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Global and bifurcation analysis of a structure with cyclic symmetry

E. Sarrouya,∗, A. Groleta, F. Thouvereza

aEcole Centrale de Lyon, Laboratoire LTDS, Bat. E6, 36 avenue Guy de Collongue, 69134 Ecully Cedex, France

Abstract

This article combines the application of a global analysis approach and the more classical continuation,

bifurcation and stability analysis approach of a cyclic symmetric system. A solid disc with four blades,

linearly coupled, but with an intrinsic non-linear cubic stiffness is at stake. Dynamic equations are turned

into a set of non-linear algebraic equations using the Harmonic Balance Method. Then periodic solutions are

sought using a recursive application of a global analysis method for various pulsation values. This exhibits

disconnected branches in both the free undamped case (non-linear normal modes, NNMs) and in a forced

case which shows the link between NNMs and forced response. For each case, a full bifurcation diagram is

provided and commented using tools devoted to continuation, bifurcation and stability analysis.
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1. Introduction

In this paper, both free and forced vibrations of

a non-linear cyclic symmetric structure are studied.

The structure is composed of nb identical substruc-

tures which undergo large strains. This system is

typical when one studies bladed disks [2, 27]. After

modeling the system, a set of coupled non-linear dif-

ferential equations in which non-linearity appears

by cubic terms is obtained .

In the linear case, the study of the linear nor-

mal modes (LNMs) reveals a majority of double

eigenfrequencies, corresponding to distinct eigen-
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forms [22]. These eigenforms are associated with

nodal diameter vibration modes. As these LNMs

arise from an eigenvalue problem, there are always

as many LNMs as degrees of freedom (dofs). More-

over, in the free or forced case, only one solution

exists for a given frequency.

In the case of non-linear systems with cyclic sym-

metry, it has been shown that the number of non-

linear normal modes (NNMs, [7]) can exceed the

number of dofs, the extra NNMs being generated

through bifurcations or internal resonances [7, 28].

Localized non-linear modes are an example of this

property; they correspond to a free motion in which

only a few substructures vibrate with non negligi-

ble amplitude and they have no counterpart in the

linear theory [2, 29]. In the forced case, these ad-

ditional NNMs give rise to a number of additional
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resonances leading to multiple solutions as in [29]

where Vakakis showed a very complicated struc-

ture of resonance for a non-linear system with cyclic

symmetry by using the multiple scales method. He

showed that for a given frequency many solutions

can coexist, some of them being stable.

Not only can multiple solutions coexist but also

can they be disconnected from each other. In this

latter case, classical methods based on continuation

and bifurcation analysis fail at finding the discon-

nected branches of solutions. If one wants to di-

mension a structure properly - by considering all the

possible solutions - one then needs to adopt a global

analysis (GA) approach. Several solutions are men-

tioned in the literature (see [23] for an overview)

with a common drawback even for small systems

which is the computation cost. The GA method

proposed in this paper takes advantage of the cubic

form of the non-linearity combined with a reformu-

lation of equations through the harmonic balance

method (HBM); the resulting systems in the free

undamped case for searching NNMs as well as in a

forced case can then be solved (globally) in a rea-

sonable amount of time.

Section 2 describes the system and its dynamical

and HBM equations. The global analysis princi-

ple is then explained in section 3.1; this is followed

by recalls on continuation methods, bifurcation and

stability analysis in section 3.2. Finally these meth-

ods are applied to the undamped free system in or-

der to find NNMs in section 4 and to a forced case

which exhibits a very rich response in section 5.

2. Studied system

2.1. General description and dynamical equations

The studied structure has a cyclic symmetry

property and can therefore be broken up in nb iden-

tical sectors (Fig. 1). Each sector is modeled

by a thin rectangular plate clamped to the rigid

disk which itself is fixed (Fig. 2). Consecutive

plates are coupled by a linear stiffness while non-

linearity is introduced by taking into account their

large deflection. Plane stress assumption as well

as the Love-Kirchhoff hypothesis (cross-sections ex-

hibit solid body motion and remain perpendicular

to the deformed surface of the middle sheet) are

made. Then, plates displacements are entirely pa-

rameterized by their middle sheet transverse dis-

placement wj , 1 ≤ j ≤ nb. Moreover the mate-

rial is assumed to follow a standard bi-dimensional

Hooke’s law leading to the following expression for

the strain energy of plate j:

Uj =
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where E is the Young’s modulus and ν is the Pois-

son’s ratio.
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The energy V j of the linear stiffness localized at

(xr, yr) = (Lx/4, 0) between plates j and j + 1 is

given by:

Vj =
1
2k(wj(xr, yr)− wj+1(xr, yr))

2 (2)

for 1 ≤ j ≤ nb with convention j + 1 = 1 if j = nb.

By neglecting rotary inertia the kinetic energy Tj

of plate j is given by :

Tj =
1

2
ρh

∫ Lx

x=0

∫ Ly/2

y=−Ly/2

ẇj
2dxdy (3)

In this paper, only an harmonic force, orthogonal

to the plate, localized in (xf , yf ) = (Lx, 0) is con-

sidered. The work Wj due to such an excitation on

plate j is given by:

Wj = wj(Lx, 0)Fej (4)

The total energies U , T , V and W are then given

by the sum over the number of plates nb of the dif-

ferent local energies Uj , Tj , Vj and Wj . Equations

of motions are finally derived by using Lagrange’s

equations along with a Rayleigh-Ritz approxima-

tion [16].

[Figure 1 about here.]

[Figure 2 about here.]

The remainder of this article will be devoted to

studying the case of a system composed of nb = 4

identical sectors, whose displacements are interpo-

lated by a single Ritz function approximating the

first bending mode thus yielding a non-linear prob-

lem with n = 4 dofs that will serve as an exam-

ple for the present work. The Ritz function is

Φ(x, y) = ( x
Lx

)2 (consistent with the clamping at

x = 0) and leads to the following interpolation for

transverse displacement of the j-th blade:

wj(x, y) = qjΦ(x, y) for 1 ≤ j ≤ nb (5)

By applying Lagrange’s equations, and by adding

a damping term, the following motion equations are

obtained:

[M]Ẍ+ [C]Ẋ+ [K]X+ βX3 = Fe(t) (6)

with the notations X = (qj)1≤j≤n, and X3 =

(q3j )1≤j≤n. The vector Fe = Fe0 cos(ωt) stands for

the external forces amplitude, [M] = [I] is the mass

matrix, [C] = δ[I] is the damping matrix, [K] is the

stiffness matrix given by:

[K] =

















α+ 2c −c 0 −c

−c α+ 2c −c 0

0 −c α+ 2c −c

−c 0 −c α+ 2c

















(7)

and β is the non-linear stiffness coefficient. The

definitions of α, β, c, and δ can be found in A along

with their numerical values.

2.2. Harmonic balance method

The harmonic balance method (HBM) is widely-

used for the study of non-linear systems. Numerous

applications can be found in the literature, showing

its ability to treat strongly non-linear systems like

friction between blades and casing [11, 10] or ge-

ometric non-linearities [14, 21]. One major advan-

tage of the method is that it requires no assumption

about the non-linearities magnitudes and uses the

same procedure for strongly and weakly non-linear

models.
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The HBM consists in a decomposition of the so-

lution X in a truncated Fourier series:

X(t) = A0 +

Nh
∑

k=1

Ak cos(kωt) +Bk sin(kωt) (8)

Injecting this development (8) in equation

(6), and by projecting equations on the

[1, (cos(kωt), sin(kωt))1≤k≤Nh
] basis using the

following scalar product

〈f, g〉 =
∫ 2π

ω

0

f(t)g(t)dt (9)

one gets a system of ñ = n × (2Nh + 1) non-linear

algebraic equations with n×(2Nh+1)+1 unknowns

Ak, Bk and ω.

The number of harmonics retained Nh is a very

important parameter. Generally, the higher Nh is,

the better the solution. However, in the case where

the number of harmonics selected is high, the so-

lution procedure can quickly become difficult and

time consuming. Fortunately, in most cases the se-

ries converges fast enough and leads to systems with

reasonable dimensions. In this article only the first

harmonic is going to be retained (Nh = 1) and the

constant term A0 is dropped due to the symmetry

of the system. Depending on whether the system

is free or forced, different formulations can be ob-

tained.

Forced case

The equation to be solved in the forced case is

given by (6). The solution X is sought of the fol-

lowing form:

X(t) = A cos(ωt) +B sin(ωt) (10)

which leads to the following set of 2n algebraic

equations:

[Hl]X̃+Hnl(X̃) = He (11)

where X̃ =







A

B







is the unknown in the fre-

quency domain; it follows that ñ = 4× 2 = 8. [Hl]

corresponds to the linear part of the HBM:

[Hl] =





[K]− ω2[M] ω[C]

−ω[C] [K]− ω2[M]



 (12)

He corresponds to the constant part related to the

excitation

He =







Fe0

0







(13)

and Hnl corresponds to the non-linear part

Hnli(X̃) = 3
4β(A

3
i +AiB

2
i )

Hnln+i(X̃) = 3
4β(B

3
i +BiA

2
i )

for 1 ≤ i ≤ n

(14)

Notice that in this case the solution frequency ω

is taken equal to the one of the excitation force.

Free Case

The equation to be solved in the free undamped

case is given by:

[M]Ẍ+ [K]X+ βX3 = 0 (15)

and the solution X is sought of the following form:

X(t) = A cos(ωt) (16)

The fact that only the cosine terms are retained

corresponds to a phase condition in which all initial

velocities are set to zero. With this approximation

for the solution X, ñ = 4 and the following set of

algebraic equations is obtained:

([K]− ω2[M])A+
3

4
βA3 = 0 (17)

As there is no excitation force, the free solution

frequency ω is also an unknown.
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3. Theory

This section is devoted to theory on both global

analysis (GA) aspects and continuation coupled to

stability and bifurcation analysis.

3.1. Global analysis

When aiming at finding all the solutions of a

nonlinear system, looking at the whole state space

seems the right way to proceed. This is what most

global analysis methods such as cell-mapping [5],

cell exclusion algorithm [32] or algorithms based on

interval analysis [4] do. The main drawback of all

these methods is their huge cost with regards to

their computational resource consumption (see [23]

for a comparison). In order to bypass this problem,

one can take advantage of the algebraic form of our

problem formulated in the frequency space and use

a dedicated method to solve it globally relying on

homotopy [25, 23, 24, 15]. Indeed, the nonlinearity

introduced being cubic, equations (11) or (17) can

be considered as polynomials in X̃ variable. We will

now denote P the corresponding polynomial.

The main idea of this method is to embed the

polynomial P to solve in a space whose parameters

are the polynomial coefficients. Then, starting from

a polynomial Q whose zeros (in C
ñ) are easy to

compute, a continuation scheme is applied to slide

smoothly from these zeros to the ones of interest

by substituting slowly P to Q which is, namely,

applying a homotopy method. The system solved

is

R(X̃, λ) = λQ(X̃) + (1− λ)P(X̃), λ ∈ [0, 1] (18)

with λ varying from 1 to 0.

In order to be able to guarantee that all P zeros

will be reached, one has to respect a few rules: first

of all, as each non-singular zero of P must be linked

to a non-singular zero of Q, the initial polynomial

must have at least as many zeros as P. Then, the

paths linking Q zeros to P zeros must be smooth

(undergo no bifurcation when λ slides from 1 to

0) which implies that both polynomials must share

structural properties [25, Chap. 8]. A basic poly-

nomial which has easy to find zeros and respects

these rules is

Q(X̃) = γ



















X̃d1

1 − 1
...

X̃dñ

ñ − 1



















, γ ∈ C, di = deg(Pi)

(19)

Such a polynomial has N =
∏ñ

i=1 di zeros, that

is it has the maximum number of zeros a polyno-

mial with such total degrees (maximum degree di

among its monomials for each component Pi) can

have. A homotopy process with this kind of ini-

tial polynomial is called a total degree homotopy.

The total degree homotopy theorem demonstrated

in [25, chap. 8, p. 123] ensures that the N zeros

of Q will lead to all the non-singular zeros of P. In

our frame, only zeros with real components will be

considered.

In many cases, P has only a few complex ze-

ros. Starting with a lot more means a waste of

time following paths that will mostly diverge to-

wards infinity (as a homogeneization technique is

used, they will remain numerically bounded, see

[25, 31]). That is why, in most cases it is inter-

esting to work on the starting polynomial to reduce

the number of starting zeros while still respecting

the rules enunciated previously. Most current work
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aims at exhibiting such systems and automatizing

their construction ([17, 18, 30, 25, 6, 13]). As will

be shown later in this paper, such work is useless

in the studied case. Using polynomial Q defined

in (19), 38 = 6561 starting zeros will be generated

in the forced case (HBM equation (11)) and only

34 = 81 paths will be followed in the free one (HBM

equation (17)).

3.2. Continuation, bifurcation and stability

In this section, the classical tools to perform con-

tinuation and bifurcation analysis of fixed points

(solutions in frequency space are constant) as well

as the stability analysis of periodic solutions rely-

ing on Floquet coefficients evaluation are briefly re-

called.

3.2.1. Continuation algorithm

A general system of equations used by a contin-

uation algorithm is

G(Y, µ) = 0 (20)

where G is a non-linear function, Y is the vector of

unknowns and µ is the continuation parameter. In

the present case Y = X̃, the HBM unknowns and

µ = ω, the free or forced frequency. The contin-

uation procedure builds the path solution of (20)

for some µ range by iterating two steps. First, a

point is predicted using one or more of the previ-

ous points of the path, yielding an estimation of

the next point. This predicted solution is then cor-

rected iteratively until convergence is achieved.

In this study an arc-length continuation is used:

G is obtained by augmenting the HBM set of equa-

tions (11) or (17) with an equation constraining the

next point to rely at a given distance from the pre-

vious one. The prediction step is performed us-

ing a tangent predictor and the correction one uses

a Newton-Raphson algorithm. More details about

continuation techniques can be found in [1].

3.2.2. Bifurcation detection

In this paragraph, we will focus on turning points

and branching points which are the main bifurca-

tions encountered in this study. The detection of

these bifurcation points is done by monitoring the

determinant of the Jacobian matrix [JY] = ∂G
∂Y of

(20): this determinant is null for such bifurcation

points [8]. A Newton like algorithm, described in

[19], is used to determine accurately the solutions

(Yb, ωb) such that

G(Yb, ωb) = 0

∂G
∂Y (Yb, ωb)T = 0

‖T‖ = 1

(21)

where T is the tangent direction.

The type of bifurcation is then determined by

estimating the rank of the Jacobian matrix [J] =

[JY Jω] (where [Jω] = ∂G
∂ω ) which is of size ñ ×

(ñ + 1). This rank is exactly ñ for turning points

and no further work has to be done since the arc-

length continuation scheme is able to handle such

points. In the case of branching point bifurcations,

this rank is at most ñ− 1 and several linearly inde-

pendent tangents Tj respecting [JY]Tj = 0 can be

exhibited. Each of them corresponds to a prediction

direction to explore. In this study, the prediction

directions are computed using the eigenvectors Ψi

of [JY] associated with the zero eigenvalue at the

bifurcation point [20].
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3.2.3. Stability using Floquet theory

The stability of solutions is determined by using

Floquet’s theory. In this study, just the primary

results of this method will be recalled; a more de-

tailed presentation is available in [19].

To do so, the first order formulation of the dy-

namic system (6) is considered:

U̇ = f(U, t) (22)

with U a vector combining X and Ẋ.

If U∗(t) is a periodic solution of (22) with period

T ∗ and z(t) is a small perturbation added to U∗,

the equation governing its evolution is derived from

(22):

ż =
∂f

∂U
(U∗, t)z (23)

which is linear with periodic coefficients. There-

fore, any solution z(t) corresponding to any initial

perturbation is a linear combination of m(i)(t), so-

lutions of (23) at time t having all its components

but the i-th null at time t = 0: m
(i)
j (0) = δij ,

1 ≤ i, j ≤ 2n. The growth of z is then directly re-

lated to the one of m(i) which is in turn evaluated

via the eigenvalues of the monodromy matrix

[Mon] =
[

m(1)(T ∗), . . . ,m(2n)(T ∗)
]

(24)

This was demonstrated and stated properly in the

Floquet’s theorem (1883). Eigenvalues of the mon-

odromy matrix are usually complex and are called

Floquet coefficients. They give us information on

the stability of the solution (U∗ is unstable as soon

as one of them has a magnitude greater than 1)

and on the type of bifurcation (through the way

they cross the unit circle in complex plane) [19, 8].

Some other techniques [12, 9] exploit the HBM re-

sults directly to determine the cycle stability. The

authors confronted two methods. First a compu-

tation using Floquet basic theory relying on time

integrations; the cycle U∗ is then rebuilt using the

HBM coefficients. Second, the perturbation tech-

nique proposed by D. Laxalde in his PhD work [9]

was implemented. Each time, both methods gave

the same results.

4. Application to backbone curves

The aim of this section is to build the NNMs

of the undamped structure (17). The results will

be displayed mainly in the Frequency Energy Plot

(FEP) which is one of the most appropriate ways

to depict the frequency-energy dependence of such

modes [7, 3]. First, a brief recall of the linear study

results is proposed. Then, a global analysis step is

performed and exhibits many solutions which are

grouped with respect to their energy, creating en-

ergy branches. Each solution branch is finally fol-

lowed and analyzed using tools of section 3.2. One

of the branches and its bifurcations is analyzed in

a detailed way before the drawing of the full bifur-

cation diagram.

4.1. Linear system

The linear system has the following pair of eigen-

vector and eigenvalues (eigenvectors normalized

with respect to mass matrix), i.e. linear normal

modes (LNM) :

ω1 = 93.63 rad.s−1, L1 = {1, 1, 1, 1}t/2
ω2 = 95.20 rad.s−1, L2 = {1, 0,−1, 0}t/

√
2

ω2 = 95.20 rad.s−1, L3 = {0,−1, 0, 1}t/
√
2

ω4 = 96.75 rad.s−1, L4 = {−1, 1,−1, 1}t/2
(25)
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Using classical denominations [26], one can state

that

• L1 is a “mode 0” were all the coordinates have

the same amplitude. This is a non-degenerate

mode with no nodal diameter.

• L2 and L3 are degenerate “cos-1” and “sin-1”

modes with 1 nodal diameter. According to

[26, p. 202], the corresponding NNMs should

have the same backbone (n = 4× p× 1).

• L4 is a “mode n/2” that exists because the sys-

tem has an even number of blades. All coor-

dinates vibrate with the same amplitudes but

opposite phases, generating 2 nodal diameters.

These notations will be useful for backbone analysis

in section 4.3.

4.2. Global analysis

A global analysis method as explained in 3.1

was applied to the free system (17) in order to

build backbone curves. As the system is already

in a polynomial form, no further work was done on

equations. The total degree homotopy method was

applied recursively for ω between 93.0 rad.s−1 and

100.0 rad.s−1 with a 0.1 rad.s−1 step. For each step

34 = 81 paths are followed. This computation took

758 s (about 12 min 38 s using an Intel Core 2 Duo

E8400 (3Go RAM)) that is about 11 s per step and

led to a great amount of solutions as depicted in Fig.

3. Besides the great number of solutions, one can

see that plots for eachAi look similar which is in ac-

cordance with the cyclic symmetry of the structure.

Each solution returned by the global analysis algo-

rithm was refined using a local Newton-Raphson

method with a drastic 10−12 criterion on residual;

no difference between raw GA results and refined

ones appeared. We then ensured that each solution

kept by the global analysis algorithm was different

from the others from each step and counted them:

there are up to 81 solutions for pulsations higher

than 99.4 rad.−1! This justifies the use of the ba-

sic total degree homotopy method (same number of

zeros for Q and P). This step also exhibited discon-

nected solutions. To have a better understanding of

these numerous solutions, they were grouped with

respect to their energy level. These energy levels

are represented in a FEP, drawing branches that

are named, as shown on Fig. 4. Each branch is

named n.p1.p2. n denotes the number of nodal di-

ameters of the main branch and a .pi extension is

added each time a bifurcated branch occurs. d1 and

d2 refers to the disconnected branches and NS to

the null solution. Symbols on this figure refer to

the number of solutions that have the same energy

level for a given pulsation ω.

[Figure 3 about here.]

[Figure 4 about here.]

4.3. Branches analysis using continuation

Every solution corresponding to each energy

branch has been continued and analyzed with re-

gards to its stability and bifurcations using tools

of section 3.2. As the previous global analysis step

provided startpoints for each solution branch, the

structure symmetry was not used to reduce the

number of solutions to study; this would indeed

have required a fine bifurcation analysis in conjunc-

tion with the symmetry consideration to determine
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the number of solutions appearing at each bifurca-

tion point. As discussing each branch would be too

long, one proposes to focus on branch 1’ and its bi-

furcated branches. The same analysis was carried

on for each branch and the results are summed up

in subsection 4.4.

For each energy branch 1’, 1’.1 and 1’.1.1, one

of the solutions matching this energy evolution is

picked up as a representative of all the other solu-

tions with the same energy evolution. Each time,

a figure divided in four frames presents its HBM

components evolution along with ω in frame (a);

in frame (b) the evolution of its decomposition on

LNM in percent is drawn: the solution components

are projected on LNM of subsection 4.1 and these

“modal coordinates” are brought back to percent

by dividing by the sum of their absolute value and

multiplying this by 100 . This will let us conclude

on similar or non-similar property of the mode. Fi-

nally, Floquet coefficients are plotted in frames (c)

and (d): frame (c) shows their norm along ω while

frame (d) represents them in the complex plane su-

perimposed on the unit circle. In order to get ac-

curate Floquet coefficients, solutions initially com-

puted using only the first harmonic A1 were refined

using A1, A3 and A5 components.

Branch 1’ matches 4 different solutions with the

same energy that contain both L2 and L3 contri-

butions with equal weight (Fig. 5 (a)). These 4

solutions are identical with respect to a circular

shift of tha Ai components. Fig. 5 (b) shows

that it is a similar mode. Fig. 5 (c) and (d)

show that this mode bifurcates and become un-

stable for ω3 = 95.98 rad.s−1 generating one new

energy branch, namely branch 1’.1. In fact, each

of the 4 solutions underlying energy branch 1’ bi-

furcates and gives birth to two half branches that

match the branch 1’.1 energy level.

[Figure 5 about here.]

Branch 1’.1 matches 8 solutions that come from

branch 1’ bifurcation. These solutions include a

LNM L1 contribution (Fig. 6 (b)) that becomes

greater as ω increases. This indicates that this is

not a similar mode. This branch is first unstable

and becomes stable for ω4 = 96.75 rad.s−1, which

is the frequency at which branch 2 arises. It then

gives birth to a new branch (branch 1’.1.1) that

“takes advantage” on the existence of this new en-

ergy level (of branch 2) as explained in the next

paragraph. In the state space, each of the 8 half

branches matching branch 1’.1 energy branch bifur-

cates once and gives birth to 2 new half branches.

Solutions underlying this energy branch 1’.1 will bi-

furcate once again for ω8 = 99.36 rad.s−1, that is

for the same pulsation at which branches d1 and d2

arise.

[Figure 6 about here.]

Branch 1’.1.1 matches 16 solutions bifurcated

from branch 1’.1 solutions. These solutions in-

volve a new LNM L4 contribution that increases as

the L1 contribution introduced in branch 1’.1 de-

creases. Fig. 7 (b) let us state this is a non-similar

mode. This branch is always unstable.

[Figure 7 about here.]

Fig. 8 recapitulates branch 1’ bifurcations by

showing the four initial solutions that match this

energy branch and the subsequent bifurcated solu-

tion branches. It is obvious via this figure that each

9



initial solution and its bifurcated solutions (each

line of plots in the figure) is equal to the others

with respect to a circular shift of its components.

[Figure 8 about here.]

4.4. Conclusion

Table 1 and Fig. 9 summarize the results of the

previous analysis carried out on all other branches.

Fig. 9 exhibits branches similar to Fig. 4 but this

time, points are linked continuously thanks to the

continuation step. Moreover, this figure provides

information on stability and not on the number of

solutions sharing the same energy branch anymore.

This simple structure exhibits in fact a very

rich modal behavior: a great number of solutions

branches can be captured using continuation and

bifurcation analysis. Due to cyclic symmetry, they

draw a less important but still great number of

energy branches. In addition to these numerous

branches, the use of a GA method lets us intercept

two disconnected branches d1 and d2 that would

have been missed otherwise.

[Table 1 about here.]

[Figure 9 about here.]

5. Application to a forced case

The previous section exhibited numerous NNMs

which will lead to complicated structures of reso-

nance in forced cases. The aim of this section is to

illustrate this complexity through an example.

The system is therefore excited with a force tak-

ing the branch 1’ shape, thus vector Fe0 of Eq. (13)

is defined by Fe0 = af{1, 1, −1, −1}t. Simulations

are carried out for af = 0.25 N.kg−1.

First, the principal non-linear response has been

computed by continuation. This solution, called

Sol-A, corresponds to a motion with the 1’ mode

shape. The solution and its stability are repre-

sented in a FEP on Fig. 10.

By monitoring the determinant of the Jacobian

matrix, 4 bifurcation points have been computed for

Sol-A, they are also represented on Fig. 10 labeled

from A1 to A4. By studying the rank of the Jaco-

bian matrix, one can tell that points A1 and A3 are

branching points (rank([J]) = 7) and points A2 and

A4 are not only turning points but also branching

points (rank([J]) = 6). Stable parts of the energy

branch are denoted by a thick (blue) line on Fig. 10

while unstable ones are represented by a thin (red)

one. Underlying NNMs are plotted using dashed

dot (black) lines. Squared points denote branching

points while circled ones indicate Hopf bifurcations.

The same representation code is used for the follow-

ing figures (Fig. 11 to Fig. 13). One can then see

on Fig. 10 that sol-A is unstable even for relatively

low energy levels.

[Figure 10 about here.]

Starting from A2 (or A4), the two bifurcated

branches of solution have been computed (Sol-L2

and Sol-L3). The representation of these solutions

in the amplitude frequency diagram is not very con-

venient because they superimpose themselves with

a part of Sol-A, the only difference being that curves

are not covered in the same way. To overcome this

issue, we chose to represent these solutions in a

FEP in Fig. 11. In this FEP, Sol-L2 and Sol-L3
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are superimposed, but one can see that these solu-

tions possess stable parts and are positioned around

backbone curves of modes with 1 nodal diameter

(branch 1), therefore one can conclude that these

two solutions correspond to resonances around non-

linear modes with shape L2 and L3.

[Figure 11 about here.]

Starting from A1 (or A3), a bifurcated branch has

been computed (Sol-B), and its representation in

the FEP is given on Fig. 12. Sol-B is positioned

around the backbone curve branch 1’.1. A stability

analysis reveals that Sol-B possesses stable parts

and also unstable parts generated through Hopf bi-

furcation. Several branching points have been de-

tected for Sol-B, namely B1, B2 and B3 (Fig. 12).

B2 (or B3) leads to an unstable bifurcated re-

sponse, Sol-C, positioned around the backbone

curve of branch 1’.1.1 (Fig. 13), and B1 leads to an

unstable bifurcated response, Sol-D, which seems to

be positioned close to the backbone curve of branch

1’ (Fig. 13).

[Figure 12 about here.]

Finally, global analysis reveals another kind of so-

lution, disconnected from the other. They are rep-

resented by closed curves in the FEP. This solution

family, termed Sol-E, is positioned near the back-

bone branch 2.1 and is depicted on Fig. 13. Using

formulation (11), 6561 paths are followed for each

tested ω. This takes approximately 1 h 15 min per ω

value using an Intel Core 2 Duo E8400 (3Go RAM)

which seems reasonable with regard to the informa-

tion it provides.

[Figure 13 about here.]

All the solutions are also depicted in a frequency-

amplitude plot in Fig. 14 and Fig. 15. Two differ-

ent figures were used for the sake of clarity. Only

the amplitude of the first sector is considered.

[Figure 14 about here.]

[Figure 15 about here.]

In order to fully validate the stability analysis, di-

rect numerical integrations have been performed.

Initial conditions were provided by HBM solutions

and simulations were carried out over 1000 periods.

Results are plotted only for the five last periods.

Fig. 16 (resp. Fig. 17) shows the temporal evo-

lution of both numerical integration and HBM so-

lution for a stable point of Sol-B (resp. Sol-E) at

ω = 99.53 (resp. ω = 98.84). A good agreement

can be observed for both simulations, thus confirm-

ing the validity of the proposed approach.

[Figure 16 about here.]

[Figure 17 about here.]

This example exhibits a very complicated struc-

ture of resonance which is closely related to the

backbone curves previously presented. The FEP

appears to be a convenient tool for identifying non-

linear modes involved in non-linear resonances.

Applied to this case, global analysis has two virtues:

first of all, finding the disconnected solutions, that

is guarantying that all the possible stable states

will be considered when dimensioning the structure.

The second one is not theoretical, but practical: if

one can detect all the bifurcation points by carry-

ing out a bifurcation analysis along the continuation

process, it is easy to skip such points. For example,
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bifurcation points A2 and A4 being turning points

with two additional tangent for each, the determi-

nant of the Jacobian gets null but does not change

sign. An automated script based on this criterion

had therefore missed Sol-L2 and Sol-L3 branches

and they were in fact found by the GA approach.

6. Conclusion

This paper applies both a classical continuation

method and an original global analysis approach

to a cyclic symmetric structure. These methods

enable the drawing of a complete bifurcation di-

agram in a reasonable amount of time even in

the case of numerous bifurcations and existence

of disconnected solutions. Moreover it can inter-

cept branches that would have been missed by the

continuation and bifurcation analysis scheme. The

forced case example also emphasizes the usefulness

of NNMs to analyze a non-linear structure.

The ability of the proposed global analysis

method to exhibit disconnected solutions being

proved, further work now should focus on devel-

opments allowing its application to larger systems

and to quasi-periodic solutions search.

A. Definitions of parameters in the equation

of motion

This Appendix gives a symbolic and numeric ex-

pression for coefficients used in the equation of mo-

tion (6).

m = ρ

∫

P

Φ2dP =
ρhLxLy

5

c =
k

m
Φ(xr, yr)

2 =
1

256

k

m

Fej = Φ(xf , yf )
f j(t)

m
=

f j(t)

m

α =
5

3

Eh2

ρL4
x(1− ν2)

β =
8E

ρL4
x(1− ν2)

(26)

The damping coefficient δ is defined as:

δ =

√
α

200
(27)

Here are the numerical values used in this study:

the geometric and physical parameters are affected

by the following set of values:

Lx = 1.5 m, Ly = 0.3 m, h = 0.03 m,

xr = Lx/4, yr = 0, xf = Lx, yf = 0,

E = 210 GPa, ν = 0.3, ρ = 7800 kg.m−3,

k = 8 · 105 N.m−1

(28)

which correspond to the following values for the dif-

ferent parameters in equation (6) :

α = 8.7662 · 103 s−2, c = 148.36 s−2,

β = 4.6752 · 107 m−2.s−2
(29)
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amplitude plot for sector 1: (− ·) Sol-B, (- -) Sol-C, (-) Sol-D
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Figure 16: Comparison between HBM and numerical inte-
gration for a stable point of Sol-B at ω = 99.53: (·) Numer-
ical integration, (◦) HBM solution
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Figure 17: Comparison between HBM and numerical inte-
gration for a stable point of Sol-E at ω = 98.84: (·) Numer-
ical integration, (◦) HBM solution
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Branch Nsol ωi (rad.s
−1) Sim/Non-sim

0 2 ω1 = 93.63 Similar
1 4 ω2 = 95.20 Similar
1’ 4 ω2 = 95.20 Similar
1’.1 8 ω3 = 95.98 Non-similar
1’.1.1 16 ω4 = 96.75 Non similar
2 2 ω4 = 96.75 Similar
2.1 8 ω5 = 97.50 Non similar
2.2 8 ω5 = 97.50 Non similar
2.3 4 ω6 = 98.27 Non similar
2.3.1 8 ω7 = 98.45 Non similar
d1 8 ω8 = 99.36 Non similar
d2 8 ω8 = 99.36 Non similar

Table 1: Backbones branches characterization sum up
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