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Grid Orientation Effect in coupled Finite Volume Schemes

R. Eymard∗, C. Guichard†and R. Masson‡.

May 18, 2012

Abstract

The numerical simulation of two-phase flow in a porous medium may lead, when using
coupled finite volume schemes on structured grids, to the apparition of the so-called Grid Ori-
entation Effect (GOE). We propose in this paper a procedure to eliminate this phenomenon,
based on the use of new fluxes with a new stencil in the discrete version of the convection
equation, without changing the discrete scheme for computing the pressure field. Numerical
results show that the GOE does not significantly decrease with the size of the discretization
using the initial scheme on the coupled problem, but that it is efficiently suppressed by the
new procedure, even on coarse meshes. A mathematical study, based on a weak BV inequality
using the new fluxes, confirms the convergence of the modified scheme in a particular case.

1 Introduction

In the 1980’s, numerous papers have been concerned with the so-called Grid Orientation Effect
(GOE), in the framework of oil reservoir simulation. This effect is occurring in the simulation of
viscous oil recovery by the injection of a very mobile fluid (water, steam water, miscible gas. . . ).
In order to more precisely describe the numerical problem, let us consider the following two-phase
flow problem in a bounded open connected domain Ω ⊂ Rd (d = 2 or 3), with a regular boundary
denoted by ∂Ω.

ut − div(k1(u)Λ∇p) = max(s, 0)f(c) + min(s, 0)f(u)
(1− u)t − div(k2(u)Λ∇p) = max(s, 0)(1− f(c)) + min(s, 0)(1− f(u)),

M(u) = k1(u) + k2(u) and f(u) =
k1(u)
M(u)

,
(1)

where, for x ∈ Ω and t ≥ 0, u(x, t) ∈ [0, 1] is the saturation of phase 1, and therefore 1−u(x, t) is
the saturation of phase 2, k1 is the mobility of phase 1 (increasing function such that k1(0) = 0),
k2 is the mobility of phase 2 (decreasing function such that k2(1) = 0), the functions f and M are
respectively called the fractional flow and the total mobility, the function s represents a volumic
source term, corresponding to injection/pumping fluids into the domain, p is the common pressure
of both phases (the capillary pressure is assumed to be negligible in front of the pressure gradients
due to injection and production wells) and Λ(x) denotes the permeability tensor (that is defined
by a symmetric positive definite matrix which may depend on the point x ∈ Ω). The volumic
composition of the injected fluid is tuned by the function c, assumed to vary between 0 and 1.

We may then rewrite System (1) as the coupling of an elliptic problem with unknown p and a
nonlinear scalar hyperbolic problem with unknown u,

div v = s with v = −M(u)Λ∇p, (2a)
ut + div(f(u)v) = max(s, 0)f(c) + min(s, 0)f(u) (2b)
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Let us now consider a coupled finite volume scheme for the approximation of Problem (1), written
under the form (2): ∑

L,(K,L)∈S

Fn+1
K,L = sn+1

K and Fn+1
K,L + Fn+1

L,K = 0 (3a)

|K|
(
un+1
K − unK

)
+ τn

∑
L,(K,L)∈S

(
f(umK)(Fn+1

K,L )(+) − f(umL )(Fn+1
L,K )(+)

)
=

τn((sn+1
K )(+)f(cn+1

K )− (sn+1
K )(−)f(umK)). (3b)

In the above system, we denote by K,L the control volumes, by |K| the measure of K (volume
in 3D, area in 2D), by S the initial stencil of the scheme, defined as the set of pairs (K,L) having
a common interface denoted σK,L, by n the time index, by τn the time step (τn = tn+1 − tn), by
unK the saturation in control volume K at time tn, by sn+1

K the quantity 1
τn

∫ tn+1

tn

∫
K
s(x, t)dxdt

and by cn+1
K the quantity 1

τn |K|
∫ tn+1

tn

∫
K
c(x, t)dxdt. The flux Fn+1

K,L = (Fn+1
K,L )(+) − (Fn+1

L,K )(+) is
a generally partially implicit approximation of the flux −

∫
σK,L

M(u)Λ∇p ·nK,Lds at the interface
σK,L at time step n (where nK,L is the unit normal vector to σK,L oriented from K to L), and, for
all real a, the values a(+) and a(−) are non-negative and such that a(+) − a(−) = a. For example,
assuming Λ = Id, we may use an admissible mesh in the sense of [8], that is a partition of the
domain Ω in control volumes denoted K ∈ M such that a particular point xK ∈ K is called the
“centre” of K. The mesh and the points xK are assumed to be such that, for a pair (K,L) of
neighbouring control volumes, their common interface σK,L is orthogonal to the line (xK ,xL).
We may then define the “Two Point Flux Approximation” Fn+1

K,L by

Fn+1
K,L =

|σK,L|
d(xK ,xL)

2M(umK)M(umL )
M(umK) +M(umL )

(pn+1
K − pn+1

L ), (4)

denoting by pn+1
K the pressure in the control volume K at time tn+1, by |σK,L| the measure in

Rd−1 of σK,L, and by d(xK ,xL) the distance between xK and xL. The value m is set to n in the
case of the “IMPES” scheme (IMplicit in Pressure and Explicit in Saturation), and to n + 1 for
the implicit scheme. Then numerical evidence shows that Scheme (3)-(4), whose main features
are that of most of the industrial codes for oil reservoir simulation, leads to the apparition of the
GOE when the function M(u) strongly depends on u and the more mobile fluid is injected.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

−0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

−0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8

Figure 1: Saturations obtained with Scheme (3): Isovalues of saturation, from boundary to centre:
0.02 0.04 0.06 0.08 0.1 0.125 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55.(extreme left). Saturation pro-
files: analytical solution (red), profile along median axis (blue), diagonal profile (black). (middle
left). Same isovalues (middle right) and saturation profiles (extreme right) for decoupled scheme.

We may observe this effect in the left part of Figure 1, which is resulting from a test case presented
in details in the numerical section 3: a mobile fluid is injected at the centre of a square domain
gridded by a 121 × 121 square mesh, and the coupled problem is solved using Scheme (3)-(4).
The boundary conditions are prescribed such that there exists an analytical solution with radial
symmetry. We see on this figure the advance of the injected fluid along the axes of the grid,
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whereas the fluid is late along the diagonals of the grid: this characterises the GOE. Directly
setting in Scheme (3b) the analytical values Fn+1

K,L arising from the radial symmetric solution (this
scheme is then called the “decoupled scheme” in Section 3), we obtain the results given in the
right part of Figure 1, which no longer show significant GOE on the same grid. We see on this
example that the GOE, created by this numerical coupling mechanism, does not seem to easily
vanish on fine grids; unfortunately, in the general case, we miss an expression for decoupled fluxes.
The solution consisting in using unstructured grids cannot be used in the industrial codes, in
which the meshes have to fit the geological layers. Since the approximate fields that are expected
in the oil reservoir engineering should be independent of the grid, practical solutions for getting
rid of the GOE have been developed in industrial codes using a discretization similar to (4) on
structured and regular meshes (mainly based on rectangular parallelepipedic meshes) or Corner
Point Geometry [12]. The literature on this problem is huge, and is impossible to exhaustively
quote; let us only cite [4, 5, 9, 13, 14, 15] and references therein.

The aim of this paper is to study a new method, consisting in changing the stencil and the fluxes
for the approximation of (2b), without modifying the approximation of (2a). The advantage of
this method is that it preserves the consistency and convergence properties of the approximation
for the second-order space terms. Indeed, the new scheme holds in cases where (4) is no longer
used for discretising (2a), and is replaced by a finite volume method adapted to general meshes
[1, 3, 6, 11]. Any finite volume approximation of (2a) is then defined by a stencil S ⊂ M2 and
values (Fn+1

K,L )(K,L)∈S such that (3a) holds. We then consider, for any (K,L) ∈ S, the splitting of
the initial fluxes Fn+1

K,L along given “paths” from K to L, which are defined as finite sequences of
control volumes beginning with K and ending with L. The new fluxes F̂n+1

I,J are then obtained
by gathering all the partial fluxes along the paths from K to L passing by (I, J). This leads to
the definition of a new stencil Ŝ, including all these pairs (I, J). Then this procedure meets two
essential properties: the first one is that the flux continuity holds

F̂n+1
K,L + F̂n+1

L,K = 0, ∀(K,L) ∈ Ŝ,

and the second one is that the balance of the new fluxes in the control volumes is the same as that
satisfied by the fluxes (Fn+1

K,L )(K,L)∈S :∑
L,(K,L)∈bŜ

Fn+1
K,L =

∑
L,(K,L)∈S

Fn+1
K,L , ∀K ∈M.
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Figure 2: Same isovalues and profiles as in Figure 1, using Scheme (3)-(4) on the fine 121 × 121
mesh (left) and Scheme (3a)-(4)-(5) on the coarse 41× 41 mesh (right).

With these new fluxes and stencil, we replace (3b) by the following new scheme:

|K|
(
un+1
K − unK

)
+ τn

∑
L,(K,L)∈bS

(
f(umK)(F̂n+1

K,L )(+) − f(umL )(F̂n+1
L,K )(+)

)
=

τn((sn+1
K )(+)f(cn+1

K )− (sn+1
K )(−)f(umK)).

(5)
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Figure 2 shows the improvement resulting from the use of the new scheme for the coupled problem
on the same problem as the one considered in Figure 1: on a coarse mesh, precise GOE-free results
are already obtained.

This paper is organised as follows. In Section 2, we detail the construction procedure of the
new fluxes, with the example of the design of a nine-point scheme, starting from a five-point
scheme (this is the procedure used for the production of the results shown in Figure 2). Then
detailed numerical results are provided in Section 3 for numerically assessing the efficiency of
the method. Three test cases are considered. The first one is the nonlinear radial symmetric
case, already considered in the introduction of this paper. Then the results of the implicit and
explicit coupled schemes are compared on a linear radial symmetric case. Finally, a simple 3D
case with three 2D layers shows the possibility to implement the scheme in industrial reservoir
simulators. A short conclusion is then proposed in Section 4. Finally, in an appendix, the new
scheme is mathematically analysed in the particular case where f(u) = u and M(u) is constant.
The interest of this mathematical study is firstly to show how the mathematical features of the
new scheme are used in the convergence proof, secondly to exhibit a simple and general sufficient
condition on the initial fluxes for ensuring this convergence property.

2 Mesh, stencils and fluxes

2.1 Construction of the new stencil and fluxes
We consider here a finite nonempty setM called the mesh, whose elements are the control volumes
K,L ∈ M, defined as nonempty open bounded subsets of Rd, d ∈ N∗ (more detailed geometric
properties are not necessary in this section). For any K ∈M, we denote by hK > 0 the diameter
of K. This section is devoted to the method of construction of a new stencil and of new fluxes,
using the initial ones. We say that S ⊂ M2 is an “admissible stencil on M” if, for all K ∈ M,
there exists at least one L ∈ M \ {K} such that (K,L) ∈ S, and such that, for all (K,L) ∈ S,
then (L,K) ∈ S.
For any (K,L) ∈ S, we assume that is defined a non empty set P̂K,L (called the set of the paths
from K to L) such that

1. For all P ∈ P̂K,L, there exist m ∈ N \ {0} and a set of m distinct control volumes
{K1, . . . ,Km} ⊂ M with K1 = K and Km = L such that

P = {(Ki,Ki+1), i = 1, . . . ,m− 1}.

By extension, for any K ∈M, we write K ∈ P if there exists i = 1, . . . ,m such that K = Ki.

2. For any P = {(Ki,Ki+1), i = 1, . . . ,m− 1} ∈ P̂K,L, we denote by P← the inverse path from
L toK, defined by P← = {(Ki+1,Ki), i = 1, . . . ,m− 1}. We assume that, for all (K,L) ∈ S,
P̂L,K = {P←, P ∈ P̂K,L}.

3. The new stencil Ŝ ⊂M2, defined by

Ŝ =
⋃

(K,L)∈S,P∈ bPK,L

P (6)

satisfies therefore that for all (K,L) ∈ Ŝ, (L,K) ∈ Ŝ, and is therefore an admissible stencil
onM in the above sense.

4. We denote by θ bP the value defined by:

θ bP = max{
max(

∑
M∈P hM , diam(

⋃
M∈P M))

minM∈P hM
, P ∈ P̂K,L, (K,L) ∈ S}. (7)

Note that θ bP is greater than the maximum number of elements in a path.
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For an admissible stencil S on M, we consider a real family (FK,L)(K,L)∈S , which satisfies the
following symmetry property:

FK,L + FL,K = 0, ∀(K,L) ∈ S. (8)

For all (K,L) ∈ S, let (FPK,L)P∈ bPK,L
be a family such that

∀(K,L) ∈ S, ∀P ∈ P̂K,L, FPK,LFK,L ≥ 0, (9)

∀(K,L) ∈ S,
∑

P∈ bPK,L

FPK,L = FK,L, (10)

and
∀(K,L) ∈ S, ∀P ∈ P̂K,L, FP

←

L,K = −FPK,L. (11)

We define the families (F̃K,L, F̃
(+)
K,L)(K,L)∈bS by

∀(I, J) ∈ Ŝ,
F̃

(+)
I,J =

∑
(K,L)∈S

∑
P∈ bPK,L

ξPI,J max
(
FPK,L, 0

)
,

F̃I,J = F̃
(+)
I,J + F̃

(+)
J,I =

∑
(K,L)∈S

∑
P∈ bPK,L

ξPI,J |FPK,L|,
(12)

where ξPI,J is such that ξPI,J = 1 if (I, J) ∈ P and ξPI,J = 0 otherwise. We finally define, for a given
ν ∈ [0, 1], the families (F̂I,J , F̂

(+)
I,J )(I,J)∈bS used in the new convection scheme (5) by

∀(I, J) ∈ Ŝ, F̂ (+)
I,J = Gν(F̃ (+)

I,J , F̃
(+)
J,I ) and F̂I,J = F̃

(+)
I,J − F̃

(+)
J,I = F̂

(+)
I,J − F̂

(+)
J,I , (13)

where the function Gν is defined by

∀ν ∈ [0, 1],∀(a, b) ∈ (R+)2, Gν(a, b) = max(a− b, 1
2

(a− b+ ν(a+ b)), 0). (14)

The function Gν is designed in order to minimise Gν(a, b)+Gν(b, a) (hence introducing the smallest
additional numerical diffusion to G0(a, b) = max(a − b, 0)) under the constraints Gν(a, b) ≥ 0
(for monotonicity purposes), Gν(a, b) − Gν(b, a) = b − a (hence ensuring the conservativity) and
Gν(a, b) +Gν(b, a) ≥ ν(a+ b) (this property is used for controlling the fluxes (F̃K,L)(K,L)∈bS from
the weak BV inequality in the convergence analysis). Indeed, it is straightforward to check that the
continuous function Gν(a, b) ensures the following property: if |a−b| > ν(a+b), we have Gν(a, b) =
max(a− b, 0) and Gν(b, a) = max(b− a, 0). Otherwise, we have Gν(a, b) = 1

2 (a− b+ ν(a+ b)) and
Gν(b, a) = 1

2 (b− a+ ν(a+ b)). Therefore we get

(Gν(a, b), Gν(b, a)) = argmin{c+ d, (c, d) ∈ (R+)2, c− d = a− b, c+ d ≥ ν(a+ b)},
∀(a, b) ∈ (R+)2,∀ν ∈ [0, 1]. (15)

We can then deduce that

∀(I, J) ∈ Ŝ, F̂I,J = F̂
(+)
I,J − F̂

(+)
J,I =

∑
(K,L)∈S

∑
P∈ bPK,L

ξPI,JF
P
K,L. (16)

Remark 1 If the fluxes FKL are computed using a Multi-Point Flux Approximation scheme (i.e.
there exist coefficients (aMK,L)M∈M such that FK,L =

∑
M∈M aMK,LpM and

∑
M∈M aMK,L = 0),

and if FPK,L = ωPK,LFKL with ωPK,L ≥ 0 and
∑
P∈ bPK,L

ωPK,L = 1, we get, using (16), F̂I,J =∑
M∈M âMI,JpM with

âMI,J =
∑

(K,L)∈S

∑
P∈ bPK,L

ξPI,Jω
P
KLa

M
KL,
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and ∑
M∈M

âMI,J =
∑

(K,L)∈S

∑
P∈ bPK,L

ξPI,Jω
P
KL

∑
M∈M

aMKL = 0.

Besides, if we let ν = 0, the relation

F̂
(+)
I,J = max(F̂I,J , 0) (17)

holds, which leads to a standard upstream weighting scheme coupled with a Multi-Point Flux Ap-
proximation scheme for the pressure, which may be implemented in standard codes with a simple
modification of the stencils and transmissivities. Note that the value ν = 0 is excluded in the
mathematical analysis provided in Section 4, but that the numerical tests given in Section 3 show
that this value seems to be efficient in practice. On the contrary, for ν > 0, which is assumed
in the mathematical analysis, the expression of the new fluxes cannot be obtained from a simple
Multi-Point Flux Approximation expression.

Remark 2 If we let PK,L = {P0} with P0 = {(K,L)} (which leads to Ŝ = S), the new fluxes are
identical to the initial ones, independently of ν chosen in [0, 1].

2.2 Properties of the new fluxes
We may now state the following result.

Lemma 2.1 (New stencil and fluxes) Let M be a finite nonempty set whose elements are
nonempty open bounded subset of Rd, d ∈ N∗, and let S ⊂ M2 be an admissible stencil on M
in the sense defined in this paper. For any K ∈ M, we denote by hK > 0 the diameter of K.
Let (FK,L)(K,L)∈S be such that (8) holds. Let (P̂K,L)(K,L)∈S, θ bP , Ŝ and (FPK,L)(K,L)∈S,P∈ bPK,L

be

such that (6)-(11) hold. Let (F̃K,L, F̃
(+)
K,L)(K,L)∈bS be defined by (12), let ν ∈ [0, 1] be given and let

(F̂I,J , F̂
(+)
I,J )(I,J)∈bS be defined by (13). Then the following properties hold:

∀(I, J) ∈ Ŝ, νF̃I,J ≤ F̂ (+)
I,J + F̂

(+)
J,I , (18)∑

L,(K,L)∈bŜ
FK,L =

∑
L,(K,L)∈S

FK,L, ∀K ∈M, (19)

and ∑
(K,L)∈bS

max(hK , hL)|F̃K,L| ≤ θ2bP
∑

(K,L)∈S

max(hK , hL)|FK,L|. (20)

Proof. We get (18), using the properties (15) of the function Gν defined by (14).
Let us turn to (19). For a given I ∈M, by reordering the sums, we can write that∑

J,(I,J)∈bS
F̂I,J =

∑
J,(I,J)∈bS

∑
(K,L)∈S

∑
P∈ bPK,L

ξPI,JF
P
K,L =

∑
(K,L)∈S

∑
P∈ bPK,L

χI,PF
P
K,L

where χI,P =
∑

J,(I,J)∈bS
ξPI,J is equal to 1 if there exists J ∈ M such that (I, J) ∈ P (therefore

I 6= L), and to 0 otherwise. Note that, for (K,L) ∈ S with K 6= I and for P ∈ P̂K,L with
χI,P = 1, we have I 6= L, (L,K) ∈ S, P← ∈ P̂L,K and χI,P← = 1. So, using (11), we obtain∑

(K,L)∈S s.t. K 6=I

∑
P∈ bPK,L

χI,PF
P
K,L = 0.

Therefore we can write, using (10),∑
J,(I,J)∈bS

F̂I,J =
∑

L,(I,L)∈S

∑
P∈ bPI,L

χI,PF
P
I,L =

∑
L,(I,L)∈S

∑
P∈ bPI,L

FPI,L =
∑

L,(I,L)∈S

FI,L,
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which proves (19). Finally, let us prove (20). Thanks to (12), reordering the sums and using (7)
and (9), we obtain∑

(I,J)∈bS
max(hI , hJ)F̃I,J =

∑
(I,J)∈bS

max(hI , hJ)
∑

(K,L)∈S

∑
P∈ bPK,L

ξPI,J |FPK,L|

≤ θ bP ∑
(I,J)∈bS

∑
(K,L)∈S

max(hK , hL)
∑

P∈ bPK,L

ξPI,J |FPK,L|

= θ bP ∑
(K,L)∈S

max(hK , hL)
∑

P∈ bPK,L

#P |FPK,L|

≤ θ2bP
∑

(K,L)∈S

max(hK , hL)
∑

P∈ bPK,L

|FPK,L|

= θ2bP
∑

(K,L)∈S

max(hK , hL)|FK,L|.

�
Let us provide an example of application of this method.

2.3 Example: construction of a 9-point stencil scheme
We apply the method described in Section 2.1 to 2D structured quadrilateral meshes, assuming
that the initial stencil S is the natural five-point stencil. For a given pair of neighbouring control
volumes (K,L), we define P̂K,L by P̂K,L = {Pi, i = 0, . . . , 4} with P0 = {(K,L)} and Pi =
{(K,Mi), (Mi, L)} for i = 1, 2, 3, 4 (see Figure 3). Then we define (FPK,L)P∈ bPK,L

as follows. For a
given ω > 0 (the value of ω is discussed below), we take

FP0
K,L = (1− 4ω)FK,L for P0 = {(K,L)},

FPi

K,L = ωFK,L for Pi = {(K,Mi), (Mi, L)}, ∀i = 1, 2, 3, 4.

Then the new stencil Ŝ is the classical nine-point stencil (see Figure 3), defined by

Ŝ = S ∪ {(K,L) ∈M2, K and L have a common point }.

This method is illustrated by Figure 3, in which the double solid arrows represent the initial
connectivity of the five-point stencil S and the double dashed arrows represent the new connectivity
of the nine-point stencil Ŝ.
Assuming that this procedure has been applied to the whole mesh, let us give two examples of
computation of F̃ (+)

K,L resulting from (12):
F̃

(+)
K,L = (1− 4ω) max(FK,L, 0)

+ω
(
max(FK,M1 , 0) + max(FM2,L, 0) + max(FK,M3 , 0) + max(FM4,L, 0)

)
F̃

(+)
K,M2

= ω
(
max(FK,L, 0) + max(FL,M2 , 0) + max(FK,M1 , 0) + max(FM1,M2 , 0)

)
.

(21)

The values F̂ (+)
K,L are then obtained using (13).

Following [7], it is then possible to define an optimal value for ω, if the nine-point new fluxes
defined by (21) and (13), setting ν = 0, are used in Scheme (5) on a square grid. Let us assume
that there exists a constant velocity v ∈ R2 such that

Fn+1
K,L =

∫
σK,L

v · nK,Lds.

We replace the notation unK by uni,j in a control volume K whose centre has coordinates ih, jh,
for i, j ∈ Z and for a given space step h > 0. Let us assume, without loss of generality, that the
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M1
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M4M3

K

M2

Figure 3: Five and nine point stencils on a structured quadrilateral mesh.

coordinates of v in the axes of the grid are (a, b) with a ≥ b ≥ 0. Then Scheme (5) may be written,
using (21) and (17),

h2
(
un+1
i,j − u

n
i,j

)
+τnh

(
(1− 4ω)a(f(umi,j)− f(umi−1,j)) + (1− 4ω)b(f(umi,j)− f(umi,j−1))

+2ω(a+ b)(f(umi,j)− f(umi−1,j−1)) + 2ω(a− b)(f(umi,j)− f(umi−1,j+1))
)

= τn((sn+1
i,j )(+)f(cn+1

i,j )− (sn+1
i,j )(−)f(umi,j)).

(22)

Thanks to the following Taylor expansions:

f(umi−1,j) = f(umi,j)− h∂xf(umi,j)
+h2

2 ∂
2
xxf(umi,j) +εmi−1,j ,

f(umi,j−1) = f(umi,j)− h∂yf(umi,j)
+h2

2 ∂
2
yyf(umi,j) +εmi,j−1,

f(umi−1,j−1) = f(umi,j)− h∂xf(umi,j)− h∂yf(umi,j)
+h2

2 (∂2
xxf(umi,j) + 2∂2

xyf(umi,j) + ∂2
yyf(umi,j)) +εmi−1,j−1,

f(umi−1,j+1) = f(umi,j)− h∂xf(umi,j) + h∂yf(umi,j)
+h2

2 (∂2
xxf(umi,j)− 2∂2

xyf(umi,j) + ∂2
yyf(umi,j)) +εmi−1,j+1,

we may express the numerical diffusion term Ec, resulting from the upstream weighting scheme
(22) for the approximation of the continuous equation (2b), by

Ec = −h
2

(a∂2
xxf(u) + 8ωb∂2

xyf(u) + (b+ 4ω(a− b))∂2
yyf(u)) = −h div( D(0, ω,v) ∇f(u)),

where D(0, ω,v) (the value 0 standing for the initial grid) is the linear mapping, whose matrix in
the axes of the grid is given by

M =
[
m11 m12

m12 m22

]
=

1
2

[
a 4ωb
4ωb b+ 4ω(a− b)

]
.

The mapping D(θ, ω,v) is then defined as the numerical diffusion operator of Scheme (22) in a
grid whose axes are turned by the angle θ with respect to the initial grid. Then the GOE due
to this diffusion term would be theoretically suppressed if we could find a real value ω such that
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D(θ, ω,v) is independent of θ and v. Unfortunately, as we show below, this general problem does
not seem to have a solution. But we are able to solve a weaker problem: find ω ∈ [0, 1

4 ] (in order
to ensure condition (9)) such that D(0, ω,v) = D(−π4 , ω,v) for all v ∈ R2 (note that this rotation
leads to the highest discrepancy between the numerical results on the two grids, when using the
initial scheme corresponding to ω = 0). Let us express the matrix M̃ of D(0, ω,v) in the axes
turned by −π4 :

M̃ =
[
m̃11 m̃12

m̃12 m̃22

]
= P−1MP, with P =

[
cθ sθ
−sθ cθ

]
denoting cθ =

√
2

2 and sθ =
√

2
2 . It gives

m̃11 = c2θm11 − 2cθsθm12 + s2
θm22,

m̃12 = cθsθ(m11 −m22) + (c2θ − s2
θ)m12,

m̃22 = s2
θm11 + 2cθsθm12 + c2θm22.

Let us now express the matrix M̂ of D(−π4 , ω,v) in the same axes (which are those of the turned
grid). The coordinates of v in these axes are given by (â, b̂) = (cθa − sθb, sθa + cθb), which are
such that b̂ ≥ â ≥ 0 (since sθ = cθ =

√
2

2 and a ≥ b ≥ 0), and the matrix M̂ of D(−π4 , ω,v) is
given by the following expression, similar to that of M :

M̂ =
[
m̂11 m̂12

m̂12 m̂22

]
=

1
2

[
â+ 4ω(̂b− â) 4ωâ
4ωâ b̂

]
.

The identity D(0, ω,v) = D(−π4 , ω,v) for all v ∈ R2 is obtained under the condition M̃ = M̂ for
all v ∈ R2, which may be expressed, for all a ≥ b ≥ 0, by

c2θa− 2cθsθ4ωb+ s2
θ(b+ 4ω(a− b)) = cθa− sθb+ 4ω(sθa+ cθb− cθa+ sθb),

cθsθ(a− (b+ 4ω(a− b))) + (c2θ − s2
θ)4ωb = 4ω(cθa− sθb),

s2
θa+ 2cθsθ4ωb+ c2θ(b+ 4ω(a− b)) = sθa+ cθb.

The above system then implies

c2θ + s2
θ4ω = cθ + 4ω(sθ − cθ),

−2cθsθ4ω + s2
θ(1− 4ω) = −sθ + 4ω(cθ + sθ),

cθsθ(1− 4ω) = 4ωcθ,
−cθsθ(1− 4ω) + (c2θ − s2

θ)4ω = −4ωsθ,
s2
θ + c2θ4ω = sθ,

2cθsθ4ω + c2θ(1− 4ω) = cθ.

It is remarkable that there exists a solution to the above system with 6 equations and 1 unknown
in the case cθ =

√
2

2 and sθ =
√

2
2 (there is no solution for a general rotation angle). This solution

is given by

ω =
√

2− 1
4

' 0.1036.

This choice is shown to be efficient for suppressing the GOE in the numerical results provided
below, as well as in [5].

3 Numerical results

3.1 A 2D nonlinear case with radial symmetry

We consider Problem (1) on Ω = (0, 1)2 in the isotropic case Λ = Id, with the following data:

k1(u) = u2, k2(u) =
1
µ

(1− u)2, M(u) = k1(u) + k2(u), f(u) =
k1(u)
M(u)

,

9



where µ > 0 corresponds to a viscosity ratio between the two phases. Let C = ( 1
2 ,

1
2 ) be the centre

of the domain Ω (see Figure 4), and consider the polar coordinates (r, θ) with centre C and local
basis denoted by (er, eθ). We look for solutions p(r, t), u(r, t) of (1), depending only on time t
and on r. For this, we prescribe the following output total flux boundary condition:

M(u)∇p · n∂Ω = −v(r) · n∂Ω on ∂Ω,

where v(r) = 1
2πrer. Hence, at each linear segment [A,B] of the boundary, one has

∫
[A,B]

v ·
n∂Ωds = |ÂCB|/(2π), where |ÂCB| denotes the measure of the angle between the segments
[C,A] and [C,B] (see Figure 4). A punctual source term, equal to 1, is imposed at the point C

C

B

A ÂCB

eθ

θ

r

er

Figure 4: Geometry of the radial circular test.

with input saturation u(0, t) = 1. Then, there exists a unique entropy weak analytical solution
(p, u) only depending on r and t, called the Buckley-Leverett solution in the framework of oil
engineering (recall that, for a nonlinear problem without an entropy criterion, there exists an
infinity of weak solutions in the general 1D case; in this 2D case, there may exist weak solutions
without radial symmetry):

ū = 1/
√
µ+ 1, v̄ = (1 +

√
µ+ 1)/2, r̄(t) =

√
v̄t/π

u(r, t) = 0 for r > r̄(t),
u(r, t) = (f ′)(−1)(πr2/t) for r < r̄(t),

M(u)∇p = −v(r) which gives p(r, t) =
∫ r0

r

1
2πsM(u(s, t))

ds+ p0,

where the value of the pressure is fixed at p0 at the distance r0 to point C. The above solution
shows a circular discontinuity with height ū, located at the circle with centre C and radius r̄(t).
We consider the case where µ = 200 and t = 0.05. We then have ū ' 0.07 and r̄(t) ' 0.353 (these
are the data used for Figures 1 and 2 in the introduction).

Scheme (3a)-(4) has been implemented in a prototype running under SCILAB environment, to-
gether with the method described in Section 2.3 for computing the new fluxes F̂n+1

K,L from Fn+1
K,L .

The IMPES scheme m = n is chosen and we compute the new values un+1
K from Scheme (5).

The strategy for determining the time step is based on a desired maximum variation of saturation
between two time steps (equal to 0.05).

In order to assess the part of the GOE which is due to the coupling between the two finite volume
schemes, we compare the results of Scheme (3a)-(4)-(5), called in the following the coupled scheme
(recall that, thanks to (21), this scheme is identical, if ω = 0, to the initial scheme (3)-(4)) with the
results that are obtained by the scheme consisting in the only resolution of (5) (which is identical
to (3b) if ω = 0), in which Fn+1

K,L is given by the constant radial signed flux

Fn+1
K,L =

|ÂCB|
2π

, with σK,L = [A,B] and nK,L · (
A+B

2
− C) ≥ 0, (23)
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hence defining the decoupled scheme. Note that in this decoupled case, the upstream weighted
finite volume (5) may be proved, for any value of ω ∈ [0, 1

4 ], to converge to the unique entropy
weak solution of the problem.

Let us start with a qualitative study of the effect of the parameter ω on the GOE in the case
of coarse meshes (which are realistic in practical applications). We respectively plot in Figures
5 and 6 the contours of the saturation and the profiles of the saturation along the median and
the diagonal axes, for three values of ω (the grid is the 41 × 41 one and we set ν = 0.1). Let
us remark that the intense GOE in the initial scheme (ω = 0) is completely suppressed with the
value ω = 0.1. It might be connected to the analysis of the numerical diffusion in Section 2.3.
Then the value ω = 0.2 generates some GOE similar to that which would result from a rotation
of the grid with angle π/4. We see in Figure 6 that the profiles along the median and diagonal
axes are nearly not distinguishable, and very close to the analytical solution (this is confirmed by
the convergence results given below).
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Figure 5: Contours of saturations, using the 41× 41 mesh, at t = 0.05 (µ = 200) with the initial
scheme (identical to modified scheme with ω = 0, left), the modified scheme with ω = 0.1 (middle)
and the modified scheme with ω = 0.2 (right).
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Figure 6: Profiles of saturations, using the 41 × 41 mesh: analytical solution (red), profile along
median axis (blue), diagonal profile (black); initial scheme (left), ω = 0.1 (middle), ω = 0.2 (right).

We now study the behaviour of the approximate pressure with respect to ω, in the coupled scheme
(3a)-(4)-(5). Although the analytical pressure tends to +∞ as r tends to 0, we do not draw this
infinite branch. In Figure 7, we compare the profiles of the pressure along the median axis, the
diagonal axis and the analytical solution, for the initial scheme ω = 0, and the modified scheme
ω = 0.1 and ω = 0.2. We observe the confirmation that the pressure is not directly influenced by
the GOE, but that increasing values of ω lead to a higher range of the pressure, due to the fact that
an increase of the numerical diffusion leads to a decrease of the average values of the saturation
near Point C (this can be observed in Figure 6 for the saturation profile along the median axis).
We then numerically observe that the parameter ν ∈ [0, 1] has only a small influence on the
results (recall that ν > 0 is necessary for the convergence proof). Setting ω = 0.1, we see a slight
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Figure 7: Profiles of pressures, using the 41 × 41 mesh (p0 set to 0 at distance r0 =
√

2/2) :
analytical solution (red), profile along median axis (blue), diagonal profile (black); the initial
scheme (left) and the modified scheme with ω = 0.1 (middle), with ω = 0.2 (right).

difference on the saturation profiles between the cases ν = 0.1 and ν = 1 (in the latter case, the
profile is slightly more diffused for the small values, see Figure 8); there is no difference between
the values ν = 0.1 and ν = 0. In the following, all tests are done with ν ∈ [0, 0.1].
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Figure 8: Profiles of saturation, using the 41 × 41 mesh: analytical solution (red), profile along
median axis (blue), diagonal profile (black); modified scheme with ν = 0.1 and ω = 0.1 (left), with
ν = 1 and ω = 0.1 (right).

Let us now turn to the convergence orders as the size of the mesh decreases. We give in Table 1
the L1(Ω)-error of the saturation for six k× k square meshes, selecting k = 21, 41, 61, 81, 101, 121,
and for the same three values of ω as above (0 for the initial scheme, 0.1 for the best correction
of the GOE, 0.2 for the purpose of the comparison). We remark that there is no clear indication
that the scheme is converging to the analytical solution in the case ω = 0, in confirmation with
Figure 1. On the contrary, the value ω = 0.1 provides a significantly converging behaviour. The
contents of Table 1 is plotted in Figure 9. It is particularly clear in this figure that the convergence
properties of the coupled scheme are completely different from that of the decoupled one.
In order to observe the interaction between the convergence of the saturation and that of the fluxes
in this coupled case, we explore in Table 2 the E1 error of the fluxes in the following sense (the
hypothesis that this error tends to 0 is done in the convergence theorem 4.4 in the appendix):

E1 =
∑

(K,L)∈S

max(hK , hL)

∣∣∣∣∣Fn+1
K,L −

∫
σK,L

v · nK,Lds

∣∣∣∣∣ , (24)

where n corresponds to the final time. We observe that the convergence of the fluxes is again
much stronger in the case ω = 0.1 than in the two other cases. It is worth noticing that the error

12



size ω = 0 conv. ord. ω = 0.1 conv. ord. ω = 0.2 conv. ord.
21 cpl 0.00912 - 0.00472 - 0.00762 -
41 cpl 0.00677 0.445 0.00262 0.879 0.00444 0.807
61 cpl 0.00573 0.419 0.00169 1.10 0.00382 0.378
81 cpl 0.00531 0.268 0.00132 0.871 0.00334 0.473
101 cpl 0.00505 0.227 0.00116 0.585 0.00315 0.265
121 cpl 0.00478 0.304 0.000969 0.996 0.00293 0.401
21 dec 0.00513 - 0.00467 - 0.00646 -
41 dec 0.00330 0.659 0.00249 0.939 0.00360 0.873
61 dec 0.00241 0.791 0.00163 1.06 0.00258 0.838
81 dec 0.00188 0.876 0.00126 0.908 0.00205 0.811
101 dec 0.00155 0.874 0.00111 0.574 0.00171 0.822
121 dec 0.00140 0.563 0.000899 1.17 0.00148 0.799

Table 1: L1(Ω)-errors of the saturation at time 0.05, coupled scheme (denoted by “cpl”) and
decoupled scheme (denoted by “dec”)
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Figure 9: log10(‖uD(·, t) − u(·, t)‖L1(Ω)), where uD (resp. u) denotes the approximate (resp.
analytical) solution, as a function of − log10(k) for ω = 0, 0.1, 0.2, for the coupled (“cpl”) and
decoupled (“dec”) schemes.

E2, defined by

(E2)2 =
∑

(K,L)∈S

max(hK , hL)
|σK,L|

(
Fn+1
K,L −

∫
σK,L

v · nK,Lds

)2

does not tend to zero in this case where the elliptic problem has a measure in the right hand side.

These numerical results show the efficiency of the new scheme with ω = 0.1, since the error is
already reduced for the small values of k. Let us then mention that these convergence results are
improved by the nonlinearity of the problem, as shown by comparison with the linear case down
below.
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size ω = 0 conv. ord. ω = 0.1 conv. ord. ω = 0.2 conv. ord.
21 0.0717 - 0.0158 - 0.0285 -
41 0.0601 0.263 0.0103 0.639 0.0259 0.142
61 0.0534 0.297 0.00786 0.680 0.025202 0.068
81 0.0498289 0.244 0.0064550 0.694 0.0243511 0.121
101 0.0476573 0.201 0.0059253 0.388 0.0236399 0.134
121 0.0459696 0.199 0.0055491 0.363 0.0226995 0.224

Table 2: E1-error of the fluxes at time 0.05, coupled scheme (L1 norm of the fluxes 0.7164889).

3.2 A 2D linear case with radial symmetry

We now again consider Problem (1) on Ω = (0, 1)2 in the isotropic case Λ = Id, with the following
data:

k1(u) = u, k2(u) = 1− u, M(u) = 1, f(u) = u.

The same radial symmetric conditions as above are imposed, and the solution is given by

r̄(t) =
√
t/π

u(r, t) = 0 for r > r̄(t),
u(r, t) = 1 for r < r̄(t),

∇p = −v(r) which gives p(r, t) =
1

2π
log(

r0

r
) + p0,

where the value of the pressure is again fixed at p0 at the distance r0 to point C. The above
solution shows a circular discontinuity with height 1, located at the circle with centre C and
radius r̄(t). The final time is taken equal to t = 0.1. For the linear runs, explicit scheme m = n,
we take for the time step the constant 1/k2, equal to the measure of the central grid block in which
the input flux is equal to 1. In the case of the implicit scheme m = n+ 1, we prescribe a desired
change of saturation between two time steps equal to 10−6, in order to make negligible the error
due to the time discretisation. Although we require a such small desired variation in the implicit
scheme, we all the same observe that the implicit scheme provides smaller CPU times than the
explicit one in this SCILAB implementation of the schemes, due to much larger time steps at the
end of the simulation. Note that, in both implicit and explicit cases, the approximate fluxes Fn+1

K,L

and the approximate pressure pn+1
K do no longer depend on n.

We show in Table 3 the L1(Ω)-error of the saturation for the explicit and implicit coupled schemes
respectively. Since the relative difference in the L1(Ω)-error of the saturation between the coupled
scheme (3a)-(4)-(5) and the decoupled scheme (5)-(23) is lower than 2 percent (for both the
implicit and the explicit schemes), we don’t provide the results for the decoupled scheme (the
greatest difference is the case 21 × 21 with ω = 0: we observe an error equal to 0.0432 for the
coupled explicit scheme, 0.0425 for the decoupled explicit scheme, 0.0458 for the coupled implicit
scheme and 0.0452 for the decoupled implicit scheme). This is partly resulting from the very good
convergence of the fluxes as shown in Table 4: an order 1 is observed although the elliptic problem
is singular.

It is interesting to notice that the observed orders of convergence for the L1(Ω)-error of the
saturation are lower than that obtained in the nonlinear case: they remain about 1/2, which is the
expected value in the linear case. Although some GOE is visible on the contours of the saturation
(see Figure 10), the errors obtained with ω = 0.1 are greater than that of the initial scheme. Note
that the results obtained using the explicit and the implicit schemes are very similar. This is due
to the fact that the time step is regulated in the explicit case by the measure of one control volume
1/k2, instead of behaving as 1/k (classical order in a less singular case). Hence the compensation
between the time and space errors, which classically occurs for explicit schemes, does not lead to
a significant diminution of the error, compared to the implicit scheme, regulated in such a way
that the time error remains very small.
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size ω = 0 conv. ord. ω = 0.1 conv. ord. ω = 0.2 conv. ord.
21 exp 0.0432 - 0.0460 - 0.0478 -
41 exp 0.0308 0.503 0.0339 0.455 0.0362 0.418
61 exp 0.0255 0.481 0.0275 0.530 0.0290 0.556
81 exp 0.0220 0.516 0.0240 0.482 0.0255 0.455
101 exp 0.0197 0.502 0.0214 0.519 0.0227 0.527
121 exp 0.0180 0.493 0.0196 0.473 0.0209 0.451
21 imp 0.0458 - 0.0484 - 0.0501 -
41 imp 0.0321 0.532 0.0350 0.483 0.0372 0.445
61 imp 0.0262 0.512 0.0281 0.553 0.0296 0.575
81 imp 0.0225 0.525 0.0245 0.490 0.0260 0.462
101 imp 0.0201 0.511 0.0218 0.528 0.0231 0.535
121 imp 0.0184 0.487 0.0200 0.464 0.0213 0.444

Table 3: L1(Ω)-error of the saturation at time 0.1, explicit coupled scheme (“exp”) and implicit
coupled scheme (“imp”).

k 21 41 61 81 101 121
E1 0.01341 0.00722 0.00493 0.00375 0.00302 0.00253

Table 4: Linear case, flux error in the coupled scheme, providing a numerical convergence order
close to 1.
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Figure 10: Contours of saturation for the explicit coupled scheme. From left to right: ω = 0
(initial scheme), ω = 0.1 and ω = 0.2 with the 41× 41 mesh.

3.3 A 3D test case with three layers
The numerical tests presented here are inspired by [10]. The domain is defined by

Ω = (−0.5, 0.5)× (−0.5, 0.5)× (−0.15, 0.15).

The permeability Λ(x),x ∈ Ω is equal to 1 if the distance from x to the vertical axis 0z is lower
than 0.48, and to 10−3 otherwise (see Figure 11), which ensures the confinement of the flow in the
cylinder with axis 0z and radius 0.48. The density ratio is equal to 0.8. We use Corey-type relative
permeability, k1(u) = u4 and k2 = (1 − u)2/100. At the initial state, the reservoir is assumed to
be saturated by the oil phase. Water is injected at the origin by an injection well. Two production
wells, denoted by P1 and P2, are respectively located at the points (−0.3cosπ3 ,−0.3sinπ3 , 0) and
(0.3cosπ3 ,−0.3sinπ3 , 0)
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A prototype of an industrial code written in FORTRAN, based on an implicit scheme, is used for
obtaining numerical results with two Cartesian grids, the second one deduced from the first one
by a rotation of angle θ = π

6 with axis Oz. The number of cells in each direction (x, y, z) are
Nx = Ny = 51 and Nz = 3 (which means that the three wells are numerically taken into account
as source terms in the middle layer of the mesh).

Figure 11: The two meshes used. In red, the highest permeability zone, in blue the lower perme-
ability zone. Squares indicate wells.

At each time step, we use the Multi-Point Flux Approximation L-scheme [2] for solving the pressure
equation, providing the values FK,L. Then the method described in section 2.3 is used for the
definition of new stencils, selecting ω = 0.1 for all faces which are inscribed in the cylinder. The
parameter ν is taken equal to 0, allowing to implement the scheme in standard industrial codes
by only modifying the stencil of the Multi-Point Flux Approximation scheme (see Remark 1).

The same value for the time step is used for all the computations, which are stopped once a given
quantity of water has been injected. Note that, in the mesh depicted on the right part of Figure
11, the line (P2, O) becomes the 0y axis of the mesh.

We see on Figure 12 the resulting contours of the saturation. We observe that the results obtained
using the method described in this paper look very similar in the two grids, whereas the ones
obtained using the initial five-point stencil are strongly distorted by the GOE.

16



(a) θ = 0, stencil S (c) θ = π
6
, stencil S

(d) θ = 0, stencil bS (f) θ = π
6
, stencil bS

Figure 12: Water saturation contours u at the same time.

4 Conclusion

In this paper we have considered the nonlinear system of PDE’s resulting from the conservation
equations of two incompressible immiscible phases flowing within a porous medium. This system,
which may also be seen as the coupling of a diffusion equation with respect to the pressure and a
convection equation with respect to the saturation, is shown in practical cases of mobility contrast,
to lead to the apparition of the so-called Grid Orientation Effect (GOE). We propose a new
procedure to overcome this phenomenon, based on the modification of the stencil of the discrete
version of the convection equation, without modifying the pressure equation. This procedure
preserves the scheme used for the coupled diffusion equation.

Some numerical results, including the comparison with an analytical solution, show the efficiency
and the accuracy of the method in nonlinear coupled cases, for which there is no indication that
the initial scheme should converge to a GOE-free solution, as the size of the mesh tends to zero.
This is different with the linear case, where the GOE can be suppressed by decreasing the size of
the mesh, in the same way as in the nonlinear decoupled case.

For some values of the parameters of the method, we obtain a natural version of the nine-point
schemes defined some decades ago on regular grids, whose advantage is to apply on the structured
but not regular grids used in reservoir simulation, in association with Multi-Point Flux Approx-
imation finite volume schemes. In this case, it may be immediately implemented in standard
industrial codes by a simple modification of the stencils.
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Appendix: Convergence analysis in a simplified case

For the sake of the mathematical analysis, we only consider Problem (1) in the case where f(u) = u
and where the function k1(u) + k2(u) is constant. Indeed, the analysis of Problem (1) in the case
k1(u)+k2(u) not constant is an open problem, and the case of a general function f may be studied
using the methods of [8]. Hence the mathematical study is focused on the convergence of the new
approximate scheme for the following problem on Ω× (0, T ):

divv = s, (25)

ut + div(uv) = max(s, 0)c+ min(s, 0)u in Ω× (0, T ), (26)

together with the initial condition
u = uini in Ω, (27)

under the following hypotheses, denoted (H) in this section:

Definition 4.1 (Hypotheses (H))

1. Ω is a bounded open connected subset of Rd, T > 0 is the period of observation.

2. We assume that v ∈ C1(Ω) is such that v · n∂Ω = 0 on ∂Ω. We denote by s = divv.

3. We assume that c ∈ L∞(Ω× (0,+∞)) and uini ∈ L∞(Ω), where the functions c and uini are
essentially bounded by 0 and 1.

Then Problem (26)-(27) is considered in the following weak sense:∫ +∞

0

∫
Ω

(uϕt + uv · ∇ϕ+ (max(s, 0)c+ min(s, 0)u)ϕ)dxdt+
∫

Ω

uini(x)ϕ(x, 0)dx = 0,

∀ϕ ∈ C∞c (Rd × R).
(28)

4.1 Approximation by an upstream weighting scheme
Let us first precise the definition for the admissible space-time discretizations which will be con-
sidered here.

Definition 4.2 Let Ω ⊂ Rd, with d ∈ N \ {0} be a bounded open connected domain and let T > 0.
We say that D = (M,F , N, (tn)n=0,...,N ) is an admissible space-time discretization of Ω × (0, T )
if:

1. The setM of the control volumes is such that all elements ofM are disjoint open connected
subsets of Ω with regular boundary, and such that Ω =

⋃
K∈MK. The d-dimensional measure

of K (resp. Ω) is denoted by |K| (resp. |Ω|) and the diameter of K is denoted hK . We
denote by hD the maximum value of (hK)K∈M.

2. The interior faces of the mesh σ ∈ Fint are obtained by K ∩ L := σK,L, for all pairs of
neighbouring control volumes K ∈ M and L ∈ M. They are assumed to be planar, with
constant unit normal vector nK,L oriented from K to L. The exterior faces of the mesh
σ ∈ Fext are obtained by σ = K ∩ ∂Ω, for all control volumes K ∈ M. The set of all the
faces of the mesh F is defined by F = Fint ∪Fext. The d− 1-dimensional measure of σ ∈ F
is denoted by |σ|, assumed to be strictly positive. For all K ∈ M, it is assumed that there
exists a subset of F , denoted by FK , such that ∂K =

⋃
σ∈FK

σ.

3. N ∈ N \ {0} and (tn)n=0,...,N is a real family such that t0 = 0 < t1 . . . < tN = T .

We then define

θD = max
K∈M

hK
∑
σ∈FK

|σ|
|K|

. (29)

and we denote τn = tn+1 − tn for n = 0, . . . , N − 1.
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Assuming Hypotheses (H), let D = (M,F , N, (tn)n=0,...,N ) be an admissible space-time discretiza-
tion of Ω × (0, T ) in the sense of Definition 4.2. We define an admissible stencil S on M in the
sense precised above by the set of all pairs (K,L) such that K ∈M, L ∈M\{K} and |σK,L| > 0.
Let (FK,L)(K,L)∈S be such that (8) hold. We then denote, for σ ∈ FK such that σ = σK,L,
FK,σ = FK,L, and for σ ∈ FK ∩ Fext, FK,σ = 0. We assume that (FK,L)(K,L)∈S satisfies the
following discrete conservation property∑

σ∈FK

FK,σ =
∑

L,(K,L)∈S

FK,L = sK , ∀K ∈M, (30)

where we denote
sK =

∫
K

s(x)dx, ∀K ∈M, (31)

Let Ŝ, (P̂K,L)(K,L)∈S , θ bP and (FPK,L)(K,L)∈S,P∈ bPK,L
such that (6)-(11) hold. Let (F̃K,L, F̃

(+)
K,L)(K,L)∈bS

be defined by (12), let ν ∈ (0, 1] be given (the value ν = 0 is excluded, since some bounds
in Lemma 4.3 and Theorem 4.4 are obtained with respect to 1/ν, see also Remark 1) and let
(F̂I,J , F̂

(+)
I,J )(I,J)∈bS be defined by (13).

The implicit version of the upstream weighting scheme devoted for approximating (28) on [0, T ]
may be written

|K|
un+1
K − unK
τn

+
∑
L∈M

(
F̂

(+)
K,Lu

n+1
K − F̂ (+)

L,Ku
n+1
L

)
+ s

(−)
K un+1

K − s(+)
K cn+1

K = 0,

∀n = 0, . . . , N − 1, ∀K ∈M,

(32)

letting F̂ (+)
I,J = 0 for pairs of control volumes (I, J) /∈ Ŝ, and where

cn+1
K =

1
|K| τn

∫ tn+1

tn

∫
K

c(x, t)dxdt, ∀n = 0, . . . , N − 1, ∀K ∈M, (33)

s
(+)
K =

∫
K

max(s(x), 0)dx, s
(−)
K =

∫
K

max(−s(x), 0)dx, ∀K ∈M, (34)

and

u0
K =

1
|K|

∫
K

uini(x)dx, ∀K ∈M. (35)

4.2 Estimates
The following lemma, which may be proved in the spirit of [8, Proposition 26.1 p. 918] and [8,
Proposition 25.2 p. 913], provides the existence, the uniqueness of the discrete solution and a
weak BV-inequality.

Lemma 4.3 L∞ estimate, existence, uniqueness of the discrete solution and weak BV-
inequality.
Under Hypotheses (H), let D = (M,F , N, (tn)n=0,...,N ) be an admissible space-time discretization
of Ω× (0, T ) in the sense of Definition 4.2. Let S be the set of all pairs (K,L) such that K ∈M,
L ∈ M \ {K} and |σK,L| > 0, and let (FK,L)(K,L)∈S be such that (8), (30) and (31) hold. Let
(P̂K,L)(K,L)∈S, Ŝ, θ bP and (FPK,L)(K,L)∈S,P∈ bPK,L

such that (6)-(11) hold. Let (F̃K,L, F̃
(+)
K,L)(K,L)∈bS

be defined by (12), let ν ∈ (0, 1] be given and let (F̂I,J , F̂
(+)
I,J )(I,J)∈bS be defined by (13). Let

(unK)K∈M,n=0,...,N be such that (32)-(35) hold. Then

0 ≤ unK ≤ 1, ∀n = 0, . . . , N, ∀K ∈M. (36)
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Therefore, there exists one and only one (unK)K∈M,n=0,...,N such that (32)-(35) hold, which is
moreover such that there exists CBV > 0, only depending on Ω, s and T with:

N−1∑
n=0

τn
∑

(K,L)∈bS
F̃K,L(un+1

K − un+1
L )2 ≤ CBV

ν
. (37)

4.3 Convergence study
It is now possible to give a convergence proof for the scheme in the linear case. This proof could
be extended to the nonlinear scalar hyperbolic case by following the methods proposed in [8],
based on the convergence to the unique entropy process solution. Let us also note that, referring
to Remark 2, the present mathematical analysis applies (with ν > 0) to an upstream weighting
scheme written with the initial fluxes.

Theorem 4.4 Under Hypotheses (H), let D = (M,F , N, (tn)n=0,...,N ) be an admissible space-
time discretization of Ω× (0, T ) in the sense of Definition 4.2. Let S be the set of all pairs (K,L)
such that K ∈ M, L ∈ M \ {K} and |σK,L| > 0, and let (FK,L)(K,L)∈S be such that (8), (30)
and (31) hold. Let (P̂K,L)(K,L)∈S, Ŝ, θ bP and (FPK,L)(K,L)∈S,P∈ bPK,L

such that (6)-(11) hold. Let

(F̃K,L, F̃
(+)
K,L)(K,L)∈bS be defined by (12), let ν ∈ (0, 1] be given and let (F̂I,J , F̂

(+)
I,J )(I,J)∈bS be defined

by (13). Let (unK)K∈M,n=0,...,N be such that (32)-(35) hold and let uD be the function defined by

uD(x, t) = un+1
K , for a.e. (x, t) ∈ K × (tn, tn+1), ∀n = 0, . . . , N − 1, ∀K ∈M. (38)

We assume that

lim
hD→0

∑
(K,L)∈S

max(hK , hL)

∣∣∣∣∣FK,L −
∫
σK,L

v(x) · nK,Lds(x)

∣∣∣∣∣ = 0. (39)

Then, as hD → 0 and max τn → 0 while ν remains fixed, θD and θ bP remain bounded, uD converges
for the weak-? topology of L∞(Ω × (0, T )) to the unique function u ∈ L∞(Ω × (0, T )) satisfying
(28).

Remark 3 Condition (39) is naturally satisfied if FK,L =
∫
σK,L

v(x) · nK,Lds(x). More inter-
estingly, it also holds if FK,L is obtained using a finite volume scheme for the approximation of
Problem divv = s with v = −Λ∇p and Neumann boundary conditions (see [8], pp. 996–1012).

Proof. In order to prove Theorem 4.4, we consider a sequence (Dm)m∈N of admissible space-
time discretizations, such that hDm (denoted by hm in the following) and maxn(τnm) tend to zero
as m → ∞. We assume that, for each m, the families implicitly indexed by m: (FK,L)(K,L)∈S ,
Ŝ, (P̂K,L)(K,L)∈S and (FPK,L)(K,L)∈S,P∈ bPK,L

satisfy the hypotheses of the theorem with the same
value ν ∈ (0, 1], while θDm and θ bP remain bounded as m tends to ∞. We denote um = uDm for
all m ∈ N.
Let us prove the convergence of the sequence (um)m∈N to the weak solution u of Problem (28) for
the weak-? topology of L∞(Ω× (0, T )), for all T > 0. The classical argument of the uniqueness of
this limit suffices for concluding the proof of the theorem.
We first notice that, thanks to Lemma 4.3, we get the existence of a subsequence, again noted
(um)m∈N, which converges to some function u ∈ L∞(Ω × (0, T )) for the weak-? topology of
L∞(Ω× (0, T )) as m→ +∞. The aim of this proof is to show that u satisfies (28).

Let ϕ ∈ C∞c (Rd ×R) be such that ϕ = 0 in Rd × [T,+∞). In this proof, we denote by Cϕ an L∞
bound of first and second derivatives of ϕ. Let m ∈ N. In the following, we drop some indices m,
using the notations D = Dm. We define ϕnK by

ϕn+1
K =

1
|K|

∫
K

ϕ(x, tn)dxdt, ∀K ∈M, ∀n = 0, . . . , N.
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We get the following equation from
∑
L∈M(F̂ (+)

K,L − F̂
(+)
L,K) + s

(−)
K − s(+)

K = 0 and (32):

|K| (un+1
K − unK) + τn

∑
L∈M

F̂
(+)
L,K(un+1

K − un+1
L ) + τn s

(+)
K (un+1

K − cn+1
K ) = 0, ∀K ∈M. (40)

We then multiply (40) by ϕn+1
K , sum overK ∈M and n = 0, . . . , N−1. We obtain T (m)

1 +T (m)
2 = 0,

with

T
(m)
1 =

N−1∑
n=0

∑
K∈M

|K| (un+1
K − unK)ϕn+1

K

and

T
(m)
2 =

N−1∑
n=0

τn
∑
K∈M

(∑
L∈M

F̂
(+)
L,K(un+1

K − un+1
L )ϕn+1

K + s
(+)
K (un+1

K − cn+1
K )ϕn+1

K

)
.

We classically show, using the weak-? convergence of (um)m∈N to u, that

lim
m→+∞

T
(m)
1 = −

∫ +∞

0

∫
Ω

u(x, t)ϕt(x, t) dxdt−
∫

Ω

uini(x)ϕ(x, 0) dx = 0.

Let us now prove the convergence of the sequence (T (m)
2 )m∈N to T3 defined by

T3 = −
∫ +∞

0

∫
Ω

(uv · ∇ϕ+ (max(s, 0)c+ min(s, 0)u)ϕ) dxdt.

To this purpose, let us now define T (m)
4 by

T
(m)
4 = −

N−1∑
n=0

τn
∑
K∈M

(
un+1
K

∑
σ∈FK

ϕn+1
σ

∫
σ

v(x) · nK,σds(x)dt+ s
(+)
K (cn+1

K − un+1
K )ϕn+1

K

)
,

with
ϕn+1
σ =

1
|σ|

∫
σ

ϕ(x, tn)ds(x).

The proof that
lim

m→+∞
T

(m)
4 = T3

can be done, using the weak-? convergence of (um)m∈N to u and similar techniques to [8, Theorem
35.1 p. 1006]. We now consider T (m)

5 (recalling that FK,σ = FK,L for σ = σK,L else FK,σ = 0 for
σ ∈ Fext), defined by

T
(m)
5 = −

N−1∑
n=0

τn
∑
K∈M

(
un+1
K

∑
σ∈FK

ϕn+1
σ FK,σ + s

(+)
K (cn+1

K − un+1
K )ϕn+1

K

)
.

We have

T
(m)
5 − T (m)

4 = −
N−1∑
n=0

τn
∑
K

un+1
K

∑
σ∈FK

ϕn+1
σ (FK,σ −

∫
σ

v(x) · nK,σds(x)).

Using (30) (which implies
∑
σ∈FK

(FK,σ −
∫
σ

v(x) · nK,σds(x)) = 0), we get

T
(m)
5 − T (m)

4 = −
N−1∑
n=0

τn
∑
K

un+1
K

∑
σ∈FK

(ϕn+1
σ − ϕn+1

K )(FK,σ −
∫
σ

v(x) · nK,σds(x)),

which leads to
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|T (m)
5 − T (m)

4 | ≤ Cϕ
N−1∑
n=0

τn
∑
K

∑
σ∈FK

hK |FK,σ −
∫
σ

v(x) · nK,σds(x)|,

which tends to zero thanks to (39).
Gathering by pairs of control volumes (each one appears once in the summation), we have

T
(m)
2 − T (m)

5 =
N−1∑
n=0

τn
∑

{K,L}⊂M

(un+1
K − un+1

L )(F̂ (+)
L,Kϕ

n+1
K − F̂ (+)

K,Lϕ
n+1
L + FK,Lϕ

n+1
K,L),

setting ϕn+1
K,L = ϕn+1

σK,L
if (K,L) ∈ S else ϕn+1

K,L = 1
2 (ϕn+1

K + ϕn+1
L ) (recall that FK,L = 0 if

(K,L) /∈ S).
Let us prove that limm→∞ |T (m)

2 − T (m)
5 | = 0, result which completes our proof.

Since F̂ (+)
K,L − F̂

(+)
L,K = F̂K,L, we get T (m)

2 − T (m)
5 = T

(m)
6 + T

(m)
7 with

T
(m)
6 =

N−1∑
n=0

τn
∑

{K,L}⊂M

(un+1
K − un+1

L )
(
F̂

(+)
L,K(ϕn+1

K − ϕn+1
K,L)− F̂ (+)

K,L(ϕn+1
L − ϕn+1

K,L)
)
,

and

T
(m)
7 =

N−1∑
n=0

τn
∑

{K,L}⊂M

(un+1
K − un+1

L )(FK,L − F̂K,L)ϕn+1
K,L .

We may write

|T (m)
6 | ≤ Cϕ

N−1∑
n=0

τn
∑

{K,L}⊂M

|un+1
K − un+1

L | max(hK , hL)(F̂ (+)
K,L + F̂

(+)
L,K)

≤ Cϕ
N−1∑
n=0

τn
∑

{K,L}⊂M

|un+1
K − un+1

L | max(hK , hL)F̃K,L.

Turning to the study of T (m)
7 , we get T (m)

7 = T
(m)
8 − T (m)

9 with

T
(m)
8 =

N−1∑
n=0

τn
∑

{K,L}⊂M

(un+1
K − un+1

L )FK,Lϕn+1
K,L ,

and

T
(m)
9 =

N−1∑
n=0

τn
∑

{K,L}⊂M

(un+1
K − un+1

L )F̂K,Lϕn+1
K,L .

Remarking that, for P ∈ P̂K,L, we have∑
(I,J)∈P

(un+1
I − un+1

J ) = (un+1
K − un+1

L ),

and that ∑
P∈ bPK,L

FPK,L = FK,L,

we get that

T
(m)
8 =

1
2

N−1∑
n=0

τn
∑

(K,L)∈S

∑
P∈ bPK,L

∑
(I,J)∈P

(un+1
I − un+1

J )ϕn+1
K,L FPK,L.
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Besides, we have

T
(m)
9 =

1
2

N−1∑
n=0

τn
∑

(I,J)∈bS
(un+1
I − un+1

J )F̂I,Jϕn+1
I,J

=
1
2

N−1∑
n=0

τn
∑

(I,J)∈bS
(un+1
I − un+1

J )
∑

(K,L)∈S

∑
P∈ bPK,L

ξPI,JF
P
K,Lϕ

n+1
I,J ,

which leads, thanks to ξPI,J = 1 if (I, J) ∈ P else ξPI,J = 0, to

T
(m)
9 =

1
2

N−1∑
n=0

τn
∑

(K,L)∈S

∑
P∈ bPK,L

∑
(I,J)∈P

(un+1
I − un+1

J )ϕn+1
I,J FPK,L.

Hence

T
(m)
7 =

1
2

N−1∑
n=0

τn
∑

(K,L)∈S

∑
P∈ bPK,L

∑
(I,J)∈P

(un+1
I − un+1

J )(ϕn+1
I,J − ϕ

n+1
K,L) FPK,L.

We have |ϕn+1
I,J − ϕ

n+1
K,L | ≤ Cϕθ bP max(hI , hJ) thanks to the definition (7) of θ bP . Therefore we get

|T (m)
7 | ≤ Cϕ

2
θ bP

N−1∑
n=0

τn
∑

(K,L)∈S

∑
P∈ bPK,L

∑
(I,J)∈P

|un+1
I − un+1

J | max(hI , hJ)|FPK,L|,

which may also be rewritten as

|T (m)
7 | ≤ Cϕ

2
θ bP

N−1∑
n=0

τn
∑

(K,L)∈bS
|un+1
K − un+1

L |max(hK , hL)F̃K,L.

Hence we get, setting C1 = Cϕ + Cϕθ bP
|T (m)

2 − T (m)
5 | ≤ C1

N−1∑
n=0

τn
∑

{K,L}⊂M

|un+1
K − un+1

L |max(hK , hL)F̃K,L.

Thanks to the Cauchy-Schwarz inequality and defining T10 by

T
(m)
10 =

N−1∑
n=0

τn
∑

{K,L}⊂M

max(hK , hL)F̃K,L,

we have, thanks to Lemma 4.3,

(T (m)
2 − T (m)

5 )2 ≤ C2
1T

(m)
10

hm N−1∑
n=0

τn
∑

{K,L}⊂M

(un+1
K − un+1

L )2F̃K,L

 ≤ C2
1T

(m)
10 hm

CBV

ν
.

It now suffices to show that T (m)
10 remains bounded. Using (20), we have

T
(m)
10 ≤ θ2bP

∑
{K,L}⊂M

max(hK , hL)|FK,L|.

We then remark that the term
∑

(K,L)∈S max(hK , hL)|FK,L| remains bounded thanks to (39) and
to the bound θD|Ω|‖v‖∞ on

∑
(K,L)∈S max(hK , hL)|

∫
σK,L

v · nK,Lds|. This completes the proof
that

lim
m→∞

(T (m)
2 − T (m)

5 ) = 0.

and therefore that
lim

m→+∞
T

(m)
2 = T3.

We have then proved that u satisfies (28), which concludes the proof of convergence of the scheme.
�
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