
HAL Id: hal-00623642
https://hal.science/hal-00623642v2

Submitted on 2 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Lazy Initialization Multilayered Modeling
Framework (NIER track)

Fahad Rafique Golra, Fabien Dagnat

To cite this version:
Fahad Rafique Golra, Fabien Dagnat. The Lazy Initialization Multilayered Modeling Framework
(NIER track). ICSE 2011 : 33rd International Conference on Software Engineering, May 2011, Hon-
olulu, United States. pp.924 - 927, �10.1145/1985793.1985947�. �hal-00623642v2�

https://hal.science/hal-00623642v2
https://hal.archives-ouvertes.fr


The Lazy Initialization Multilayered Modeling Framework
(NIER Track)

Fahad R. Golra
Université Européenne de Bretagne
Institut Télécom / Télécom Bretagne

fahad.golra@telecom-bretagne.eu

Fabien Dagnat
Université Européenne de Bretagne
Institut Télécom / Télécom Bretagne

fabien.dagnat@telecom-bretagne.eu

ABSTRACT
Lazy Initialization Multilayer Modeling (LIMM) is an ob-
ject oriented modeling language targeted to the declarative
definition of Domain Specific Languages (DSLs) for Model
Driven Engineering. It focuses on the precise definition of
modeling frameworks spanning over multiple layers. In par-
ticular, it follows a two dimensional architecture instead
of the linear architecture followed by many other model-
ing frameworks. The novelty of our approach is to use lazy
initialization for the definition of mapping between differ-
ent modeling abstractions, within and across multiple lay-
ers, hence providing the basis for exploiting the potential of
metamodeling.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design tools and techniques;
D.1.5 [Programming Techniques]: Object-Oriented Pro-
gramming; H.1 [Information Systems]: Models and prin-
ciples

General Terms
Design, Standardization

Keywords
Metamodeling, Strict metamodeling, Instantiation, LIMM

1. INTRODUCTION
Modeling was once considered a tool to understand the

System Under Study (SUS) but recently it has emerged
out as a key activity of system development. This led to
the rapid and incremental development of UML. However
UML restricts modeling to 1) a 4 layers hierarchy, 2) ’strict’
metamodeling (a model element must be an instance of ex-
actly one meta-model element), and 3) the exclusive use
of instance-of relationship amongst adjacent modeling lay-
ers. Holding to backward compatibility, UML2.0 could not
unleash the complete potential of metamodeling. Different
researchers have been using its evolution mechanism (UML
Profiles) to add up to its capabilities [6]. Some recent ap-
proaches of metamodeling (deep instantiation, power type
based modeling, etc.) question its shortcomings and present
their own methodologies [2, 1]. However none of these ap-
proaches succeeded in replacing or influencing UML.

In order to exploit the potential of metamodeling both at
micro level (inside a model) and macro level (between mod-
els), LIMM is presented as an object oriented multilayered

modeling language that aims to provide a better support for
the definition of different DSLs. The usage of lazy initializa-
tion in modeling is a novel idea that adds a lot of flexibility
for the modelers, without introducing any functional limita-
tions. In our proposal, the designer of a model can specify
for each model element if it is at meta level, at application
level or it is a data. To achieve this goal, flags are associated
to model elements to control the way they can be used in the
subsequent layers. A flag can take three different values to
restrict, allow or force the initialization of a model element
in the next adjacent layer.

This paper is structured as follows. Section 2 explains
the multilayered modeling framework and describes the re-
cent associated endeavors. Section 3 describes the LIMM
framework. Section 4 presents the metamodel for LIMM
framework. Finally Section 5 outlines the conclusions and
future work.

2. MULTILAYERED MODELING
When modeling started to mature, modeling languages

themselves needed to be modeled (language-ware). This led
to a shift from traditional bi-layered modeling towards mul-
tilayered modeling hierarchy. UML modeling framework as
defined in MOF rests on a 4 layers hierarchy. Though UML
holds the industry, still some modelers (specially the meta-
CASE tool designers) face some problems using it. The well
known problems of this framework are Ambiguous Classifi-
cation, Replication of Concepts, Structure redundancies and
problems with metalevels [4, 1, 2, 7].

One of most discussed problems in literature regarding
the UML modeling framework is its incompetence to differ-
entiate between the logical and the physical flavors of the
instance-of relationship. As illustrated in Figure 1(a), the
document AR2010 is an instance-of class Document, which
is an instance of both ResourceType and Class, where the
two instantiations are not the same. The first instantiation
relationship is a logical relationship mapping an instance to
a concept of the system under study (SUS), whereas the sec-
ond relationship indicates its physical existence as a class.
Thus the concept of object/type facets is addressed in MOF,
but is not very well defined. The term clabject coined by
Atkinson refers to this concept [1].

A unique notion of instance-of relationship between two
layers seems unable to portray the concept of class as an
instance. Power type based modeling proposed to use in-
stantiation to carry on the instance facet to the subsequent
modeling layer, and inheritance to carry the class facet [2].
In this framework, a class (such as Class in Figure 1(b)) has



Class Instance

ResourceType

Document

:AR2010

Logical

Logical

Logical

Physical

Physical

(a) UML

Class Instance

ResourceTypeResTypeKind

Document

:AR2010

Instance-of
Instance-of

Instance-of

Instance-of

isClassifiedAs

(b) Power Types

Class3 Instance

ResourceType2

Document1

AR20100

Instance-of

Instance-of

Instance-of

(c) Deep Instantiation

Figure 1: Comparative Example in different Multilayered modeling frameworks

two instances in the subsequent modeling layer. First, the
power type, ResTypeKind, carries the object facet to the next
level using the instance-of relationship. Second, the parti-
tioned type, ResourceType, assumes the class facet and is
intended to be the super class of the power type’s instance
(Document in the example). Instead of having a simple type-
instance relationship like in traditional modeling, it creates
a triplet of the power type, the partitioned type and the
class at a lower modeling layer, as depicted in Figure 1(b).

The drawback of power type based modeling is its inabil-
ity to define associations in terms of clabjects. All the com-
plexity of partitioning the power type from partitioned type
in order to classify the different facets is transferred to the
semantics of the relationship isClassifiedAs, which lacks con-
crete explanation. Furthermore, the inheritance relationship
across different layers in the architecture makes it quite com-
plex to draw the boundaries of a modeling layer.

In contrast to power type based modeling, deep instantia-
tion based modeling consents to defer the instantiation for a
”known” number of layers [1, 4]. Deep instantiation uses the
concept of potency, where each association, attribute and
class is assigned a potency. The potency amounts to the
number of levels an artifact can deny instantiation. Thus
if an attribute is assigned a potency of 2, and it resides at
layer Mn, then it would not be instantiated till Mn−2. As
it gets down to Mn−2, it will get instantiated and become
a slot. Deep instantiation addresses the dual nature (class
and instance facets) of the classes using this potency. An
example of deep instantiation can be viewed in Figure 1(c).

One of the major drawbacks of deep instantiation is that
one has to know in advance, the number of layers each ar-
tifact should resist instantiation. The metamodeler must
anticipate the uses of its metamodel and fix the potency of
its elements. This fixed potency eventually takes the flex-
ibility out of the reach of the application modeler, who is
constrained to follow it.

Álvarez et al. suggested that instead of a linear modeling
hierarchy, one should follow the nested hierarchy [5]. In
such a hierarchy, the level M0 is adjacent to both M1 and
M2 layers. So the instance at level M0 can have instance-of
relationships both from M1 and M2. The essence of nested
layers is that it is recursive in nature and has a conforming
mapping structure called the G-mapping. The drawback of
using such a multi layer structure is that, though it works
fine for 3 layers, but as it progresses to more layers, the
original benefit being sought is lost. Thus it is restricted
to a maximum of 4 layers. And the problem of ambiguous

classification still remains; as the only relationship allowed
is instance-of and no well defined differentiation among the
different flavors of instance-of relationship is discussed.

A detailed study of the existing multilayered modeling
frameworks shows that each of these techniques tries to re-
solve a part of the explored shortcomings of UML. None
of these techniques, other than UML, gained popularity in
the software industry because of the respective drawbacks
detailed above. For these reasons, we propose a general
multilayered modeling framework influenced by the previ-
ously presented approaches but relying on a lazy initializa-
tion mechanism inspired from functional programming.

3. LAZY INITIALIZATION
The Lazy Initialization Multilayer Modeling (LIMM) takes

its inspiration from lazy functional programming, where eval-
uation may be delayed until required. Using lazy initializa-
tion helps clarify the instance-of relationships between the
layers and their classification.

In UML, the links in the data models are the instances
of the associations in the model at upper layer; same goes
for the slots which are the instances of the attributes in
the model at upper layer. But the instance-of relationship
which bypasses the layers is not well explained. LIMM uses a
special sort of abstraction known as interconnection to spec-
ify the different relationships that bypass the model bound-
aries. This framework gives a proper justification and sound
basis to various relationships within a model or amongst dif-
ferent models, residing either on same or different abstrac-
tion levels.

We argue against deep instantiation because one cannot
decide before hand, the number of layers after which a model
element is to be initialized. Indeed, we believe that the num-
ber of layers cannot be fixed and must result from the choice
of the designer. Furthermore, each layer is usually built by
a different designer, making it impossible to predict when a
model element will reach its object layer (where it is initial-
ized). Our proposal is that at a certain layer, the designer
must specify the initialization scheme of model elements in
the subsequent layer. The initialization scheme can either
forbid the initialization or devolve the decision, to choose
the number of layers before initialization, to the designer of
the subsequent layer.

The flag value of the associated model element specifies
whether it is going to be initialized in the subsequent layer or
not. This flag can be null or have three different values: 2 for
Restrict, 1 for Relax or 0 for Force. A null flag describes an



instantiated model element. While developing a model, the
flags of the meta-elements in the reference model are tested
to determine which elements must or may be initialized at
current layer. A flag value 2 (Restrict) specifies a model
element that cannot be initialized in the subsequent layer
(where the flag value can shift to 2, 1 or 0). A flag value 1
(Relax) allows the initialization of a model element in the
subsequent layer (where its flag value can become 1, 0 or
null). Lastly, a flag value 0 (Force) forces the designer of the
subsequent layer to initialize the model element (moving its
flag to null).

Models being model elements maintain their own flags to
specify their abstraction level. Models having a flag value 2
are at some metalevels whereas the models having the flag
value 0 are the user models. Models having a flag value 1
can be intermediate level models that can/cannot be ini-
tialized. A model contains classes and these classes contain
attributes. This containment hierarchy constrains flags: the
flag value of a container must be greater than or equal to the
flag value of its contained elements. Data models or object
models do not carry a flag, so they have a null value. The
flag values of a model can either be specified by the designer
or calculated automatically.

LIMM uses a two dimensional modeling framework with
a horizontal division between the core multilayering meta-
model and the linear modeling hierarchy, which is further
divided into multiple modeling layers. The core multilay-
ering metamodel is the LIMM metamodel that defines the
language in which the models placed in the various layers
are defined. This is a top level meta-metamodel that defines
itself. Our numbering of the linear modeling hierarchy, in
contrast to UML, keeps augmenting from the topmost layer,
M0, to the subsequent layers up to Mn.

4. LIMM METAMODEL
LIMM metamodel presents two common models; a user

model and a reference model, which are connected through
interconnections, as shown in Figure 2. A reference model
can be referenced by another reference model or by a data
model. A data model is a model which is not referenced by
any other model. The core multilayering metamodel does
not have a flag because all other models in its linear hierar-
chy are instance-of this model, thus all the physical instance-
of relationships are implicit in this model. The dual nature
(type/instance) of a model element is described in terms
of initialized and non-initialized contained model elements.
The common model is itself a model element to support ab-
straction hierarchies. All the meta-metamodels for defining
new DSLs are presented as an extension of the core mul-
tilayering metamodel. This allows them to utilize multiple
layers for model definitions.

Channels and Items are both model elements, which are
used to relate a model to the graph semantics. They are
kept open to extension for new abstractions in order to sup-
port the definition of new DSLs. One of the hallmarks of
UML was the visual representation through adding seman-
tics to the graphs. LIMM uses the same methodology but
maintains a distinction between the channel and intercon-
nection. A channel is a relationship between two model
elements within a model, whereas an interconnection is a
relationship between elements of different models. Thus the
semantics of relationships crossing the boundaries of a model
is different from those who do not. The classification of in-

to from

from
from

to
*

*

* *

*

*

  Model
Element

Common
  Model

Multilayer
   Model

Reference
    Model

 Data
Model

Interconnection

Instance-ofConforms-toRepresentation

ItemChannel

Flag

*

*

Figure 2: Minimal LIMM metamodel

terconnection is done in terms of abstraction levels. A Cross
Layer Interconnection (CLI) relates two model elements re-
siding on different layers, whereas a Same Layer Intercon-
nection (SLI) relates the model elements residing on the
same layer. Instance-of and Conformity are CLIs that con-
travene the strict metamodeling of UML, where the only
relationship across layers can be instance-of.

A DSL for metamodel specification, Kernel MetaMeta-
Model (KM3) [3], defines the structure of a model using
directed multigraphs. We follow their definition and ex-
tend it further for describing our specification. Let GM =
(NM , EM ,ΓM ) be the directed multigraph for the common
model M , where

• NM is the set of nodes (representing the Items);

• EM is the set of edges (representing the Channels);

• ΓM is the function from EM to NM ×NM associating
an edge to its extremities.

A common model M is represented as M = (GM , R, κM ),
where

• R is the reference model of M . The associated graph
of this reference model is GR = (NR, ER,ΓR).

• κM is a function from NM ∪EM to NR∪ER. It relates
the elements of the model M to the elements of the
reference model R (meta-elements), thus representing
the explicit logical relationships.

Having the common model and reference model in hand,
we are able to represent the multilayer metamodel ML =
(GML,CMM , κML), such that

• GML = (NML, EML,ΓML) is a directed multigraph for
the multilayered model, where

– NML is the set of nodes of the graph representing
the elements of multilayer model, NM ∪NR.

– EML is the set of edges of the graph representing
the associations in multilayer model, EM ∪ ER.

– ΓML is the function from EML to NM∪EM×NR∪
ER associating this edge to its extremities.

• CMM is the core multilayering metamodel which de-
fines itself. It is the topmost level of hierarchy, where
the meta-metamodel is defined recursively by itself.

• κML is a function from NML ∪EML to NCMM , relating
all the model elements and relationships of the multi-
layer model to the nodes of core multilayering meta-
model representing the physical relationships. These
relationships are implicit in the visual representation.



Document

name
category

author
name

Resource Type

Class

Agent Type

Instance

Person

:AR2010 :John

name

used by

Conforms-to

Instance-of

used by

used by

Conforms-to

Instance-of

Conforms-to

Conforms-to

category

1

0

2

1

2

name1

0

1

0

1

1

0

Channel

Item

0

1

2

3

M

M

M

M
2

0

1

Figure 3: Example in LIMM

A reference model is referenced by a data model from
a lower layer but at the same time it may refer to some
other reference model (acting itself as data model). The el-
ements of the reference model R are hence meta-elements
for the elements of the models residing in the subsequent
modeling layer. The CLIs (instantiation and conformity)
can be defined when M and R are both at different layers,
whereas SLIs can be defined when M and R are both at the
same layers. For a model M , a partial function foM gives
the flag value of its model elements if it is not null. Thus,
∀e ∈ NM ∪ EM , foM (e) ∈ {0, 1, 2}.

Conforms-to relationship (µ) is defined for LIMM as a
Cross Level Interconnection (CLI) when,

µ = {i ∈ κM |dom(i) ⊆ dom(foM )}

Instance-of relationship (η) is defined for LIMM as a Cross
Level Interconnection (CLI) when,

η = {i ∈ κM |dom(i) ∩ dom(foM ) = ∅}

The example used to compare other multilayered mod-
eling frameworks is continued in Figure 3 where a part of
object oriented metamodel lies at M0 layer. The Resource-

Type class at M1 layer conforms to the class Class at M0.
The flag value of the attribute name is not initialized till
M3, whereas category is initialized at M2. In this example,
AR2010 has an instance-of relationship to Document, which
in turn has a conforms-to relationship with ResourceType.
The usedby link at M3 is initialized from the usedby asso-
ciation at M2. The flag values on the models and model
elements show that they belong to meta layer, application
layer or data layer. The instance facet of the class Docu-

ment can be viewed from category (slot), whereas the class
facet from name (attribute). All the relationships explicitly
defined are the logical relationships, whereas the physical
relationships are implicit in the visual representation, from
each model to the core multilayering metamodel, adjacent to
all the the layers of the multilayer model.

5. CONCLUSION
Different multilayered modeling frameworks have been ex-

plored to stress their deficiencies and strengths. We pro-
posed to capture the semantics of a model using graphs,
where the semantics of the instance-of and conforms-to re-
lationships can be clarified. A metamodel for the lazy initial-
ization multilayered modeling framework is presented, where

lazy initialization schemes are used to resolve the issues faced
by multilayered models. LIMM framework supports the def-
inition of new DSLs that need the usage of multiple abstrac-
tion levels. In addition, this novel framework improves the
level of expression in multilayered modeling by adding se-
mantics to the mappings across layers, which would in turn
facilitate model validations. A vital impact on the designer’s
approach would be the enhanced control over his model to
guide the development, without forcing any unnecessary re-
strictions to the subsequent layer designers. Having mod-
els as model elements helps add semantics to the mappings
amongst the models also. This inter-model mapping would
have a considerable impact in assisting model management.

The focus of MDE is to exploit domain modeling by im-
proving compatibility and mappings amongst models. We
are looking forward to add semantics to the mapping func-
tions between the model elements. This would further assist
the automation of software development processes for multi-
metamodel applications. For the future work, this multilay-
ered modeling framework would also help to build transfor-
mation hierarchies. Having both the model hierarchies and
transformation hierarchies would allow LIMM framework to
exploit the potential of MDE.

6. REFERENCES
[1] C. Atkinson and T. Kuhne. Rearchitecting the UML

Infrastructure. ACM Transactions on Modeling and
Computer Simulation, 12(4):290–321, 2002.

[2] C. Gonzalez-Perez and B. Henderson-Sellers. A
Powertype-based Metamodelling framework. Software
and Systems Modeling, 5:72–90, 2006.

[3] F. Jouault and J. Bézivin. KM3: A DSL for Metamodel
Specification. In Formal Methods for Open Object-Based
Distributed Systems, volume 4037 of LNCS, pages
171–185. Springer Berlin / Heidelberg, May 2006.

[4] T. Kuhne. Understanding Metamodeling. In Proc. of
the 27th International Conference on Software
Engineering (ICSE), pages 716 – 717, May 2005.

[5] J.Álvarez, A. Evans, and P. Sammut. Mapping between
levels in the metamodel architecture. In Proc. UML -
The Unified Modeling Language. Modeling Languages,
Concepts and Tools, pages 34–46. Springer, 2001.

[6] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified
Modeling Language Reference Manual. Addison-Wesley,
1999.

[7] D. Varró and A. Pataricza. VPM: A visual, precise and
multilevel metamodeling framework for describing
mathematical domains and UML (the mathematics of
metamodeling is metamodeling mathematics). Software
and Systems Modeling, 2(3):187–210, October 2003.


	Introduction
	Multilayered Modeling
	Lazy Initialization
	LIMM metamodel
	Conclusion
	References

