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MIRAGE: A Management Tool for the Analysis

and Deployment of Network Security Policies

J. Garcia-Alfaro, F. Cuppens, N. Cuppens-Boulahia, and S. Preda

Abstract We present the core functionality of MIRAGE, a management tool for

the analysis and deployment of configuration policies over network security com-

ponents, such as firewalls, intrusion detection systems, and VPN routers. We review

the two main functionalities embedded in our current prototype: (1) a bottom-up

analysis of already deployed network security configurations and (2) a top-down

refinement of global policies into network security component configurations. In

both cases, MIRAGE provides intra-component analysis to detect inconsistencies

in single component deployments; and inter-component analysis, to detect multi-

component deployments which are not consistent. MIRAGE also manages the de-

scription of the security architecture topology, to guarantee the proper execution of

all the processes.

1 Introduction

Despite the advances in the field of network security technologies, such as filter-

ing of traffic, use of encrypted communications, and deployment of authentication

mechanisms, there may always be errors or flaws that can be exploited by unau-

thorized parties. The use of firewalls, NIDSs (network intrusion detection systems),

and VPN (Virtual Private Network) routers, is still the dominant method to survey

and guarantee the security policy in current corporate networks. The configuration

of these components is based on the distribution of security rules that state what is

permitted and what is prohibited in a system during normal operations. This config-

uration must be consistent, addressing the same decisions under equivalent condi-

tions, and not repeating the same actions more than once. Otherwise, the existence

of anomalies in their configuration rules may lead to weak security policies (po-

tentially easy to be evaded by unauthorized parties). The update of the component

configurations can also introduce new anomalies. There is, therefore, a clear need

of support tools to guide the operators when performing such tasks.

Our research work has studied the combination of two main strategies in order to

manage this problem. The first strategy is the use of an audit mechanism that ana-

lyzes already deployed configurations, signals inconsistencies, and yields consistent
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configurations. Through this mechanism, moreover, we can fold existing policies

and create a consistent and global set of rules — easy to maintain and manage by

using a single syntax [13]. The second strategy is the use of a refinement mechanism

that guarantees the proper deployment of such rules into new systems, yet free of in-

consistencies. These two research strategies have been implemented into a software

prototype called MIRAGE (which stands for MIsconfiguRAtion manaGEr).

Developed as a web service, MIRAGE can autonomously be executed under the

control of several operators in order to offer the system with the following functions:

(1) an intra-component analysis which detects inconsistencies between rules within

single security component policies [11]; (2) an inter-component analysis of rules

to detect inconsistencies between configurations of different devices [14]; (3) an

aggregation mechanism to fold all the existing policies into a single, and consistent,

global set of rules [13]; and (4) a refinement process to properly deploy the global set

of rules over new security components [17, 18]. In all four cases, MIRAGE utilizes

a description of the topology of the whole security architecture.

The use of MIRAGE can highly benefit the maintenance of multihomed au-

tonomous systems. It might remain connected to the network and provide assistance

to the complete set of component in the event of configuration maintenance or rede-

ployment of configuration to face events such as detection of malicious activity or

failures. In this sense, the refinement mechanism offered by MIRAGE guarantees

that the set of rules deployed over the different components of a system is always

consistent, not redundant, and optimal [19].

Paper Organization — Section 2 reviews recent results implemented in the MI-

RAGE prototype for guaranteeing correctness and consistency on single and dis-

tributed network security policies. Section 3 compares these approaches imple-

mented in MIRAGE with other solutions proposed in both the science and the in-

dustry community. Section 4 closes the paper.

2 MIRAGE Prototype

MIRAGE is a management tool for guaranteeing the correctness and the consis-

tency of configuration rules on single and distributed network security policies. It

implements an analysis of components’ configurations (i.e., configurations of fire-

walls, NIDSs, and VPN routers) to detect anomalies on their deployment. To do so,

MIRAGE implements four main functions: intra-component analysis for the detec-

tion of inconsistencies between configuration rules within single security compo-

nent policies; inter-component analysis of rules to detect inconsistencies between

configurations of different devices; aggregation of policies for the creation of a con-

sistent and global set of rules; and refinement mechanism for the deployment of

global policies over the different components of new systems. We address in the

sequel the key aspects of some of these functionalities implemented in the current

version of our prototype.



Management Tool for Analyzing and Deploying Network Security Policies 3

2.1 Bottom-Up Analysis of Network Configurations

We assume here that a security policy has been empirically deployed into the net-

work based on security administrator expertise and flair. It is then advisable to ana-

lyze the security rules deployed to detect and correct policy inconsistencies. These

inconsistencies are often the origin of security holes exploited by dishonest parties.

MIRAGE addresses this process and provides a discovery of inconsistencies and re-

dundancies from component configurations. This process is presented based on two

different schemes: (1) single- and (2) multi-component analysis.

Single-component Analysis

MIRAGE provides a deterministic process to detect inconsistencies in the config-

uration of security components. It considers that these devices are configured in a

standalone manner, using a set of configuration rules (e.g., filtering rules in the case

of a firewall; and alerting rules in the case of a NIDS). A general configuration rule

is defined as follows:

Ri : {conditioni}→ decisioni (1)

Regarding the previous expression, i is the relative position of a rule in the

set, {conditioni} is a conjunctive set of condition attributes such that {conditioni}
equals A1 ∧A2 ∧ ...∧Ap – being p the number of attributes of the given rule – and

decision is a boolean value in {true, f alse}. For example, the decision of a filtering

rule is positive (true) when it applies to a specific value related to deny the traf-

fic it matches; and negative ( f alse) when it points to accept the traffic it matches.

Similarly, the decision field of an alerting rule is positive (true) when it applies to a

specific value related to alert about the traffic it matches; and negative ( f alse) when

it applies to a specific value related to ignore the traffic it matches. Based on the

sample scenario depicted by Figure 1, and its associated set of rules, we define the

following set of anomalies detected by the intra-component audit process.

• Intra-component Shadowing — A configuration rule Ri is shadowed in a set of

configuration rules R when such a rule never applies because all the packets that

R1: {tcp,1.0.1.[10,20]:any, 1.0.1.[50,60]:any} → false

R2: {tcp,1.0.2.[10,255]:any, 1.0.3.[0,255]:any} → false

R3: {tcp,1.0.2.[1,30]:any, 1.0.1.[20,45]:any} → true

R4: {tcp,1.0.2.[20,60]:any, 1.0.1.[25,35]:any} → false

R5: {tcp,1.0.2.[30,70]:any, 1.0.1.[20,45]:any} → false

R6: {tcp,1.0.2.[15,45]:any, 1.0.1.[25,30]:any} → true

1.0.1.0/24 1.0.2.0/24 1.0.3.0/24

Fig. 1 Single filtering policy scenario.
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Ri may match, are previously matched by another rule, or combination of rules,

with higher priority. E.g., rule R6 is shadowed by the overlapping of rules R3∪R5.

• Intra-component Redundancy — A configuration rule Ri is redundant in a set of

configuration rules R when the following conditions hold: (1) Ri is not shadowed

by any other rule or set of rules; (2) when removing Ri from R, the security policy

does not change. E.g., rule R4 is redundant to R3 ∪R5.

• Intra-component Irrelevance — A configuration rule Ri is irrelevant when (1)

source and destination addresses are within the same zone or (2) the compo-

nent does not appear in the minimal route that connects the source zone (i.e., the

rule matches traffic that never reaches the component). E.g., rule R1 is irrelevant

since both source and destination are in network 1.0.1.0/24. Rule R2 is also irrel-

evant since the filtering device is not part of the minimal route between networks

1.0.2.0/24 and 1.0.3.0/24.

The reader can find in [11, 14] the algorithms that enable MIRAGE the detection

of the inconsistencies presented in this section, as well as correctness and compu-

tational complexity of the algorithms. Although we show that the theoretical com-

plexity of the algorithms is very high, we show with a series of experimentations

(cf. [14], Section 6) that we are always very far from the worst case. Indeed, only

few attributes, such as source and destination addresses, may significantly over-

lap and exercice a bad influence on the algorithms complexity. Other attributes,

such as the protocol or the port numbers, are generally equal or completely differ-

ent when combining configuration rules. Moreover, when anomalies are discovered,

some rules are removed – which significantly reduces the algorithms complexity.

Multi-component analysis

MIRAGE provides a second audit process to analyze multi-component setups (e.g.,

distributed architectures with firewalls and NIDSs in charge of multiple network se-

curity policies). In this sense, it can assume, for instance, that the role for detecting

and preventing network attacks is assigned to several components. It will, then, look

for inconsistencies hidden in their configurations. The detection process is based on

the similarity between the parameters of configuration rules such as filtering an alert-

ing rules. It checks, indeed, if there are errors in the configurations by comparing

the policy deployment over each component that matches the same traffic. Based on

the sample scenario depicted by Figure 2, we show in the sequel an example of the

kind of inconsistencies detected by the inter-component audit process of MIRAGE.

• Inter-component Shadowing — A shadowing anomaly occurs between two com-

ponents when the following conditions hold: (1) The component that is located

closest to the origin of the traffic is a filtering device (e.g., a firewall); (2) The

component where the anomaly is detected does not block or report (completely

or partially) traffic that is blocked (explicitly, by means of positive rules; or im-

plicitly, by means of its default policy), by the first component in the path (closest

to the source). The following table shows some examples.
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Rules Anomaly

C6{R7}∪C6{R8} shadows C3{R1} full shadowing

C6{R8} partially shadows C3{R2} explicit partial shadowing

Close policy of C2 shadows C1{R5} implicit full shadowing

• Inter-component Redundancy — A redundancy anomaly occurs between two

components when the following conditions hold: (1) The component that is lo-

cated closest to the origin of the traffic is a filtering device (e.g., a firewall); (2)

The component where the anomaly is detected, blocks or reports (completely

or partially) traffic that is already blocked by the first component. This kind of

redundancy is often introduced by network officers expressly. It is important,

however to alert about it, to warn the administrator that the rule has a special

meaning (e.g., a message warning that if the rule applies, the upstream filtering

devices are not working properly). The following table shows some examples.

Rules Anomaly

C6{R1} is redundant to C5{R3} full redundancy

C6{R5} is redundant to C4{R3} full redundancy

C6{R2} is redundant to C5{R4} partial redundancy

C6{R6} is redundant to C4{R4} partial redundancy

C1

C3

C6

C4

C2 C5

C1{R1}: {1.0.1.[0,255]:any, 2.0.12.[0,255]:any} → false

C1{R2}: {1.0.2.[0,255]:any, 2.0.12.[0,255]:any} → false

C1{R3}: {1.0.3.[20,33]:any, 1.0.1.[20,30]:any} → false

C1{R4}: {1.0.3.[60,80]:any, 1.0.1.[20,30]:any} → false

C1{R5}: {2.0.11.[0,30]:any, 1.0.2.[10,30]:any} → false

C1{R6}: {2.0.9.[10,20]:any, 1.0.1.[0,255]:any} → true

C1{R7}: {2.0.11.[0,255]:any, 1.0.1.[10,12]:any} → true

C3{R1}: {1.0.3.[20,33]:any, 2.0.1.[20,30]:any} → false

C3{R2}: {1.0.3.[60,80]:any, 2.0.1.[20,30]:any} → false

C6{R1}: {1.0.4.[0,255]:any, 2.0.6.[0,255]:any} → true

C6{R2}: {1.0.5.[18,20]:any, 2.0.6.[0,255]:any} → true

C6{R3}: {1.0.3.[10,20]:any, 1.0.1.[0,255]:any} → true

C6{R4}: {1.0.3.[21,70]:any, 1.0.1.[0,255]:any} → true

C6{R5}: {1.0.4.[0,255]:any, 2.0.3.[0,255]:any} → true

C6{R6}: {1.0.5.[18,20]:any, 2.0.3.[0,255]:any} → true

C6{R7}: {1.0.3.[10,23]:any, 2.0.1.[0,255]:any} → true

C6{R8}: {1.0.3.[24,60]:any, 2.0.1.[0,255]:any} → true

C2{R1}: {2.0.8.[15,17]:any, 1.0.1.[0,255]:any} → false

C2{R2}: {2.0.10.[0,70]:any, 2.0.7.[0,255]:any} → false

C2{R3}: {2.0.10.[0,70]:any, 1.0.2.[0,255]:any} → false

C2{R4}: {2.0.11.[0,255]:any, 1.0.1.[0,255]:any} → false

C2{R5}: {2.0.10.[0,70]:any, 2.0.4.[0,255]:any} → false

C2{R6}: {1.0.[1.0,2.255]:any, 2.0.12.[0,255]:any} → false

C4{R1}: {2.0.10.10:any, 2.0.4.[0,255]:any} → true

C4{R2}: {2.0.10.[60,80]:any, 2.0.4.[0,255]:any} → true

C4{R3}: {1.0.4.[15,30]:any, 2.0.3.[0,255]:any} → true

C4{R4}: {1.0.5.[0,255]:any, 2.0.3.[0,255]:any} → true

C4{R5}: {1.0.3.[18,20]:any, 2.0.5.[0,255]:any} → true

C5{R1}: {2.0.10.10:any, 2.0.7.[0,255]:any} → true

C5{R2}: {2.0.10.[60,80]:any, 2.0.7.[0,255]:any} → true

C5{R3}: {1.0.4.[15,30]:any, 2.0.6.[0,255]:any} → true

C5{R4}: {1.0.5.[0,255]:any, 2.0.6.[0,255]:any} → true

C5{R5}: {1.0.3.[18,20]:any, 2.0.8.[0,255]:any} → true

2.0.12.0/24

1.0.[1,2].0/24

2.0.[9,11].0/24
2.0.[6,8].0/24

2.0.[1,2].0/24 2.0.[3,5].0/24

1.0.[3,5].0/24

Fig. 2 Example of an inter-component setup.
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• Inter-component Misconnection — A misconnection anomaly occurs between

two components when the first one, located closest to the source, is a firewall that

permits (explicitly, by means of negative rules; or implicitly, through its default

policy) all the traffic, or just a part of it, that is then denied by the component

where the anomaly is detected. The following table shows some examples.

Rules Anomaly

C5{R1} and C2{R2} are misconnected full explicit misconnection

C5{R2} and C2{R2} are misconnected partial explicit misconnection

C1{R5} and policy of C2 are misconnected full implicit misconnection

C1{R6}, C2{R1}, and policy of C2 partial implicit misconnection

The reader can find in [14] the algorithms that enable MIRAGE the detection of the

inconsistencies presented in this section, as well as correctness profs, computational

complexity, and experimental results. The complete set of analyzed configuration

can be aggregated into a single, and consistent, global set of rules by using the

aggregation mechanism presented in [13]. This global policy is, in fact, the main

source of information used by the refinement mechanism presented in the sequel.

2.2 Top-Down Refinement of Global Policies

A second approach to address the management of consistency and correctness of

network policies is the use of refinement mechanisms. In this way, we can perform

a downward deployment of rules by unfolding a global set of security policies into

the configurations of several components and guaranteeing that the deployed con-

figurations are free of anomalies. In [10], for example, we presented a refinement

mechanism that uses a formal model for the generation of filtering rules by trans-

forming general rules into specific configuration rules. We address in this section

some functionalities addressed by MIRAGE in this sense.

2.2.1 Model-driven Policy Deployment

If manually carried out, the process of deploying network security policies is often

errorprone. In fact, without the right structural knowledge of the policy, the deploy-

ment of conflicting security requirements becomes very likely. This highlights the

necessity of a more structured policy expression, i.e., only a formalized expression

of the security policy may guarantee an error-free security policy to be deployed,

with no ambiguities, no inconsistencies, no redundancies and no unnecessary de-

tails. Thus MIRAGE considers that an access control model and a formalized secu-

rity policy is the first step toward enforcing by refinement the security of the system.

MIRAGE takes full advantage of the OrBAC model (Organization Based Access

Control) [1] which is an extension of RBAC [20]. OrBAC presents a high abstraction

level and covers a large panel of security policies since it natively provides means

to express both static requirements (i.e., they are enforced once and for all) and

contextual requirements (i.e., dynamic requirements). The OrBAC notions of role,
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activity, and view and also context prove very useful: the complexity of both the sys-

tem (tens of firewalls, NIDSs, and VPN routers) and the policy (static and dynamic

security requirements) is no longer an issue. The role regroups subjects (concrete

network entities), the activity – actions (network services), the view – objects (e.g.,

IP packets, network entities) on which the same rules apply respectively. The notion

of context confers the possibility to address a larger variety and also a finer granular-

ity of security requirements, it captures the conditions (e.g., environmental factors)

in which the security requirements are enforced and met. The OrBAC context allows

the specification of these conditions directly at an abstract policy level.

The policy refinement mechanism of MIRAGE is in fact a set of deployment

algorithms which constitutes the downward process: an OrBAC error-free security

policy is refined into packages of rules for each security device in the given net-

work. The aim is the correct deployment of a security policy, and this is achievable

if some specific security properties are verified at the end. Such properties guaran-

tee that no intra- nor inter- component anomalies are introduced (cf. Section 2.1).

The formal frame to design the refinement mechanism of MIRAGE is presented

in [18]. The policy deployment algorithms are developed using the B Method [2],

a theorem proving method. The B Method offers the means to cope with the is-

sue of stating the interesting security properties: besides an appropriate modeling

language for both the OrBAC policy and the system/network specifications, it al-

lows a formal expression of the properties related to the management of the intra-

and inter- configuration anomalies during the downward process. This is ensured by

some B invariants. Thus, from the early stage of their B development (i.e., abstract

B specification), the policy deployment algorithms of MIRAGE target the interest-

ing security properties. Examples of security properties we took into account, and

expressed as B invariants, in [18] are:

• Completeness — This property states that if the network path from a subject to an

object is correctly computed (i.e., it exists and the security components belonging

to this path have the right functionalities with respect to the current contexti) the

security OrBAC rule Is permitted(subject, action, object, contexti) may and will

be deployed. Clearly, this property is closely related to the network’s architecture

and the assumption of connectedness in the network architecture is required.

• All traffic are regulated by filtering components — This property is verified if

there is, at least, exactly one firewall or one IPS on the path between the current

subject and object.

• Integrity and confidentiality — These two properties are related to the establish-

ment of VPN tunnels. The verification starts at higher levels: the current OrBAC

security rule should be defined with a protected context — meaning that the trafic

filtered by the associated rules must be protected by the VPN tunnels. Then, if

a path is computed between the subject and the object and a VPN tunnel can be

established on this path, the integrity and confidentiality properties are verified.

The work in [18] presents a complete analysis of security properties. Some may

be specified at higher levels [9] and some may be identified from specific security
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requirements. The MIRAGE deployment algorithms were formally proved with the

assumption of a conflict-free OrBAC policy and of a correct system architecture,

i.e., no lack of security functionalities in the security components placed on the

shortest-paths. Hence, as long as the system embeds all necessary security func-

tionalities, there are no concerns in deploying the policies. The refinement provided

by MIRAGE is a certified algorithm for a reliable and automatic security policy

deployment. It is, however, realistic to consider that sometimes the system lacks

some necessary security functionalities. Our proposed solutions to this problem are

presented in the sequel.

2.2.2 Context Aware Policy Deployment

The security policies become more and more contextual. (Re)deploying a contextual

security policy depends on the security device functionalities: either (1) the devices

include all functionalities necessary to handle a context and the policy is conse-

quently deployed to ensure its automatic changes or (2) the devices do not have the

right functionalities to interpret a contextual requirement in its entirety. MIRAGE

proposes two solutions to cope with the issue of the (re)deployment of access control

policies in a system that lacks the necessary functionalities to deal with contexts:

1. Dynamic deployment: MIRAGE considers a central entity (hereafter called PDP

– Policy Decision Point) which (partially) manages some contexts.

2. Optimization deployment: if the previous solution does not stand.

Obviously, the OrBAC formalism is maintained. These two solutions presented

in [17] and [19] respectively can then be jointly used whenever the security de-

vices (hereafter called PEPs – Policy Enforcement Points) are not rich enough in

functionalities so as to manage all contexts by themselves. In this way, a complete

deployment of the (contextual) policy may be achieved.

The Methodology

Let SR = (Decision, Role, Activity, View, Ctx) be a security rule of the OrBAC

policy P (SR ∈ P) and SR′ = (Decision, Role, Activity, View, Ctx′) with Deci-

sion ∈ {Permission, Prohibition}. We call SR′ the SR contextual version over the

context Ctx′. Let PEPi be an enforcement point able to manage only the context

Ctx′ and SR be the security rule PEPi must enforce. We investigate how SR′ can be

deployed and thus enforced by PEPi even if Ctx′ is not equal to the context Ctx of

the initial rule SR to be deployed. The final aim is to deploy the SR rule and one of

the following situations appears:

• Case 1 — The PEPi manages the entire Ctx context. The rule SR is directly

deployed over PEPi and the PDP does not manage SR anymore. Otherwise, the

PDP has to manage a part of the Ctx context.
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• Case 2 — The PEPi manages only Ctx2, a part of the Ctx context. We note this

case as Ctx1 = Ctx - Ctx2. The deployment is dynamic and the PDP manages

Ctx1: the PDP must deploy SR′, the SR contextual version over Ctx2 on the PEPi

when Ctx1 becomes active. Once Ctx1 is deactivated, the PDP must be able to

retrieve the deployed SR′ from PEPi. For example and as suggested in [17], Ctx1

may represent a threat context activated by the detection of some intrusion. Thus,

Case 2 provides means to dynamically redeploy the policy to face this intrusion.

This represents the dynamic deployment solution.

• Case 3 — Neither the PEPi, nor the PEPi and the PDP working together manage

the Ctx context. Then, two solutions are possible: (I) there may be a context

closely related with Ctx which is still managed by the system as described in

Case 2 (in fact, we refer to the OrBAC context hierarchies); or (II) if the system

does not provide hierarchies, the last option is to find a security functionality

closely-equivalent to the one necessary to handle the Ctx context. Both (I) and

(II) represent the best deployed policy solution.

Dynamic Deployment

The formalization of this solution is based on the use of ECA (Event Condition Ac-

tion) [6]. The algorithms running at the PDP level deploy (or retrieve) security rules

over the PEPs when the contexts are activated (or deactivated). To be effective, this

solution requires a specific communication protocol between the PDP and the PEPs.

Actually our method uses the Netconf (cf. http://www.ops.ietf.org/netconf/) proto-

col with the Yencap (cf. http://ensuite.sourceforge.net/) open-source implementa-

tion which we adapted accordingly. Several performance tests were realized and

presented in [17]. The results proved to be satisfactory.

Best Deployed Policy

There are scenarios in which the PDP and/or PEPs cannot entirely handle the Ctx

context related to an SR rule. Instead of skipping such rules (with the result of, for

example, a too restrictive deployed policy at the end), MIRAGE proposes the fol-

lowing solutions of: (1) finding a closely related context to the unmanaged one and

which may be managed by the PDP and/or PEP and/or (2) finding a close enough

functionality to deal with the unmanaged context if solution (1) does not apply.

OrBAC proves very effective for the first solution since OrBAC provides context

hierarchies. Thus, it is enough to find either the more specialized context than Ctx

(to deploy permissions) or less specialized ones (to deploy prohibitions).

The second solution is solved with an optimization approach. The system presents

no optimal functionality to manage the Ctx context but only closely-equivalent ones.

We declare these functionalities with the Close Fs() predicate. A notion of cost of

using a given functionality to deploy certain rules in the Ctx context is introduced

and the deployment problem is transformed into an optimization one. The result is
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a bipartite graph where the optimization solution is obtained with linear program-

ming. Figure 3 depicts a proper example. Notice that, globally, the cost of deploying

the SR rules over the Ctx contexts is minimized. The optimal functionalities neces-

sary to handle the Ctx context will be substituted by closely-equivalent ones.

F2 F3 F4 F5F1

SR1 SR2 SR3 SR4 SR5 SR6 SR7

Cost5Cost4Cost3Cost2Cost1

SR rules, SRj

Functionalities, Fj

(a) The LP Problem.

minimize Cost jx j ,
j=1

n

∑

subject to dijx j

j=1

n

∑ ≥1, i∈ (1...m)

                 x j = 0 or 1, j∈ (1...n)

where x j =1 if j is in FS, x j = 0

otherwise; and dij =1 if SR i could

be deployed using the functionality 

Fj,  dij = 0 otherwise.

Case A Case B

minimize Cost jx j ,
j=1

n

∑

subject to dijx j

j=1

n

∑ =1, i∈ (1...m)

                 x j = 0 or 1, j∈ (1...n)

where x j =1 if j is in FS, x j = 0

otherwise; and dij =1 if SR i could

be deployed using the functionality 

Fj,  dij = 0 otherwise.

(b) The LP Solutions.

Fig. 3 LP Problem and Solutions.

3 Related Works

A significant amount of work has been reported in the area of security manage-

ment at network level in order to analyze and fix existing configurations. The most

significant approach to firewall policy analysis is the one by Al-Shaer et al. (e.g.,

approaches presented in [4, 5]) which provides efficient solutions to detect policy

anomalies in both single- and multi-firewall configuration setups. Their detection al-

gorithms are based on the analysis of relationships between rules two by two. There-

fore, errors due to the union of rules are not explicitly considered (as our approach

does). Some workarounds can be provided to solve this situation. For instance, it is

possible to break down the initial set of rules into an equivalent set of rules free of

overlaps between rules. However, no specific algorithms were provided in [4, 5] to

manage this solution. Another related work is the proposal presented in [21], which

uses a model checking formalism for detecting inconsistencies and redundancies in

single firewall configurations. This proposal handles the limitation pointed out in

the works by Al-Shaer et al., by addressing directly the way how traffic is handled

by the components. The complete set is divided in three main sets: traffic that is per-

mitted, traffic that is prohibited, and traffic for which no rules apply. The proposal in

[21], as well as other similar approaches, such as [16], only address intra-component

analysis. Moreover, none of them have presented specific mechanisms for verifying

policies other than filtering ones.

Regarding the analysis of VPN routers’ configurations, the most significant ap-

proach compared to ours is proposed in [12]. The authors propose a technique that

simulates VPN tunneling processing and reports any violation of the security pol-

icy requirements. In their approach, if an access rule concerning a protected traffic
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between two points is implemented by configuring more than one VPN overlap-

ping tunnel, the risk is that in some network zones the IP packets circulate without

any protection. The authors present a discovery process to detect such situations

and propose a high-level language to deal with VPN policies. Although this ap-

proach can discover some violations in a certain simulation scenario, there is no

guarantee that it discovers every possible violation that may exist. In addition, the

proposed technique only discovers VPN conflicts resulting from incorrect tunnel

overlap, but does not address the other types of conflicts. Another attempt to deploy

VPN configurations free of anomalies is [7] where the authors propose a central-

entity approach with high level language conflict resolution techniques also - the

algorithms remained however unevaluated. However, a significant aspect is ignored

in both previous approaches: the security policy cannot be seen as two independent

sets of requirements (i.e., VPN tunnels and firewalls modeled separately). The use

of a single access control model in our approach solves this limitation and allows us

to deal with a global set of security requirements and to address inter-mechanisms

anomalies (e.g., firewall vs. VPN conflicts) at the same time.

Another significant approach compared to ours is the RBAC-based proposal pre-

sented in [8], called Firmato. This new solution aims at configuring filtering devices

following an approach of separation between the security policy model and the tech-

nology specifications. It, therefore, ensures policy deployment independently of the

network topology. The tool is based on an Entity — Association model (abstract

level) which takes into account the network topology as a role. The instantiation of

the model is based on a specific language that allows a downward transformation of

the global policy into a set of firewall configurations. However, the use of the role

concept used in Firmato, which defines the network capabilities, becomes ambigu-

ous in its semantics. The authors use the notion of group to handle this situation. A

group can identify, in fact, a set of hosts but also a role or a set of roles. Its use does

not ensure, indeed, a clear separation between the network level and the security

policy, making difficult the use of this tool to model complex networks. The authors

use, moreover, privilege inheritance through group hierarchies in order to derive

permissions. If permission inheritance is related to the so-called open group, prohi-

bitions are inherited through a close group. The notion of group clearly introduces

ambiguities and seems to be useless at this abstraction level.

Support tools can also be used to assist administrators in their task of config-

uring security devices. Proper examples are the LogLogic Security Change Man-

ager (cf. http://loglogic.com/products/), formerly known as Solsoft Policy Server

and Network Security Policy Server, the Firewall Builder (cf. http://fwbuilder.org/),

CheckPoint SmartCenter (cf. http://checkpoint.com/products/smartcenter/), Juniper

Network and Security Manager (cf. http://www.netutils.com/), and the Cisco Se-

curity Manager (cf. http://cisco.com/go/csmanager). In a relatively high level lan-

guage, these support tools allow the configuration of different vendors’ devices and

support the security administrators in the deployment of large configurations on het-

erogeneous networks. We observe the following problems when using such tools.

First, they do not offer a semantic model rich enough to express a global security

policy. Although it is possible to define variables, and thus to define access rules
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involving such variables, the administration tasks are not much simplified. The se-

curity officer always needs a global view of the topology in order to correctly as-

sign each rule to network devices; then, there is no automatic discovery of security

devices that optimally implement an access rule involving an IP source and a des-

tination. Furthermore, the lack of a real downward approach like ours is partially

replaced by other tools (e.g., Cisco conflict discovery tools) that need the security

officer’s assistance and that unfortunately only guarantee conflict resolution for lo-

cal configurations.

4 Conclusions

We addressed the managing of network security policies free of anomalies or incon-

sistencies. Two main approaches were presented: (1) the use of bottom-up process

to detect and fix configuration errors over components already deployed; and (2) the

use of a top-down process to perform an automatic deployment of component con-

figurations free of inconsistencies. The implementation of these two approaches in a

software prototype demonstrates the practicability of our work. We finally compared

the functionality of MIRAGE with some other solutions proposed in both the sci-

ence and the industry community, and showed some advantages of our approaches.

As future work, it is expected to add new a feature in MIRAGE to manage the up-

date of components’ configurations. This new feature will guide the operators to

determine the impact that the removal or the addition of new configuration rules in

the system might suppose. It is also expected to give support to determine dynamic

tuning of configurations. In this case, the new feature is expected to compare and test

the equivalence between different configurations. For example, the security operator

can verify whether the new settings of a new configuration setup will perform well

enough, and in compliance with the global security policy. Finally, it is also intended

to complement the upward and the downward approaches offered by MIRAGE with

an automatic discovery of roles associated with different security components al-

ready deployed in the system. It is planned the use of role mining techniques, for

example, to analyze existing access control roles associated to the components (to

derive, after the analysis, the appropriate rules of the global configuration).
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