Yue Ma

Franc ¸ois Lévy

Computing Fine-grained Semantic Annotations of Texts (Extended Abstract)

Introduction

Semantic annotation extends the notion of metadata for accessing and sharing contents of different resources in different applications, such as Name Resolution, Information Extraction, Query Answering, and Regulation Analysis. Many ad hoc systems of semantic annotation have been developed, which have a major difference in ontologies used as the annotation reference. For example, KIM platform [START_REF] Kiryakov | Semantic annotation, indexing, and retrieval[END_REF] takes the PROTON ontology; DBpedia Spotlight 1 uses the DBpedia ontology; Magpie system 2 has a predefined small ontology; and SPART 3 uses the ontology generated on-the-fly from the text. In this sense, our approach is similar to SPART in that the reference ontology is constructed from a domain specific text because general ontology such as PROTON or DBpedia ontology has very low coverage on domain specific texts. For example, DBpedia Spotlight can hardly find occurrences on our examined corpora. Different from SPART, our approach is logic based instead of linguistic pattern based, which can benefit from the state-of-the-art ontology techniques.

Fine-grained Semantic Annotation

In this paper, we consider a special task, ontology-based semantic annotation for the domain of business regulation, where many very small pieces of text, instead of whole documents or sentences, may be worthy of an annotation. For such an annotation system, text fragments may be annotated with an individual, a concept, or a role. To make this explicitly, we use three DL roles to represent these three relations between text fragments and their semantic annotations, written respectively sa:Individual(•, •), sa:Concept(•, •), sa:Role(•, •). For instance, tf="the U.S. president" can be annotated by the individual Mr. Obama with named entity recognition in view (i.e. sa:Individual(tf, Mr.Obama)), or by the concept ExecutiveHead (the head of the executive power) if political institutions are the focus (i.e. sa:Concept(tf, ExecutiveHead)). See [START_REF] Ma | Formal description of resources for ontology-based semantic annotation[END_REF] for discussions and more examples.

Technically speaking, we can distinguish two sorts of semantic annotation systems. The one made by string or regular expression matching and gazetteers, perhaps morphological information, is called the shallow semantic annotation; and the one made by considering deeper textual analysis and ontological reasoning is called fine-grained one. Note that shallow semantic annotations are usually sufficient and efficient for detecting general types such as people, place, and time. But fine-grained semantic annotations are required for more complex tasks, such as, in the case of the OntoRule project 4 , the translation of business rules (governing an organisation) in natural language into formal rules of an Information Technology (IT) system, to keep both sets in line along time.

Methodology

The challenge in computing fine-grained semantic annotation exists in the complexity of combining the deep natural language processing and advanced ontological reasoning. For this, we propose in this paper a reasoning based approach to controlling and refining semantic annotations automatically, which is an easy and intuitive way to manage the complex information involved. We illustrate this approach over two policy regulation corpora, which shows an encouraging result. Our approach is characterized by consid- The methodology has four inputs: a domain ontology (chosen beforehand by users as an annotation reference), a pre-designed language ontology (see Figure 2 together with the role name contains and its subroles contains2 and contain3 which are relations of T extf ragment. See [START_REF] Ma | Reasoning with annotations of texts[END_REF][START_REF] De Marneffe | Stanford typed dependencies manual[END_REF] for more details), shallow semantic annotations, and linguistic annotations of texts. Note that optimized shallow semantic annotations and linguistic annotation systems have been widely available to be reused directly. In this work, we take the platform SemEx5 for producing shallow semantic annotations and Stanford Parser [START_REF] De Marneffe | Stanford typed dependencies manual[END_REF] for typed dependence parsing. The main mechanism of our approach follows the knowledge management principle that proceeds data as knowledge so that reusing and sharing these data can be facilitated among different applications. For this, we adopt OWL to represent linguistic and semantic annotations, and use SWRL rules to encode the knowledge required to compute fine-grained semantic annotations. In particular, we distinguish two groups of SWRL rules according to their different functions: to discover new semantic annotations or to signal missing annotations to the user.

Compared to the approach based on linguistic patterns for computing semantic annotations [START_REF] Ma | Formal description of resources for ontology-based semantic annotation[END_REF], SWRL rules are practical and intuitive to design. In particular, they make the syntax parsing easier to be involved in the semantic annotation procedure. We show the interesting SWRL rules in the following. For readability, we give here only formal representation for simple rules and discuss other rules informally. Recognizing fine-grained semantic annotations can be divided into propagating semantic annotations to other text-fragments (Rule1) and obtaining more accurate semantic annotations from the existing ones (Rule2).

Rule1. nn(hd, md) ∧ contains2(tf, hd) ∧ contains2(tf, md) ∧ sa:Concept(hd, A) → sa:Concept(tf, A) That is, if the head of a nn dependency is annotated by a concept, the whole textfragment containing the head and modifier should have at least the same annotation. For example, the sentence "Your summary includes participant mileage" has a shallow semantic annotation sa:Concept("mileage", AA M ileage) and a syntactic annotation nn("mileage", "participant"). Then by this rule, we can recognize a new semantic annotation sa:Concept("participant mileage", AA M ileage).

Similar examples are found also for the prep of dependency, which is also a frequent one. Another variant applies to multiple nn dependencies to extend the annotation to a 3-words text fragment (relying also on contains3), for instance from "mileage credit" to"flight mileage credit".

Rule2. lo:isIn(tf, sc) ∧ sa:Concept(tf, Y) ∧ lo:title(sc, tit) ∧ sa:Concept(tit, X) ∧rdfs:subClassOf(X, Y) → sa:Concept(tf, X) That is, if a text fragment tf inside a section sc has a semantic annotation Y , and sc has a title which is annotated by X, a refinement of Y , tf will obtain a more accurate annotation X. For example, the title "Micro-slip test" of a section in our corpus is annotated by the concept M icroslipT est. In the same section, there is a sentence "The test shall be carried out at a temperature between 15 and 30 • C", where the word "test" has been annotated by T est according to a shallow approach. By Rule 2, a more precise semantic annotation sa:Concept("test", M icroslipT est) can be deduced for this occurrence. Detecting missing semantic annotations Sometimes, even though one cannot get a semantic annotation for a text-fragment, it is helpful to be informed about a possibly missing one, to guide further improvements. Rule 3 (resp. Rule 4) applies to text fragments related by "or" and "and" conjunctions (resp."nn" and "prop of").

Rule3

) ∧ sa:Concept(tf 1 , X) → sa:Concept(tf 2 , U *) (1) dep(tf 1 , tf 2) ∧ contains(tf 3 , tf 2) ∧ sa:Concept(tf 3 , X) → sa:Concept(tf 1 , U *) (2)
That is, if one of the text fragments related via conj or and conj and is semantically annotated [START_REF] Kiryakov | Semantic annotation, indexing, and retrieval[END_REF] or is included as a part of a semantic annotation [START_REF] Ma | Reasoning with annotations of texts[END_REF], so should be the other. E.g; "two belts or restraint systems are required" has syntactic and semantic annotations: conj or(belts, systems), sa:Concept("restraint systems", RestraintSystem).

Then it is usually the case that there should be a semantic annotation for "belt" (indicated by U *). Rule4. For dep ∈ {nn, prep of }, dep(hd, md) ∧ sa:Concept(md, A) → sa:Concept(hd, U *). That is, if the modifier of a dependence typed nn or prep of is semantically annotated, so should be the head, but by which concept is unknown. For example, the sentence "AAdvantage flight awards may not be combined with other AAdvantage flight awards" has semantic and linguistic annotations sa:Concept("AAdvantage", AA P rogram) and nn("awards","AAdvantage") but leaving the text-fragment "awards" non-annotated. This rule will report that a semantic annotation for "awards" is missing.

Evaluation

The experiments of our approach have been performed on two corpora, named Audi (1 document, 1829 sentences) and AAdvantage (1 document, 297 sentences), which had previously been annotated with typed dependencies and shallow semantic annotations. For the Audi corpus, it has 1473 shallow semantic annotations and there are 808 shallow semantic annotations in the AAdvantage corpus. And the typed dependence annotations are plentiful because each sentence has many pairs of dependent words. Note that the overlap between semantic annotations and our chosen typed dependencies is remarkable, for example, 53% semantic annotations of AAdvantage contain text fragments with at least one nn annotation [START_REF] Ma | Reasoning with annotations of texts[END_REF]. By performing the SWRL rules, we can see that our approach is productive for computing fine-grained semantic annotations as shown in the above table (due to space limitation, seperated results for each rule are omitted). Note that these rules are not domain dependent, but the result on our business regulations shows that they are quite productive for a domain specific corpus which is normal hard to annotate by normal semantic annotation systems, such as [START_REF] Kiryakov | Semantic annotation, indexing, and retrieval[END_REF] and DBpedia Spotlight.

Fig. 1 .

 1 Fig. 1. Framework Overview: Reasoning Approach for Fine-grained Semantic Annotation of Text

Fig. 2 .

 2 Fig. 2. Language Ontology

 . For dep ∈ {conj or, conj and} and U * a new concept name, dep(tf 1 , tf 2) → dep(tf 2 , tf 1) (making conj and and conj or symetric) dep(tf 1 , tf 2

This work was realized as part of the Quaero Programme (funded by OSEO, French State agency for innovation) and of the FP7 231875 ONTORULE project. 1 dbpedia.org/spotlight 2 http://projects.kmi.open.ac.uk/magpie/main.html 3 Semantic Pattern Recognition and Annotation Tool, http://neon-toolkit.org/ wiki/Gate_Webservice

http://ontorule-project.eu

http://lipn.fr/ ˜guisse/ontorule/SemEx/