial codes, in
which the meshes are structured and regular (mainly based on squares and cubes). The literature
on this problem is huge, and is impossible to exhaustively quote; let us only cite [4, 5, 8, 12, 13] and
references therein. In the 2000’s, a series of new schemes have been introduced in order to compute
these coupled problems on general grids [1, 3, 6, 10]. But, in most of the cases, the non regular
meshes conserve structured directions, although the shape of the control volumes is no longer that
of a regular cube. This is the case for the Corner Point Geometries [11] widely used in industrial
reservoir simulations. The control volumes which are commonly used in 3D reservoir simulations
are generalised “hexahedra”, in the sense that each of them is neighboured by 6 other control
volumes. In this case, the stencil for the pressure resolution may have a 27-point stencil, using
for instance a Multi-Point Flux Approximation (MPFA) scheme, see [1]. Nevertheless, selecting
a 27-point stencil instead of a 7-point stencil for the pressure resolution has no influence on the
Grid Orientation Effect, which results from the stencil used in upstream weighted mass exchanges
coupled with the pressure resolution.
In order to overcome this problem, we study here a new method consisting in changing the stencil
of the convection equation, without modifying the pressure equation. This method is presented on
a simplified problem, modelling immiscible two-phase flow within a porous medium. Let Ω ⊂ Rd

(with d = 2 or 3) be the considered bounded open connected space domain, with a regular
boundary denoted by ∂Ω. We consider the following two-phase flow problem in Ω,





ut − div(k1(u)Λ∇p) = max(s, 0)f(c) + min(s, 0)f(u)
(1 − u)t − div(k2(u)Λ∇p) = max(s, 0)(1 − f(c)) + min(s, 0)(1 − f(u)),

f(u) =
k1(u)

k1(u) + k2(u)
,

(1)

where, for x ∈ Ω and t ≥ 0, u(x, t) ∈ [0, 1] is the saturation of phase 1 (for example water), and
therefore 1−u(x, t) is the saturation of phase 2, k1 is the mobility of phase 1 (increasing function
such that k1(0) = 0), k2 is the mobility of phase 2 (decreasing function such that k2(1) = 0),
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the function s represents a volumic source term, corresponding to injection/pumping fluids into
the domain, p is the common pressure of both phases (the capillary pressure is assumed to be
negligible in front of the pressure gradients due to injection and production wells) and Λ(x)
denotes the permeability tensor (that is defined by a symmetric positive definite matrix which
may depend on the point x ∈ Ω). The volumic composition of the injected fluid is tuned by the
function c, assumed to vary between 0 and 1. We assume that there is no flow across the boundary,
which corresponds to homogeneous Neumann boundary conditions.

We may see System (1) as the coupling of an elliptic problem with unknown p and a nonlinear
scalar hyperbolic problem with unknown u,

{
div v = s with v = −(k1(u) + k2(u))Λ∇p,
ut + div(f(u)v) = max(s, 0)f(c) + min(s, 0)f(u).

(2)

Let us now consider a coupled finite volume scheme for the approximation of Problem (1), written
under the form (2):

∑

L,(K,L)∈S

Fn+1
K,L = sn+1

K

Fn+1
K,L + Fn+1

L,K = 0

|K|
(
un+1

K − un
K

)
+ τn

∑

L,(K,L)∈S

(
f(um

K)(Fn+1
K,L )(+) − f(um

L )(Fn+1
L,K )(+)

)
=

τn((sn+1
K )(+)f(cn+1

K ) − (sn+1
K )(−)f(um

K)).

In the above system, we denote by K, L the control volumes, by |K| the measure of K (volume
in 3D, area in 2D), by S the initial stencil of the scheme, defined as the set of pairs (K, L) having
a common interface denoted σK,L, by n the time index, by τn the time step (τn = tn+1 − tn), by

un
K the saturation in control volume K at time tn, by sn+1

K the quantity 1
τn

∫ tn+1

tn

∫
K

s(x, t)dxdt

and by cn+1
K the quantity 1

τn |K|

∫ tn+1

tn

∫
K

c(x, t)dxdt. The flux Fn+1
K,L = (Fn+1

K,L )(+) − (Fn+1
L,K )(+) is

a generally implicit approximation of the flux
∫

σK,L
v · nK,Lds at the interface σK,L at time step

n (where nK,L is the unit normal vector to σK,L oriented from K to L), and, for all real a, the
values a(+) and a(−) are non-negative and such that a(+) − a(−) = a. The value m is set to n in
the case of the “IMPES” scheme (IMplicit in Pressure and Explicit in Saturation), and to n + 1
for the implicit scheme.

We refer to [1, 3, 6, 10] for possible expressions of Fn+1
K,L allowing for the computation of an

approximate pressure field; in this paper, we consider that these expressions are the data used in
the definition of new fluxes dedicated to suppress Grid Orientation Effects. Hence Section 2 of
this paper proposes a general method for defining a new stencil Ŝ and new fluxes F̂n+1

K,L verifying
at least the two following properties. We require that the flux continuity holds

F̂n+1
K,L + F̂n+1

L,K = 0, ∀(K, L) ∈ Ŝ,

and that the balance in the control volumes is the same as that satisfied by the fluxes (Fn+1
K,L )(K,L)∈S :

∑

L,(K,L)∈bS

F̂n+1
K,L =

∑

L,(K,L)∈S

Fn+1
K,L , ∀K ∈ M.

With these new fluxes and stencil, we write the following new scheme:

|K|
(
un+1

K − un
K

)
+ τn

∑

L,(K,L)∈bS

(
f(um

K)(F̂n+1
K,L )(+) − f(um

L )(F̂n+1
L,K )(+)

)
=

τn((sn+1
K )(+)f(cn+1

K ) − (sn+1
K )(−)f(um

K)).

(3)
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The present method is illustrated by the example of the design of a nine-point scheme, starting from
a five-point scheme. This new scheme is mathematically analysed in Section 3 in the particular
case where f(u) = u and k1(u) + k2(u) is constant, allowing for the fluxes to not depend on the
time. Then numerical results show in Section 4 the efficiency of the method. A first test case,
where Problem (1) has a radial analytical solution, allows for assessing the accuracy of the method,
and a second test case which is a simple 3D case with three 2D layers shows the possibility to
implement the scheme in industrial reservoir simulators. A short conclusion is finally proposed.

2 Mesh, stencils and fluxes

2.1 Construction of the new fluxes

This section is devoted to the method of construction of the new fluxes, using the old ones. Let
us first precise the definition for the admissible discretizations which will be considered here.

Definition 2.1 We assume that Ω ⊂ Rd, with d ∈ N \ {0} is a bounded open connected domain.
We say that D = (M,F , S) is an admissible discretization of Ω if:

1. The set M of the control volumes is such that all elements of M are disjoint open connected
subsets of Ω with regular boundary, and such that Ω =

⋃
K∈MK. The d-dimensional measure

of K (resp. Ω) is denoted by |K| (resp. |Ω|) and the diameter of K is denoted hK . We
denote by hD the maximum value of (hK)K∈M.

2. The interior faces of the mesh σ ∈ Fint are obtained by K ∩ L := σK,L, for all pairs of
neighbouring control volumes K ∈ M and L ∈ M. They are assumed to be planar, with
constant unit normal vector nK,L oriented from K to L. The exterior faces of the mesh
σ ∈ Fext are obtained by σ = K ∩ ∂Ω, for all control volumes K ∈ M. The set of all the
faces of the mesh F is defined by F = Fint ∪Fext. The d− 1-dimensional measure of σ ∈ F
is denoted by |σ|, assumed to be strictly positive. For all K ∈ M, it is assumed that there
exists a subset of F , denoted by FK , such that ∂K =

⋃
σ∈FK

σ.

3. The stencil S is the set of all pairs (K, L) such that K ∈ M, L ∈ M\ {K} and |σK,L| > 0.

We then define

θD = max
K∈M

hK

∑
σ∈FK

|σ|
|K| . (4)

For an admissible discretization D = (M,F , S), we consider a real family (FK,L)(K,L)∈S , which
satisfies the following symmetry property:

FK,L + FL,K = 0, ∀(K, L) ∈ S. (5)

For any (K, L) ∈ S, we assume that is defined a non empty set P̂K,L (called the set of the paths
from K to L) such that

1. For all P ∈ P̂K,L, there exist m ∈ N \ {0} and a set of m different control volumes
{K1, . . . ,Km} ⊂ M with K1 = K and Km = L such that

P = {(Ki, Ki+1), i = 1, . . . ,m − 1}.

2. For any P = {(Ki, Ki+1), i = 1, . . . ,m− 1} ∈ P̂K,L, we denote by P← the inverse path from
L to K, defined by P← = {(Ki+1, Ki), i = 1, . . . ,m − 1}. We assume that, for all (K, L) ∈ S,

P̂L,K = {P←, P ∈ P̂K,L}.
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3. The new stencil Ŝ ⊂ M2, defined by

Ŝ =
⋃

(K,L)∈S,P∈ bPK,L

P (6)

satisfies therefore that for all (K, L) ∈ Ŝ, (L, K) ∈ Ŝ.

4. We denote by θ bP the maximum between:

• the ratio between the diameter of the reunion of all control volumes of a given path and
the minimum diameter of the control volumes of the path,

• the number of elements in a path.

This may be written as

θ bP = max{max(
diam(

⋃
(I,J)∈P (I ∪ J))

min(I,J)∈P (min(hI , hJ))
, ♯P ), (K, L) ∈ S, P ∈ P̂K,L}. (7)

For all (K, L) ∈ S, let (FP
K,L)

P∈ bPK,L
be a family such that

∀(K, L) ∈ S, ∀P ∈ P̂K,L, FP
K,LFK,L ≥ 0, (8)

∀(K, L) ∈ S,
∑

P∈ bPK,L

FP
K,L = FK,L, (9)

and
∀(K, L) ∈ S, ∀P ∈ P̂K,L, FP←

L,K = −FP
K,L. (10)

We define the families (F̃K,L, F̃
(+)
K,L)(K,L)∈bS

by

∀(I, J) ∈ Ŝ,

F̃
(+)
I,J =

∑

(K,L)∈S

∑

P∈ bPK,L

ξP
I,J max

(
FP

K,L, 0
)
,

F̃I,J = F̃
(+)
I,J + F̃

(+)
J,I =

∑

(K,L)∈S

∑

P∈ bPK,L

ξP
I,J |FP

K,L|,
(11)

where ξP
I,J is such that ξP

I,J = 1 if (I, J) ∈ P and ξP
I,J = 0 otherwise. We finally define, for a given

ν ∈ [0, 1], the families (F̂I,J , F̂
(+)
I,J )(I,J)∈bS

used in the new convection scheme (3) by

∀(I, J) ∈ Ŝ, F̂
(+)
I,J = Gν(F̃

(+)
I,J , F̃

(+)
J,I ) and F̂I,J = F̃

(+)
I,J − F̃

(+)
J,I = F̂

(+)
I,J − F̂

(+)
J,I , (12)

where the function Gν is defined by

∀ν ∈ [0, 1],∀(a, b) ∈ (R+)2, Gν(a, b) = max(a − b,
1

2
(a − b + ν(a + b)), 0). (13)

The function Gν is designed in order to minimise Gν(a, b)+Gν(b, a) (hence introducing the smallest
additional numerical diffusion) under the constraints Gν(a, b) ≥ 0 (for monotonicity purposes),
Gν(a, b)−Gν(b, a) = b− a (hence ensuring the conservativity) and Gν(a, b) + Gν(b, a) ≥ ν(a + b)

(this property is using for controlling the fluxes (F̃K,L)(K,L)∈bS
from the weak BV inequality).

Indeed, it is straightforward to check that the continuous function Gν(a, b) ensures the following
property: if |a − b| > ν(a + b), we have Gν(a, b) = max(a − b, 0) and Gν(b, a) = max(b − a, 0).
Otherwise, we have Gν(a, b) = 1

2 (a − b + ν(a + b)) and Gν(b, a) = 1
2 (b − a + ν(a + b)). Therefore

we get

(Gν(a, b), Gν(b, a)) = argmin{c + d, (c, d) ∈ (R+)2, c − d = a − b, c + d ≥ ν(a + b)},
∀(a, b) ∈ (R+)2,∀ν ∈ [0, 1].

(14)
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We can then deduce that

∀(I, J) ∈ Ŝ, F̂I,J = F̂
(+)
I,J − F̂

(+)
J,I =

∑

(K,L)∈S

∑

P∈ bPK,L

ξP
I,JFP

K,L. (15)

Remark 1 If the fluxes FKL are computed using a MPFA scheme (i.e. there exist coefficients
(aM

K,L)M∈M such that FK,L =
∑

M∈M aM
K,LpM and

∑
M∈M aM

K,L = 0), and if FP
K,L = ωP

K,LFKL

with ωP
K,L ≥ 0 and

∑
P∈ bPK,L

ωP
K,L = 1, we get, using (15), F̂I,J =

∑
M∈M âM

I,JpM with

âM
I,J =

∑

(K,L)∈S

∑

P∈ bPK,L

ξP
I,JωP

KLaM
KL,

and ∑

M∈M

âM
I,J =

∑

(K,L)∈S

∑

P∈ bPK,L

ξP
I,JωP

KL

∑

M∈M

aM
KL = 0.

Besides, if we let ν = 0, the relation

F̂
(+)
I,J = max(F̂I,J , 0)

holds, which leads to a standard upstream weighting scheme coupled with a MPFA scheme for the
pressure, which may be implemented in standard codes with a simple modification of the stencils
and transmissivities. Note that the value ν = 0 is excluded in the mathematical analysis provided
in Section 3, but that the numerical tests given in Section 4 show that this value seems to be
efficient in practice. On the contrary, for ν > 0, which is assumed in the mathematical analysis,
the expression of the new fluxes cannot be obtained from a simple MPFA expression.

Remark 2 If we let PK,L = {P0} with P0 = {(K, L)} (which leads to Ŝ = S), the new fluxes are
identical to the initial ones, independently of ν chosen in [0, 1].

Let us provide an example of application of this method.

2.2 Example: construction of a 9-point stencil scheme

We apply the method described in Section 2.1 to 2D structured quadrilateral meshes, which
implies that the initial stencil S is the five-point stencil. For a given pair of neighbouring control
volumes (K, L), we define P̂K,L by P̂K,L = {Pi, i = 0, . . . , 4} with P0 = {(K, L)} and Pi =
{(K, Mi), (Mi, L)} for i = 1, 2, 3, 4 (see Figure 1). Then we define (FP

K,L)
P∈ bPK,L

as follows. For a

given ω > 0 (the value for ω is chosen at 0.1 in the numerical examples), we take




FP0

K,L = (1 − 4ω)FK,L for P0 = {(K, L)},

FPi

K,L = ωFK,L for Pi = {(K, Mi), (Mi, L)}, ∀i = 1, 2, 3, 4.

Then the new stencil Ŝ is the classical nine-point stencil (see Figure 1), defined by

Ŝ = S ∪ {(K, L) ∈ M2, K and L have a common point }.
This method is illustrated by Figure 1, in which the double solid arrows represent the initial
connectivity of the five-point stencil S and the double dashed arrows represent the new connectivity
of the nine-point stencil Ŝ.
Assuming that this procedure has been applied to the whole mesh, let us give two examples of

computation of F̃
(+)
K,L resulting from (11):





F̃
(+)
K,L = (1 − 4ω) max(FK,L, 0)

+ω
(
max(FK,M1

, 0) + max(FM2,L, 0) + max(FK,M3
, 0) + max(FM4,L, 0)

)

F̃
(+)
K,M2

= ω
(
max(FK,L, 0) + max(FL,M2

, 0) + max(FK,M1
, 0) + max(FM1,M2

, 0)
)
.

The values F̂
(+)
K,L are then obtained using (12).
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M1

L

M4M3

K

M2

Figure 1: Five and nine point stencils on a structured quadrilateral mesh.

2.3 Properties of the new fluxes

We may now state the following result.

Lemma 2.2 (New stencil and fluxes) Let Ω ⊂ Rd, with d ∈ N \ {0} be a bounded open con-
nected domain. Let D = (M,F , S) be an admissible discretization of Ω in the sense of Definition

2.1. Let (FK,L)(K,L)∈S be such that (5) holds. Let (P̂K,L)(K,L)∈S, Ŝ and (FP
K,L)(K,L)∈S,P∈ bPK,L

such that (6)-(10) hold. Let (F̃K,L, F̃
(+)
K,L)(K,L)∈bS

be defined by (11), let ν ∈ [0, 1] be given and let

(F̂I,J , F̂
(+)
I,J )(I,J)∈bS

be defined by (12). Then the following properties hold:

∀(I, J) ∈ Ŝ, νF̃I,J ≤ F̂
(+)
I,J + F̂

(+)
J,I , (16)

∑

L,(K,L)∈bS

F̂K,L =
∑

L,(K,L)∈S

FK,L, ∀K ∈ M, (17)

and ∑

(K,L)∈bS

max(hK , hL)|F̃K,L| ≤ θ2
bP

∑

(K,L)∈S

max(hK , hL)|FK,L|. (18)

Proof. We get (16), using the properties (14) of the function Gν defined by (13).
Let us turn to (17). For a given I ∈ M, by reordering the sums, we can write that

∑

J,(I,J)∈bS

F̂I,J =
∑

J,(I,J)∈bS

∑

(K,L)∈S

∑

P∈ bPK,L

ξP
I,JFP

K,L =
∑

(K,L)∈S

∑

P∈ bPK,L

χI,P FP
K,L

where χI,P =
∑

J,(I,J)∈bS

ξP
I,J is equal to 1 if there exists J ∈ M such that (I, J) ∈ P (therefore

I 6= L), and to 0 otherwise. Note that, for (K, L) ∈ S with K 6= I and for P ∈ P̂K,L with

χI,P = 1, we have I 6= L, (L, K) ∈ S, P← ∈ P̂L,K and χI,P← = 1. So, using (10), we obtain

∑

(K,L)∈S s.t. K 6=I

∑

P∈ bPK,L

χI,P FP
K,L = 0.
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Therefore we can write, using (9),

∑

J,(I,J)∈bS

F̂I,J =
∑

L,(I,L)∈S

∑

P∈ bPI,L

χI,P FP
I,L =

∑

L,(I,L)∈S

∑

P∈ bPI,L

FP
I,L =

∑

L,(I,L)∈S

FI,L,

which proves (17). Finally, let us prove (18). Thanks to (11), reordering the sums and using (7)
and (8), we obtain

∑

(I,J)∈bS

max(hI , hJ)F̃I,J =
∑

(I,J)∈bS

max(hI , hJ)
∑

(K,L)∈S

∑

P∈ bPK,L

ξP
I,J |FP

K,L|

≤ θ bP

∑

(I,J)∈bS

∑

(K,L)∈S

max(hK , hL)
∑

P∈ bPK,L

ξP
I,J |FP

K,L|

= θ bP

∑

(K,L)∈S

max(hK , hL)
∑

P∈ bPK,L

#P |FP
K,L|

≤ θ2
bP

∑

(K,L)∈S

max(hK , hL)
∑

P∈ bPK,L

|FP
K,L|

= θ2
bP

∑

(K,L)∈S

max(hK , hL)|FK,L|.

�

3 Convergence analysis in a simplified case

For the sake of the mathematical analysis, we only consider Problem (1) in the case where f(u) = u
and where the function k1(u) + k2(u) is constant. Indeed, the analysis of Problem (1) in the case
k1(u)+k2(u) not constant is an open problem, and the case of a general function f may be studied
using the methods of [7]. Hence the mathematical study is focused on the convergence of the new
approximate scheme for the following problem on Ω × (0, T ):

divv = s, (19)

ut + div(uv) = max(s, 0)c + min(s, 0)u in Ω × (0, T ), (20)

together with the initial condition
u = uini in Ω, (21)

under the following hypotheses, denoted (H) in this section:

Definition 3.1 (Hypotheses (H))

1. Ω is a bounded open connected subset of Rd, T > 0 is the period of observation.

2. We assume that v ∈ C1(Ω) is such that v · n∂Ω = 0 on ∂Ω. We denote by s = divv.

3. We assume that c ∈ L∞(Ω× (0,+∞)) and uini ∈ L∞(Ω), where the functions c and uini are
essentially bounded by 0 and 1.

Then Problem (20)-(21) is considered in the following weak sense:

∫ +∞

0

∫

Ω

(uϕt + uv · ∇ϕ + (max(s, 0)c + min(s, 0)u)ϕ)dxdt +

∫

Ω

uini(x)ϕ(x, 0)dx = 0,

∀ϕ ∈ C∞c (Rd × R), ϕ = 0 in Rd × [T, +∞).
(22)
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3.1 Approximation by an upstream weighting scheme

We first extend the definition 2.1 to space-time discretizations.

Definition 3.2 Let Ω ⊂ Rd, with d ∈ N \ {0} be a bounded open connected domain and let T > 0
be given. We say that D = (M,F , S,N, (tn)n=0,...,N ) is an admissible time-space discretization of
Ω × (0, T ) if

1. (M,F , S) is an admissible discretization of Ω in the sense of Definition 2.1,

2. N ∈ N \ {0} and (tn)n=0,...,N is a real family such that t0 = 0 < t1 . . . < tN = T .

We then denote τn = tn+1 − tn for n = 0, . . . , N − 1. We continue to use D as index for all
quantities depending only on the space discretization.

Assuming Hypotheses (H), let D = (M,F , S,N, (tn)n=0,...,N ) be an admissible time-space dis-
cretization of Ω × (0, T ) in the sense of Definition 3.2. Let (FK,L)(K,L)∈S be such that (5) hold.
We then denote, for σ ∈ FK such that σ = σK,L, FK,σ = FK,L, and for σ ∈ FK ∩ Fext, FK,σ = 0.
We assume that (FK,L)(K,L)∈S satisfies the following discrete conservation property

∑

σ∈FK

FK,σ =
∑

L,(K,L)∈S

FK,L = sK , ∀K ∈ M, (23)

where we denote

sK =

∫

K

s(x)dx, ∀K ∈ M, (24)

Let Ŝ, (P̂K,L)(K,L)∈S and (FP
K,L)(K,L)∈S,P∈ bPK,L

such that (6)-(10) hold. Let (F̃K,L, F̃
(+)
K,L)(K,L)∈bS

be defined by (11), let ν ∈ (0, 1] be given (the value ν = 0 is excluded, since some bounds
in Lemma 3.4 and Theorem 3.5 are obtained with respect to 1/ν, see also Remark 1) and let

(F̂I,J , F̂
(+)
I,J )(I,J)∈bS

be defined by (12).

The implicit version of the upstream weighting scheme devoted for approximating (22) on [0, T ]
writes

|K| un+1
K − un

K

τn

+
∑

L∈M

(
F̂

(+)
K,Lun+1

K − F̂
(+)
L,Kun+1

L

)
+ s

(−)
K un+1

K − s
(+)
K cn+1

K = 0,

∀n = 0, . . . , N − 1, ∀K ∈ M,

(25)

letting F̂
(+)
I,J = 0 for pairs of control volumes (I, J) /∈ Ŝ, and where

cn+1
K =

1

|K| τn

∫ tn+1

tn

∫

K

c(x, t)dxdt, ∀n = 0, . . . , N − 1, ∀K ∈ M, (26)

s
(+)
K =

∫

K

max(s(x), 0)dx, s
(−)
K =

∫

K

max(−s(x), 0)dx, ∀K ∈ M, (27)

and

u0
K =

1

|K|

∫

K

uini(x)dx, ∀K ∈ M. (28)

3.2 Estimates

In this section, one proves the existence and uniqueness of the discrete solution, as well as an L∞

estimate and a weak-BV inequality.
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Lemma 3.3 (L∞ estimate and existence, uniqueness of the discrete solution)
Under Hypotheses (H), let D = (M,F , S,N, (tn)n=0,...,N ) be an admissible time-space discretiza-
tion of Ω × (0, T ) in the sense of Definition 3.2. Let (FK,L)(K,L)∈S be such that (5), (23)

and (24) hold. Let (P̂K,L)(K,L)∈S, Ŝ and (FP
K,L)(K,L)∈S,P∈ bPK,L

such that (6)-(10) hold. Let

(F̃K,L, F̃
(+)
K,L)(K,L)∈bS

be defined by (11), let ν ∈ (0, 1] be given and let (F̂I,J , F̂
(+)
I,J )(I,J)∈bS

be defined

by (12). Let (un
K)K∈M,n=0,...,N be such that (25)-(28) hold. Then

0 ≤ un
K ≤ 1, ∀n = 0, . . . , N, ∀K ∈ M. (29)

Moreover, there exists one and only one (un
K)K∈M,n=0,...,N such that (25)-(28) hold.

Proof. We prove the lemma by induction. Using Definition (28) for u0
K , we have 0 ≤ u0

K ≤ 1, for
all K ∈ M. Let us assume that, for a given n = 0, . . . , N −1, (un

K)K∈M is given with 0 ≤ un
K ≤ 1,

for all K ∈ M. Let us prove that, for a given (un+1
K )K∈M such that (25) holds, then 0 ≤ un+1

K ≤ 1,
for all K ∈ M.
Let us multiply (25) by τn. We get,

|K| (un+1
K −un

K)+τn
∑

L∈M

F̂
(+)
K,Lun+1

K −τn
∑

L∈M

F̂
(+)
L,Kun+1

L +τns
(−)
K un+1

K −τns
(+)
K cn+1

K = 0, ∀K ∈ M,

(30)
Using (17) and (23), we have,

∑

L∈M

(F̂
(+)
K,L − F̂

(+)
L,K) + s

(−)
K − s

(+)
K = 0, ∀K ∈ M (31)

Multiplying (31) by τnun+1
K and subtracting from (30), we obtain

|K| (un+1
K − un

K) + τn
∑

L∈M

F̂
(+)
L,K(un+1

K − un+1
L ) + τn s

(+)
K (un+1

K − cn+1
K ) = 0, ∀K ∈ M. (32)

Let K1 denote some cell where the maximum of (un+1
K )K∈M is reached (K1 is not necessarily

unique). We suppose that un+1
K1

> 1, thus,

• |K1|(un+1
K1

− un
K1

) > 0,

• F̂
(+)
L,K1

(un+1
K1

− un+1
L ) ≥ 0 by using (H),

• s
(+)
K1

(un+1
K1

− cn+1
K1

) ≥ 0 by using (26) and (H),

This is in contradiction with (32) for K = K1, which proves that, for all K ∈ M, un+1
K ≤ 1. By

using a similar argument on the minimum of un+1
K , we prove that un+1

K ≥ 0, for all K ∈ M, hence
concluding that 0 ≤ un+1

K ≤ 1, for all K ∈ M.
We now remark that, for U = (un+1

K )K∈M satisfying (25), then U is solution to a linear system
under the form AU = B, where A is a square matrix. Let U be such that AU = 0. Since the
arguments used above remain true if un

K = 0 and cn+1
K = 0, for all K ∈ M, we conclude that

all components of U are bounded which implies U = 0. Hence the matrix A is invertible, which
proves that there exists one and only one (un+1

K )K∈M satisfying (25). This concludes the proof.
�

Lemma 3.4 (Weak BV-inequality)
Under Hypotheses (H), let D = (M,F , S,N, (tn)n=0,...,N ) be an admissible time-space discretiza-
tion of Ω × (0, T ) in the sense of Definition 3.2. Let (FK,L)(K,L)∈S be such that (5), (23)

and (24) hold. Let (P̂K,L)(K,L)∈S, Ŝ and (FP
K,L)(K,L)∈S,P∈ bPK,L

such that (6)-(10) hold. Let

(F̃K,L, F̃
(+)
K,L)(K,L)∈bS

be defined by (11), let ν ∈ (0, 1] be given and let (F̂I,J , F̂
(+)
I,J )(I,J)∈bS

be defined

by (12). Let (un
K)K∈M,n=0,...,N be such that (25)-(28) hold.
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Then there exists CBV > 0, only depending on Ω, s and T such that :

N−1∑

n=0

τn
∑

(K,L)∈bS

F̃K,L(un+1
K − un+1

L )2 ≤ CBV

ν
. (33)

Proof.

Let us multiply (32) by un+1
K , sum on n = 0, . . . , N − 1 and K ∈ M. We get T1 + T2 = 0 with

T1 =

N−1∑

n=0

∑

K∈M

|K| (un+1
K − un

K)un+1
K

and

T2 =

N−1∑

n=0

τn
∑

K∈M

(
∑

L∈M

F̂
(+)
L,K(un+1

K − un+1
L )un+1

K + s
(+)
K (un+1

K − cn+1
K )un+1

K

)
.

Using the relation

(un+1
K − un

K)un+1
K =

1

2
(un+1

K )2 +
1

2
(un+1

K − un
K)2 − 1

2
(un

K)2, (34)

we can rewrite T1 as T1 = T3 + T4 with

T3 =
1

2

N−1∑

n=0

∑

K∈M

|K| (un+1
K − un

K)2

and

T4 =
1

2

∑

K∈M

|K|
(
(uN

K)2 − (u0
K)2

)

Similarly, we can rewrite T2 as T2 = T5 + T6 with

T5 =
1

2

N−1∑

n=0

τn
∑

K∈M

(
∑

L∈M

F̂
(+)
L,K(un+1

K − un+1
L )2 + s

(+)
K (un+1

K − cn+1
K )2

)

and

T6 =
1

2

N−1∑

n=0

τn
∑

K∈M

(
∑

L∈M

F̂
(+)
L,K

(
(un+1

K )2 − (un+1
L )2

)
+ s

(+)
K

(
(un+1

K )2 − (cn+1
K )2

)
)

.

Gathering by faces and using (16), we get

∑

K∈M

∑

L∈M

F̂
(+)
L,K(un+1

K − un+1
L )2 =

1

2

∑

(K,L)∈bS

(F̂
(+)
K,L + F̂

(+)
L,K)(un+1

K − un+1
L )2

≥ ν

2

∑

(K,L)∈bS

F̃K,L(un+1
K − un+1

L )2.

Taking this relation into account in the expression of T5, we obtain

T5 ≥ ν

4

N−1∑

n=0

τn




∑

{K,L}⊂M

F̃K,L(un+1
K − un+1

L )2 +
∑

K∈M

s
(+)
K (un+1

K − cn+1
K )2


 .
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Again gathering by faces, we now write
∑

K∈M

∑

L∈M

F̂
(+)
L,K

(
(un+1

K )2 − (un+1
L )2

)

=
∑

{K,L}⊂M

(F̂
(+)
L,K

(
(un+1

K )2 − (un+1
L )2

)
+ F̂

(+)
K,L

(
(un+1

L )2 − (un+1
K )2

)

= −
∑

{K,L}⊂M

F̂K,L

(
(un+1

K )2 − (un+1
L )2

)

= −
∑

K∈M

∑

L∈M

F̂K,L(un+1
K )2 = −

∑

K∈M

sK(un+1
K )2,

which leads to

T6 =
1

2

N−1∑

n=0

τn
∑

K∈M

(
s
(−)
K (un+1

K )2 − s
(+)
K (cn+1

K )2
)

.

Gathering the above relations, we get T3 + T4 + T5 + T6 = 0 with

T3 ≥ 0,

T4 ≥ −1

2

∑

K∈M

|K| (u0
K)2 ≥ −1

2
|Ω|,

T5 ≥ ν

4

N−1∑

n=0

τn
∑

{K,L}⊂M

F̃K,L(un+1
K − un+1

L )2,

and

T6 ≥ −1

2

N−1∑

n=0

τn
∑

K∈M

s
(+)
K (cn+1

K )2 ≥ −1

2
T
∑

K∈M

s
(+)
K .

We then obtain

N−1∑

n=0

τn
∑

{K,L}⊂M

F̃K,L(un+1
K − un+1

L )2 ≤ 2

ν

(
|Ω| + T

∫

Ω

max(s(x), 0)dx

)
,

which concludes the proof. �

3.3 Convergence study

It is now possible to give a convergence proof for the scheme in the linear case. This proof could
be extended to the nonlinear scalar hyperbolic case by following the methods proposed in [7],
based on the convergence to the unique entropy process solution. Let us also note that, referring
to Remark 2, the present mathematical analysis applies (with ν > 0) to an upstream weighting
scheme written with the initial fluxes.

Theorem 3.5 Under Hypotheses (H), let D = (M,F , S,N, (tn)n=0,...,N ) be an admissible time-
space discretization of Ω×(0, T ) in the sense of Definition 3.2. Let (FK,L)(K,L)∈S be such that (5),

(23) and (24) hold. Let (P̂K,L)(K,L)∈S, Ŝ and (FP
K,L)(K,L)∈S,P∈ bPK,L

such that (6)-(10) hold. Let

(F̃K,L, F̃
(+)
K,L)(K,L)∈bS

be defined by (11), let ν ∈ (0, 1] be given and let (F̂I,J , F̂
(+)
I,J )(I,J)∈bS

be defined

by (12). Let (un
K)K∈M,n=0,...,N be such that (25)-(28) hold and let uD be the function defined by

uD(x, t) = un+1
K , for a.e. (x, t) ∈ K × (tn, tn+1), ∀n = 0, . . . , N − 1, ∀K ∈ M. (35)

We assume that

lim
hD→0

∑

(K,L)∈S

max(hK , hL)

|σK,L|

(
FK,L −

∫

σK,L

v · nK,Lds

)2

= 0. (36)
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Then, as hD → 0 and max τn → 0 while ν remains fixed, θD and θ bP remain bounded, uD converges
for the weak-⋆ topology of L∞(Ω × (0, T )) to the unique function u ∈ L∞(Ω × (0, T )) satisfying
(22).

Remark 3 Condition (36) is naturally satisfied if FK,L =
∫

σK,L
v · nK,Lds. More interestingly,

it also holds if FK,L is obtained using a finite volume scheme for the approximation of Problem
divv = s with v = −Λ∇p and Neumann boundary conditions (see [7], pp. 996–1012).

Proof. In order to prove Theorem 3.5, we consider a sequence (Dm)m∈N of admissible time-
space discretizations, such that hDm

(denoted by hm in the following) and maxn(τn
m) tend to zero

as m → ∞. We assume that, for each m, the families implicitly indexed by m: (FK,L)(K,L)∈S ,

Ŝ, (P̂K,L)(K,L)∈S and (FP
K,L)(K,L)∈S,P∈ bPK,L

satisfy the hypotheses of the theorem with the same

value ν ∈ (0, 1), while θDm
and θ bP remain bounded as m tends to ∞. We denote um = uDm

for
all m ∈ N.
Let us prove the convergence of the sequence (um)m∈N to the weak solution u of Problem (22) for
the weak-⋆ topology of L∞(Ω× (0, T )), for all T > 0. The classical argument of the uniqueness of
this limit suffices for concluding the proof of the theorem.
We first notice that, thanks to Lemma 3.3, we get the existence of a subsequence, again noted
(um)m∈N, which converges to some function u ∈ L∞(Ω × (0, T )) for the weak-⋆ topology of
L∞(Ω × (0, T )) as m → +∞. The aim of this proof is to show that u satisfies (22).

Let ϕ ∈ C∞c (Rd ×R) be such that ϕ = 0 in Rd × [T, +∞). In this proof, we denote by Cϕ an L∞

bound of first and second derivatives of ϕ. Let m ∈ N. In the following, we drop some indices m,
using the notations D = Dm. We define ϕn

K by

ϕn+1
K =

1

|K|

∫

K

ϕ(x, tn)dxdt, ∀K ∈ M, ∀n = 0, . . . , N.

Let us multiply (32) by ϕn+1
K , sum over K ∈ M and n = 0, . . . , N −1. We obtain T

(m)
7 +T

(m)
8 = 0,

with

T
(m)
7 =

N−1∑

n=0

∑

K∈M

|K| (un+1
K − un

K)ϕn+1
K

and

T
(m)
8 =

N−1∑

n=0

τn
∑

K∈M

(
∑

L∈M

F̂
(+)
L,K(un+1

K − un+1
L )ϕn+1

K + s
(+)
K (un+1

K − cn+1
K )ϕn+1

K

)
.

Let us study T
(m)
7 . Thanks to ϕ(x, tN ) = ϕ(x, T ) = 0, we have

T
(m)
7 = −

N∑

n=1

∑

K∈M

|K|un
K(ϕn+1

K − ϕn
K) −

∑

K∈M

|K|u0
Kϕ1

K

= −
N−1∑

n=0

∑

K∈M

un+1
K

∫ tn+1

tn

∫

K

ϕt(x, t) dxdt −
∑

K∈M

u0
K

∫

K

ϕ(x, 0)dx

= −
∫ T

0

∫

Ω

um(x, t)ϕt(x, t) dxdt −
∑

K∈M

u0
K

∫

K

ϕ(x, 0)dx.

Using the weak-⋆ convergence of (um)m∈N to u, we deduce that

lim
m→+∞

T
(m)
7 = −

∫ +∞

0

∫

Ω

u(x, t)ϕt(x, t) dxdt −
∫

Ω

uini(x)ϕ(x, 0) dx = 0.

Let us now prove the convergence of the sequence (T
(m)
8 )m∈N to T9 defined by

T9 = −
∫ +∞

0

∫

Ω

(uv · ∇ϕ + (max(s, 0)c + min(s, 0)u)ϕ) dxdt.

12



To this purpose, let us define T
(m)
10 by

T
(m)
10 = −

∫ +∞

0

∫

Ω

(umv · ∇ϕ + (max(s, 0)cm + min(s, 0)um)ϕ) dxdt,

with

cm(x, t) = cn+1
K for a.e. (x, t) ∈ K × (tn, tn+1), ∀n = 0, . . . , N − 1, ∀K ∈ M,

where cn+1
K is defined by (26). Using the weak-⋆ convergence of (um)m∈N to u, we deduce that

lim
m→+∞

T
(m)
10 = T9.

We then define T
(m)
11 by

T
(m)
11 = −

N−1∑

n=0

τn

∫

Ω

(
un+1

m v · ∇ϕ(x, tn) + (max(s, 0)cn+1
m + min(s, 0)un+1

m )ϕ(x, tn)
)

dx.

Since |∇ϕ(x, tn) −∇ϕ(x, t)| ≤ Cϕ max(τn) and |ϕ(x, tn) − ϕ(x, t)| ≤ Cϕ max(τn), we get that

lim
m→∞

∣∣∣T (m)
10 − T

(m)
11

∣∣∣ = 0. (37)

Let us prove that limm→∞ |T (m)
11 − T

(m)
8 | = 0. Using v · ∇ϕ = div(ϕv)− (max(s, 0) + min(s, 0))ϕ,

we may write T
(m)
11 under the form

T
(m)
11 = −

N−1∑

n=0

τn
∑

K∈M

(
un+1

K

∑

σ∈FK

∫

σ

ϕ(x, tn)v(x) · nK,σds(x)

+(cn+1
K − un+1

K )

∫

K

max(s(x), 0)ϕ(x, tn)dx

)
.

Let us now define T
(m)
12 by

T
(m)
12 = −

N−1∑

n=0

τn
∑

K∈M

(
un+1

K

∑

σ∈FK

ϕn+1
σ

∫

σ

v(x) · nK,σds(x)dt + s
(+)
K (cn+1

K − un+1
K )ϕn+1

K

)
,

with

ϕn+1
σ =

1

|σ|

∫

σ

ϕ(x, tn)ds(x).

We have, for all n ∈ [0, N ] and all K ∈ M,

∫

σ

ϕ(x, tn)v(x) · nK,σds(x) − ϕn+1
σ

∫

σ

v(x) · nK,σds(x)

=

∫

σ

(ϕ(x, tn) − ϕn+1
σ )(v(x) − vσ) · nK,σds(x),

where we set

vσ =
1

|σ|

∫

σ

v(x)ds(x).

Using the regularity properties of v and ϕ (we denote by Cv a bound for the derivatives of v), we
get that

∣∣∣∣
∫

σ

ϕ(x, tn)v(x) · nK,σds(x) − ϕn+1
σ

∫

σ

ϕ(x, t)v(x) · nK,σds(x)

∣∣∣∣ ≤ CϕCvh2
K |σ|.
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Since we may write

∣∣∣∣
∫

K

max(s(x), 0)ϕ(x, tn)dx − s
(+)
K ϕn+1

K

∣∣∣∣ ≤ CϕhKs
(+)
K ,

we get from (4)

∣∣∣T (m)
11 − T

(m)
12

∣∣∣ ≤ hmTCϕ

(
CvθD |Ω| + 2

∫

Ω

max(s(x), 0)dx

)
.

We then define T
(m)
13 (recalling that FK,σ = FK,L for σ = σK,L else FK,σ = 0 for σ ∈ Fext) by

T
(m)
13 = −

N−1∑

n=0

τn
∑

K∈M

(
un+1

K

∑

σ∈FK

ϕn+1
σ FK,σ + s

(+)
K (cn+1

K − un+1
K )ϕn+1

K

)
.

We have

T
(m)
13 − T

(m)
12 = −

N−1∑

n=0

τn
∑

K

un+1
K

∑

σ∈FK

ϕn+1
σ (FK,σ − |σ|vσ · nK,σ).

Using (23) (which implies
∑

σ∈FK
(FK,σ − |σ|vσ · nK,σ) = 0), we get

T
(m)
13 − T

(m)
12 = −

N−1∑

n=0

τn
∑

K

un+1
K

∑

σ∈FK

(ϕn+1
σ − ϕn+1

K )(FK,σ − |σ|vσ · nK,σ),

which leads to

(T
(m)
13 − T

(m)
12 )2 ≤ C2

ϕ

(
N−1∑

n=0

τn
∑

K

∑

σ∈FK

|σ|hK

)(
N−1∑

n=0

τn
∑

K

∑

σ∈FK

hK

|σ| (FK,σ − |σ|vσ · nK,σ)2

)
,

hence providing

(T
(m)
13 − T

(m)
12 )2 ≤ C2

ϕT 2θD|Ω|
∑

K

∑

σ∈FK

hK

|σ| (FK,σ − |σ|vσ · nK,σ)2,

which tends to zero thanks to (36). Gathering by pairs of control volumes (each one appears once
in the summation), we have

T
(m)
8 − T

(m)
13 =

N−1∑

n=0

τn
∑

{K,L}⊂M

(un+1
K − un+1

L )(F̂
(+)
L,Kϕn+1

K − F̂
(+)
K,Lϕn+1

L + FK,Lϕn+1
K,L),

setting ϕn+1
K,L = ϕn+1

σK,L
if (K, L) ∈ S else ϕn+1

K,L = 1
2 (ϕn+1

K + ϕn+1
L ) (recall that FK,L = 0 if

(K, L) /∈ S). Let us prove that limm→∞ |T (m)
8 − T

(m)
13 | = 0, result which completes our proof.

Since F̂
(+)
K,L − F̂

(+)
L,K = F̂K,L, we get T

(m)
8 − T

(m)
13 = T

(m)
14 + T

(m)
15 with

T
(m)
14 =

N−1∑

n=0

τn
∑

{K,L}⊂M

(un+1
K − un+1

L )
(
F̂

(+)
L,K(ϕn+1

K − ϕn+1
K,L) − F̂

(+)
K,L(ϕn+1

L − ϕn+1
K,L)

)
,

and

T
(m)
15 =

N−1∑

n=0

τn
∑

{K,L}⊂M

(un+1
K − un+1

L )(FK,L − F̂K,L)ϕn+1
K,L .

14



We may write

|T (m)
14 | ≤ Cϕ

N−1∑

n=0

τn
∑

{K,L}⊂M

|un+1
K − un+1

L | max(hK , hL)(F̂
(+)
K,L + F̂

(+)
L,K)

≤ Cϕ

N−1∑

n=0

τn
∑

{K,L}⊂M

|un+1
K − un+1

L | max(hK , hL)F̃K,L.

Turning to the study of T
(m)
15 , we get T

(m)
15 = T

(m)
16 − T

(m)
17 with

T
(m)
16 =

N−1∑

n=0

τn
∑

{K,L}⊂M

(un+1
K − un+1

L )FK,Lϕn+1
K,L ,

and

T
(m)
17 =

N−1∑

n=0

τn
∑

{K,L}⊂M

(un+1
K − un+1

L )F̂K,Lϕn+1
K,L .

Remarking that, for P ∈ P̂K,L, we have

∑

(I,J)∈P

(un+1
I − un+1

J ) = (un+1
K − un+1

L ),

and that ∑

P∈ bPK,L

FP
K,L = FK,L,

we get that

T
(m)
16 =

1

2

N−1∑

n=0

τn
∑

(K,L)∈S

∑

P∈ bPK,L

∑

(I,J)∈P

(un+1
I − un+1

J )ϕn+1
K,L FP

K,L.

Besides, we have

T
(m)
17 =

1

2

N−1∑

n=0

τn
∑

(I,J)∈bS

(un+1
I − un+1

J )F̂I,Jϕn+1
I,J

=
1

2

N−1∑

n=0

τn
∑

(I,J)∈bS

(un+1
I − un+1

J )
∑

(K,L)∈S

∑

P∈ bPK,L

ξP
I,JFP

K,Lϕn+1
I,J ,

which leads, thanks to ξP
I,J = 1 if (I, J) ∈ P else ξP

I,J = 0, to

T
(m)
17 =

1

2

N−1∑

n=0

τn
∑

(K,L)∈S

∑

P∈ bPK,L

∑

(I,J)∈P

(un+1
I − un+1

J )ϕn+1
I,J FP

K,L.

Hence

T
(m)
15 =

1

2

N−1∑

n=0

τn
∑

(K,L)∈S

∑

P∈ bPK,L

∑

(I,J)∈P

(un+1
I − un+1

J )(ϕn+1
I,J − ϕn+1

K,L) FP
K,L.

We have |ϕn+1
I,J − ϕn+1

K,L | ≤ Cϕθ bP max(hI , hJ). Therefore we get

|T (m)
15 | ≤ Cϕ

2
θ bP

N−1∑

n=0

τn
∑

(K,L)∈S

∑

P∈ bPK,L

∑

(I,J)∈P

|un+1
I − un+1

J | max(hI , hJ)|FP
K,L|,

15



which may also be rewritten as

|T (m)
15 | ≤ Cϕ

2
θ bP

N−1∑

n=0

τn
∑

(K,L)∈bS

|un+1
K − un+1

L |max(hK , hL)F̃K,L.

Hence we get, setting C1 = Cϕ + Cϕθ bP

|T (m)
8 − T

(m)
13 | ≤ C1

N−1∑

n=0

τn
∑

{K,L}⊂M

|un+1
K − un+1

L |max(hK , hL)F̃K,L.

Thanks to the Cauchy-Schwarz inequality and defining T18 by

T
(m)
18 =

N−1∑

n=0

τn
∑

{K,L}⊂M

max(hK , hL)F̃K,L,

we have, thanks to Lemma 3.4,

(T
(m)
8 − T

(m)
13 )2 ≤ C2

1T
(m)
18


hm

N−1∑

n=0

τn
∑

{K,L}⊂M

(un+1
K − un+1

L )2F̃K,L


 ≤ C2

1T
(m)
18 hm

CBV

ν
.

It now suffices to show that T
(m)
18 remains bounded. Using (18), we have

T
(m)
18 ≤ θ2

bP

∑

{K,L}⊂M

max(hK , hL)|FK,L|.

We then remark that




∑

(K,L)∈S

max(hK , hL)|FK,L|




2

≤




∑

(K,L)∈S

max(hK , hL)|σK,L|






∑

(K,L)∈S

max(hK , hL)

|σK,L|
(FK,L)2


 .

The term
∑

(K,L)∈S max(hK , hL)|σK,L| is bounded by 2θD|Ω|, and the term
∑

(K,L)∈S
max(hK ,hL)
|σK,L|

(FK,L)2

remains bounded thanks to (36) and to the bound 2θD|Ω|‖v‖2
∞ on

∑
(K,L)∈S max(hK , hL)|σK,L|(vσK,L

·
nK,L)2. This achieves the proof that

lim
m→∞

(T
(m)
8 − T

(m)
13 ) = 0.

Gathering all the above results completes the proof that

lim
m→+∞

T
(m)
8 = T9,

and therefore the proof that u satisfies (22). �

4 Numerical results

4.1 A 2D case with radial symmetry

Let us consider Problem (1) on Ω = (0, 1)2 with the following data:

k1(u) = u2, k2(u) =
1

µ
(1 − u)2, f(u) =

k1(u)

k1(u) + k2(u)
,

16



C

B

A
ÂCB

Figure 2: Geometry of the radial circular test.

A source term is imposed at each linear segment [A, B] of the boundary, equal to −|ÂCB|/(2π),

where ÂCB is the angle between the segments [C, A] and [C, B] and C has coordinates ( 1
2 , 1

2 )
(see Figure 2). A punctual source term, equal to 1, is imposed at the point C. Then there exists
a unique entropy weak analytical solution (p, u) only depending at each time on the distance r
between x and C, called the Buckley-Leverett solution in the framework of oil engineering (recall
that, for a nonlinear problem without an entropy criterion, there exists an infinity of weak solutions
in the general 1D case; in this 2D case, there may exist weak solutions without radial symmetry):

ū = 1/
√

µ + 1, v̄ = (1 +
√

µ + 1)/2,
u(r, t) = 0 for πr2 > v̄t,

u(r, t) = (f ′)(−1)(πr2/t) for πr2 < v̄t,

p(r, t) =

∫ r

r0

1

2πs(k1(u(s, t)) + k2(u(s, t))
ds + p0,

where the value of the pressure is fixed at p0 at the distance r0 to point C.

We first consider the case µ = 10. For the above solution, a circular discontinuity with height ū
is located at the circle with centre C and radius R(t) =

√
v̄t/π (for t = 0.2 and µ = 10, we have

R(t) ≃ 0.37). We use an IMPES scheme in a prototype running under SCILAB environment. At
each time step, we use a standard 5-point scheme for solving the pressure equation, providing the
values Fn+1

K,L . We then compute the new fluxes F̂n+1
K,L , following the method described in Section

2.2. The strategy for determining the time step is based on a desired maximum variation of
saturation between two time steps. This desired variation has been set to 0.2 for all run, except
the modified scheme with ν = 1, where we had to set this variation to 0.1 for stability reasons.
The mesh is composed of 412 squares with side h = 1/41 for all runs. The results are shown in
Figures 3 to 6.

We observe in Figure 3 a very small dependence of the pressure isovalue lines on the GOE in this
case. The profiles using the initial or the modified scheme show both a high radial symmetry for
the approximated pressures (see Figure 4). Although the analytical pressure tends to infinity as
r → 0, the approximate pressures are greater, for the distances to C considered here, than the
analytical ones, due to the fact that the approximate saturations are lower than the analytical ones
in the neighbourhood of the point C. On the contrary, we see in Figure 5 a significant dependence
of the isovalue lines on the GOE. We first remark that the value ω = 0.1 leads to much better
results than ω = 0 (initial scheme). We also remark that the value ν = 1 leads to a solution
where the numerical diffusion is slightly more important than with ν = 0.1 or ν = 0 (let us remark
that the solutions obtained with ν = 0.1 and ν = 0 cannot be graphically distinguished, which
enhances the possibility to use ν = 0 in practical cases).
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Figure 3: Contours of pressures at t = 0.2 (µ = 10) with the initial (left) and modified scheme
(right) with ν = 0.1, ω = 0.1.
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Figure 4: Profiles of pressures (p0 set to 0 at distance r0 =
√

2/2) at t = 0.2 (µ = 10) with the
initial scheme (left) and the modified scheme (right) with ν = 0.1, ω = 0.1: analytical solution
(red), profile along median axis (blue), diagonal profile (black).
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Figure 5: Contours of saturations at t = 0.2 (µ = 10) with the initial (left), modified scheme
(middle) with ν = 0.1, ω = 0.1, modified scheme (right) with ν = 1 ω = 0.1.

We have then considered the case µ = 200. The same observations as above hold, with a higher
discrepancy between the initial and the modified scheme (see Figures 7 and 8). In order to get
stable results, we had to set the desired variation of saturation to 0.05.

4.2 A 3D test case with three layers

The numerical tests presented here are inspired by [9]. The domain is defined by

Ω = [−0.5, 0.5]x[−0.5, 0.5]x[−0.15, 0.15].
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Figure 6: Profiles of saturations at t = 0.2 (µ = 10) : analytical solution (red), profile along
median axis (blue), diagonal profile (black); initial scheme (top left), ν = 0 ω = 0.1 (top right),
ν = 0.1 ω = 0.1 (bottom left), ν = 1 ω = 0.1 (bottom right).
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Figure 7: Contours of saturations at t = 0.05 (µ = 200) with the initial (left) and the modified
scheme (right) with ν = 0.1, ω = 0.1.
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Figure 8: Profiles of saturations at t = 0.05 (µ = 200) : analytical solution (red), profile along
median axis (blue), diagonal profile (black); initial scheme (left), ν = 0.1 ω = 0.1 (right).

19



The permeability Λ(x),x ∈ Ω is equal to 1 if the distance from x to the vertical axis 0z is lower
than 0.48, and to 10−3 otherwise (see Figure 9), which ensures the confinement of the flow in the
cylinder with axis 0z and radius 0.48. The density ratio is equal to 0.8. We use Corey-type relative
permeability, k1(u) = u4 and k2 = (1 − u)2/100. At the initial state, the reservoir is assumed to
be saturated by the oil phase. Water is injected at the origin by an injection well. Two production
wells, denoted by P1 and P2, are respectively located at the points (−0.3cosπ

3 ,−0.3sinπ
3 , 0) and

(0.3cosπ
3 ,−0.3sinπ

3 , 0)

A prototype of an industrial code written in FORTRAN, based on an implicit scheme, is used for
obtaining numerical results with two Cartesian grids, the second one deduced from the first one
by a rotation of angle θ = π

6 with axis Oz. The number of cells in each direction (x, y, z) are
Nx = Ny = 51 and Nz = 3 (which means that the three wells are numerically taken into account
as source terms in the middle layer of the mesh).

Figure 9: The two meshes used. In red, the highest permeability zone, in blue the lower perme-
ability zone. Squares indicate wells.

At each time step, we use a the MPFA L-scheme [2] for solving the pressure equation, providing
the values FK,L. Then the method described in section 2.2 is used for the definition of new stencils,
selecting ω = 0.1 for all faces which are inscribed in the cylinder. The parameter ν is taken equal
to 0, allowing to implement the scheme in standard industrial codes by only modifying the stencil
of the MPFA scheme (see Remark 1).

The same value for the time step is used for all the computations, which are stopped once a given
quantity of water has been injected. Note that, in the mesh depicted on the right part of Figure
9, the line (P2, O) becomes the 0y axis of the mesh.

We see on Figure 10 the resulting contours of the saturation. We observe that the results obtained
using the method described in this paper look very similar in the two grids, whereas the ones
obtained using the initial five-point stencil are strongly distorted by the Grid Orientation Effect.
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(a) θ = 0, stencil S (c) θ =
π

6
, stencil S

(d) θ = 0, stencil bS (f) θ =
π

6
, stencil bS

Figure 10: Water saturation contours u at the same time.

5 Conclusion

In this paper we have considered the nonlinear system of PDEs resulting from the conservation
equations of two incompressible immiscible phases flowing within a porous medium. This system,
which may also be seen as the coupling of a diffusion equation with respect to the pressure and
a convection equation with respect to the saturation, is shown in practical cases of mobility
contrast, to lead to the apparition of the so-called Grid Orientation Effect (GOE). We propose
a new procedure to overcome this phenomenon, based on the modification of the stencil of the
discrete version of the convection equation, without modifying the pressure equation.

Some theoretical results (such as the L∞ estimate and the convergence of the new scheme by using
the weak BV-inequality) are obtained in a simplified case and some numerical results, including
the comparison with an analytical solution, show the efficiency and the accuracy of the method
in the non-simplified one.

For some values of the parameters of the method, we obtain a natural version of the nine-point
schemes defined some decades ago on regular grids, whose advantage is to apply on the structured
but not regular grids used in reservoir simulation, in association with Multi-Point Flux Approx-
imation finite volume schemes. In this case, it may be immediately implemented in standard
industrial codes by a simple modification of the stencils.
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