N

N

Dataflow Programming Model For Reconfigurable
Computing
Laurent Gantel, Amel Khiar, Benoit Miramond, Mohamed El Amine

Benkhelifa, Fabrice Lemonnier, Lounis Kessal

» To cite this version:

Laurent Gantel, Amel Khiar, Benoit Miramond, Mohamed El Amine Benkhelifa, Fabrice Lemonnier,
et al.. Dataflow Programming Model For Reconfigurable Computing. 6th International Workshop on
Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC), Jun 2011, Montpellier, France.
pp.1-8, 10.1109/ReCo0S0C.2011.5981505 . hal-00623674

HAL Id: hal-00623674
https://hal.science/hal-00623674

Submitted on 14 Sep 2011

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00623674
https://hal.archives-ouvertes.fr

Dataflow Programming Model For Reconfigurable
Computing

L. Gantet™ and A. Khiaf and B. Miramond and A. Benkhelifa and F. Lemonnidrand L. Kessdl

* ETIS Laboratory — UMR CNRS 8051 T Embedded System Lab
University of Cergy-Pontoise / ENSEA Thales Research arahfelogy
6, avenue du Ponceau 1, avenue Augustin Fresnel
95014 Cergy-Pontoise, FRANCE 91767 Palaiseau, FRANCE
Email {firstname.namg@ensea.fr Emai{firstname.namg@thalesgroup.com

Abstract—This paper addresses the problem of image process- system, such as sockets.
ing algorithms implementation onto dynamically and reconfg- It reduces significantly the work of application programser
urable architectures. Today, these Systems-on-ChifSoC), offer by relieving them of tedious and error-prone programming.

the possibility to implement several heterogeneous procsisg
elements in a single chip. It means several processors, fevarda- Middleware is designed to mask some of the kinds of het-

ware accelerators as well as communication mediums between€rogeneity that programmers of distributed systems muat de
all these components. Applications for this kind of platfom with [2]. It always masks heterogeneity of networks and
are described with software threads, running on processorsand hardware processing units.

specific hardware accelerators, running on hardware partitons. We are interested in the FOSFOR project, by providing

This paper focuses on the complex problem of communication icati the platf h t het
management between software and hardware actors for data- communications on the platiorm, whose components are het-

flow oriented processing, and proposes solutions to leveraghis €rogeneous with dynamic hardware. This is why we set up
issue. a communication protocol between these components. It is

_ _ important to note that, to have a transparent, flexible and
Index Terms—reconfigurable computing, dataflow program- gcajaple platform, its global communication medium must be
ming, hardvyare actors, real-_tlme operating systems, mulpro- defined and take into account this heterogeneity
cessor architectures, FPGA, image processing . X) .

In this article, we propose to follow up the properties
of a data-flow model of computation dedicated to the
heterogeneous Systems-on-Chip from the actor-level down t

Heterogeneous Systems-on-CliSoC)platforms provide the thread implementation. An overview of state of the art is
good performances but are often difficult to program. Fajiven in section Il. Section Ill details the design flow used t
programming efficiency in an industrial context, it would benitigate the complexity of the platform. Section IV desesb
better if the developer can describe its application in @lsin the hardware actor model specified to be implemented at a
language, independently from its future mapping. In thig,walower level. The basis of the communication framework are
we need a homogeneous ARApplication Programmable explained in Section V. Section VI is about first experiments
Interface) and specific operating system services to managad results obtained with a real application.
hardware accelerators with so much flexibility as what is
done with software threads. Using Dynamically and Partial

|. INTRODUCTION

Reconfiguration(DPR) capabilities of the latest Xilin® Il. RELATED WORK
FPGAs, and the future Alied FPGAs, we pose the problem Embedded systems interact with the physical world. Most of
in the context of dynamic hardware threads. these systems include heterogeneous designs that aréicspeci

to an application. Conceptually the distinction betweea th

The needed homogeneous API is defined in the existisgftware and hardware implementations, in a computation
literature as middleware. The most popular definition of point of view, is relative to their degree of concurrency and
middleware is the following: "The middleware is the softeartheir performance limitations. The issue lies in the martoer
that assists an application to interact or communicate wiithentify the appropriate abstraction for representingglubal
other applications, networks, hardware, and/or operatyrsy System.
tems. This software assists programmers by relieving themAmong the dataflow design approaches, the Actor-oriented
of complex connections needed in a distributed system.paradigm offers the abstraction to rise above the hetemien
provides tools for improving quality of servi¢®oS) security, This approach orthogonalizes component definition and com-
message passing, directory services, etc. that can béevisib ponent composition. A tool that refines heterogeneous -actor
the user” [1]. Middleware provides a higher-level absii@tt oriented models into software-based design and hardware-
layer for programmers than API provided by the operatingased program-level description is proposed in [3].

Several other data-flow oriented models of computatidrhe proposed interface has been developed in order to grovid
exist to design heterogeneous systems, but there is a léle& inhomogeneous interface for all applications. Maejima et al.
partitioning of the application into a reconfigurable ptath. [12] presented a hardware module which permits segregation
We propose in this paper to reduce the gap between the higlktween critical and non-critical services to make appbica
level properties of the input specification and the final insafer. Petrot et. al [13] addressed the same issue and pibpos
plementation onto a partially and dynamically reconfigleaba POSIX API running on top of the Mutek operating system.
architecture by defining the notion of reconfigurable sofewaThis layer called Hardware dependent Softwareffers a
and hardware actors. homogeneous API for all the processing elements in the

Verdoscia et. al. [4] already introduced a model of hardwaptatform.
actor, defined in a dataflow graph model, and implemented in
hardware. Each actor was described as a FunctionalBdi,
executing simple operations such as additions, multiptios,
loops and conditionnal instructions. As in the upper leviel o
its model, the execution of this FU was conditioned by two
input tokens and fired one output token. FUs are organized in)
clusters whose communication is based on Message Paséind’esign flow
through shared memories. However, FUs inside the Samer 1\ embedded svstems face increasinalv hiaher perfor-
cluster are connected together with a crossbar to improve Y, enm |)3/ v Di I'I d ingly g bi‘fm:t
latency. mance requirements. Deeply pipelined processor arc

.are being employed to meet desired system performances
involves the definition of a reconfigurable dynamic hardwargend system architects critically need modeling techniques

actor. By reconfigurable, it means a thread, implemented t|cr)1 rapidly design the required platform. So, we propose to

hardware, which has a similar behaviour to a software thre rsduqe the gap bgtween the_|n|t|al system spe_mﬁcatmnlmd t
o . : mal implementation, especially when targeting dynanhycal
To attack this issue, some operating systems which are a|

elgonflgurable architectures. The main idea is to conséme t
to manage both software threads and hardware accelerators _ = . .
- . ~semantic of the components manipulated at high-level when
have been developed. This is the case of BORPH [5], a Linux.. . .
. . réfining the model till the hardware level. The concept, that
based operating system. It offers kernel drivers to cortrel

. . ready exists in the pure software domain with middleware
execution of hardware accelerators. Santambrogio et.]al y P

.) roaches, has been extended to also consider hardware
also present a Linux driver to control ICAP port of the FPGAcgrprlponenté

Thus they can dynamically reconfigure hardware accelerator) . .
Thus, the management of reconfigurable architectures is not

by writing commands in well-known IOCTL registers. lmited i hnical soluti but is cdnsi
Much complex accelerators have then been developed, syfHted to a specific technical solution anymore but Is cdnsi

as Hybrid Thread [7]. In this article, the authors define a mode_redl asa _WZOIE flrom thehtog to the bgttorf?WA Spei;g? abstrac-
of POSIX compliant hardware thread, capable of processifig’ 'ayer is developeda hardware and software middleware)
operating system calls through a shared memory, as softw elation to the semantic of the high-level componentssTh

thread do. In the same way, ReconOS [8] authors present t ayer helps to map the high-level interactions between the

own model, which achieves system calls via an API composgators of a specific gpplication_ onto the abstracted pllan‘or
of VHDL procedures. In both cases, thread behaviour \galso fguhtates_ rapid explpratmn of candidate arattiees
described by a finite state machine for thread state exeﬂ:utiHnder given design constrglnts S.UCh as area, clock freguenc
and the system calls are processed by a software proxy threVer apd performance. Finally, it allows to foresee thart
running on a distant processor. autom_auc generguo_n of actor code.s. _

The drawback of this approach is that it leads to importantAS illustrated inFig. 1, we consider, from high level, a
time overheads. So Hybrid Thread authors realized a hasdwgPherent and interoperable vision of communicating actors
implementation of the synchronization and scheduler sesvi This ab.stractlo.n of communications facilitates the _number
in order to lighten processor load [9]. This solution waalof possible _refmemen_ts into a subsequent abstraction layer
experimented in [10] whergC/OS-1l was extended with hard- (Programs) in the design flow.
ware implementation of few services. At the expanse of someTo achieve this goal, the semantic of the managed com-
hardware resources, this can lead to more efficient plagoriponents is based on the Synchronous DataR®B@&F) model
and takes advantage of the FPGA parallelism capacities. 0f computation(MoC) [14]. Actors description is made from

When programming heterogeneous platforms, differenci#te standard graphical language UNMnified Modeling Lan-
between hardware and software threads have to be hiddengdage)and their interfaces are described using I{li8erface
a virtual layer has to be added. DNA Operating System [1Lpnguage Description)
proposed a component-based system framework. Componentt the higher level we represent each block of the applica-
are described to manage hardware dependent issues suctioagthat performs a specific task by an actor which, receives
endianness, multiprocessor management, memory allogcatiand sends data through virtual channels. Those actors share
synchronizations and exceptions, or task context manageméhe same API of the global virtual platform.

IIl. DATA FLOW PROGRAMMING MODEL FOR
RECONFIGURABLE COMPUTING

Actor-oriented

SDF model
models

—
) VeEmg——-"""""""1
)
Sw Actor
Hw Actor i
VCM
i\ T
: —» Frograms i]

System C
C++ programs

Actor || Actor I

T
Architectural mapping |

a ==l (6]

Heterogeneous
SDF model ”

Hw Actor Sw Actor

0 —-an=Z

RTL
VHDL programs

1N J W T

Executables

FPGA
Configurations

VCM Virtual Channel Manager
— i

? Control
Hw
accelerators

Silicon chips e Data

Micro-
blazes
Leons

Fig. 1. Design flow for reconfigurable data flow applications

Fig. 2. Communications into the platform

an accelerator in a partition of the FPGAAt this level, the
o _ communication between the actor and the rest of the system is
B. Communication semantic managed by using a system call paradigm. An actor can then

We want to virtualize the communications into a disbe associated with the notion of Thread.
tributed heterogeneous embedded Multiprocessor System-o In the context of this project, hardware threads are managed
Chip (MPSoC)platform containing reconfigurable hardwardy a hardware operating syste(flexible HwOS) It takes
computing units. We propose a unified management of tadvantage of the DPR to schedule hardware threads on
communication, implemented both in software and in harthe available partitions, and implements similar servites
ware, that provides the designer a single programming ihardware to those offered by the software operating system.
terface, accessible from the abstract actor layer. Theaglolkxisting services include thread management, semaphore
system is then controlled in a distributed manner by severunters and mailboxes. The flexible HwOS allows hardware
communication managers implemented on each execution utfiteads to process fast system calls without the need to pass
processors and hardware accelerafeez section 1V for more through a software proxy thread [8].
details)

Communication can be respectively homogeneous or het-
erogeneous. The first type is related to communication b¢ Prosessor Processor Processor FPGA
tween two actors implemented simultaneously in the hardwai [GD D) QNG
domain (Hw / Hw) or in the software domairfSw / Sw) =
The second type concerns communication between two actc 1‘ T
implemented separately in two different execution domains
oS,

(Hw / Sw)and (Sw / Hw)
To ensure synchronization and exchange between the e
ments of a platform, two types of transfer are nee(&d.
2):
i) data exchange : each time a calculation block finishes it guratie Paritions
processing on the input data, this data can be passed
the next block for another type of calculation according ‘ @) sotwareTosad () Harduare T
to the principle of synchronous dataflow transfer.
i) state coherency : control information should be excleghg
between the communication managésse section Vin

order to maintain a permanent consistency of the actorsggftware threads are managed by the RTEMS operating

location and states, even during reconfiguration. system(OS) [15]. This OS allows to abstract heterogeneity

using its MultiProcessor Communication Interfa@dPCl).

. Starting from this point, FOSFOR also implements this inter

A. Target architecture face and permits hardware threads to access to any sermices i
The FOSFOR project [2{Flexible Operating System FOrthe system, both software and hardware, in a transparent way

Reconfigurable platform)aims to define a new kind of exe-Moreover, FOSFOR provides virtual channel services which

cution platform. This platform(Fig.3) targets heterogeneousabstract inter-thread communication and memory managemen

applications in the sense that threads could be either amdtw(see Section V)

(running on one of the processorg)r hardwargrunning as

FOSFOR platform

Fig. 3. FOSFOR Architecture

IV. RELOCATABLE HARDWARE ACTOR

B. The generic hardware actor I | O contued s
O Unconfigured state

A hardware actor has been defined to abstract dynami
reconfiguration provided, for instance, in the XilfBxFPGAS.
Thus, it is composed of two main parts : a static part which
contains all the interface with the rest of the system, and ¢
dynamic part, specific to the actor which contains the Finite
State MachindFSM) controlling its execution, its accelerator
and its private memoryrFig. 4).

Running cond_true

preemptible

Waiting
preemptible

syscall_preempt

Running
on-preemptible,

syscall

‘Waiting
non-preemptible

Hardware Thread (HT)

OS interface

systemcall |

User FSM

Accelerator

configure

System FSM

I:I Static modules
D Dynamic modules
” Control signals

cond_true Waiting

Not configured

Fig. 5. Hardware Actor States

V. COMMUNICATION FRAMEWORK

‘?E“f‘—| Memory From the design point of view, this platform is divided into
several interacting layers. The communication management
part is named Middleware and is delimited by the red points
in Fig. 6. It represents the solution for dataflow computation
in the FOSFOR platform. The role of this layer will be

The static part provides an interface to communicate witR transparently execute the high-level actors by virawagj
the operating systenfOS Interface) It is composed of a the access tp the needed operating syster_n services. Thls
standard double port memory in which the thread can write t&nsparency is reached by a standard API which homogenizes
identifier of a system call and its parameters. The call isl ref{1® communication process.
by the operating system via a dedicated bus connectingall th
reconfigurable partitionéFig. 3). Once the system call done, ’
returns values are written back in the memory and are read | | | — | Virtualizationof0s
the thread. This static part also includes a Network Intefa ("~~~ | 9 Services

and allows the thread to communicate with the external worl “) “
through a dedicated Network-on-ChjNoC)[16]. s semes

Fig. 4. Hardware Thread Architecture

Application ‘ Set of Hw/Sw Tasks

Once instantiated by the operating system, the hardwa | Hardware Abstraction Layer ‘ R eRaT e
actor is able to execute four basic commands : start, suspel 3 3
resume and stop. As the actor is located into a dynamical ‘_0 Communication -T’
reconfigurable partition, its state (from an OS point of Jiew orocecsor F—— Architecture
has been specifically defined as described in the finite ste or or rocessors
machine ofFig. 5. As illustrated in this figure, a hardware BEcolnnliihle BEcoliiptiable ~Memories
actor is either preemptible or non-preemptible. In theelatt free frea -Bus, NoC

case, the scheduler can not suspend or move the actor to
another place. To come back to a preemptible state, the actor
notifies it explicitly (blocking system call or call to a specific
primitive). At low-level, the transfer of data between relocatable hard
ware threads is thus ensured by the management of Virtual
The main advantage of a hardware component is its para@]annels. Thus the middleware Offers, both in hardware and
nature. In order to be consistent with the SDF computatiG®ftware, additional services on top of the existing RTOS
properties of the high-level specificatiosee Section 1) Services. Threads can then use these services by subgcribin
we have added the architectural mechanisms that allow fi§eone or more channels. A subscription to one channel allows
actor to support software p|pe||n|ng According to a buffetthreads to be independent from the location of the Others,
management by the User FS[Fig. 4), a hardware actor would thereby bringing closer the specification and its implemen-

Fig. 6. FOSFOR layers

be able to process three actions in parallel: tation.
i) Receive data from the network A. Middleware
if) Compute data stored in its private memory The middleware must provide a set of system features avail-

iif) Send data to the network able to the application to access to the execution resauttees

communication and the memory in a transparent way. System last case corresponds to an asynchronous communication.
features virtualize the OS services and the applicatiorttozm

access those services regardless their physical locaitbmw |, aqdition to the historical services of the OS, the virtual

the platform. This layer can request any service from the Qannel services are currently viewed as additional sesvic

despite their location and the mechanics of invocation. that are mapped on top of the existing OS services beyond
Its role is to enable communication between system rgiose offered by the MPCI layer.

sources ensuripg synchronization. of .data exchange. T.he CONcyrrently the implementation of these services of Vir-
cept of control includes synchronization aspects, sendf 15| Channel is ongoing. It includes ti@penVirtualChannel
receiving events, access to mutual exclusion semaphdes, giimitive, which establishes a point to point communicatio

We identify two types of communications: data transfer arghyyeen actors and determines the type of communication

control transfer. (synchronous or asynchronous). The sending and receiving
services of the middleware VirtualchannelSendand Virtu-

[T) Application =]] alChannelReceivewhich allows sending and receiving mes-
MWL]} e P e sages on the_VC, from memory when copying the contents of
— ¢ Ponuerd requests by Ve transfer, or directly from the thread’s buffer.
Mw2] } Data transfer

The serviceEndCommunicatiors only used by hardware
threads to indicate the end of data transfer to the middiewar
and make threads preemptible again (FSMrigf. 5). Indeed,

Fig. 7. Middleware layers as depicted inFig. 4, unlike software threads, the hardware
threads manage their own local memory and must then inform
the Flexible HWOS of the end of transactions.

The middleWare fOI‘m the Communication medium fOI‘ trans- The serviceCloseVirtualChannegtllows the closure of the
ferring data between two thread, as shownHg. 7. This channel, thus the channel becomes free again for a new
layer is described from two perspectives: the data tramsfer trgansaction.
(MW?2), and the control partMW1).

We took as a starting point the existing middlewares, and
particular the principle of the ORBwhich, in our case, will

[Operating System]

be represented by the notion of Virtual Chan(éC). A VC Memory
is a channel designation indicating a particular virtuatait Laske
on a network that will use the local and the distant service oo
of the couple (OS, Middleware). i "
Two approaches are possible for the communications of tl M Queue
homogeneous type: __— ¢ ulo|
a- The first one corresponds to a synchronous communicati e R ° "
when the sender and the receiver are present during t " — .
communication. In this case, the exchange or transmissi | | L— o

of data is done by directly sending data packets fror —ff

transmitter to receiver. In this case we define the notior
of VirtualChannelSend VirtualChannelReceiveand the
synchronization of the exchange and the reservation ..
resources necessary for communication.

b- The second type of communication occurs when one
thread is not present (preempted or relocated) in the
system at the time of communication. Each call to a service available on this platform requires to

update the Virtual Channel tables, distributed both in hare
From the latter case, there are then two possible scenariasd software, onto the FOSFOR architect(fg. 8). This
i) The current thread waits for the other one. However whé&@ntrol flow is managed by the middleware on top of the
a timeout (proposed as a service parameter) is reachBg@ssage queue service of the underlying RTEI§. 9 shows
the control is handed back to the system through tti@e attributes of the services and the return value of each of
middleware, so that it continues its normal execution. them.

i) The middleware stores temporarily data in global

memory and shares it in order to free resourcds Network interface

from the first thread once the copy is complete. This The Network InterfacgNl) is the static interface of the Hw
Thread(Fig. 4). It is connected to a dedicated Network-on-
LObject Request Broker Chip (NoC)16] implemented, in order :

Fig. 8. Middleware communication

Services | Parameters Return Value

OnenvirtigiChannall | [A.VC) @Sic, @DestNB\Dest, | Eiror code memory or another kind of peripheral. The second is reading
Bisak) data from another element. In the case of a passive element,
SendVirtualChannel (id_VC, Buffer_Send, Size, Timeout) Error code . .
such as a memory, a special packet has been defined to allow
ReceiveVirtualChannel (id_VC, Buffer_Receive, size) Error code read operation in two phases : one request from the thread and
EndCommunication None None an answer from the memory'

The protocol adopted for the network has been thought
to provide these two features in a transparent way for the
Fig. 9. Virtual Channels services developer. Moreover, additional data constitute the heatle
a packet, and make possible the routing of a packet between
the hardware domaifie. the NoC) and the software domain

. . L ie. the AMBA bus)via a bridge able to understand this
i) to offer a fast medium of communication between th rotocol (See Fig. 3)

hardware threads
i) to ensure them a way of communication with the
software threads VI. EXPERIMENTS
A. Image processing application

This interface provides two low-level services, namely a The application deployed on the FOSFOR platform
procedure to send data from the thread's private memoryito a target tracking application represented Hig. 11

the NoC, and another to receive data from the NoC and writdis application is responsible for detecting, trackingd an

it into the same memory. Especially, this network has beeacognizing targets existing in an infrared input video
designed to support bi-directional transactions, and koval stream. The spatial resolution is 640x480 pixels by frame,
to implement efficient software pipelining mechanismsdesi and acquisition frequency at the output of the camera is 25 Hz
the hardware threads.

CloseVirtualChannel (id_VvC) Error code

NI architecture is shown irFig. 10. Two FIFOs allow >t R
the User FSM to stack Send and Receive requests. These i

requests are then respectively processed by a Packetider an
a Depacketizer. A DMA connected to the internal memory of [fusten
the actor, is driven on one hand by the Packetizer to read datg
in memory and send it through the NoC. On the other hand, -

the Depacketizer receives data from the NoC and writes it —
into the internal memory. =T s

0

Y

Connected
Detection |-=>TI[--- ;:r::pzrr'"e::l - =TI+ = Incrustation
age m_UpdateBE g A m Inerustefistc)
isi
s

AR

[—@port ' em I Shared memory
[} @butter, H —= signal
re i TT Message
User]—’Crecei‘l/; ‘;\ ;]
FSMI- = Fig. 11. Target Tracking Application
Fn duty . Packetizer Depacketizer
Application is divided into four static actors, and a dynami
- neaamI Ineauers one. The first actor of the static part corresponds to the
[i] acquisition of the data from the camefAcquisition) It is
T followed by another one for the detection of the targets
< Nemmfm_cmp > (Detection) The third actor gets the results from the tracking
actors and ensures the coherency within a list of the current
Fig. 10. Network Interface architecture tracked targetfCCM). A last actor asks for this list and

displays the encompassing square of each target into the inp
image (Incrustation)

Elements connected to the NoC communicate through it byThe dynamic part of the application corresponds to the
sending data packets over the network. A protocol has beesaicking actor, responsible for maintaining the coordisadf
specified and implemented to provide two main features tooae of the target detected in the viddoacking)by computing
thread. the Continuously Adaptive Mean shift (camshift) algorithm

The first one consists in writing data to an element cofit7]. As a result, they provide to the CCM actor the bounding
nected to the NoC. This element can be another threadb@x coordinates of the target they are tracking.

B. Application partitioning

Application has been ported first on a monoprocessor
platform based on the Leon/SparcV8, running at 80 MHz on
a V55X50 FPGA.Table | shows the timing results for the

detection actor which is the most time consuming.

start_init

done_init control

Controller
start_compute Camshift
User

FSM data_size

data

done_compute

N

Function without FPU @ 80| with FPU @ 80 MHz

MHz (in ms) (in ms) Memory
ghv_filter 18412.062 623.187
Roberts 13559 354.16
Local Maximums | 3234.562 367.25 Fig. 12. Wrapper Camshift
Tresholding 91 91
Closing 14297.562 14298.375
Labelling 515.937 5135
LimiteLabels 98.312 96.687 D. App”cation dep|0yment
LocateRegions 143.812 138.125
Total 58736.43 16720.43 In order to map the dataflow model onto this target archi-

tecture, hardware actors have to support software pipefini
TABLE |

One solution to achieve this goal is to make the synchroniza-
tion explicit between the NI Packetizer component, the NI
Depacketizer component and the accelerator, into the stque

Some parts of the application are well suited to b’é‘ request will be composed of the information needed by the

implemented in hardware, such agv filter and closing component to process the request, plus additional infoomat
' " out its synchronization with the other componé€htg. 13).

operator. However, in the delay of the project, we cho . S ; SN
b WEVer, | y prol W %?Jch a view fits into the dataflow model in which input tokens

to not focus on the timing performance, and privilege th ted and h d bet th hronizat
demonstration of the dynamic management provided by t ¢ generated and exchanged between the synchronization
modules, regarding the requests instructions.

platform.
Finally, the detection parts are deported on a standard PC

SOFTWARE IMPLEMENTATION TIMING

and connected to the FPGA through an Ethernet link. Thus, [~ | perams [/FrOremess L pre gm—
the hardware part of the application consists in the differe AR PN | ol uuy o o
tracking actors which will be created dynamically depegdin O";\%‘i iemestant
of the number of detected targets. ch —
params FIFO requests i L, params ———=
C. Hardware implementation e RO | i e o

Sync. Controller

The software OS is RTEMS, which allows the communication
between the two LEON3 processors [19]. e

The Camshift algorithm is divided into four steps. In the done
first step, it is waiting for a new image to process. Then it
receives the frame of the image. In the third step, it prozess
the centroid of the target. Finally, when receiving the last
data of the frame, it indicates if the target has been detecte
The developed Camshift IRFig. 12) is a dataflow IP
encapsulated into the hardware actor containeFigf 4. A
start signal indicates the beginning of a new frame. After
starting, it consumes pixels corresponding to the frame andCurrently, the hardware thread model has been developed
so, tracks a target into the frame calculating the centréid and integrated to the NoC and to the HwO@ble 1l shows
the target. Once it receives the end signal, it delivers alttesthe FPGA resources used by the components needed to en-
This result is the coordinates of the centroid and indicateapsulate the dataflow IP. Synchronization module is under
the processing convergence. development and will be integrated soon.

Adding the hardware reconfigurable container to the IP is

The control of the IP is decoupled into two channels. Thaot free, it represents a 13% overhead of the LUTs, and a
first one is used to start and stop the processing. The secd®@% overhead of the registers for the small camshift accele
one to get data to process from the private memory. Aftator. However the major pa(static) of this container will be
processing, results are sent in an internal buffer whichlvél reused by the other reconfigurable actors and remains a poor
transfered on the NoC afterwhile. percentage of the resources available in the current FP@GA. Y

FIFO requests arams

User ‘1_
For the demonstrator, we choose the ML506 board [18]. | ™" @,:

done

Synchrunl zation Module |

Fig. 13. Synchronization modules

ggmﬁ]‘zgff';tce ?F’{Seg'gers ZfTS ?RAMS gSPS VIIl. A CKNOWLEDGEMENT
System FSM 4 6 0 0 FOSFOR is a research project funded by the French Na-
’;'gé":g{l';;: ?gg ggz 8 8 tional Research AgencyANR) The authors would like to
Depacketizer &7 103 0 0 thank all those who have helped in the realization of this
DMA 132 184 0 0 article.
Memory 0 0 1 0
Wrapper 129 75 0 0 REFERENCES
Camshift IP 454 5387 0 5 . .

amshi [1] T. A. Bishop and R. K. Karne, “A survey of middleware,” @omputers

and Their Applications, 2003, pp. 254-258.
TABLE Il [2] F. Muller, J. Le Rhun, F. Lemonnier, B. Miramond, and L.\vRaax,

HARDWARE THREAD RESOURCESOVERHEAD “A flexible operating system for dynamic application¥Cell Journal,

no. 73, pp. 30-34, Nov. 2010.
[3] E.A. Lee, S. Neuendorffer, and M. J. Wirthlin, “Actoriented design of
embedded hardware and software systedwmjinalof Circuits, Systems,
it can be a limitation for the number of reconfigurable slots —andComputers, vol. 12, pp. 231-260, 2003.
. [4] L. Verdoscia and R. Vaccaro, “Actor hardware design fiatis dataflow
'nto_ th_e FPGA. model,” in Workshopon MassiveParallelism:Hardware, Software,and
Timing measurements for the Network Interface are shown Applications, 1994, pp. 421-430.

in Table 1ll. Measurements are done on the time to push anl§l H. K.-H. So and R. Brodersen, “improving usability of fphased

. . reconfigurable computers through operating system support-ield
pop a requests in the FIFOs, and the time taken by the NI to ProgrammableLogic and Applications, 2006. FPL '06. International

decode the request and process it. Write and Read measuresConferenceon, Aug. 2006, pp. 1 —6.
give the latency to write and read one 32-bit-width word inl6] V. Rana, M. Santambrogio, D. Sciuto, B. Kettelhoit, M. é&ter, M. Por-

. . rmann, and U. Ruckert, “Partial dynamic reconfiguration imalti-
an internal memorﬂe. a BRAM) connected on the top of the fpga clustered architecture based on linux,”Harallel and Distributed

NoC. ProcessingSymposium,2007. IPDPS 2007. IEEE International, Mar.
2007, pp. 1 -8.
Operation Time (in [7] E. Anderson, W. Peck, J. Stevens, J. Agron, F. Baijot, SrnjVand
cycles) D. Andrews, “Supporting high level language semantics iwittardware

Push wr. req. by User FSM 6 resident threads,” ifrield Programmablé.ogic and Applications,2007.
Pop wr. req. by Packetizer 7 FPL 2007. InternationalConferenceon, 27-29 2007, pp. 98 —103.
Process wr. req. by Packetizer and DMA| 8 [8] E. Lubbers and M. Platzner, “A portable abstraction fafgr hardware
Push rd. req. by User FSM 8 threads,” inField Programmablelogic and Applications, 2008. FPL
Pop rd. req. by Packetizer 9 2008. InternationalConferenceon, 8-10 2008, pp. 17 —22.
Process rd. req. by Packetizer and DMA| 10 [9] J. Agron and D. Andrews, “Hardware microkernels for hegeneous
Wiite (transfer on NoC + process BRAM) | 16 manycore systems,” ifParallel ProcessingWorkshops,2009. ICPPW
Read (ransfer on NoC + process BRAM) | 21 '09. InternationalConferenceon, Sep. 2009, pp. 19 —26.

[10] S. Nordstrom, L. Lindh, L. Johansson, and T. Skoglunspplication
specific real-time microkernel in hardware,” Real Time Conference,
2005. 14th IEEE-NPSS, Jun. 2005, p. 4 pp.

[11] X. Guerin and F. Petrot, “A system framework for the desi
of embedded software targeting heterogeneous multi-coms,”s in
Application-specific Systems, Architectures and Processors,2009.
ASAP 2009. 20th IEEE InternationalConferenceon, Jul. 2009, pp. 153

VII. CONCLUSION AND FUTURE WORK -160.

In thi ticl ted a high-| | del of 1512] T. Nojiri, Y. Kondo, N. Irie, M. Ito, H. Sasaki, and H. Mfma,
n this article, we presented a high-level model of COmpu- = «pomain partitioning technology for embedded multicoregessors,”

tation dedicated to the heterogeneous Systems-on-Chip. We Micro, IEEE, vol. 29, no. 6, pp. 7 =17, Nov. 2009.
intend to propose a full flow in which the low-level hardwaré'3] FF- Stenouz:l,t A. BOUfChh'”!a’ bF' Rgussel"?‘uvt_F- Petrot, a”dllg_‘;:;’a'
. . . ast prototyping of posix based applications on a mu or
implementation maFCheS W'th the Concept brought by a SDF soc architecture: "hardware-dependent software oriemteproach”,”
model of computation. In this way, a middleware layer has in Rapid System Prototyping, 2006. SeventeenthEEE International
been added to an existing operating system in order to &bstra Workshopon, Jun. 2006, pp. 69 —75. _
the heterogeneity and the location of the different actbih® [14] E. A Lee and D. G. Messerschmit, "Synchronous data flaw

R g ty o Proceedingsof the IEEE, vol. 75, no. 9, September 1987, pp. 1235—
application. 1245.

A model of hardware actor has been evaluated, which takés (L19§3) Rteﬂés-c[glf;"peé- ';_/I?"ab'eti htt%i/g'vvl‘/)w-”?mwéﬁ b

. . . pevaux, D. liet, S. Plllement, an . pemigny, e commu-
|nt0.account, _On one .hand_the advantage prowded by nication support for dynamically reconfigurable fpgas,Pimgrammable
partial dynamic reconfiguration, and on the other hand the Logic, 2009. SPL.5th SouthermConferenceon, 1-3 2009, pp. 65 —70.
need of abstraction regarding the model of computationnWi7] Y. Cheng, “Mean shift, mode seeking, and clusteringi’ IEEE

] g ;]]] Transactioron PatternAnalysisandMachinelntelligence, vol. 17, 1995,
the increase of the FPGA circuits size, intermediate result PP, 790799,
reinforce our choice of providing generic interfaces, bfath [18] (2011) Xiinx ~ mI506 board. [Online]. Available:
hardware and software actors. Such an abstraction faedita | ?2“631//‘)'VWW->(<3i"UX|-ComlpmduCtS:]dEVkilt_Z/HW'V5"\["C')-5I(_J5”]\'"G-htm b

fe . . 11 aisler researc ibrary. nline]. Available
the partitioning and also the design explorauo_n of more a hitp:/www.gaisler.com/
more complex heterogeneous Systems-on-Chip.
In the future work, we will continue to implement the mid-

dleware and the synchronization mechanisms of the hardware

actors.

TABLE Il
NETWORK INTERFACECOMMUNICATION MEASUREMENTS

