
HAL Id: hal-00623631
https://hal.science/hal-00623631v1

Submitted on 14 Sep 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A practical implementation attack on weak
pseudorandom number generator designs for EPC Gen2

tags
Joan Melia Segui, Joaquin Garcia Alfaro, Jordi Herrera Joancomarti

To cite this version:
Joan Melia Segui, Joaquin Garcia Alfaro, Jordi Herrera Joancomarti. A practical implementation
attack on weak pseudorandom number generator designs for EPC Gen2 tags. Wireless Personal
Communications, 2011, 59 (1), pp.27-42. �10.1007/s11277-010-0187-1�. �hal-00623631�

https://hal.science/hal-00623631v1
https://hal.archives-ouvertes.fr

Wireless Personal Communications manuscript No.
(will be inserted by the editor)

A Practical Implementation Attack on Weak Pseudorandom

Number Generator Designs for EPC Gen2 Tags

Joan Melià-Seguı́ · Joaquin Garcia-Alfaro ·

Jordi Herrera-Joancomartı́

Received: date / Accepted: date

Abstract The Electronic Product Code Generation 2 (EPC Gen2) is an international

standard that proposes the use of Radio Frequency Identification (RFID) in the supply

chain. It is designed to balance cost and functionality. As a consequence, security on

board of EPC Gen2 tags is often minimal. It is, indeed, mainly based on the use of on

board pseudorandomness, used to obscure the communication between readers and

tags; and to acknowledge the proper execution of password-protected operations. In

this paper, we present a practical implementation attack on a weak pseudorandom

number generator (PRNG) designed specifically for EPC Gen2 tags. We show that it

is feasible to eavesdrop a small amount of pseudorandom values by using standard

EPC commands and using them to determine the PRNG configuration that allows to

predict the complete output sequence.

Keywords RFID · EPC Gen2 · PRNG · Security · Eavesdropping · Attack

implementation

Joan Melià-Seguı́

Universitat Oberta de Catalunya,

Rambla Poble Nou 156, 08018 Barcelona - Spain,

E-mail: melia@uoc.edu

Joaquin Garcia-Alfaro

Institut Telecom, Telecom Bretagne

02, rue de la Chatagneraie, Cesson-Sevigne 35576 - France

E-mail: joaquin.garcia-alfaro@acm.org

Jordi Herrera-Joancomartı́

Universitat Autònoma de Barcelona,

Edifici Q, Campus de Bellaterra, 08193, Bellaterra - Spain,

E-mail: jherrera@deic.uab.es

2

1 Introduction

The Electronic Product Code Generation 2 (EPC Gen2) is an international standard

that proposes the use of Radio Frequency Identification (RFID) in the supply chain.

It is designed to balance cost and functionality. The development of Gen2 tags faces,

in fact, several challenging constraints such as cost, compatibility regulations, power

consumption, and performance requirements. As a consequence, the computational

capabilities of Gen2 tags are very simple. In this sense, the Gen2 specification only

considers two basic on board security features: pseudorandom number generators

(PRNGs) and password-protected operations. The pseudorandomness offered by on

board PRNGs is, indeed, used to protect the password-protected operations. PRNGs

are also used as an anti-collision mechanism for inventorying processes [1]; and to

acknowledge other Gen2 specific operations (e.g., memory writing, decommission of

tags, and self-destruction). PRNGs are, therefore, the crucial components that guar-

antee Gen2 security.

The use of weak PRNGs that allow the predictability of the outgoing sequences

introduces important security flaws in EPC communications. For example, it allows

an attacker to bypass the security of the password-protected commands defined in the

Gen2 standard (e.g., the access and the kill commands [1]). The execution of these

commands is processed by the tag if a 32-bit value, stored in the reserved memory of

the tag, is provided by the reader. Therefore, if a compliant reader wants to request

the execution of these special commands, it must provide an appropriate copy of the

32-bit password values. The security model of the EPC Gen2 specification considers

that the reader-to-tag channel requires protection to handle an eventual eavesdrop-

ping of these values. For this reason, the reader must obscure the transmission of the

32-bit password values. To do so, the reader requests beforehand two 16-bit pseu-

dorandom sequences to the tag. These two sequences are computed by the on-board

PRNG of the tag, and sent as cleartext to the reader (notice that the EPC Gen2 speci-

fication does not require protection for the tag-to-reader channel). Once obtained the

two pseudorandom sequences, the reader transmits the 32-bit password values in two

steps: (1) it obscures the 16 lowest bits of the password by an exclusive OR (XOR)

logical operation with the first pseudorandom sequence, and transmits the resulting

first half-password; (2) it obscures the remainder 16 bits of the password by XORing

them with the second pseudorandom sequence, and transmits the resulting second

half-password. Since the attacker is not supposed to be capable of eavesdropping the

tag-to-reader channel, the only (practical) way to retrieve the password values must

come from the eavesdropping of the reader-to-tag channel. This is indeed possible if

the on-board tag’s PRNG is predictable. The attacker can apply, for instance, an active

scanning of the tags, to analyze the predictability of their pseudorandom sequences;

or a passive eavesdropping of reader-to-tag acknowledgments, with the same purpose

of analyzing the predictability of tags’ pseudorandom sequences. If either attack suc-

ceeds, it then suffices to apply a simple XOR operation with the predicted sequences

and the contents of the messages transmitted over the reader-to-tag channel to decrypt

the remainder ciphertext (e.g., the protected half-passwords).

In this paper, we analyze the proposal presented in [2], in which the authors de-

scribe the construction of a cost-effective PRNG for EPC Gen2 devices. We demon-

3

strate, by implementing a practical attack, that their approach is not secure. An at-

tacker may obtain the PRNG configuration with very few observations and then he

is able to derive the whole pseudorandom sequence. Although the attack implemen-

tation has been applied to a specific PRNG proposal, the procedure used to obtain

the data is based on standard EPC commands and it can be applied to any EPC tag

communication to eavesdrop the output of the PRNG.

The paper is organized as follows. Section 2 discusses the challenges of design-

ing PRNGs for EPC Gen2 tags, reviews some proposals and finally describes the

suitability of using linear feedback shift registers (LFSRs) for the generation of pseu-

dorandom sequences. The section also describes the proposal presented by Che et al.

in [2]. In Section 3, we present an analysis of the Che et al. scheme. We give the

details of a statistical analysis performed over the output data based on the National

Institute of Standards and Technology (NIST) statistical test for pseudorandomness.

Based on the weakness detected by the NIST test, we also detail an attack that, given

a small number of output bits, can determine the whole sequence. Section 4 provides

the details of the attack implementation. The section provides information about the

tools used to implement the attack and the empirical results obtained in the attack of

the Che et al. scheme. Finally, Section 5 concludes the paper and gives some ideas

for further research.

2 Pseudorandom number generators for EPC Gen2 tag

The design of PRNGs for EPC Gen2 tags is not an easy task due to the computational

and memory restrictions that these tiny devices imply. Capabilities of this type of

tags are so small that security features for the EPC Gen2 standard are expected to

be implemented with a small amount of equivalent logic gates (GE), defined in the

literature between 2,000 and 5,000 [3]. This is a extremely small value if we consider

that a standard hash function (the most simple cryptographic transformation), like

SHA1, needs at least 8,120 GE to be implemented [4].

2.1 Existing proposals

Existing commercial Gen2 tags do implement a PRNG, as it is an EPC standard

mandatory, but companies are often reluctant to present the design of their PRNGs.

Manufacturers simply refer to testbeds that show the accomplishment of some ex-

pected requirements, most of them for compatibility purposes. They fail to offer con-

vincing information about the PRNGs designs [5]. This is mostly security through

obscurity, which is always ineffective in security engineering, as it has been shown

with the disclosure of the PRNG used in the MIFARE Classic chip [6] that has shown

a vulnerable PRNG.

Few PRNG proposals have been presented in the scientific literature specifically

designed for EPC tags. To the best of our knowledge, only three papers explicitly

propose PRNG for EPC tags. On one hand, Peris-Lopez et al. present in [7] a de-

terministic algorithm that relies on the use of 32-bit keys and pre-established initial

4

states. The set of functions mainly consists of bit rotations, bitwise operations, and

modular algebra, building a 32-bit PRNG. The authors also propose an alternative 16-

bit version of their PRNG for EPC Gen2 compatibility. To reduce the output length

from 32 to 16 bits, Peris et al. divide the 32-bit output in two halves and XOR them

to obtain the 16-bit output sequence. No evidences of further achievements other

than hardware complexity and statistical behavior are provided. Moreover, the in-

herent peculiarity of their construction methodology obscures potential comparison

with other designs in the literature. On the other hand, Che et al. describe in [2] a

hybrid approach that combines the use of Linear Feedback Shift Registers (LFSR)

and physical properties to build random sequences (see Section 2.3 for a detailed

description of their scheme). A similar idea has been also used in [8] to design a

PRNG. In this case the authors handle the inherent linearity of LFSRs by means of

a multiple-polynomial approach. The authors present a secure PRNG design suitable

to the current EPC Gen2 technology, providing evidences of statistical and hardware

compatibility.

2.2 LFSR-based pseudorandom number generators

Linear feedback shift registers (LFSRs) are an important tool for designing PRNG

for EPC Gen2 tags. They lead to extremely efficient and simple hardware implemen-

tations. For instance, a 16-cell LFSR can be implemented with only 192 GE. A LFSR

is a digital circuit that contains a shift register and a feedback function. The shift reg-

ister is composed of n binary cells that share the same clock signal. Each time a bit

is needed, the content of the register is shifted one cell, obtaining the most significant

bit of the register in the previous state. The feedback function computes a new bit

using some bits of the register, obtaining the less significant bit to be filled in the new

state of the register. The feedback function of a LFSR is basically an exclusive OR

logical operation (XOR) of some cells content, named taps.

Although LFSRs can be implemented efficiently, their main drawback is that their

sequences are high predictable [9,10]. For example, let sk+1, sk+2, · · · , sk+2n be a

sequence of 2n consecutive bits generated from an LFSR. Let B = (bn, bn−1, · · · , b1)

be the feedback function of the LFSR. Then, the feedback function can be easily

computed by solving the following equation system:

sk+1 sk+2 · · · sk+n

sk+2 sk+3 · · · sk+n+1

...
...

. . .
...

sk+n sk+n+1 · · · sk+2n−1

bn

bn−1

...

b1

=

sk+n+1

sk+n+2

...

sk+2n

(1)

By solving Equation (1) we obtain the feedback polynomial coefficients. Despite

the 2n −1 period length generated by a n LFSR, the full sequence can be determined

only with 2n consecutive bits due to the linearity of the system.

This linearity must be handled before using LFSRs to build robust PRNGs. Sev-

eral basic constructions can be used to hide linearity, while maintaining suitable sta-

tistical properties and long output periods. One of these techniques are filters. Filters

5

use a non-linear feedback function as an input to the register. The filter should not

be too simple to be weak but neither too complex, otherwise it would become the

bottleneck of the generator. However recent attacks to the MIFARE PRNG [6] have

demonstrated the vulnerability of this kind of generators when the non-linear function

is not taken carefully. Another approach to break the linearity of a LFSR is to use a

non-linear combination of multiple LFSRs to generate a unique output. Generally the

output of one LFSR is used to select or combine the output of one or more LFSRs, in

the same or different clock times. Known examples of this approach are the Geffe, A5

or the Shrinking generator [11]. The output generated from this constructions is sta-

tistically weak, being vulnerable to correlation or side-channel attacks [12]. Also the

irregular output data rate from some of these constructions (e.g. the shrinking gen-

erator) is not suitable for PRNG used in security environments. Finally, generators

with memory are another alternative. Additional memory can be used to add some

non-linear information in between the clock steps of the LFSR. Besides the memory,

also binary adders and carry registers should be used to complete this approach.

The different techniques of deterministic modifications of LFSRs explained so far

are useful for keystream generators where sender and receiver can share a secret k as

a key for the PRNG one-time pad communications. However, the specific communi-

cation model of EPC Gen2 systems uses another paradigm where sender and receiver

cannot share any secret k. Instead of this, the low-power tag-to-reader communication

is used to transmit in plain text the nonces to be used as a keystream for the reader-to-

tag communication. This scenario allows other strategies for the linearity avoidance

of LFSRs.

A first straightforward strategy is to suppress the LFSR itself and use a true ran-

dom data source as a random number generator. Although this approach is theoreti-

cally sound, implementations of true random number generators obtain their random-

ness from the device energy and such energy is very scarce in an EPC Gen2 tag. As

a result, the generator throughput cannot reach the minimal requirements of the EPC

communication standard. Having this problem in mind, Che et al. propose in [2] the

combination of true random numbers (trn) extracted from physical effects on tag, and

LFSRs to increase the throughput of the generator while decreasing the predictability

of the output sequence. However, as we review later in this paper, their approach does

not achieve the objective to break the linearity of the output sequence. In [8], authors

also combine true random data and LFSRs to create a PRNG.

A part of these two proposals, there are not many references in the literature that

combine true random data and LFSR to obtain a good PRNG. The main reason, as we

already stated, is that the obtained PRNG cannot be used as an additive stream cipher

for a standard sender-receiver communication model due to the infeasibility of re-

producing the same sequence at both communication parts since the cipher sequence

will be affected by a true random source.

2.3 The Che et al. proposal

In [2], Che et al. present a new PRNG for application in RFID tags. Their system

relies on an oscillator-based Truly RNG (TRNG), and exploits the thermal noise of

6

O
u
tp

u
t

TRNG

b1 b2 bn-1 bn

sn sn-1
... s2 s1

Fig. 1 PRNG scheme based on the Che et al. specifications

two resistors to modulate the edge of a sampling clock and generate the true random

bits (trn). Authors state the final system prevents potential attackers to perform any

effective prediction about the generated sequence (even if the design is known) thanks

to the white noise based cryptographic key generation.

After describing its TRNG oscillator-based core, the authors focus on design con-

siderations specially regarding power consumption and output data rates trade-offs.

Knowing the fact that the higher the frequency oscillation of the system, the higher

the current (thus also power) consumption, the authors look for system level opti-

mization in order to reduce the power consumption due to the low-power restrictions

of RFIDs.

The optimization proposed by Che et al. relies on the combination of the TRNG

and a LFSR (cf. Figure 1). Adding a LFSR to the TRNG lets the system reduce the

clock frequency proportionally to the number of cells of the LFSR. Specifically, ex-

ploiting the initial state of a 16-bit LFSR combined with the addition of the generated

truly random number (trn) for each cycle ring, allows the system to decrease the clock

frequency with a 1
16 factor.

Authors claim that [2]: “If we add 1-bit truly random number in the cycle ring as

a random number seed, the output sequence of the LFSR will also be unpredictable

and irreproducible as a TRNG.”. We show in the next section that this claim does not

hold.

3 Analyzing and exploiting the Che et al. proposal

In this section, we present an analysis of the PRNG proposal presented by Che et

al. described above. We give the details of a statistical analysis, performed over the

output data, based on the NIST statistical test for pseudorandomness. Based on these

results, we detail an attack that, given a small number of output bits, can determine

the whole sequence.

3.1 Che et al. statistical analysis

Since the main property of a PRNG is to ensure the forward unpredictability of its

generated sequence, the correctness of a PRNG can be measured with statistical tests

applied to the output sequence.

7

Table 1 Che et al. results for the NIST statistical test suite

Sequence T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Frequency 0.99 0.98 0.96 1.00 1.00 0.97 0.97 0.99 0.96 0.97

BlockFrequency 1.00 1.00 0.97 0.98 1.00 0.98 1.00 0.99 0.98 0.99

Runs 0.98 1.00 1.00 0.99 0.99 0.99 0.96 0.98 0.98 1.00

LongestRun 0.96 0.96 0.98 0.97 0.94 0.96 0.95 0.98 0.99 0.94

Binary Matrix Rank 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

OverlappingTemplate 0.96 0.94 0.99 0.98 0.98 0.93 0.97 0.98 0.98 0.95

Universal 1.00 0.99 0.98 0.99 1.00 0.97 0.99 0.99 0.99 0.98

ApproximateEntropy 0.99 0.97 1.00 0.99 0.98 0.98 0.99 1.00 1.00 1.00

LinearComplexity 0.99 1.00 0.99 0.99 0.95 1.00 1.00 0.99 0.99 1.00

CumulativeSums 2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

NonPeriodicTemplate 148

148

148

148

148

148

148

148

148

148

148

148

148

148

148

148

147

148

⋆ 148

148

RandomExcursions 7

8

⋆ 7

8

⋆ 8

8

7

8

⋆ 8

8

7

8

⋆ 8

8

6

8

⋆ 8

8

8

8

RandomExcursionsVariant 18

18

18

18

18

18

18

18

18

18

18

18

18

18

18

18

18

18

18

18

Serial 2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

We take the National Institute of Standards and Technology (NIST) suit test for

checking the randomness deviations of a binary random sequence [13]. NIST test-

ing algorithms use a hypothesis test considering the randomness of the sequence as

the null hypothesis H0, and the non-randomness as the alternative hypothesis, Ha.

Tests are performed regarding a level of significance or critical value, denoted as α
hereinafter.

NIST tests produce P-values summarizing the strength of the hypothesis. If P-

values ≥ α, H0 is accepted. It is not necessary that strictly all P-values hold this

bound for the sequence to be considered as a good pseudorandom sequence. In fact,

the NIST recommends that the proportion of test over the significance level, must fit

in the interval

p̂ ± 3

√

p̂(1 − p̂)

m
(2)

where p̂ = 1−α, and m is the sample size. A common value used in cryptography

[13] to statistically confirm the randomness of the analyzed data would be α = 0.01,

that means one would expect 1 in 100 sequences to be rejected. P-values passing

α give a confidence of 99.9% of the randomness of the evaluated sequence (if 100

sequences are evaluated, results should pass 0.9615 as defined in Equation 2).

In order to evaluate the randomness quality of the sequence produced by the Che

et al. scheme, we have generated 230 MB of output data from an implementation of

their proposed PRNG. Such data has been divided in ten different data sequences (Ti)

that have been independently analyzed using the NIST suit tests.

NIST test results for the Che et al. random generated data are presented in Table 1.

Each column represents 23 MB of pseudorandom data generated with different seed

and true random source. Each row refers to a test included in NIST test suite. The first

nine tests are represented with the numerical value of the uniformity of P-values. The

last five tests are in fact a set of different tests thus in order to represent each of the

8

values, an achievement ratio is represented following the same decision rule of the

first tests (Equation 2). Tests refusing randomness hypothesis are denoted with bold

letters in the table. For tests consisting on a set of tests, an asterisk is added when

some of the tests are not successfully achieved.

Results show a statistical evidence of non randomness for the Binary Matrix Rank

Test (cf. Table 1). Such test constructs binary matrices from the analyzed data and

checks for linear dependence among the rows or columns of the constructed matrices.

The fact that the Binary Matrix Rank Test fails for all the sequences, gives a clear

evidence of a non-randomness due to linearity problems.

3.2 Exploiting the linearity weaknesses of the scheme

As we have pointed out in Section 2.2, the main vulnerability of a PRNG based on

a linear feedback shift register comes from its easy predictability due to its linearity

properties.

Results presented in Section 3.1 show that the Binary Matrix Rank Test from the

NIST statistical test suite fails for the Che et al scheme, providing information that

the scheme does not succeed in breaking the linearity of the underlying LFSR. In

fact, a specific attack to break the Che et al. PRNG based on the inherent linearity of

the LFSR has been presented in [8] and is next briefly described.

Notice that in the Che et al. scheme the pseudorandom sequence is produced by

a LFSR XORed in its first cell with a truly random bit (cf. Figure 1). That means

we can find a 2n pseudorandom output sequence of the proposed scheme identically

equal to the one of the n−bit LFSR (without of the XORed true bit) in case that 2

consecutive random bits are 0. Such event will occur with probability 1/4 assuming

bits are true random.

3.2.1 Attack description

Our scenario is composed by a Che et al. system that produces pseudorandom bits.

Only a part of the pseudorandom output sequence, denoted by sa is known to the

attacker, besides the size n of the LFSR. On the other hand, the seed (initial state)

and the feedback polynomial coefficients remain secret to the attacker. The attack will

succeed if the attacker can provide the LFSR feedback polynomial (cf. Figure 2).

To generalize the attack, we also assume that the attacker cannot determine the

first bit of the sequence, that means he has no information if a given sa sequence,

with |sa| = 2n (the length of the sequence), has been affected by exactly two trn
values (that means the attacker finds two exact LFSR rounds) or the sequence has

been modified by three trn values.

With probability 1
n

, the sequence, sa with |sa| = 2n has been affected by exactly

two trn and, in this case, the probability to obtain the 2n values of the LFSR despite

the XORed trn is 1
4 (two consecutive zeros). That means that, with probability 1

4n
, we

can obtain 2n values of the LFSR that composes the system and with this sequence we

are able to compute the feedback polynomial and the whole pseudorandom sequence.

9

...

Output

Che et al. PRNG
s1 sn s3n-1s3s2

| sa | = 3n-1

...

1

2

n

P (Bi = B0) =
n + 1

8n

trn ⊕ LFSR(B0)

s2 s2n+1s4s3 ...

sn s3n-1sn+2sn+1 ...

s1 s2ns3s2 ...

|2n|

Eq. 1

Eq. 1

Eq. 1

B1

B2

Bn

(∀i = 1 . . . n)

Fig. 2 Attack scheme to the Che et al. PRNG

Now, assume that |sa| = 3n − 1. If the sequence is divided into n subsequences

of length 2n, we can ensure that one of these subsequences has been affected by

exactly two trn. The remainder n−1 subsequences, have been affected by three trn.

However, notice that if the three trn are zeros, the n vectors of length 2n will give

the same feedback polynomial. The probability of such event is 1
8 . Then, from this

fact, we can derive Equation 3 which provides the probability of success of an attack

that analyzes a sequence with |sa| = 3n − 1:

Psuccess(3n − 1) =
1

4

(

1

n

)

+
1

8

(

n − 1

n

)

=
n + 1

8n
(3)

Obviously, the probability of success increases with |sa| since increasing the |sa|
implies that more trn bits affect the sequence and then the probability of finding

three consecutive zeros also increases. Figure 3 shows the probability of success of

an attack with sa length for a particular system with a LFSR of length n = 16. Notice

that only 160 bits (10n) are enough to perform a successful attack with probability

higher than 50%, and 464 bits (29n) implies more than a 90% of success probability.

3.2.2 Obtained results

To test the correctness of the theoretical evaluation, the described attack has been

implemented over the same ten pseudorandom sequences (Ti) used to execute the

NIST tests (cf. Section 3.1).

The first analysis validates that the probability of finding the feedback polynomial

matches the one described in Equation 3. In this case, the algorithm takes |sa| =
3n − 1 bits from Ti starting at a random position and tries to attack the system by

finding n equal feedback polynomials. The operation is repeated one thousand times

10
P

ro
b
a
b
ili

ty

0

0.2

0.4

0.6

0.8

1.0

| s
a
 | - Eavesdropped bits

0 50 100 150 200 250 300 350 400 450 500

LFSR size (n) = 16

Fig. 3 Reliability on the Che et al. attack regarding |sa|

Table 2 Attack success rate for |sa| = 3n − 1

Sequence T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

attack success (%) 0.132 0.137 0.131 0.126 0.139 0.137 0.129 0.137 0.138 0.128

Table 3 Value of |sa| for a successful attack in the worst case after 10 tests

Sequence T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

|sa| 238 254 254 190 510 158 254 286 238 222

for each test sequence Ti. Attack success rates are reported in Table 2. Notice that

they are close to the theoretic value
(n+1)

8n
with n = 16 ≈ 0, 132.

The second analysis provides the number of bits needed to achieve a successful

attack. Ten different attacks have been performed for every Ti data sequence taking

the first bit of sa at random. Results presented in Table 3 show the number of bits for

a successful attack in the worst case, that is the attack that needs a major number of

bits. Notice that, although taking the worst case, the number of bits is significantly

lower than the whole period 216 − 1.

4 Attack implementation and empirical results

In this section, we present the RFID devices used to implement the attack. We also

describe the implementation scenario and the techniques used to eavesdrop the PRNG

from the RFID communication. Finally the practical results are presented.

4.1 Background on the IAIK UHF demo tag

The IAIK UHF demo tag [14] is a programmable device intended for developing new

commands or functionalities to the EPC Gen2 standard. It allows, moreover, to verify

11

the new functionality using compliant EPC Gen2 readers. We use this prototype to

demonstrate and validate the concepts discussed in the previous sections.

The demo tag consists of four main components: an antenna, a radiofrequency

(RF) front-end, a programmable microcontroller, and a firmware library. The antenna

captures the energy emitted by the reader and powers up the RF front-end of the tag.

The RF front-end demodulates the information encoded in the signal. The resulting

data feeds the programmable microcontroller which, in turn, computes a response.

To compute the response, the programmable microcontroller executes a software im-

plementation of the EPC Gen2 protocol, implemented as a firmware library. The re-

sponse is then modulated by the RF front-end and backscattered to the reader. We

present in the sequel a condensed background on these four components. More de-

tails can be obtained in [14,15].

Antenna and RF front-end

The antenna connected to the RF front-end consists of a 17cm dipole antenna. The RF

front-end utilizes a two-stage charge-pump rectifier to perform amplitude-shift key-

ing (ASK) demodulation. It demodulates the information stored in the signal trans-

mitted on the reader-to-tag channel. It does, indeed, rectification, voltage multiplica-

tion, and envelope detection all at once [15]. The power extracted by the rectifier from

the RF field emitted by the reader from most compliant EPC Gen2 readers amounts

to about 2.4mW. Since this is not enough to power the microcontroller, the demo tag

adopts a semi-passive approach, meaning that although the analog parts are powered

by the energy harvested from the reader, the digital parts (e.g., the programmable

microcontroller) are powered by an external power supply or by an on-board battery.

The backscattering of the information computed by the programmable microcon-

troller consists of the reflected power of the antenna. This power is indeed gener-

ated according to the transmitted data. The RF front-end of the demo tag combines

both ASK and PSK (phase-shift keying) to modulate information. The backscattering

components used by the demo tag to modulate the tag-to-reader signals consist of a

resistor, a capacitor, and a fast-switching transistor placed close to the antenna. These

components are controlled by the programmable microcontroller.

Programmable microcontroller and firmware Library

The programmable microcontroller connected to the RF front-end of the demo tag

consists of an Atmel AVR ATmega128 [16]. It contains all the logic and memory

necessary for the demo tag. The ATmega128 is an 8-bit microcontroller based on the

AVR architecture. The memory banks of the microcontroller, 128KB of flash mem-

ory and 4KB of data memory, can be addressed by three independent 16-bit registers.

In addition, the ATmega128 has 32 registers of 8-bits. All 32 registers can act as the

destinations of the ATmega128 arithmetic operations. The microcontroller operates

exactly one instruction per clock cycle, at frequencies up to the order of 16MHz.

An external crystal oscillator connected to the demo tag provides the 16MHz signal

to the microcontroller. Three main signals connect the microncontroller to the RF

12

front-end. A first signal, called DEMOD, provides the demodulated ultra high fre-

quency (UHF) signal from the reader-to-tag channel. A second signal, called MOD,

allows the ATmega128 to control the backscatter used to generate the tag-to-reader

responses. Finally, a third signal, called RF ON, provides a boolean value to detect

the presence of the RF field.

The original IAIK UHF demo tag already provides an appropriate implementa-

tion of the EPC Gen2 protocol for the ATmega128. The protocol is implemented as

a firmware library stored in the flash memory of the microcontroller. This library

contains all the functions necessary to process the readers’ standard queries and to

compute the appropriate responses. The microcontroller is connected, via an UART

module, to a serial-interface connector. This serial interface allows to interact with

the demo tag, to provide basic operations such as memory mapping, EPC Gen2 val-

ues’ configuration, visualization of queries and responses exchanged with compliant

readers, and execution of user defined operations. This latter allows to complement

the original protocol implementation with new functionalities defined at a user level.

By using the JTAG connector provided by the demo tag, it is possible to upload new

functionalities to the flash memory of the microcontroller, as well as to perform pro-

gram debugging. A combination of C code and assembly code can be used to com-

plement or modify the original firmware library. A JTAG download cable allows the

transfer of new functionalities or firmware updates. Some other modules connected

to the demo tag allow more complex programming possibilities, such as FPGA-based

UHF protocol implementations. We refer the reader to [14,15], and citations thereof,

for more information.

4.2 Che et al. implementation and experimental setup

In Section 3.2, we have seen how to attack the pseudorandom number generator pro-

posed by Che et al. once a sufficient number of pseudorandom values are collected.

We show in this section the results of a practical attack against the vulnerable scheme

on a real Gen2 setup. The attack is based on the eavesdropping of the communica-

tion between a standard EPC Gen2 reader and the demo tag. Indeed, we show how it

is possible to obtain an appropriate set of random queries generated by an on-board

PRNG, based on the Che et al. scheme, to eventually predict the generation of pseu-

dorandom sequences that will be generated later over the demo tag. Figure 4 shows

our experimental setup.

The Che et al. scheme has been implemented in ANSI C using the Crossworks

IDE for AVR from Rowley Associates [17]. The original scheme provided in [2] has

been adapted into a code-optimized EPC Gen2 version that can be executed over the

microcontroller of the IAIK UHF demo tag. Arithmetic efficient functions such as

bit shifts, logic operators (AND, OR and XOR) and modulo 2, are used to implement

the LFSR in the demo tag [11]. The trn addition is extracted from the less significant

bits of the analogical to digital conversion in the demo tag’s microcontroller. Since

the generation of pseudorandom sequences is a mandatory operation specified in the

EPC Gen2 protocol, an existing PRNG function is already included in the original

firmware. By using the Crossworks IDE, we code and merge the PRNG based on the

13

(a) (b)

Fig. 4 Experimental setup. In (a), we can see the CAEN A829EU Reader, the AVR JTAG MKII Program-

mer, and the IAIK Graz UHF Demo Tag. In (b), we can see the Crossworks IDE GUI for AVR, uploading

the updated firmware over the demo tag

Che et al. scheme with the general firmware library to replace the existing PRNG.

The JTAG programmer that we use to transfer and to debug the updated firmware

merged with the new PRNG implementation is an AVR JTAG MKII programmer

[16]. The queries are generated from a standard RFID reader according to EPC Gen2.

The RFID reader we use is a short-range reader CAEN A829EU [18]. The reader is

controlled by a desk computer over a USB serial port. For the generation of queries,

we use a .NET application that controls the communication process with the reader.

This application enable us to generate the set of queries required to proceed with the

eavesdropping attack. Finally, we use Matlab to decode the set of responses gener-

ated over the demo tag. This operation enable us to isolate the pseudorandom queries

computed at the demo tag. When the number of sequences collected by the applica-

tion reaches an appropriate threshold, it proceeds to execute the implementation of

the attack we presented in Section 3.2. We provide in the sequel further details about

the collection of pseudorandom sequences and the practical results.

4.3 Eavesdropping of pseudorandom sequences and practical results

Due to the Gen2 RF power range characteristics, a realistic attack should only con-

sider reader-to-tag queries because they are much easier to be eavesdropped [5].

Some reader-to-tag queries include pseudorandom sequences (hereinafter denoted

Table 4 Minimum number of RN16s involved in EPC Gen2 operations

Operation Inventory Access

Command Identification Read Write Lock Kill

Number of RN16s 1 2 8 2 4

14

EPC Gen2

Reader
Tag

RN16a

RN16b

RN16c

RN16d

RN16e

RN16f

RN16g

RN16h

. . .

Query

RN16

Ack

EPC

Req_RN

handle

Req_RN

RN16

Write_1

Req_RN

RN16

Write_6

handle

handle

=> QUERY ...

=> ACK ...

=> Req RN RN:14438

=> Req RN RN:44282

=> Write (data) 27698

=> Req RN RN:44282

=> Write (data) 47380

=> Req RN RN:44282

=> Write (data) 44282

=> Req RN RN:44282

=> Write (data) 60868

=> Req RN RN:44282

=> Write (data) 32656

=> Req RN RN:44282

=> Write (data) 34674

(a) EPC Gen2 write protocol. (b) Real capture of six write cycles.

Fig. 5 Write process for EPC Gen2 and the PRNG utilization. In (a), we can see the six cycles of the EPC

Gen2 write command. In (b), we can see a real sample of six write cycles captured from the reader-to-tag

channel

as RN16s) that are computed from the on-board PRNG included on the EPC tags.

Table 4 shows the mandatory operations for Gen2 reader-to-tag protocol and the min-

imum number of RN16s involved in each operation. Notice that the write command

generates a minimum of eight RN16s for its proper execution. For a full EPC code

writing, up to six RN16s must be generated to cover the reader-to-tag communica-

tion, besides the two previously generated pseudorandom sequences for the inventory

query and the handle descriptor [1].

A write operation is an access command used to modify specific areas of a Gen2

tag memory. The reader first identifies the tag with select and inventorying commands

(what shifts the tag from ready to acknowledged state). Once the tag is acknowledged

(meaning that the tag has sent its EPC identification) the reader requests a new RN16

to the tag for establishing an access session. The new RN16 (denoted as handle) acts

as a session key, and must be used to link all the access actions to a specific tag. Let

us observe that all access commands can be executed both in the open or secured

tag state [1]. If the accessed tag is in the secured state, it means a 32-bit password

(exchanged as two 16-bit half-passwords XORed with two RN16s) is necessary to

allow the reader to access the tag. In our experiments, we assume that the tag is in the

open state, i.e., we do not consider the capture of PRNGs derived from the exchange

of the two half-passwords. In this way, an inventoried tag transitions directly to the

access mode. For a write operation once the reader gets the handle, it initiates a round

of writes of 16-bit data sequences (obscured with previously requested RN16s) to

the tag. Thus, if a new EPC identification is written to the tag, six ⁀write cycles are

performed, as we picture in Figure 5(a). The eight generated RN16s represent 128

15
A

tt
a
c
k
 s

u
c
c
e
s
s
 (

%
)

36%

38%

40%

42%

44%

46%

Demotag generated sequences (1000 write challenges)

T
1

T
2

T
3

T
4

T
5

T
6

T
7

T
8

T
9

T
10

Theoretical rate
Attack rate

Fig. 6 Che et al. PRNG attack success for real Gen2 environment

consecutive bits generated from the PRNG of an EPC Gen2 tag, as specified in the

standard [1].

As we pointed out in Section 3.2, the Che et al. scheme can be predicted with a

reasonable small amount of data. We can now demonstrate this property in our real

Gen2 environment, by simply performing an appropriate series of write challenges

to the adapted Che et al. PRNG implemented over the demo tag, and analyzing the

resulting RN16s. More precisely, we show that by simply collecting 128 bits (gen-

erated from a series of eight RN16s associated to each write challenge) is enough

to obtain the feedback polynomial of the LFSR with a confidence of about 42%.

This value is consistent with the analytical results we anticipated in the previous sec-

tion, and that are depicted in Figure 3. Figure 5(b) shows a simple example where

six write cycles are captured. These captures allow us to collect 96 pseudorandom

bits generated from the on-board Che et al. PRNG. The sequences are parsed from

the matlab code that we feed with the serial interface output of the demo tag. Only

reader-to-tag challenges are shown. The reader writes the EPC identification to 0

(EPC96b = 0i b...(i+16) b ⊕ RN16), to obtain the RN16s directly from the ciphered

data field of the write challenges.

The complete set of experiments that we summarize in Figure 6 consists of ten

series of write commands. Each of these series generates a total of 1,000 write chal-

lenges from the A829EU reader to the demo tag. As a result, 8,000 RN16s, i.e.,

128,000 pseudorandom bits, are captured in total. These pseudorandom bits are com-

puted from the Che et al. PRNG implementation deployed over the demo tag. Once

stored, the pseudorandom sequences are processed by the matlab code that contains

the attack implementation. Let us recall that the attack applies the analysis of the

linearity relation for each single write challenge. We show that the attack finds the

appropriate feedback polynomials of the LFSR each 128 bits with a total ratio of suc-

cess of 41.5%. This result is very close to the 42% that we predicted in Section 3.2

(Figure 3). Therefore, we are able to confirm the vulnerability of the Che et al. PRNG

for Gen2 environments.

16

5 Conclusions

Pseudorandom number generators (PRNGs) are the crucial components that guaran-

tee the confidentiality of EPC Gen2 [1] RFID communications. In this paper, we have

described the problems of using linear feedback shift registers (LFSRs) as underlying

mechanisms for the implementation of low-cost PRNGs. Without appropriate mea-

sures that increase their cost, the linearity of LFSR-based PRNGs lead to insecure

implementations. We have analyzed a cost-effective PRNG proposal for EPC Gen2

devices presented by Che et al. [2]. The proposal combines thermal noise signal mod-

ulation and an underlying LFSR. We have indeed demonstrated that the proposal does

not handle properly the inherent linearity of the resulting PRNG. We have described

an attack to obtain the feedback polynomial function of the LFSR. This allows us to

synchronize and to predict the resulting sequences generated by the Che et al. PRNG.

We have presented the implementation of a practical attack in a real EPC Gen2 sce-

nario. By means of a compatible Gen2 reader, and a programmable Gen2 tag [14]

implementing the Che et al. PRNG, we have shown that an attacker can obtain the

PRNG configuration with a confidence of 42% by only eavesdropping 128 bits of

pseudorandom data. Although the attack implementation has been applied to a spe-

cific PRNG proposal, the procedure used to obtain the data is based on standard EPC

commands and it can be applied to any EPC tag communication to eavesdrop the out-

put of the PRNG. Future work goes towards designing an efficient and robust PRNG

that fulfills the specific restrictions of EPC Gen2 tags, following the work presented

in [8].

Acknowledgements This work has been supported by the Spanish Ministry of Science and Innovation,

the FEDER funds under the grants TSI2007-65406-C03-03 E-AEGIS, CONSOLIDER CSD2007-00004

ARES, an IN3-UOC doctoral fellowship, and the Institut TELECOM through its Futur et Ruptures pro-

gram.

References

1. EPCglobal. (2008). EPC Radio-Frequency Identity Protocols Class-1 Generation-2

UHF RFID Protocol for Communications at 860-960 MHz. http://www.epcglo-

balinc.org/standards/.Accessed 15 July 2010.

2. Che, W., Deng, H., Tan, X., and Wang, J. (2008). Chapter 16, A Random Number Generator for

Application in RFID Tags. In Cole, P.H. and Ranasinghe, D.C. (Eds.), Networked RFID Systems and

Lightweight Cryptography (pp. 279–287). Berlin: Springer-Verlag.

3. Ranasinghe, D.C. and Cole, P.H. (2008). Chapter 8, An Evaluation Framework. In Cole, P.H. and

Ranasinghe, D.C. (Eds.), Networked RFID Systems and Lightweight Cryptography (pp. 157–167).

Berlin: Springer-Verlag.

4. Feldhofer, M. and Rechberger, C. (2006). A Case Against Currently Used Hash Functions in RFID

Protocols. In Meersman, R. et al. (Eds.), On the Move to Meaningful Internet Systems 2006: OTM

2006 Workshops (pp. 372–381). Berlin: Springer-Verlag.

5. Peris-Lopez, P. (2008). Lightweight Cryptography in Radio Frequency Identification (RFID) Systems.

PhD Thesis.http://www.lightweightcryptography.com/. Accessed 15 July 2010.

6. Garcia, F., Koning, G., Muijrers, R., van Rossum, P., Verdult, R., Wichers R. and Jacobs, B. (2008).

Dismantling MIFARE Classic. In Jajodia, S. and Lopez, J. (Eds.), Computer Security - ESORICS

2008 (pp. 97–114). Berlin: Springer-Verlag.

17

7. Peris-Lopez, P., Hernandez-Castro, J., Estevez-Tapiador, J. and Ribagorda, J. (2009). LAMED A

PRNG for EPC Class-1 Generation-2 RFID specification. Computer Standards & Interfaces, 31(1),

88–97.

8. Melia-Segui, J., Garcia-Alfaro J. and Herrera-Joancomarti, J. (2010). Analysis and Improvement

of a Pseudorandom Number Generator for EPC Gen2 Tags. In Curtmola, R. et al. (Eds.), Financial

Cryptography and Data Security 2010 Workshops, LNCS (pp. 34–46). Berlin: Springer-Verlag.

9. Herlestam, T. (1995). On Functions of Linear Shift Register Sequences. Advances in Cryptology

EUROCRYPT 85, LNCS. doi: 10.1007/3-540-39805-8.

10. Chen, C.L. (1986). Linear Dependencies in Linear Feedback Shift Registers. IEEE Transactions on

Computers, C-35(12), 1086-1088.

11. Schneier, B. (1996). Applied Cryptography. John Wiley & Sons.

12. Joux, A. (2009). Algorithmic Cryptanalysis. Chapman & Hall/CRC, Taylor & Francis Group.

13. National Institute of Standards and Technology. (2008). Random number generation.

http://csrc.nist.gov/groups/ST/toolkit/rng/. Accessed 15 July 2010.

14. SIC, Stiftung Secure Information and Communication Technologies. (2009). UHF RFID Demo

Tag. http://jce.iaik.tugraz.at/sic/products/rfid components. Accessed 15

July 2010.

15. M. Aigner et al. (2007). BRIDGE — Building Radio frequency IDentification for

the Global Environment. Report on first part of the security WP: Tag security (D4.2.1).

http://www.bridge-project.eu/. Accessed 15 July 2010.

16. Atmel Corporation. (2009). http://www.atmel.com/. Accessed 15 July 2010.

17. Rowley Crossworks IDE. (2009). Crossworks v1.4 and v2.0 for AVR.

http://www.rowley.co.uk/. Accessed 15 July 2010.

18. CAEN RFID. (2009). http://www.caen.it/rfid. Accessed 15 July 2010.

