
HAL Id: hal-00623674
https://hal.science/hal-00623674

Submitted on 14 Sep 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dataflow Programming Model For Reconfigurable
Computing

Laurent Gantel, Amel Khiar, Benoît Miramond, Mohamed El Amine
Benkhelifa, Fabrice Lemonnier, Lounis Kessal

To cite this version:
Laurent Gantel, Amel Khiar, Benoît Miramond, Mohamed El Amine Benkhelifa, Fabrice Lemonnier,
et al.. Dataflow Programming Model For Reconfigurable Computing. 6th International Workshop on
Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC), Jun 2011, Montpellier, France.
pp.1-8, �10.1109/ReCoSoC.2011.5981505�. �hal-00623674�

https://hal.science/hal-00623674
https://hal.archives-ouvertes.fr


Dataflow Programming Model For Reconfigurable
Computing

L. Gantel∗† and A. Khiar∗ and B. Miramond∗ and A. Benkhelifa∗ and F. Lemonnier† and L. Kessal∗

∗ ETIS Laboratory – UMR CNRS 8051 † Embedded System Lab
University of Cergy-Pontoise / ENSEA Thales Research and Technology

6, avenue du Ponceau 1, avenue Augustin Fresnel
95014 Cergy-Pontoise, FRANCE 91767 Palaiseau, FRANCE
Email {firstname.name}@ensea.fr Email{firstname.name}@thalesgroup.com

Abstract—This paper addresses the problem of image process-
ing algorithms implementation onto dynamically and reconfig-
urable architectures. Today, these Systems-on-Chip(SoC), offer
the possibility to implement several heterogeneous processing
elements in a single chip. It means several processors, few hard-
ware accelerators as well as communication mediums between
all these components. Applications for this kind of platform
are described with software threads, running on processors, and
specific hardware accelerators, running on hardware partitions.
This paper focuses on the complex problem of communication
management between software and hardware actors for data-
flow oriented processing, and proposes solutions to leverage this
issue.

Index Terms—reconfigurable computing, dataflow program-
ming, hardware actors, real-time operating systems, multipro-
cessor architectures, FPGA, image processing

I. I NTRODUCTION

Heterogeneous Systems-on-Chip(HSoC)platforms provide
good performances but are often difficult to program. For
programming efficiency in an industrial context, it would be
better if the developer can describe its application in a single
language, independently from its future mapping. In this way,
we need a homogeneous API(Application Programmable
Interface) and specific operating system services to manage
hardware accelerators with so much flexibility as what is
done with software threads. Using Dynamically and Partial
Reconfiguration(DPR) capabilities of the latest Xilinxc©

FPGAs, and the future Alterac© FPGAs, we pose the problem
in the context of dynamic hardware threads.

The needed homogeneous API is defined in the existing
literature as middleware. The most popular definition of a
middleware is the following: ”The middleware is the software
that assists an application to interact or communicate with
other applications, networks, hardware, and/or operatingsys-
tems. This software assists programmers by relieving them
of complex connections needed in a distributed system. It
provides tools for improving quality of service(QoS), security,
message passing, directory services, etc. that can be visible to
the user” [1]. Middleware provides a higher-level abstraction
layer for programmers than API provided by the operating

system, such as sockets.
It reduces significantly the work of application programmers

by relieving them of tedious and error-prone programming.
Middleware is designed to mask some of the kinds of het-
erogeneity that programmers of distributed systems must deal
with [2]. It always masks heterogeneity of networks and
hardware processing units.

We are interested in the FOSFOR project, by providing
communications on the platform, whose components are het-
erogeneous with dynamic hardware. This is why we set up
a communication protocol between these components. It is
important to note that, to have a transparent, flexible and
scalable platform, its global communication medium must be
defined and take into account this heterogeneity.

In this article, we propose to follow up the properties
of a data-flow model of computation dedicated to the
heterogeneous Systems-on-Chip from the actor-level down to
the thread implementation. An overview of state of the art is
given in section II. Section III details the design flow used to
mitigate the complexity of the platform. Section IV describes
the hardware actor model specified to be implemented at a
lower level. The basis of the communication framework are
explained in Section V. Section VI is about first experiments
and results obtained with a real application.

II. RELATED WORK

Embedded systems interact with the physical world. Most of
these systems include heterogeneous designs that are specific
to an application. Conceptually the distinction between the
software and hardware implementations, in a computation
point of view, is relative to their degree of concurrency and
their performance limitations. The issue lies in the mannerto
identify the appropriate abstraction for representing theglobal
system.

Among the dataflow design approaches, the Actor-oriented
paradigm offers the abstraction to rise above the heterogeneity.
This approach orthogonalizes component definition and com-
ponent composition. A tool that refines heterogeneous actor-
oriented models into software-based design and hardware-
based program-level description is proposed in [3].



Several other data-flow oriented models of computation
exist to design heterogeneous systems, but there is a lack inthe
partitioning of the application into a reconfigurable platform.
We propose in this paper to reduce the gap between the high-
level properties of the input specification and the final im-
plementation onto a partially and dynamically reconfigurable
architecture by defining the notion of reconfigurable software
and hardware actors.

Verdoscia et. al. [4] already introduced a model of hardware
actor, defined in a dataflow graph model, and implemented in
hardware. Each actor was described as a Functional Unit(FU),
executing simple operations such as additions, multiplications,
loops and conditionnal instructions. As in the upper level of
its model, the execution of this FU was conditioned by two
input tokens and fired one output token. FUs are organized in
clusters whose communication is based on Message Passing
through shared memories. However, FUs inside the same
cluster are connected together with a crossbar to improve
latency.

A model of computation for the reconfigurable computing
involves the definition of a reconfigurable dynamic hardware
actor. By reconfigurable, it means a thread, implemented in
hardware, which has a similar behaviour to a software thread.

To attack this issue, some operating systems which are able
to manage both software threads and hardware accelerators
have been developed. This is the case of BORPH [5], a Linux
based operating system. It offers kernel drivers to controlthe
execution of hardware accelerators. Santambrogio et. al [6]
also present a Linux driver to control ICAP port of the FPGA.
Thus they can dynamically reconfigure hardware accelerators
by writing commands in well-known IOCTL registers.

Much complex accelerators have then been developed, such
as Hybrid Thread [7]. In this article, the authors define a model
of POSIX compliant hardware thread, capable of processing
operating system calls through a shared memory, as software
thread do. In the same way, ReconOS [8] authors present their
own model, which achieves system calls via an API composed
of VHDL procedures. In both cases, thread behaviour is
described by a finite state machine for thread state execution,
and the system calls are processed by a software proxy thread,
running on a distant processor.

The drawback of this approach is that it leads to important
time overheads. So Hybrid Thread authors realized a hardware
implementation of the synchronization and scheduler services
in order to lighten processor load [9]. This solution was also
experimented in [10] whereµC/OS-II was extended with hard-
ware implementation of few services. At the expanse of some
hardware resources, this can lead to more efficient platforms
and takes advantage of the FPGA parallelism capacities.

When programming heterogeneous platforms, differencies
between hardware and software threads have to be hidden, so
a virtual layer has to be added. DNA Operating System [11]
proposed a component-based system framework. Components
are described to manage hardware dependent issues such as
endianness, multiprocessor management, memory allocation,
synchronizations and exceptions, or task context management.

The proposed interface has been developed in order to provide
homogeneous interface for all applications. Maejima et al.
[12] presented a hardware module which permits segregation
between critical and non-critical services to make application
safer. Petrot et. al [13] addressed the same issue and proposed
a POSIX API running on top of the Mutek operating system.
This layer called Hardware dependent Softwareoffers a
homogeneous API for all the processing elements in the
platform.

III. D ATA FLOW PROGRAMMING MODEL FOR

RECONFIGURABLE COMPUTING

A. Design flow

Today, embedded systems face increasingly higher perfor-
mance requirements. Deeply pipelined processor architectures
are being employed to meet desired system performances
and system architects critically need modeling techniques
to rapidly design the required platform. So, we propose to
reduce the gap between the initial system specification and the
final implementation, especially when targeting dynamically
reconfigurable architectures. The main idea is to conserve the
semantic of the components manipulated at high-level when
refining the model till the hardware level. The concept, that
already exists in the pure software domain with middleware
approaches, has been extended to also consider hardware
components.

Thus, the management of reconfigurable architectures is not
limited to a specific technical solution anymore but is consid-
ered as a whole from the top to the bottom. A specific abstrac-
tion layer is developed(a hardware and software middleware)
in relation to the semantic of the high-level components. This
layer helps to map the high-level interactions between the
actors of a specific application onto the abstracted platform.
It also facilitates rapid exploration of candidate architectures
under given design constraints such as area, clock frequency,
power, and performance. Finally, it allows to foresee the future
automatic generation of actor codes.

As illustrated in Fig. 1, we consider, from high level, a
coherent and interoperable vision of communicating actors.
This abstraction of communications facilitates the number
of possible refinements into a subsequent abstraction layer
(Programs) in the design flow.

To achieve this goal, the semantic of the managed com-
ponents is based on the Synchronous DataFlow(SDF) model
of computation(MoC) [14]. Actors description is made from
the standard graphical language UML(Unified Modeling Lan-
guage)and their interfaces are described using IDL3(Interface
Language Description).

At the higher level we represent each block of the applica-
tion that performs a specific task by an actor which, receives
and sends data through virtual channels. Those actors share
the same API of the global virtual platform.



Fig. 1. Design flow for reconfigurable data flow applications

B. Communication semantic

We want to virtualize the communications into a dis-
tributed heterogeneous embedded Multiprocessor System-on-
Chip (MPSoC)platform containing reconfigurable hardware
computing units. We propose a unified management of the
communication, implemented both in software and in hard-
ware, that provides the designer a single programming in-
terface, accessible from the abstract actor layer. The global
system is then controlled in a distributed manner by several
communication managers implemented on each execution unit:
processors and hardware accelerators(see section IV for more
details).

Communication can be respectively homogeneous or het-
erogeneous. The first type is related to communication be-
tween two actors implemented simultaneously in the hardware
domain (Hw / Hw) or in the software domain(Sw / Sw).
The second type concerns communication between two actors
implemented separately in two different execution domains:
(Hw / Sw)and (Sw / Hw).

To ensure synchronization and exchange between the ele-
ments of a platform, two types of transfer are needed(Fig.
2):

i) data exchange : each time a calculation block finishes its
processing on the input data, this data can be passed to
the next block for another type of calculation according
to the principle of synchronous dataflow transfer.

ii) state coherency : control information should be exchanged
between the communication managers(see section V)in
order to maintain a permanent consistency of the actors
location and states, even during reconfiguration.

IV. RELOCATABLE HARDWARE ACTOR

A. Target architecture

The FOSFOR project [2](Flexible Operating System FOr
Reconfigurable platform), aims to define a new kind of exe-
cution platform. This platform(Fig.3) targets heterogeneous
applications in the sense that threads could be either software
(running on one of the processors), or hardware(running as

Fig. 2. Communications into the platform

an accelerator in a partition of the FPGA). At this level, the
communication between the actor and the rest of the system is
managed by using a system call paradigm. An actor can then
be associated with the notion of Thread.

In the context of this project, hardware threads are managed
by a hardware operating system(Flexible HwOS). It takes
advantage of the DPR to schedule hardware threads on
the available partitions, and implements similar servicesin
hardware to those offered by the software operating system.
Existing services include thread management, semaphore
counters and mailboxes. The flexible HwOS allows hardware
threads to process fast system calls without the need to pass
through a software proxy thread [8].

Fig. 3. FOSFOR Architecture

Software threads are managed by the RTEMS operating
system(OS) [15]. This OS allows to abstract heterogeneity
using its MultiProcessor Communication Interface(MPCI).
Starting from this point, FOSFOR also implements this inter-
face and permits hardware threads to access to any services in
the system, both software and hardware, in a transparent way.
Moreover, FOSFOR provides virtual channel services which
abstract inter-thread communication and memory management
(see Section V).



B. The generic hardware actor

A hardware actor has been defined to abstract dynamic
reconfiguration provided, for instance, in the Xilinxc© FPGAs.
Thus, it is composed of two main parts : a static part which
contains all the interface with the rest of the system, and a
dynamic part, specific to the actor which contains the Finite
State Machine(FSM) controlling its execution, its accelerator
and its private memory(Fig. 4).

Fig. 4. Hardware Thread Architecture

The static part provides an interface to communicate with
the operating system(OS Interface). It is composed of a
standard double port memory in which the thread can write the
identifier of a system call and its parameters. The call is read
by the operating system via a dedicated bus connecting all the
reconfigurable partitions(Fig. 3). Once the system call done,
returns values are written back in the memory and are read by
the thread. This static part also includes a Network Interface
and allows the thread to communicate with the external world
through a dedicated Network-on-Chip(NoC)[16].

Once instantiated by the operating system, the hardware
actor is able to execute four basic commands : start, suspend,
resume and stop. As the actor is located into a dynamically
reconfigurable partition, its state (from an OS point of view)
has been specifically defined as described in the finite state
machine ofFig. 5. As illustrated in this figure, a hardware
actor is either preemptible or non-preemptible. In the latter
case, the scheduler can not suspend or move the actor to
another place. To come back to a preemptible state, the actor
notifies it explicitly (blocking system call or call to a specific
primitive).

The main advantage of a hardware component is its parallel
nature. In order to be consistent with the SDF computation
properties of the high-level specification(see Section III),
we have added the architectural mechanisms that allow the
actor to support software pipelining. According to a buffer
management by the User FSM(Fig. 4), a hardware actor would
be able to process three actions in parallel:

i) Receive data from the network
ii) Compute data stored in its private memory
iii) Send data to the network

Fig. 5. Hardware Actor States

V. COMMUNICATION FRAMEWORK

From the design point of view, this platform is divided into
several interacting layers. The communication management
part is named Middleware and is delimited by the red points
in Fig. 6. It represents the solution for dataflow computation
in the FOSFOR platform. The role of this layer will be
to transparently execute the high-level actors by virtualizing
the access to the needed operating system services. This
transparency is reached by a standard API which homogenizes
the communication process.

Fig. 6. FOSFOR layers

At low-level, the transfer of data between relocatable hard-
ware threads is thus ensured by the management of Virtual
Channels. Thus the middleware offers, both in hardware and
software, additional services on top of the existing RTOS
services. Threads can then use these services by subscribing
to one or more channels. A subscription to one channel allows
threads to be independent from the location of the others,
thereby bringing closer the specification and its implemen-
tation.

A. Middleware

The middleware must provide a set of system features avail-
able to the application to access to the execution resources, the



communication and the memory in a transparent way. System
features virtualize the OS services and the application canthen
access those services regardless their physical location within
the platform. This layer can request any service from the OS
despite their location and the mechanics of invocation.

Its role is to enable communication between system re-
sources ensuring synchronization of data exchange. The con-
cept of control includes synchronization aspects, sendingand
receiving events, access to mutual exclusion semaphores, etc.
We identify two types of communications: data transfer and
control transfer.

Fig. 7. Middleware layers

The middleware form the communication medium for trans-
ferring data between two thread, as shown inFig. 7. This
layer is described from two perspectives: the data transferpart
(MW2), and the control part(MW1).

We took as a starting point the existing middlewares, and in
particular the principle of the ORB1 which, in our case, will
be represented by the notion of Virtual Channel(VC). A VC
is a channel designation indicating a particular virtual circuit
on a network that will use the local and the distant services
of the couple (OS, Middleware).

Two approaches are possible for the communications of the
homogeneous type:

a- The first one corresponds to a synchronous communication
when the sender and the receiver are present during the
communication. In this case, the exchange or transmission
of data is done by directly sending data packets from
transmitter to receiver. In this case we define the notions
of VirtualChannelSend/ VirtualChannelReceiveand the
synchronization of the exchange and the reservation of
resources necessary for communication.

b- The second type of communication occurs when one
thread is not present (preempted or relocated) in the
system at the time of communication.

From the latter case, there are then two possible scenarios:

i) The current thread waits for the other one. However when
a timeout (proposed as a service parameter) is reached
the control is handed back to the system through the
middleware, so that it continues its normal execution.

ii) The middleware stores temporarily data in global
memory and shares it in order to free resources
from the first thread once the copy is complete. This

1Object Request Broker

last case corresponds to an asynchronous communication.

In addition to the historical services of the OS, the virtual
channel services are currently viewed as additional services
that are mapped on top of the existing OS services beyond
those offered by the MPCI layer.

Currently the implementation of these services of Vir-
tual Channel is ongoing. It includes theOpenVirtualChannel
primitive, which establishes a point to point communication
between actors and determines the type of communication
(synchronous or asynchronous). The sending and receiving
services of the middleware :VirtualchannelSendand Virtu-
alChannelReceive, which allows sending and receiving mes-
sages on the VC, from memory when copying the contents of
transfer, or directly from the thread’s buffer.

The serviceEndCommunicationis only used by hardware
threads to indicate the end of data transfer to the middleware
and make threads preemptible again (FSM ofFig. 5). Indeed,
as depicted inFig. 4, unlike software threads, the hardware
threads manage their own local memory and must then inform
the Flexible HwOS of the end of transactions.

The serviceCloseVirtualChannelallows the closure of the
channel, thus the channel becomes free again for a new
transaction.

Fig. 8. Middleware communication

Each call to a service available on this platform requires to
update the Virtual Channel tables, distributed both in hardware
and software, onto the FOSFOR architecture(Fig. 8). This
control flow is managed by the middleware on top of the
message queue service of the underlying RTOS.Fig. 9 shows
the attributes of the services and the return value of each of
them.

B. Network interface

The Network Interface(NI) is the static interface of the Hw
Thread(Fig. 4). It is connected to a dedicated Network-on-
Chip (NoC)[16] implemented, in order :



Fig. 9. Virtual Channels services

i) to offer a fast medium of communication between the
hardware threads

ii) to ensure them a way of communication with the
software threads

This interface provides two low-level services, namely a
procedure to send data from the thread’s private memory to
the NoC, and another to receive data from the NoC and write
it into the same memory. Especially, this network has been
designed to support bi-directional transactions, and so allows
to implement efficient software pipelining mechanisms inside
the hardware threads.

NI architecture is shown inFig. 10. Two FIFOs allow
the User FSM to stack Send and Receive requests. These
requests are then respectively processed by a Packetizer and
a Depacketizer. A DMA connected to the internal memory of
the actor, is driven on one hand by the Packetizer to read data
in memory and send it through the NoC. On the other hand,
the Depacketizer receives data from the NoC and writes it
into the internal memory.

Fig. 10. Network Interface architecture

Elements connected to the NoC communicate through it by
sending data packets over the network. A protocol has been
specified and implemented to provide two main features to a
thread.

The first one consists in writing data to an element con-
nected to the NoC. This element can be another thread, a

memory or another kind of peripheral. The second is reading
data from another element. In the case of a passive element,
such as a memory, a special packet has been defined to allow
read operation in two phases : one request from the thread and
an answer from the memory.

The protocol adopted for the network has been thought
to provide these two features in a transparent way for the
developer. Moreover, additional data constitute the header of
a packet, and make possible the routing of a packet between
the hardware domain(ie. the NoC), and the software domain
(ie. the AMBA bus), via a bridge able to understand this
protocol(See Fig. 3).

VI. EXPERIMENTS

A. Image processing application

The application deployed on the FOSFOR platform
is a target tracking application represented inFig. 11.
This application is responsible for detecting, tracking and
recognizing targets existing in an infrared input video
stream. The spatial resolution is 640x480 pixels by frame,
and acquisition frequency at the output of the camera is 25 Hz.

Fig. 11. Target Tracking Application

Application is divided into four static actors, and a dynamic
one. The first actor of the static part corresponds to the
acquisition of the data from the camera(Acquisition). It is
followed by another one for the detection of the targets
(Detection). The third actor gets the results from the tracking
actors and ensures the coherency within a list of the current
tracked targets(CCM). A last actor asks for this list and
displays the encompassing square of each target into the input
image(Incrustation).

The dynamic part of the application corresponds to the
tracking actor, responsible for maintaining the coordinates of
one of the target detected in the video(Tracking)by computing
the Continuously Adaptive Mean shift (camshift) algorithm
[17]. As a result, they provide to the CCM actor the bounding
box coordinates of the target they are tracking.



B. Application partitioning

Application has been ported first on a monoprocessor
platform based on the Leon/SparcV8, running at 80 MHz on
a V5SX50 FPGA.Table I shows the timing results for the
detection actor which is the most time consuming.

Function without FPU @ 80
MHz (in ms)

with FPU @ 80 MHz
(in ms)

ghv filter 18412.062 623.187
Roberts 13559 354.16
Local Maximums 3234.562 367.25
Tresholding 91 91
Closing 14297.562 14298.375
Labelling 515.937 513.5
LimiteLabels 98.312 96.687
LocateRegions 143.812 138.125
Total 58736.43 16720.43

TABLE I
SOFTWARE IMPLEMENTATION TIMING

Some parts of the application are well suited to be
implemented in hardware, such asghv filter and closing
operator. However, in the delay of the project, we chose
to not focus on the timing performance, and privilege the
demonstration of the dynamic management provided by the
platform.
Finally, the detection parts are deported on a standard PC
and connected to the FPGA through an Ethernet link. Thus,
the hardware part of the application consists in the different
tracking actors which will be created dynamically depending
of the number of detected targets.

C. Hardware implementation

For the demonstrator, we choose the ML506 board [18].
The software OS is RTEMS, which allows the communication
between the two LEON3 processors [19].

The Camshift algorithm is divided into four steps. In the
first step, it is waiting for a new image to process. Then it
receives the frame of the image. In the third step, it processes
the centroid of the target. Finally, when receiving the last
data of the frame, it indicates if the target has been detected.
The developed Camshift IP(Fig. 12) is a dataflow IP
encapsulated into the hardware actor container ofFig. 4. A
start signal indicates the beginning of a new frame. After
starting, it consumes pixels corresponding to the frame and
so, tracks a target into the frame calculating the centroid of
the target. Once it receives the end signal, it delivers a result.
This result is the coordinates of the centroid and indicates
the processing convergence.

The control of the IP is decoupled into two channels. The
first one is used to start and stop the processing. The second
one to get data to process from the private memory. After
processing, results are sent in an internal buffer which will be
transfered on the NoC afterwhile.

Fig. 12. Wrapper Camshift

D. Application deployment

In order to map the dataflow model onto this target archi-
tecture, hardware actors have to support software pipelining.
One solution to achieve this goal is to make the synchroniza-
tion explicit between the NI Packetizer component, the NI
Depacketizer component and the accelerator, into the request.
A request will be composed of the information needed by the
component to process the request, plus additional information
about its synchronization with the other components(Fig. 13).
Such a view fits into the dataflow model in which input tokens
are generated and exchanged between the synchronization
modules, regarding the requests instructions.

Fig. 13. Synchronization modules

Currently, the hardware thread model has been developed
and integrated to the NoC and to the HwOS.Table II shows
the FPGA resources used by the components needed to en-
capsulate the dataflow IP. Synchronization module is under
development and will be integrated soon.

Adding the hardware reconfigurable container to the IP is
not free, it represents a 13% overhead of the LUTs, and a
150% overhead of the registers for the small camshift acceler-
ator. However the major part(static) of this container will be
reused by the other reconfigurable actors and remains a poor
percentage of the resources available in the current FPGA. Yet



Component Registers LUTs BRAMs DSPs
OS Interface 38 41 1 0
System FSM 4 6 0 0
Network If. 509 602 0 0
Packetizer 186 88 0 0
Depacketizer 67 103 0 0
DMA 132 184 0 0
Memory 0 0 1 0
Wrapper 129 75 0 0
Camshift IP 454 5387 0 5

TABLE II
HARDWARE THREAD RESOURCESOVERHEAD

it can be a limitation for the number of reconfigurable slots
into the FPGA.

Timing measurements for the Network Interface are shown
in Table III. Measurements are done on the time to push and
pop a requests in the FIFOs, and the time taken by the NI to
decode the request and process it. Write and Read measures
give the latency to write and read one 32-bit-width word in
an internal memory(ie. a BRAM), connected on the top of the
NoC.

Operation Time (in
cycles)

Push wr. req. by User FSM 6
Pop wr. req. by Packetizer 7
Process wr. req. by Packetizer and DMA 8
Push rd. req. by User FSM 8
Pop rd. req. by Packetizer 9
Process rd. req. by Packetizer and DMA 10
Write (transfer on NoC + process BRAM) 16
Read (transfer on NoC + process BRAM) 21

TABLE III
NETWORK INTERFACECOMMUNICATION MEASUREMENTS

VII. C ONCLUSION AND FUTURE WORK

In this article, we presented a high-level model of compu-
tation dedicated to the heterogeneous Systems-on-Chip. We
intend to propose a full flow in which the low-level hardware
implementation matches with the concept brought by a SDF
model of computation. In this way, a middleware layer has
been added to an existing operating system in order to abstract
the heterogeneity and the location of the different actors of the
application.

A model of hardware actor has been evaluated, which takes
into account, on one hand the advantage provided by the
partial dynamic reconfiguration, and on the other hand the
need of abstraction regarding the model of computation. With
the increase of the FPGA circuits size, intermediate results
reinforce our choice of providing generic interfaces, bothfor
hardware and software actors. Such an abstraction facilitates
the partitioning and also the design exploration of more and
more complex heterogeneous Systems-on-Chip.

In the future work, we will continue to implement the mid-
dleware and the synchronization mechanisms of the hardware
actors.

VIII. A CKNOWLEDGEMENT

FOSFOR is a research project funded by the French Na-
tional Research Agency(ANR). The authors would like to
thank all those who have helped in the realization of this
article.

REFERENCES

[1] T. A. Bishop and R. K. Karne, “A survey of middleware,” inComputers
andTheir Applications, 2003, pp. 254–258.

[2] F. Muller, J. Le Rhun, F. Lemonnier, B. Miramond, and L. Devaux,
“A flexible operating system for dynamic applications,”XCell Journal,
no. 73, pp. 30–34, Nov. 2010.

[3] E. A. Lee, S. Neuendorffer, and M. J. Wirthlin, “Actor-oriented design of
embedded hardware and software systems,”Journalof Circuits,Systems,
andComputers, vol. 12, pp. 231–260, 2003.

[4] L. Verdoscia and R. Vaccaro, “Actor hardware design for static dataflow
model,” in Workshopon MassiveParallelism:Hardware,Software,and
Applications, 1994, pp. 421–430.

[5] H. K.-H. So and R. Brodersen, “Improving usability of fpga-based
reconfigurable computers through operating system support,” in Field
ProgrammableLogic and Applications, 2006. FPL ’06. International
Conferenceon, Aug. 2006, pp. 1 –6.

[6] V. Rana, M. Santambrogio, D. Sciuto, B. Kettelhoit, M. Koester, M. Por-
rmann, and U. Ruckert, “Partial dynamic reconfiguration in amulti-
fpga clustered architecture based on linux,” inParallel and Distributed
ProcessingSymposium,2007. IPDPS 2007. IEEE International , Mar.
2007, pp. 1 –8.

[7] E. Anderson, W. Peck, J. Stevens, J. Agron, F. Baijot, S. Warn, and
D. Andrews, “Supporting high level language semantics within hardware
resident threads,” inField ProgrammableLogic andApplications,2007.
FPL 2007.InternationalConferenceon, 27-29 2007, pp. 98 –103.

[8] E. Lubbers and M. Platzner, “A portable abstraction layer for hardware
threads,” inField ProgrammableLogic and Applications, 2008. FPL
2008. InternationalConferenceon, 8-10 2008, pp. 17 –22.

[9] J. Agron and D. Andrews, “Hardware microkernels for heterogeneous
manycore systems,” inParallel ProcessingWorkshops,2009. ICPPW
’09. InternationalConferenceon, Sep. 2009, pp. 19 –26.

[10] S. Nordstrom, L. Lindh, L. Johansson, and T. Skoglund, “Application
specific real-time microkernel in hardware,” inReal Time Conference,
2005.14th IEEE-NPSS, Jun. 2005, p. 4 pp.

[11] X. Guerin and F. Petrot, “A system framework for the design
of embedded software targeting heterogeneous multi-core socs,” in
Application-specific Systems, Architectures and Processors,2009.
ASAP 2009.20th IEEE InternationalConferenceon, Jul. 2009, pp. 153
–160.

[12] T. Nojiri, Y. Kondo, N. Irie, M. Ito, H. Sasaki, and H. Maejima,
“Domain partitioning technology for embedded multicore processors,”
Micro, IEEE, vol. 29, no. 6, pp. 7 –17, Nov. 2009.

[13] B. Senouci, A. Bouchhima, F. Rousseau, F. Petrot, and A.Jerraya,
“Fast prototyping of posix based applications on a multiprocessor
soc architecture: ”hardware-dependent software orientedapproach”,”
in Rapid System Prototyping, 2006. SeventeenthIEEE International
Workshopon, Jun. 2006, pp. 69 –75.

[14] E. A. Lee and D. G. Messerschmitt, “Synchronous data flow,” in
Proceedingsof the IEEE, vol. 75, no. 9, September 1987, pp. 1235–
1245.

[15] (1988) Rtems. [Online]. Available: http://www.rtems.org/
[16] L. Devaux, D. Chillet, S. Pillement, and D. Demigny, “Flexible commu-

nication support for dynamically reconfigurable fpgas,” inProgrammable
Logic, 2009.SPL. 5th SouthernConferenceon, 1-3 2009, pp. 65 –70.

[17] Y. Cheng, “Mean shift, mode seeking, and clustering,” in IEEE
Transactionon PatternAnalysisandMachineIntelligence , vol. 17, 1995,
pp. 790–799.

[18] (2011) Xilinx ml506 board. [Online]. Available:
http://www.xilinx.com/products/devkits/HW-V5-ML506-UNI-G.htm

[19] (2011) Gaisler research library. [Online]. Available:
http://www.gaisler.com/


