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R. Ghezzi†, F. Jean‡
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Abstract

The main motivation of this paper arises from the study of Carnot–Carathéodory spaces,
where the class of 1-rectifiable sets does not contain smooth non-horizontal curves; therefore
a new definition of rectifiable sets including non-horizontal curves is needed. This is why we
introduce in any metric space a new class of curves, called continuously metric differentiable of
degree k, which are Hölder but not Lipschitz continuous when k > 1. Replacing Lipschitz curves
by this kind of curves we define (Hk, 1)-rectifiable sets and show a density result generalizing
the corresponding one in Euclidean geometry. This theorem is a consequence of computations
of Hausdorff measures along curves, for which we give an integral formula. In particular, we
show that both spherical and usual Hausdorff measures along curves coincide with a class of
dimensioned lengths and are related to an interpolation complexity, for which estimates have
already been obtained in Carnot–Carathéodory spaces.
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4 (Hk, 1)-rectifiable sets and a density result 17

1 Introduction

The main motivation of this paper arises from the study of Carnot–Carathéodory spaces. Recall
that such a metric space (M,d) is defined by a sub-Riemannian manifold (M,D, g), where M is
a smooth manifold, D a subbundle of TM and g a Riemannian metric on D. The absolutely
continuous paths which are almost everywhere tangent to D are called horizontal and their length
is obtained as in Riemannian geometry integrating the norm of their tangent vectors. The distance
d is defined as the infimum of length of horizontal paths between two given points.

By construction, only horizontal paths may have finite length and may be Lipschitz with respect
to the distance. In contrast to the Euclidean case, both properties are independent on the regularity:
all smooth non-horizontal paths have infinite length and are not Lipschitz. This gives rise to two
kind of questions.

The first query concerns the measure of non-horizontal paths: what kind of notion is the best
suited? One of our motivation is that, from an intrinsic point of view, computing measures of paths
should allow to determine metric invariants of curves and thus recover metrically the structure of
the manifold [14]. Since non-horizontal paths have a metric dimension greater than one (see [17]),
Hausdorff measures are the most natural candidates. However they pose two problems: first they
can hardly be computed (except for specific cases [1]), second they do not appear as integrals along
the path, which is what we expect for a measure generalizing the notion of length.

The second question comes from geometric measure theory. A typical problem in this field is
whether it is possible to characterize the geometric structure of a set using only measures. This
gave rise to the notion of rectifiable sets, which is based on Lipschitz functions, and to density
results in Euclidean (see [6, 9, 24] and [21] for a complete presentation) and general metric spaces
[18]. In the context of Carnot–Carathéodory spaces rectifiable sets have been studied in Heisenberg
groups (see [11, 22]) and a different notion of rectifiability was proposed in [19]. However, in these
spaces the class of Lipschitz paths is quite poor and does not include non-horizontal smooth curves
which consequently are not rectifiable in the usual sense. To take into account the latter curves
we need to define rectifiability through a larger class of paths, intrinsically characterized by the
distance.

In this paper we address these issues in any metric space, not only in Carnot–Carathéodory
ones, by defining a class of curves in the spirit of ([2, 18]). Namely, we introduce curves on a metric
space (M,d) that are continuously metric differentiable of degree k (m-C1

k for short) as continuous
curves γ : [a, b] → M such that the map

t 7→ measkt (γ) =

(
lim
s→0

d(γ(t+ s), γ(t))

|s|1/k
)k

is well-defined and continuous (see Definition 1). In an Euclidean space, this definition is useless
since the class of m-C1

k curves with non-zero measure is empty when k > 1 (see Proposition 2).
However, in the sub-Riemannian context, for integer values of k this class of curves contains some
smooth non-horizontal paths (see Proposition 1).

For m-C1
k curves we can compute different kind of measures. First, we examine the Hausdorff

measures: the usual ones Hk and the spherical ones Sk. Second, we study the k-dimensional length
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of a curve γ : [a, b] → M introduced in [8] and defined by

Lengthk(γ([a, b])) =

ˆ b

a
measkt (γ)dt.

Third, we consider a measure based on approximations by finite sets called interpolation complexity
(see [13, 16]). The first result of the paper (Theorem 1) states that for an injective m-C1

k curve
γ : [a, b] → M we have

Hk(C ) = Sk(C ) = Lengthk(C ),

where C = γ([a, b]). It also provides a relation betweenHk(C ) and the interpolation complexity. On
the one hand, Theorem 1 gives an integral formula for the Hausdorff measure. On the other hand,
it essentially implies that the considered measures are equivalent. Another interesting property
of injective m-C1

k curves with non-zero k-dimensional measure is that the k-dimensional density of
Hk⌊C exists and is constant along the curve (see Proposition 3).

We define (Hk, 1)-rectifiable sets as sets that are covered, up toHk-null sets, by countable unions
of m-C1

k curves (see Definition 3). This notion is modeled on the definition of (Hk, k)-rectifiable sets
in R

n, which are sets that are covered, up to Hk-null sets, by countable unions of image of C1 maps
from R

k to R
n. Thanks to the properties of m-C1

k curves, we show a density result for sets that are
rectifiable according to our definition. Namely, the second main theorem of the paper (Theorem 2)
states that if a set S is Hk-measurable and satisfies Hk(S) < +∞, then being (Hk, 1)-rectifiable
implies that the upper and lower densities of Hk⌊S are bounded by positive constants.

Theorem 2 is inspired by the result proved in Federer [10, Th. 3.2.19], which states that for
a Hk measurable subset E of the Euclidean n-space (Hk, k)-rectifiability implies that the measure
Hk⌊E has k-dimensional density equal to 1 at Hk-almost every point of E. The converse of this
fact was proved for k = 1 and for a general measure µ in [23]. Much later, Preiss showed not only
that the converse holds true for any k, but also a stronger result: there exists a constant c > 1
(depending only on n and k) such that if

0 < lim sup
r→0+

µ(E ∩B(x, r))

rk
≤ c lim inf

r→0+

µ(E ∩B(x, r))

rk
< +∞, for a.e. x ∈ E,

then E is (µ, k)-rectifiable. Our Theorem 2 implies that an estimate of the type above is satisfied
by (Hk, 1)-rectifiable sets. An open question is whether an analogous of Preiss’ result still holds in
non-Euclidean metric spaces with our definition of (Hk, 1)-rectifiability.

Another open problem is to show a Marstrand’s type result (see [20, Th. 1]) for (Hk, 1)-rectifiable
subsets, at least in Carnot–Carathéodory spaces. In Section 2.2 we construct m-C1

k curves in sub-
Riemannian manifolds having nonzero k-dimensional measure for integer values of k ≥ 1. When the
curve is absolutely continuous, it is easy to see that being m-C1

k with non-vanishing k-dimensional
measure implies that k is an integer (see Corollary 1). The question is whether such result holds
true without assuming absolute continuity.

The structure of the paper is the following. In Section 2 we give the definition of m-C1
k curves in

metric spaces and construct them in Carnot–Carathéodory spaces. We then study measures along
curves. In Section 3.1 we recall different notions of measures. In Section 3.2 we show an auxiliary
result for m-C1

k injective curves with nonzero k-dimensional measure. In Section 3.3 we analyse
m-C1

k curves in (the Euclidean space or a) Riemannian manifold. The main theorem concerning
injective m-C1

k curves is proved in Section 3.4. Some possible generalizations to non m-C1
k curves
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are discussed in Section 3.5. Finally, in Section 4 we define (Hk, 1)-rectifiable sets and prove the
density result.

2 m-C1
k curves

Throughout the paper (M,d) denotes a metric space.

2.1 Definitions

Let γ : [a, b] → M be a continuous curve, where a, b ∈ R, and let k ≥ 1 be a real number.

Definition 1. We say that γ is m-differentiable of degree k at t ∈ [a, b] if the limit

lim
s→0

t+s∈[a,b]

d(γ(t+ s), γ(t))

|s|1/k (1)

exists and is finite. In this case, we call this limit the metric derivative of degree k of γ at t and
we define moreover the k-dimensional infinitesimal measure of γ at t as

measkt (γ) =


 lim

s→0
t+s∈[a,b]

d(γ(t+ s), γ(t))

|s|1/k




k

.

When γ is not m-differentiable of degree k at t we set measkt (γ) = +∞.

For the case k = 1, the notion of metric derivative is classical, see [3, Def. 4.1.2]. The k-
dimensional infinitesimal measures of curves were introduced in the context of sub-Riemannian
geometry in [8].

Note that if γ is m-differentiable of degree k at t then, for any k′,

lim
s→0

t+s∈[a,b]

d(γ(t+ s), γ(t))

|s|1/k′ = lim
s→0

t+s∈[a,b]

1

|s|1/k′−1/k

d(γ(t+ s), γ(t))

|s|1/k .

Therefore, for any k′ > k, meask
′

t (γ) = 0. If moreover measkt (γ) > 0, then for any k′ < k
meask

′

t (γ) = +∞.

Definition 2. Given k ≥ 1, we say that γ is differentiable of class m-C1
k on [a, b] (m-C1

k for short)
if for every t ∈ [a, b] the curve is m-differentiable of degree k at t and the map t 7→ measkt (γ) is
continuous.

Clearly, γ is m-C1
k if and only if the limit in (1) exists and depends continuously on t.

We shall see in the next section that when a smooth structure on M exists, m-C1
k curves need

not be differentiable in the usual sense. The following lemma states that they are Hölder continuous
of exponent 1/k as functions from an interval to the metric space (M,d).

Lemma 1. Let γ : [a, b] → M be m-C1
k on [a, b], k ≥ 1. For any t and t+ s in [a, b],

d(γ(t), γ(t + s)) = |s|1/k(measkt (γ)
1/k + ǫt(s)), (2)

where ǫt(s) tends to zero as s tends to zero uniformly with respect to t.

This is a direct consequence of the continuity of t 7→ measkt (γ) on the compact interval [a, b].
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2.2 Construction of m-C1
k curves

In this section we consider a class of metric spaces which are also smooth manifolds and construct
smooth m-C1

k curves on them with non-vanishing metric derivative of degree k for some integer
values of k. The analysis of this class of spaces is the main motivation of this paper.

Let (M,d) be a metric space defined by a sub-Riemannian manifold (M,D, g), i.e., M is a
smooth manifold, D a subbundle of TM , g a Riemannian metric on D, and d is the associated sub-
Riemannian distance. We assume that Chow’s condition is satisfied: let Ds denote the R-linear
span of brackets of degree < s of vector fields tangent to D1 = D; then, at every p ∈ M , there
exists an integer r = r(p) such that Dr(p)(p) = TpM , that is,

{0} ⊂ D1(p) ⊂ D2(p) ⊂ · · · ⊂ Dr(p)(p) = TpM. (3)

Let A ⊂ M . A point p ∈ A is said A-regular if the sequence of dimensions ni(q) = dimDi(q),
i = 1, . . . r(q) remains constant for q ∈ A near p, and A-singular otherwise. The set A is said
equiregular if every point of A is A-regular. A curve γ : [a, b] → M is equiregular if γ([a, b]) is
equiregular.

Proposition 1. Let γ : [a, b] → M be an equiregular curve of class C1 and k ∈ N such that
γ̇(t) ∈ Dk(γ(t)) for every t ∈ [a, b]. Then γ is m-C1

k on [a, b].
If moreover γ̇(t) /∈ Dk−1(γ(t)) for a given t ∈ [a, b] then measkt (γ) 6= 0.

The proof of this proposition is based on the notions of nilpotent approximation and privileged
coordinates (see [5]) and some results in [8]. We do not give the complete argument, but only the
underlying ideas. All the facts that here are simply claimed are already established and complete
proofs can be found in the cited literature.

Sketch of the proof. Since γ([a, b]) is equiregular, the integers wi defined by

wi = j, if nj−1(γ(t)) < i ≤ nj(γ(t)), i = 1, . . . , n,

do not depend on t. We define for s ≥ 0 the dilation δs : R
n → R

n by

δsz = (sw1z1, . . . , s
wnzn).

Moreover, locally there exist n vector fields Y1, . . . , Yn whose values at each γ(t) form a ba-
sis of Tγ(t)M adapted to the filtration (3) at γ(t), in the sense that, for every integer i ≥ 1,
Y1(γ(t)), . . . , Yni(γ(t)) is a basis of Di(γ(t)). The local diffeomorphism

x ∈ R
n 7→ exp(xnYn) ◦ · · · ◦ exp(x1Y1)(γ(t))

defines a system of coordinates φt : q 7→ x = (x1, . . . , xn) on a neighborhood of γ(t), satisfying
φt(γ(t)) = 0. Following [5, Sec. 5.3], there exists a sub-Riemannian distance d̂t on R

n such that

• d̂t is homogeneous under the dilation δs, i.e., d̂t(δsx, δsx
′) = sd̂t(x, x

′) for all s ≥ 0, x, x′ ∈ R
n;

• when defined, the mapping t 7→ d̂t(φ
t(q), φt(q′)) is continuous;

• for q in a neighborhood of γ(t), d(γ(t), q) = d̂t(0, φ
t(q))(1+ ǫt(d̂t(0, φ

t(q)))), where ǫt(s) tends
to zero as s tends to zero uniformly with respect to t.
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The coordinates φt are privileged at γ(t) and the distance d̂t is the sub-Riemannian distance
associated with a nilpotent approximation at γ(t).

Set φt(γ(t)) = (γ1(t), . . . , γn(t)). By the construction in the proof of [8, Le. 12], the limit

lim
s→0

t+s∈[a,b]

δ|s|−1/kφt(γ(t+ s))

exists at every t and is equal to x(t) = (x1(t), . . . , xn(t)), where

xj(t) =

{
0, wj 6= k
γ̇j(t), wj = k.

Using the properties of d̂t, we have

lim
s→0

d(γ(t+ s), γ(t))

|s|1/k = lim
s→0

d̂t(φ
t(γ(t+ s)), 0)

|s|1/k = lim
s→0

d̂t(δ|s|−1/kφt(γ(t+ s)), 0) = d̂t(x(t), 0).

As a consequence, measkt (γ) exists and is equal to d̂t(x(t), 0)
k. Since the components of x(t) are

continuous and the distance d̂t depends continuously on t, γ is m-C1
k. If moreover γ̇(t) /∈ Dk−1(γ(t))

for a given t ∈ [a, b] then x(t) 6= 0, whence measkt (γ) 6= 0. �

Let us explain the construction in Proposition 1 through an example.

Example 1. Consider the Heisenberg group, that is, the sub-Riemannian manifold (R3,D, g) where
D is the linear span of the vector fields

X1(x, y, z) = (1, 0,−y/2), X2(x, y, z) = (0, 1, x/2),

and g = dx2+dy2. Denote by d the Carnot–Carathéodory distance associated with the Heisenberg
group. Recall that d is homogeneous with respect to the dilation

δλ(x, y, z) = (λx, λy, λ2z), λ ≥ 0.

and it is invariant with respect to the group law

(x, y, z) ∗ (x′, y′, z′) =
(
x+ x′, y + y′, z + z′ +

1

2
(xy′ − x′y)

)
.

Moreover, for each point (x, y, z) ∈ R
3, D2(x, y, z) = R

3 as [X1,X2](x, y, z) = (0, 0, 1).
Let γ(t) = (0, 0, t), for t ∈ R. Then γ is of class m-C1

2 and meas2t (γ) is a positive constant.
This is a consequence of Proposition 1 as γ is smooth and, for all t ∈ R, γ̇(t) ∈ D2(γ(t)). Let
us compute explicitly meas2t (γ). Notice first that d(γ(t + s), γ(t)) = d((0, 0, s), (0, 0, 0)), since
d is invariant with respect to the group law. Hence, using the homogeneity of d and the fact
d((0, 0, 1), 0) = d((0, 0,−1), 0),

lim
s→0

d(γ(t + s), γ(t))

|s|1/2 = lim
s→0

d((0, 0, s), 0)

|s|1/2 = d((0, 0, 1), 0) = 2
√
π,

the value of the distance resulting from an isoperimetric problem. Note that such a computation
can be generalized to any contact sub-Riemannian manifold, see [8, Th. 22].
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Remark 1. Note that the equiregularity assumption is essential to obtain the continuity of d̂t and
φt with respect to t. In particular the proof of [8, Le. 12] is not valid without this hypothesis1.
This assumption has also an intrinsic meaning. Indeed it is shown in [8] that the k-dimensional
measure measkt (γ) can actually be defined through the distance on the metric tangent space to
(M,d) at γ(t). Since the metric tangent space does not vary continuously with respect to t around
C -singular points, where C = γ([a, b]), in general non equiregular curves may not be m-C1

k.

Note that for every integer k ∈ {1, . . . , r(p)}, where p is regular, there exist C1 equiregular
curves with tangent vector belonging to Dk \Dk−1. As a consequence, for such integers k the class
of m-C1

k curves with non-vanishing metric derivative of degree k is not empty. For instance, this is
the case in the Heisenberg group for k = 2, and in the Engel group (see below) for k = 2, 3. On the
contrary, the next proposition states that in the Riemannian case, i.e., when D = TM , the class of
m-C1

k curves with non-vanishing derivative is empty except for k = 1 (the proof of Proposition 2 is
postponed to Section 3.3).

Proposition 2. Let (M,g) be a Riemannian manifold. Let k ≥ 1 and assume that γ : [a, b] → M
is a m-C1

k curve such that t 7→ measkt (γ) does not vanish identically. Then k = 1.

Let γ : [a, b] → M be of class m-C1
1 and such that meas1t (γ) 6= 0 for every t ∈ [a, b]. Then γ

is horizontal, i.e., it is absolutely continuous and γ̇(t) ∈ D1(γ(t)) almost everywhere on [a, b]. To
see this, remark that by construction, γ is Lipschitz with respect to the sub-Riemannian distance.
The metric g defined on D can be extended (at least in a tubular neighbourhood of γ([a, b])) to
a Riemannian metric g̃ on TM . In this way we obtain a Riemannian distance on M which is
not greater than the sub-Riemannian distance. Hence γ is Lipschitz with respect to the chosen
Riemannian distance which in turn implies that γ is absolutely continuous. Therefore, by [7, Pr.
5] γ is horizontal, i.e., γ̇(t) ∈ D1(γ(t)) almost everywhere on [a, b].

Using Proposition 1, this fact can be partially generalized to the case k > 1 under the following
form.

Corollary 1. Let k ≥ 1 and let γ : [a, b] → M be equiregular and of class m-C1
k, with measkt (γ) 6≡ 0.

If γ is absolutely continuous, then k is the smallest integer m such that γ̇(t) ∈ Dm(γ(t)) almost
everywhere.

In particular Corollary 1 states that if measkt (γ) 6≡ 0 then k is an integer, provided that γ is
absolutely continuous. An open question is whether the latter condition is necessary. If this were
not the case then we would obtain a Marstrand’s type Theorem [20, Th. 1] for m-C1

k curves: indeed
we shall see in Proposition 3 that along injective m-C1

k curves with non-vanishing k-dimensional
measure the density of Hk exists and is constant.

Nevertheless, a m-C1
k curve need not be C1 in the usual sense as it is shown below.

Example 2. Consider the Engel group, that is, the sub-Riemannian manifold (R4,D, g) where D is
the linear span of the vector fields

X1(x, y, z, w) = (1, 0, 0, 0), X2(x, y, z, w) = (0, 1, x, x2/2),

and g = dx2 + dy2. Let γ(t) = (0, 0,W (t), ϕ(t)), where ϕ ∈ C1 and W is the Weierstrass function

W (t) =
∞∑

n=0

αn(cos(βnπt)− 1), t ∈ R,

1The statement of Lemma 12 in [8] is incorrect. Indeed without equiregularity formula (3) therein does not hold.
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where 0 < α < 1, β > 1, and αβ > 1 see [25]. It was proved in [15] that W (t) is continuous,
nowhere differentiable on the real line, and satisfies

W (t+ h)−W (t) = O(|h|ξ), ξ =
log(1/α)

log β
< 1, (4)

uniformly with respect to t ∈ R. Then, choosing α, β such that ξ > 2/3, γ is continuous and m-C1
3 ,

but nowhere differentiable. Indeed, it is not hard to verify that the sub-Riemannian distance d
satisfies the following homogeneity property

λd((0, 0, z̄, w̄), (0, 0, z, w)) = d(0, (0, 0, λ2(z − z̄), λ3(w − w̄))),

for every λ ≥ 0. Then we have

lim
s→0

1

|s|1/3 d((0, 0,W (t), ϕ(t)), (0, 0,W (t + s), ϕ(t+ s))) = lim
s→0

d

(
0,

(
0, 0,

O(|s|ξ)
|s|2/3 , ϕ′(t)

))
.

Since ξ > 2/3, γ is m-differentiable of degree 3 at each t and meas3t (γ) = d(0, (0, 0, 0, ϕ′(t))3, which
is non-zero for a suitable choice of ϕ. Therefore, γ is m-C1

3 and by the properties of W (t), γ is
nowhere differentiable.

Notice that if γ is m-C1
k and k′ ≥ k, then γ is m-C1

k′ . Define kγ ≥ 1 as the infimum of k ≥ 1
such that γ is m-C1

k. Then kγ need not be an integer as it is shown in the next example. Moreover,
γ is not necessarily m-C1

kγ
.

Example 3. Consider the sub-Riemannian structure of Example 2 and the curve γ(t) = (0, 0,W (t), 0).
Then kγ = 2/ξ may be any real number greater than 2 (see (4)), but γ is not m-C1

kγ
.

3 Measures along curves

This section is devoted to compute Hausdorff (and spherical Hausdorff) measures of continuous
curves and to establish a relation with the k-dimensional length and with the complexity.

3.1 Different notions of measures

Denote by diamS the diameter of a set S ⊂ M . Let k ≥ 0 be a real number. For every set A ⊂ M ,
we define the k-dimensional Hausdorff measure Hk of A as Hk(A) = limǫ→0+ Hk

ǫ (A), where

Hk
ǫ (A) = inf

{
∞∑

i=1

(diamSi)
k : A ⊂

∞⋃

i=1

Si, diamSi ≤ ǫ, Si closed set

}
,

and the k-dimensional spherical Hausdorff measure Sk of A as Sk(A) = limǫ→0+ Sk
ǫ (A), where

Sk
ǫ (A) = inf

{
∞∑

i=1

(diamSi)
k : A ⊂

∞⋃

i=1

Si, Si is a ball, diamSi ≤ ǫ

}
.

In the Euclidean space R
n, k-dimensional Hausdorff measures are often defined as 2−kα(k)Hk

and 2−kα(k)Sk, where α(k) is defined from the usual gamma function as α(k) = Γ(12)
k/Γ(k2 + 1).
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This normalization factor is necessary for the n-dimensional Hausdorff measure and the Lebesgue
measure coincide on R

n.
For a given set A ⊂ M , Hk(A) is a decreasing function of k, infinite when k is smaller than a

certain value, and zero when k is greater than this value. We call Hausdorff dimension of A the
real number

dimHA = sup{k : Hk(A) = ∞} = inf{k : Hk(A) = 0}.
Note that Hk ≤ Sk ≤ 2kHk, so the Hausdorff dimension can be defined equally from Hausdorff or
spherical Hausdorff measures.

When the set A is a curve, another kind of dimensioned measures can be obtained from the
integration of k-dimensional infinitesimal measures. Let γ : [a, b] → M be a continuous curve and
C = γ([a, b]). For k ≥ 1, we define the k-dimensional length of C as

Lengthk(C ) =

ˆ b

a
measkt (γ) dt. (5)

where measkt (γ) is as in Definition 1 (these lengths were introduced in [8] in the sub-Riemannian
context). Thanks to the properties of measkt (γ), Lengthk(γ) is a decreasing function of k, infinite
when k is smaller than a certain value, and zero when k is greater than this value. We call this
value the length dimension of C .

Another way to measure the set C is to study its approximations by finite sets (see [16] and [14,
p. 278]). Here we only consider approximations by ǫ-chains of C , i.e., sets of points q1 = γ(a), . . . ,
qN = γ(b) in C such that d(qi, qi+1) ≤ ǫ. The interpolation complexity σint(C , ǫ) is the minimal
number of points in an ǫ-chain of C . This complexity has been computed in several cases in [12].

Remark 2. Notice that for any injective m-C1
1 curve the equality H1(C ) = Length1(C ) holds (see

[3, Th. 4.1.6, 4.4.2]).

3.2 m-C1
k curves with non-vanishing k-dimensional measure

In this section we prove the following proposition about m-C1
k curves with non-vanishing k-dimensional

measure. This result is the first step to prove Theorem 1.

Proposition 3. Let γ : [a, b] → M be an injective m-C1
k curve and C = γ([a, b]). Assume

measkt (γ) 6= 0 for every t. Then

Hk(C ) = Sk(C ) = Lengthk(C ) (6)

lim
ǫ→0+

ǫkσint(C , ǫ) = Lengthk(C ), (7)

and for every q ∈ C

lim
r→0+

Hk(C ∩B(q, r))

2rk
= 1. (8)

Remark 3. Equations (6), (8) hold when we replace [a, b] by the open interval (a, b). Also, they
hold for unbounded intervals. Therefore, thanks to the regularity of L1 and Hk measures, equations
(6), (8) are still verified when we replace C by γ(A), for any measurable set A ⊂ [a, b].

If we drop the injectivity assumption we obtain the following weaker result.
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Corollary 2. Let γ : [a, b] → M be a m-C1
k curve and C = γ([a, b]). Assume measkt (γ) 6= 0 for

every t. Then
Hk(C ) = Sk(C ) ≤ Lengthk(C ). (9)

Proof of Corollary 2. Since measkt (γ) 6= 0 for every t ∈ [a, b], γ is locally injective. Hence
[a, b] is the disjoint union of a finite family of intervals Ii such that γ|Ii is injective. For each i
there exists a measurable subset Ai ⊂ Ii such that C = ∪γ(Ai) and the sets γ(Ai) are pairwise
disjoint. Using Remark 3, formula (6) applies to each γ(Ai). Since Hk(C ) =

∑
i Hk(γ(Ai)) and

Sk(C ) =
∑

i Sk(γ(Ai)), we obtain (9).
�

The proof of Proposition 3 is based on the following result for bi-Hölder continuous curves.

Lemma 2. Let γ : [0, T ] → M be an injective curve and C = γ([0, T ]). Assume that there exist
positive constants δ−, δ+, and η such that

δ−|s|1/k ≤ d
(
γ(t), γ(t + s)

)
≤ δ+|s|1/k, (10)

for every t, t+ s ∈ [0, T ] with |s| < η. Then

δk−T ≤ Hk(C ) ≤ δk+T, (11)

δk−T ≤ lim inf
ǫ→0+

ǫkσint(C , ǫ) ≤ lim sup
ǫ→0+

ǫkσint(C , ǫ) ≤ δk+T, (12)

Sk(C ) ≥ Hk(C ) ≥
(
δ−
δ+

)2k

Sk(C ), (13)

and, for every t ∈ [0, T ] and r > 0 small enough,

(
δ−
δ+

)k

≤ Hk(C ∩B(γ(t), r))

2rk
≤

(
δ+
δ−

)k

. (14)

Proof. Let ǫ > 0 be smaller than δ+η
1/k. We denote by N the smallest integer such that

T ≤ N( ǫ
δ+

)k and define t0, . . . , tN by

ti = i
( ǫ

δ+

)k
for i = 0, . . . , N − 1, tN = T.

Set Si = γ([ti−1, ti]), i = 1, . . . , N . For t, t′ in Si, one has |t− t′| ≤ ǫk/δk+; it follows from (10) that

d(γ(t), γ(t′)) ≤ δ+|t− t′|1/k ≤ ǫ, (15)

which in turn implies diamSi ≤ ǫ. Thus Hk
ǫ (C ) ≤

∑
i(diamSi)

k ≤ Nǫk. Using (N − 1)ǫk < Tδk+,
we obtain

Hk
ǫ (C ) ≤ δk+T + ǫk.

It also results from inequality (15) that γ(t0), . . . , γ(tN ) is an ǫ-chain of C which implies

ǫkσint(C , ǫ) ≤ δk+T + ǫk,

Taking the limit as ǫ → 0 in the preceding inequalities, we find

Hk(C ) ≤ δk+T and lim sup
ǫ→0+

ǫkσint(C , ǫ) ≤ δk+T.

10



We now prove converse inequalities for Hk and σint. Fix ǫ > 0 and consider a countable family
S1, S2, . . . of closed subsets of M such that C ⊂ ⋃

i Si and diamSi ≤ ǫ. For every i ∈ N, we set
Ii = γ−1(Si ∩ C ). As γ is injective, if ǫ is small enough then it results from (10) that for any t, t′

in Ii there holds
diamSi ≥ d(γ(t), γ(t′)) ≥ δ−|t− t′|1/k,

which implies L1(Ii) ≤ (diamSi)
k/δk−. Note that T ≤

∑
i L1(Ii) since the sets Ii cover [0, T ]. It

follows that Hk
ǫ (C ) ≥ Tδk−, that is,

Hk
ǫ (C ) ≥ δk−T. (16)

In the same way, an ǫ-chain γ(t0) = γ(0), . . . , γ(tN ) = γ(T ) of C satisfies Nǫk ≥ Tδk− since the
injectivity of γ assures that

ǫ ≥ d(γ(ti−1), γ(ti)) ≥ δ−|ti − ti−1|1/k.

It follows that ǫkσint(C , ǫ) ≥ δk−T . Taking the limit as ǫ → 0 in this inequality and in (16), we find
Hk(C ) ≥ δk−T and lim infǫ→0+ ǫkσint(C , ǫ) ≥ δk−T , which completes the proof of (11) and (12).

The first inequality in (13) always holds. Before proving the second one, let us recall a standard
result in geometric measure theory (see for instance [10, 2.10.18, (1)]). Let X be a metric space
and µ be a regular measure on X such that the closed balls in X are µ-measurable. If

lim sup
y∈B(x,r)
r→0+

µ(B(y, r))

(diamB(y, r))k
≥ λ,

for every point x ∈ X, then µ(X) ≥ λSk(X). We will apply this result to the metric space
(C , d|C ) and to the measure µ = Hk⌊C .

If t ∈ [0, T ], then for r > 0 small enough, there holds

γ([t− rk

δk
+

, t+ rk

δk
+

]) ⊂ C ∩B(γ(t), r) ⊂ γ([t− rk

δk−
, t+ rk

δk−
]). (17)

The diameter of this set then satisfies

diam(C ∩B(γ(t), r)) ≤ d

(
γ

(
t− rk

δk+

)
, γ

(
t+

rk

δk+

))
≤ δ+

2
1

k r

δ−
.

Moreover, applying (11) to the curve γ restricted to [t− rk

δk
+

, t+ rk

δk
+

], we obtain

Hk(C ∩B(γ(t), r)) ≥ δk−
2rk

δk+
.

Thus we have, for every point γ(t′) ∈ C ,

lim sup
r→0+

γ(t)∈B(γ(t′),r)

Hk⌊C (B(γ(t), r))

(diam(C ∩B(γ(t), r)))k
≥

(
δ−
δ+

)2k

,

which implies Hk(C ) ≥
(
δ−
δ+

)2k
Sk(C ).

11



Finally, formula (14) results from (11) applied to the restrictions of γ in (17).
�

Proof of Proposition 3. By definition,

Lengthk(C ) =

ˆ b

a
measkt (γ) dt.

Note that the k-dimensional length does not depend on the parameterization [8, Le. 16]. Thus, up
to a reparameterization by the k-length, we assume that γ is defined on the interval [0, T ], with
T = Lengthk(C ), and that measkt (γ) ≡ 1.

Fix δ > 0. Then, by Lemma 1, there exists η > 0 so that the hypothesis of Lemma 2 is satisfied
with δ− = 1− δ and δ+ = 1+ δ. We let δ tends to zero in inequalities (11)–(14) and the proposition
follows. �

Remark 4. Another way to measure C using approximations by finite sets is to consider ǫ-nets, i.e.,
sets of points q1, . . . , qn ∈ M such that the union of closed balls B(qi, ǫ) covers C , and the metric
entropy e(C , ǫ) which is the minimal number of points in an ǫ-net of C . Under the assumptions of
Proposition 3, the following estimates can be deduced for a m-C1

k curve:

Sk(C )

2k
≤ lim inf

ǫ→0+
ǫke(C , ǫ) ≤ lim sup

ǫ→0+
ǫke(C , ǫ) ≤ Sk(C )

2
.

3.3 The Riemannian case

Let us come back to the case where (M,d) is a Carnot–Carathéodory space associated with a
sub-Riemannian manifold (M,D, g). A consequence of Proposition 3 is that if the structure is
Riemannian, i.e., D = TM , then the class of m-C1

k curves having non-zero metric derivative of
degree k is empty if k > 1, as stated in Proposition 2.

Proof of Proposition 2. Let s ∈ [a, b] such that measks(γ) 6= 0. Thus, restricted to a small
enough neighbourhood I = [s− δ, s+ δ] of s, the curve γ is injective and measkt (γ) 6= 0 on I. Up to
reparameterizing γ|I , we may assume moreover measkt (γ) ≡ 1 on I. Also, it is sufficient to consider
the case M = R

n and d is the Euclidean distance on R
n. Denote by C the set γ(I). By Proposition

3, we have 0 < Hk(C ) < +∞ and for every t ∈ I

lim
r→0

Hk(C ∩B(γ(t), r))

2rk
= 1.

Moreover, by Lemma 1, there exist 0 < ρ < 1 such that

(1− ρ)|t− t′|1/k ≤ ||γ(t)− γ(t′)|| ≤ (1 + ρ)|t− t′|1/k, ∀ t, t′ ∈ I.

The proposition then results from the lemma below. �

Lemma 3. Let k ≥ 1 and let γ : [a, b] → R
n be a bi-Hölder curve of exponent 1/k, i.e.,

δ−|t− t′|1/k ≤ ||γ(t) − γ(t′)|| ≤ δ+|t− t′|1/k, ∀ t, t′ ∈ [a, b], (18)

with δ−, δ+ 6= 0. Set C = γ([a, b]). If 0 < Hk(C ) < +∞ and if there exits a positive constant c
such that for every t ∈ [a, b]

lim
r→0

Hk(C ∩B(γ(t), r))

rk
= c,

then k = 1.
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Proof. Under the assumptions of the lemma, Marstrand’s Theorem [20, Th. 1] assures that k ∈ N

and k ∈ {1, 2, . . . , n}. Applying Preiss’ result [24], there exists a countable family of k-dimensional
submanifolds Ni ⊂ R

n such that Hk(C \ ∪iNi) = 0. Since Hk(C ) > 0, there exists i such that
Hk(C ∩ Ni) > 0. Let us rename Ni by N . Then Lk

N (C ∩ N) = Hk⌊N (C ) > 0, where Lk
N is the

k-dimensional Lebesgue measure on N . Hence there exists a density point γ(t0) ∈ C ∩N , that is,
a point such that

lim
r→0

Lk
N(C ∩N ∩BN (γ(t0), r))

Lk
N (BN (γ(t0), r))

= 1,

where BN (γ(t0), r) is the open ball in N centered at γ(t0) of radius r.
Let us identify N with {(x1, . . . , xn) ∈ R

n : xk+1 = · · · = xn = 0} by choosing local coordinates
around γ(t0). Using the inequalities (18) and the density point t0 it is not hard to prove that there
exists a bi-Lipschitz homeomorphism from BN (γ(t0), δ−) endowed with the Euclidean distance to
(−1, 1) endowed with the distance | · |1/k (see for instance the argument in the proof of [4, Pr.
4.12]). Since the topological dimension of BN (γ(t0), δ−) is k, then k must be equal to 1.

�

3.4 Comparison of measures for m-C1
k curves

Next theorem generalizes the first part of Proposition 3 to the case when the metric derivative may
vanish. Namely, it compares the Hk measure and the Sk measure of sets that are images of m-C1

k

curves. Also, it provides a relation among such measures, the k-length and the behaviour of the
complexity of the curve.

Theorem 1. Let γ : [a, b] → M be an injective m-C1
k curve and C = γ([a, b]). Then

Hk(C ) = Sk(C ) = Lengthk(C ) = lim
ǫ→0

ǫkσint(C , ǫ).

If moreover Hk(C ) > 0 or Lengthk(C ) > 0, then for every k′ ≥ 1

Hk′(C ) = Sk′(C ) = Lengthk′(C ) = lim
ǫ→0

ǫk
′

σint(C , ǫ).

Remark 5. When M is a sub-Riemannian manifold, in many cases Gauthier and coauthors (see
[12] and references therein) computed the interpolation complexity of curves as integral of some
geometric invariants. Jointly with Theorem 1, these results provide a way of computing Hausdorff
measures of curves as well as a geometric interpretation of Hausdorff and infinitesimal measures.

Corollary 3. Let γ : [a, b] → M be a m-C1
k curve. Then, for every measurable set A ⊂ [a, b],

Sk(γ(A)) = Hk(γ(A)) and Hk(γ(A)) ≤ Lengthk(γ(A)).

If moreover γ is injective then
Hk(γ(A)) = Lengthk(γ(A)).

Remark 6. Let us consider the case where γ is an injective m-C1
k curve. Recalling the definition of

Lengthk, we have

Hk(C ) =

ˆ b

a
measkt (γ) dt,

13



that is, we have an integral formula for the k-dimensional Hausdorff measure. Moreover, Theorem 1
implies that the Hausdorff dimension kH of C coincides with the length dimension of C . If in
addition HkH(C ) (or LengthkH(C )) is finite, then Corollary 3 implies that HkH⌊C is absolutely
continuous with respect to the push-forward measure2 γ∗L1 and that its Radon–Nikodym derivative
is measkt (γ).

Proof of Theorem 1. Clearly it suffices to prove the first statement of the theorem. Consider
the (possibly empty) open subset of [a, b]

I = {t ∈ [a, b] : measkt (γ) 6= 0}, (19)

and its complementary Ic = [a, b] \ I. The set I is the union of a disjointed countable family of
open subintervals Ii of [a, b]. Note that, since measkt (γ) = 0 for all t ∈ Ic, one has

Lengthk(C ) =

ˆ

I
measkt (γ)dt =

∑

i

ˆ

Ii

measkt (γ)dt.

By Remark 3, we have the equality

Hk(γ(Ii)) =

ˆ

Ii

measkt (γ)dt, ∀i. (20)

Since γ is injective, we have

Hk(C ) ≥
∑

i

Hk(γ(Ii)),

whence we obtain Hk(C ) ≥ Lengthk(C ).

The next step is to prove the converse inequality. Let δ > 0. Since the function t 7→ measkt (γ)
1/k

is uniformly continuous on [a, b], there exists η > 0 such that, if t, t′ ∈ [a, b] and |t − t′| < η, then
|measkt (γ)

1/k −measkt′(γ)
1/k| < δ. In the covering I =

⋃
i Ii, only a finite number Nδ of subintervals

Ii may have a Lebesgue measure greater than η. Up to reordering, we assume L1(Ii) < η if i > Nδ.
Set J = Ic ∪ ⋃

i>Nδ
Ii. Since the restriction of measkt (γ) to Ic is identically zero, there holds

measkt (γ)
1/k < δ for every t ∈ J .

The k-dimensional Hausdorff measure of C satisfies

Hk(C ) ≤
∑

i≤Nδ

Hk(γ(Ii)) +Hk(γ(J)) =
∑

i≤Nδ

ˆ

Ii

measkt (γ)dt +Hk(γ(J)), (21)

in view of (20).
It remains to compute Hk(γ(J)). Being the complementary of

⋃
i≤Nδ

Ii in [a, b], J is the
disjointed union of Nδ + 1 closed subintervals Ji = [ai, bi] of [a, b]. For each one of these intervals
we will proceed as in the proof of Proposition 3.

2Given a Borel set E ⊂ M the push-forward measure γ∗
L

1 is defined by

γ∗L
1(E) = L

1(γ−1(E ∩ C )).
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Let ǫ > 0 and i ∈ {1, . . . , Nδ + 1}. We denote by N ′ the smallest integer such that bi − ai ≤
N ′( ǫ

2δ )
k and define t0, . . . , tN ′ by

tj = ai + j
( ǫ

2δ

)k
for j = 0, . . . , N ′ − 1, tN ′ = bi.

We then set Sj = γ([tj , tj−1]). Applying Lemma 1, we get, for any t, t′ ∈ [tj, tj−1],

d
(
γ(t), γ(t′)

)
= |t− t′|1/k(measkt (γ)

1/k + ǫt(t− t′)).

Note that measkt (γ)
1/k < δ since t ∈ J . Note also that, if ǫ is small enough, then ǫt(|t − t′|) is

smaller than δ. Therefore d
(
γ(t), γ(t′)

)
< 2δ|t − t′|1/k ≤ ǫ and diamSj ≤ ǫ. As a consequence

Hk
ǫ (γ(Ji)) ≤ N ′ǫk ≤ (2δ)k(bi − ai) + ǫk,

and Hk(γ(Ji)) ≤ (2δ)k(bi − ai). It follows that

Hk(γ(J)) ≤
∑

i≤Nδ+1

(2δ)k(bi − ai) ≤ (2δ)k(b− a).

Finally, formula (21) yields

Hk(C ) ≤
∑

i≤Nδ

ˆ

Ii

measkt (γ)dt+ (2δ)k(b− a).

Letting δ → 0, we get Hk(C ) ≤
´

I measkt (γ)dt = Lengthk(C ), and thus Hk(C ) = Lengthk(C ).
Similarly we can show that Sk(C ) and the limit of ǫkσint(C , ǫ) are equal to Lengthk(C ). �

Proof of Corollary 3. When γ is injective, the conclusions follow from Theorem 1 and from the
regularity of L1 and Hk measures (see Remark 3).

Assume now that γ is not injective. We slightly modify the second part of the proof of Theorem 1
replacing the equality in (21) by

Hk(C ) ≤
∑

i≤Nδ

Hk(γ(Ii)) +Hk(γ(J)) ≤
∑

i≤Nδ

ˆ

Ii

measkt (γ)dt +Hk(γ(J)),

which is a consequence of Corollary 2. This shows that Hk(C ) ≤ Lengthk(C ) and therefore
Hk(γ(A)) ≤ Lengthk(γ(A)). Moreover, we have Hk(γ(Ic)) = 0, where Ic is the complementary of
the set I defined in (19), which in turn implies Sk(γ(Ic)) = 0. Thus

Sk(C ) = Sk(γ(I)) = Hk(γ(I)) = Hk(C ),

where the second equality results from Corollary 2. �

3.5 Generalization to non m-C1
k curves

In this section we present some possible generalizations of the preceding results (in particular
Theorem 1) to non m-C1

k curves.
Consider first the case of a continuous curve γ : [a, b] → M , C = γ([a, b]). For k ≥ 1, we define

Ik to be the set of points t ∈ [a, b] such that measkt (γ) is not continuous at t (that is, such that
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γ is not m-C1
k at t). A standard argument of measure theory allows to show the following fact.

Assume that [a, b] \ Ik is an open subset of [a, b] of full L1 measure and that Hk(γ(Ik)) = 0. Then
the conclusions of Corollary 3 still hold. Moreover, if γ is injective, then the equalities between
Hk(C ), Sk(C ), and Lengthk(C ) as in Theorem 1 hold true. The result on the complexity is not
valid anymore, since limǫ→0 ǫ

kσint(C , ǫ) is not a measure. A curve C satisfying the properties above
actually appears as a particular case of (Hk, 1)-rectifiable set, which will be studied in the next
section.

It is however worth to mention a consequence of the result claimed above (and of Proposition 1)
in the context of Carnot–Carathéodory spaces. Let (M,D, g) be a sub-Riemannian manifold,
γ : [a, b] → M be an absolutely continuous injective curve, and C = γ([a, b]). Let mC ≥ 1 be the
smallest integer such that γ̇(t) ∈ DmC (γ(t)) almost everywhere. We denote by IC the set of points
t ∈ [a, b] such that either γ is not C1 at t or γ(t) is C -singular.

Corollary 4. Assume that [a, b]\IC is an open subset of [a, b] of full L1 measure and HmC (γ(IC )) =
0. Then, for any k ≥ 1,

Hk(C ) = Sk(C ) = Lengthk(C ), and dimHC = mC .

When the sub-Riemannian manifold is equiregular, it is already known [14, p. 104] that the
Hausdorff dimension of a one-dimensional submanifold C is the smallest integer k such that TqC ⊂
Dk(q) for every q ∈ C. Corollary 4 generalizes this fact.

Any injective m-C1
k curve being bi-Hölder (see Lemma 1), it is also natural to generalize our

results to such curves. Consider then a bi-Hölder curve of exponent 1/k, i.e. a curve γ : [a, b] → M ,
i.e., there exist positive constants δ− and δ+ such that, for every t, t+ s ∈ [a, b],

δ−|s|1/k ≤ d
(
γ(t), γ(t + s)

)
≤ δ+|s|1/k.

For such a curve C = γ([a, b]), the k-dimensional length does not always exists but Lemma 2 gives
estimates of Hk(C ) and Sk(C ) in function of T = b − a, and the following result for upper and
lower density:

(
δ−
δ+

)k

≤ lim inf
r→0+

Hk(C ∩B(q, r))

2rk
≤ lim sup

r→0+

Hk(C ∩B(q, r))

2rk
≤

(
δ+
δ−

)k

. (22)

Let us remark that there is no hope to obtain a density result such as (8) for bi-Hölder curves.
Indeed Assouad proved in [4] that, for any k < n, there exist bi-Hölder curves of exponent 1/k from
(−1, 1) to R

n (both endowed with a Euclidean metric). When k > 1 the density of these curves
cannot be constant, for otherwise Lemma 3 would yield a contradiction. This strongly hints that
there is not a Rademacher’s-type result in this context, that is, being bi-Hölder of exponent 1/k
does not imply being m-C1

k almost everywhere.
In what follows, in particular in the definition of (Hk, 1)-rectifiability, we will work with m-C1

k

curves and not with bi-Hölder curves. The drawback is that our definitions will not be invariant
under bi-Lipschitz equivalence of metric spaces since the m-C1

k property is not invariant under such
equivalence, contrarily to the bi-Hölder property. However we think that rectifiable sets should be
defined as sets which admit almost everywhere a metric derivative. As noticed above, the use of
bi-Hölder curves would not guarantee such a property.
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4 (Hk, 1)-rectifiable sets and a density result

In this section we use m-C1
k curves to define a new class of (Hk, 1)-rectifiable subsets of metric

spaces.
Consider the Euclidean space R

n. Recall that, given a positive measure µ on Borel subsets of
R
n, a subset S ⊂ R

n is (µ, k)-rectifiable if there exists a countable family of Lipschitz functions
γi : Vi → R

n, i ∈ N, where Vi is a bounded subset of Rk, such that µ(S \ ∪i∈Nγi(Vi)) = 0 (see [10,
3.2.14]). Considering µ = Hk′ on R

n (with the Euclidean structure), one has that if k′ > k then
there are no (Hk′ , k)-rectifiable sets of positive Hk′ measure. This follows from the requirement of
γi being Lipschitz. On the other hand, if one consider images under Hölder continuous functions
γi then the case k′ > k becomes of interest. This suggests the next definition.

Consider a metric space (M,d).

Definition 3. A subset S ⊂ M is (Hk, 1)-rectifiable if there exists a countable family of m-C1
k

curves γi : Ii → M , i ∈ N, Ii closed interval in R such that

Hk(S \ ∪i∈Nγi(Ii)) = 0.

Remark 7. If M is a manifold and d is the distance associated with a Riemannian structure on M ,
the class of (Hk, 1)-rectifiable sets with positive and finite Hk measure is empty unless k = 1 (see
Proposition 2). Since m-C1

1 curves are Lipschitz, in this case Definition 3 coincides with the usual
definition of (H1, 1)-rectifiable sets. Conversely, when (M,d) is the Carnot–Carathéodory space
associated with a genuine sub-Riemannian manifold, there exist (Hk, 1)-rectifiable sets (of positive
and finite Hk measure) for some integers k > 1 (see Section 2.2).

When a subset is Hk-measurable and has finite Hk measure, being (Hk, 1)-rectifiable implies
boundedness for the lower and upper densities of the measure Hk⌊S .

Theorem 2. Assume S ⊂ M is a (Hk, 1)-rectifiable and Hk-measurable set such that Hk(S) < +∞.
Then for Hk-almost every q ∈ S

2 ≤ lim inf
r→0+

Hk(S ∩B(q, r))

rk
≤ lim sup

r→0+

Hk(S ∩B(q, r))

rk
≤ 2k. (23)

Recall that in [24, Co. 5.5] it was proved that, in the Euclidean case, there exists a constant
c > 0 such that if a µ-measurable subset E ⊂ R

n with finite µ measure satisfies

0 < lim sup
r→0+

µ(E ∩B(x, r))

rk
≤ c lim inf

r→0+

µ(E ∩B(x, r))

rk
< +∞, (24)

for µ-almost every x ∈ E, then E is (µ, k)-rectifiable. This result provides a characterization of
rectifiable sets as the converse is also true (see [10, Th. 3.2.19]). Theorem 2 implies that if S ⊂ M
is (Hk, 1)-rectifiable in the sense of Definition 3 then

0 < lim sup
r→0+

Hk(S ∩B(q, r))

rk
≤ 2k−1 lim inf

r→0+

Hk(S ∩B(q, r))

rk
< +∞, (25)

for Hk-almost every q ∈ S. The last estimate is, mutatis mutandis, the assumption (24) in the
result by Preiss. An open question is whether the same conclusion of [24, Cor. 5.5] holds with
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our notion of (Hk, 1)-rectifiable sets. Namely, is condition (25) for Hk-almost every q ∈ S ⊂ M
sufficient to show that a Hk-measurable set S of finite Hk measure is (Hk, 1)-rectifiable in the sense
of Definition 3?

Proof of Theorem 2. By assumption, there exists a countable family of m-C1
k curves γi : Ii → M

such that Ii is a closed interval and Hk(S \ ∪iγi(Ii)) = 0. Since by Corollary 3, for every i,
Hk(γi({t | measkt (γi) = 0})) = 0, we may assume measkt (γi) 6= 0 for every t ∈ Ii and then, by a
reparameterization, measkt (γi) ≡ 1. This implies that every γi is locally injective. Hence, without
loss of generality, we may assume that every γi is injective and moreover that the sets γi(Ii) are
pairwise disjoint.

Since Hk(S) < +∞, to prove the upper bound

lim sup
r→0+

Hk(S ∩B(q, r))

rk
≤ 2k,

for Hk-almost every q ∈ M , it suffices to use [10, 2.10.19 (5)].
Let us show the lower bound in (23), namely, that

lim inf
r→0+

Hk(S ∩B(q, r))

rk
≥ 2, (26)

for Hk-almost every q ∈ S. Let Ĩi = γ−1
i (γi(Ii)∩S). Then ∪i∈Nγi(Ĩi) ⊂ S and Hk(S\∪i∈Nγi(Ĩi)) =

0. We may assume Hk(γi(Ĩi)) > 0 for each i. Then, by Corollary 3, since measkt (γi) ≡ 1, L1(Ĩi) =
Hk(γi(Ĩi)) > 0. Therefore almost every t ∈ Ĩi is a density point for the Lebesgue measure on Ĩi,
i.e.,

lim
r→0

L1(Ĩi ∩B(t, r))

2r
= 1,

where B(t, r) = (t− r, t+ r). Hence, for Hk-almost every q ∈ S there exist a unique i and a unique
t ∈ Ĩi such that q = γi(t) and t is a density point for L1⌊Ĩi . Since γi(Ĩi) ⊂ S, we deduce

Hk(S ∩B(q, r))

rk
≥ Hk(γi(Ĩi) ∩B(q, r))

rk
=

L1(Ĩi ∩ γ−1
i (B(q, r)))

rk
,

the last equality following by Corollary 3. Now, for any δ > 0, from Lemma 1, for |t− s| ≤ rk

(1+δ)k

we have
d
(
γ(t), γ(s)

)
≤ |t− s|1/k(1 + δ) ≤ r.

This implies B(t, rk/(1 + δ)k) ⊂ γ−1
i (B(q, r)). Therefore

L1(Ĩi ∩ γ−1
i (B(q, r)))

rk
≥ L1(Ĩi ∩B(t, rk/(1 + δ)k)))

rk
.

The right-hand side of the inequality above tends to 2/(1 + δ)k, as r goes to 0, since t is a density
point for L1⌊Ĩi . Letting δ go to 0, we conclude

lim inf
r→0

L1(Ĩi ∩ γ−1
i (B(q, r)))

rk
≥ 2,

which shows (26). �
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