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Time domain numerical modeling of wave propaga-
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Abstract. Numerical methods are developed to simulate the wave propagation in 2D
heterogeneous fluid / poroelastic media. Wave propagation is described by the usual
acoustics equations (in the fluid medium) and by the low-frequency Biot’s equations
(in the porous medium). Interface conditions are introduced to model various hy-
draulic contacts between the two media: open pores, sealed pores, and imperfect
pores. Well-possedness of the initial-boundary value problem is proven. Cartesian
grid numerical methods previously developed in porous heterogeneous media are
adapted to the present context: a fourth-order ADER scheme with Strang splitting
for time-marching; a space-time mesh-refinement to capture the slow compressional
wave predicted by Biot’s theory; and an immersed interface method to discretize the
interface conditions and to introduce a subcell resolution. Numerical experiments and
comparisons with exact solutions are proposed for the three types of interface condi-
tions, demonstrating the accuracy of the approach.

AMS subject classifications: 35L05, 35L50, 65N06, 65N85, 74F10

Key words: Biot’s model, poroelastic waves, jump conditions, imperfect hydraulic contact, high-
order finite differences, immersed interface method.

1 Introduction

The theory developed by Biot in 1956 [3, 4] is largely used to describe the wave propaga-
tion in poroelastic media. Three kinds of waves are predicted: the usual shear wave and
”fast” compressional wave (as in elastodynamics), and an additional ”slow” compres-
sional wave observed experimentally in 1981 [29]. This slow wave does not propagate
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below a critical frequency, depending on the viscosity of the saturating fluid. In the cur-
rent study, we will focus on this low-frequency range.

The coupling between acoustic and poroelastic media is of high interest in many ap-
plications: sea bottom in underwater acoustics [34], borehole logging in civil engineer-
ing [32], and bones in biomechanics [20]. Many theoretical efforts have dealt with the
acoustic / porous wave propagation. Interface conditions have been defined [5, 14, 32],
describing various hydraulic contacts: open pores, sealed pores, and imperfect pores
involving the hydraulic permeability of the interface. Reflection and transmission coef-
ficients of plane waves have been derived [35]. The influence of the interface conditions
on the existence of surface waves has been investigated in the case of inviscid [14] and
viscous saturating fluids [12, 16] in the porous material. The time-domain Green’s func-
tion has been computed by the Cagniard-de Hoop’s method [11,15]. Experimental works
have shown the crucial importance of hydraulic contact on the generation of slow com-
pressional wave [31].

The literature dedicated to numerical methods for porous wave propagation is large:
see [8] for a review, and the introduction of [10] for a list of time-domain methods. Cou-
pled fluid / porous configurations have been addressed by an integral method [17], a
spectral-element method [28], and a pseudospectral method [33], to cite a few. To sim-
ulate efficiently wave propagation in fluid / porous media, numerical methods must
overcome the following difficulties:

• in the low-frequency range, the slow compressional wave is a diffusive-like solu-
tion, and the evolution equations become stiff [30]. It drastically restricts the stabil-
ity condition of any explicit method;

• the diffusive slow compressional remains localized near the interfaces. Capturing
this wave - that plays a key role on the balance equations - requires a very fine
spatial mesh;

• an accurate description of arbitrary-shaped geometries with various interface con-
ditions is crucial. These properties are badly discretized by finite-difference meth-
ods on Cartesian grids. Alternatively, unstructured meshes provide accurate de-
scriptions, but the computational effort greatly increases.

• an accurate modeling of the hydraulic contact at the interface is also required. In
particular, as far as we know, imperfect pore conditions still have not been ad-
dressed in numerical models.

To overcome these difficulties, we adapt a methodology previously developed in porous
/ porous media [10] and fluid / viscoelastic media [24]. Three Cartesian grid numerical
methods are put together. A fourth-order ADER scheme with Strang splitting is used to
integrate the evolution equations, ensuring an optimal CFL condition of stability. Spe-
cific solvers are used in the fluid medium and in the porous medium. Their coupling is
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ensured by an immersed interface method, that discretizes the interface conditions and pro-
vides a subcell resolution of the geometries. Lastly, a space-time mesh refinement around
the interfaces captures the small scale of the slow waves.

The article is organized as follows. In section 2, acoustics and poroelastic equa-
tions are recalled. We introduce the interface conditions, and we prove that the initial
boundary-value problem is well-posed. In section 3, numerical tools are presented. The
focus is put on the modifications induced by the new interface conditions, referring to
previous works [10,24] for technical details. In section 4, numerical experiments are pro-
posed, based on realistic sets of physical parameters. Comparisons with analytical solu-
tions demonstrate the accuracy of our approach. In section 5, future lines of investigation
are proposed.

2 Physical modeling

2.1 Acoustics and Biot’s equations
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Ω
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Figure 1: Interface Γ separating a fluid medium Ω0 and a poroelastic medium Ω1.

Let us consider a 2D domain with a fluid medium Ω0 and a poroelastic medium Ω1

(figure 1). The interface Γ separating Ω0 and Ω1 is described by a parametric equation
(x(τ),y(τ)) (figure 1). Tangential vector t and normal vector n are defined at each point
P along Γ by:

t=(x
′
,y

′
)T, n=(y

′
,−x

′
)T. (2.1)

The derivatives x
′
= dx

dτ and y
′
= dy

dτ are assumed to be continuous everywhere along Γ,
and to be differentiable as many times as required further.

In the fluid domain Ω0, the physical parameters are the density ρ f and the celerity of
acoustic waves c. The acoustics equations write















ρ f
∂v

∂t
+∇p=0,

∂ p

∂t
+ρ f c2∇.v= fp,

(2.2)
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where v=(v1,v2)T is the acoustic velocity and p the the acoustic pressure; fp represents
an external source term.

The poroelastic medium Ω1 is modeled by the low-frequency Biot equations [5] where
the physical parameters are

• the dynamic viscosity η and the density ρ f of the saturating fluid. The latter is
assumed to be the same than in Ω0, hence the notation ρ f is used in both cases;

• the density ρs and the shear modulus µ of the elastic skeleton;

• the porosity φ, the tortuosity a>1, the absolute permeability κ, the Lamé coefficient
of the saturated matrix λ f , and the two Biot’s coefficients β and m of the isotropic
matrix.

The conservation of momentum and the constitutive laws yield







































ρ
∂vs

∂t
+ρ f

∂w

∂t
−∇.σ=0,

ρ f
∂vs

∂t
+ρw

∂w

∂t
+

η

κ
w+∇p=0,

σ=C ε(us)−β pI,

p=−m (β∇.us+∇.W),

(2.3)

where vs=
∂us
∂t =(vs1,vs2)T is the elastic velocity, w=φ(v f−vs)=

∂W
∂t =(w1,w2)T is the filtra-

tion velocity, v f is the fluid velocity, σ is the elastic stress tensor, ε(us)=
1
2

(

∇us+T∇us

)

is the elastic strain tensor, and p is the pressure. The following notations have also been
used in (2.3): ρw = a

φ ρ f , ρ=φρ f +(1−φ)ρs, and

C=









λ0+2µ 0 λ0

0 2µ 0

λ0 0 λ0+2µ









, (2.4)

where λ0=λ f −β2 m is the Lamé coefficient of the dry matrix.

To be valid, the second equation of (2.3) requires that the spectrum of the waves lies
mainly in the low-frequency range, involving frequencies lower than

fc =
ηφ

2πaκρ f
. (2.5)

If f ≥ fc, more sophisticated models are required [4, 25], not addressed here.
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2.2 Evolution equations

A velocity-stress formulation of the evolution equations is obtained by differentiating the
last two equations in (2.3) in terms of time t. Setting

U=







(v1,v2, p)T in Ω0,

(vs1,vs2,w1,w2,σ11,σ12,σ22, p)T in Ω1,
(2.6)

where σ11, σ12, and σ22 are the independent components of the stress tensor σ, one de-
duces from (2.2) and (2.3) the first-order linear system of partial differential equations
with source term

∂

∂t
U+A

∂

∂x
U+B

∂

∂y
U=−SU+F. (2.7)

The system (2.7) is completed by initial values and radiation conditions at infinity.
In (2.7), A, B and S are 3×3 matrices in Ω0, and 8×8 matrices in Ω1; the vector F

accounts for the acoustic source in (2.2). In Ω0, S=0, while in Ω1 the spectral radius of S

is
R(S)=

η

κ

ρ

ρρw−ρ2
f

, (2.8)

which can be large, depending on the hydraulic permeability η/κ.
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Figure 2: Phase velocities (a) and attenuations (b) of Biot’s waves, using the parameters given in table 1. p f :
fast compressional wave; ps: slow compressional wave; s: shear wave. In (a), the horizontal dotted lines refer
to the eigenvalues cp f , cps and cs of A and B.

The non-null eigenvalues of A and B are real: ±c (acoustic wave) in Ω0; ±cp f (fast
compressional wave), ±cps (slow compressional wave), and ±cs (shear wave) in Ω1, sat-
isfying 0<max(cps, cs)<cp f . These eigenvalues in Ω1 are the high-frequency limits of the
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phase velocities of the poroelastic waves:

lim
f→+∞

cp f ( f )= cp f , lim
f→+∞

cps( f )= cps, lim
f→+∞

cs( f )= cs. (2.9)

The fast compressional wave and the shear wave are almost non-dispersive and non-
diffusive solutions. On the contrary, the phase velocity of the slow compressional wave
tends to zero with frequency (figure 2-a); at higher frequencies, this wave propagates,
but it is highly attenuated (figure 2-b). For a detailed dispersion analysis, the reader is
referred to standard texts [3, 7].

2.3 Interface conditions

Four waves are involved in the acoustic / porous configuration: one acoustic wave in Ω0,
and three poroelastic waves in Ω1. Consequently, four independent interface conditions
need to be defined along Γ. Authors [5, 14, 18, 32] have proposed the following general
conditions:



























v0.n=vs1.n+w1.n,

−p0 n=σ1.n,

[p]=−
1

K

w1.n

|n|
,

(2.10)

where the subscripts 0 and 1 refer to the traces on the Ω0 or Ω1 sides, and [p] denotes the
jump of p from Ω0 to Ω1. The first scalar equation in (2.10) follows from the conservation
of fluid mass. The second vectorial equation in (2.10) expresses the continuity of normal
efforts. The last scalar equation in (2.10) is a local Darcy’s law. It models the hydraulic
contact between the fluid and the porous medium, and involves an additional parameter
K, called the hydraulic permeability of the interface. The division by |n| ensures that
the hydraulic contact is independent from the choice of the parametric equation of Γ.
According to the value of K, various limit-cases are encountered:

• if K→+∞, then the last equation in (2.10) becomes [p]=0, modeling the commonly
used open pores;

• if K→ 0, then no fluid exchange occurs across Γ, and the last equation in (2.10) is
replaced by w1.n=0, modeling sealed pores;

• if 0<K<+∞, then an intermediate state between open pores and sealed pores is
reached, modeling imperfect pores.

The following proposition states that the interface conditions (2.10) coupled with the
evolution equations (2.2) and (2.3) yield a well-posed problem.
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Proposition 2.1. Let
E=E1+E2+E3,

with

E1 =
1

2

∫

Ω0

(

ρ f v2+
1

ρ f c2
p2

)

dΩ,

E2 =
1

2

∫

Ω1

(

ρv2
s +ρw w2+2ρ f vs w

)

dΩ,

E3 =
1

2

∫

Ω1

(

C ε(us) : ε(us)+
1

m
p2

)

dΩ.

(2.11)

Then, E is an energy which satisfies

dE

dt
=−

∫

Ω1

η

κ
w2dΩ−

∫

Γ

1

K

(w1.n)2

|n|
dΓ≤0. (2.12)

Proof. The first equation of (2.2) is multiplied by v and integrated over Ω0:

∫

Ω0

(

ρ f v
∂v

∂t
+v∇p

)

dΩ=0. (2.13)

The first term in (2.13) writes
∫

Ω0

ρ f v
∂v

∂t
dΩ=

d

dt

1

2

∫

Ω0

ρ f v2dΩ. (2.14)

By integration by part, and using the second equation of (2.2), one obtains
∫

Ω0

v∇pdΩ =
∫

Γ
v0.n p0 dΓ−

∫

Ω0

∇.v pdΩ,

=
∫

Γ
v0.n p0 dΓ+

∫

Ω0

1

ρ f c2
p

∂ p

∂t
dΩ,

=
∫

Γ
v0.n p0 dΓ+

d

dt

1

2

∫

Ω0

1

ρ f c2
p2 dΩ,

(2.15)

which concludes the energy analysis in the fluid domain. The first equation of (2.3) is
multiplied by vs, and then is integrated over Ω1:

∫

Ω1

(

ρvs
∂vs

∂t
+ρ f vs

∂w

∂t
−vs∇.σ

)

dΩ=0. (2.16)

The first term in (2.16) writes
∫

Ω1

ρvs
∂vs

∂t
dΩ=

d

dt

1

2

∫

Ω1

ρv2
s dΩ. (2.17)
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By integration by part, and using the third equation of (2.3), one obtains

−
∫

Ω1

vs∇.σdΩ =
∫

Γ
vs1.σ1.ndΓ+

∫

Ω1

ε(vs) : σdΩ,

=
∫

Γ
vs1.σ1.ndΓ+

∫

Ω1

ε(vs) : (C ε(us)−β pI) dΩ,

=
∫

Γ
vs1.σ1.ndΓ+

∫

Ω1

∂

∂t
ε(us) :C ε(us)dΩ−

∫

Ω1

β p∇.vs dΩ,

=
∫

Γ
vs1.σ1.ndΓ+

d

dt

(

1

2

∫

Ω1

C ε(us) : ε(us)dΩ

)

−
∫

Ω1

β p∇.vs dΩ.

(2.18)
The second equation of (2.3) is multiplied by w, and then it is integrated over Ω1:

∫

Ω1

(

ρ f w
∂vs

∂t
+ρw w

∂w

∂t
+

η

κ
w2+w∇p

)

dΩ=0. (2.19)

The second term in (2.19) writes

∫

Ω1

ρw w
∂w

∂t
dΩ=

d

dt

1

2

∫

Ω1

ρw w2 dΩ. (2.20)

By integration by part, and using the fourth equation of (2.3), one obtains

∫

Ω1

w∇pdΩ = −
∫

Γ
w1.n p1dΓ−

∫

Ω1

p∇.wdΩ,

= −
∫

Γ
w1.n p1dΓ+

∫

Ω1

p
∂

∂t

(

1

m
p+β∇.us

)

dΩ,

= −
∫

Γ
w1.n p1dΓ+

d

dt

(

1

2

∫

Ω1

1

m
p2 dΩ

)

+
∫

Ω1

β p∇.vs dΩ.

(2.21)

When adding (2.16) and (2.19), it remains

∫

Ω1

ρ f

(

vs
∂w

∂t
+w

∂vs

∂t

)

dΩ=
d

dt

∫

Ω1

ρ f vs wdΩ. (2.22)

Equations (2.13)-(2.22) provide

dE

dt
=−

∫

Ω1

η

κ
w2dΩ−ψ, (2.23)
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where ψ is simplified from the conditions (2.10):

ψ =
∫

Γ
(v0.n p0+vs1.nσ1n−w1.n p1)dΓ,

=
∫

Γ
(v0.n p0−vs1.n p0−w1.n p1)dΓ,

=
∫

Γ
((vs1.n+w1.n) p0−vs1.n p0−w1.n p1)dΓ,

= −
∫

Γ
w1.n[p]dΓ,

= +
∫

Γ

1

K

(w1.n)2

|n|
dΓ,

(2.24)

which gives (2.12). It remains to prove that E is a positive definite quadratic form. Posi-
tivity of C ε(us) : ε(us) is known [13]. Since

ρ−ρ f =(1−φ)
(

ρs−ρ f

)

≥0, ρw−ρ f =

(

a

φ
−1

)

ρ f ≥0, (2.25)

we get

∆ =
1

2
ρv2+

1

2
ρv2

s +
1

2
ρw w2+ρ f vs w,

=
1

2
ρ f (vs+w)2−

1

2
ρ f v2

s −
1

2
ρ f w2+

1

2
ρv2+

1

2
ρv2

s +
1

2
ρw w2,

=
1

2
ρ f (vs+w)2+

1

2

(

ρ−ρ f

)

v2
s +

1

2

(

ρw−ρ f

)

w2+
1

2
ρv2,

≥ 0,

(2.26)

which concludes the proof.

Each term in (2.11) has a clear physical significance: E1 is the acoustical energy, E2

is the poroelastic kinetic energy, and E3 is the poroelastic potential energy; E3 is easily
computed from (2.4) using the closed-form expression:

C ε(us) : ε(us) =
λ0+2µ

4µ (λ0+µ)

(

(σ11+β p)2+(σ22+β p)2
)

+
1

µ
σ2

12

−
λ0

2µ (λ0+µ)
(σ11+β p)(σ22+β p).

(2.27)

The decrease rate of the total energy is governed as usual by the intrinsic attenuation
due to the viscous saturating fluid

∫

Ω1

η
κ w2dΩ, but also by the imperfect pore condition

∫

Γ
1
K (w1.n)2 dΓ. In particular, even if the viscous effects are neglected (η=0), a part of the

mechanical energy is dissipated by the interface in the case of imperfect pores.



10

3 Numerical modeling

3.1 Integration of evolution equations

The system (2.7) is solved on a uniform Cartesian grid, with spatial mesh sizes ∆x=∆y
and a time step ∆t. Due to the source term in the poroelastic medium Ω1, a straightfor-
ward discretization of (2.7) is inefficient. A Von-Neumann analysis of stability indeed
gives

∆t≤min

(

∆x

max(c)
,

2

R(S)

)

, (3.1)

where the spectral radius R(S) can become large (2.8). It is much more efficient to per-
form Strang splitting of (2.7), by solving successively











∂

∂t
U+A

∂

∂x
U+B

∂

∂y
U=0, (i)

∂

∂t
U=−SU. (ii)

(3.2)

The propagative part (i) is solved by a fourth-order ADER scheme [21]. On a Cartesian
grid, this two-step, explicit scheme amounts to a fourth-order Lax-Wendroff scheme. It
satisfies the stability condition max(c) ∆t

∆x ≤1.

The diffusive part (ii) is solved exactly in Ω1: see equation (18) in [10]. This step
is unconditionally stable [22]. In Ω0, since no attenuation occurs, no diffusive part is
involved.

When S 6= 0 (i.e. when η 6= 0), the coupling between parts (i) and (ii) decreases for-
mally the convergence rate from 4 to 2. In counterpart, the optimal condition of stability
is recovered: max(c) ∆t

∆x ≤1.

3.2 Mesh refinement

In the low-frequency range, the slow compressional wave behaves like a diffusive non-
propagating solution, with very small wavelength (section 2.2). A very fine spatial mesh
is therefore required. Since this wave remains localized at the interfaces where it is gen-
erated, space-time mesh refinement is a good strategy. For this purpose, we adapt a
steady-state version of the algorithm proposed in [1, 2]. In the fine grid, both the spa-
tial meshes and the time step are divided by a refinement factor q. Doing so ensures the
same CFL number in each grid. The coupling between coarse and fine meshes is based
on spatial and temporal interpolations.

Even if the refined zone is much smaller than the whole domain, the refinement
greatly increases the computational cost. The factor q therefore must be chosen ade-
quately. We choose q that ensures the same discretization of the slow wave, on the refined
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zone, than the fast wave, on the coarse grid. Direct calculations give

q( f0)=
cp f ( f0)

cps( f0)
, (3.3)

where f0 is the central frequency of the signal.

3.3 Discretization of the interface conditions

The discretization of the interface conditions requires special care, for three reasons. First,
Cartesian grids provide a stair-step description of the geometries, which generates spuri-
ous numerical diffractions. Second, the conditions (2.10) are not enforced numerically by
the scheme (section 3.1), and hence the numerical solution will not converge towards the
right solution. Third and last, the smoothness requirement to solve (2.7) is not satisfied
across the interface, which decreases the convergence rate of the ADER scheme.

To remove these drawbacks while maintaining the efficiency of Cartesian grid meth-
ods, we use an immersed interface method previously developed for acoustics / elastic
media [23], viscoelastic media [24], and poroelastic media [10]. The reader is referred to
these papers for a detailed description of the method. The basic principle is as follows: at
the irregular nodes where the ADER’s stencil crosses the interface Γ, the scheme uses mod-
ified values of the solution on the other side of Γ, instead of the usual numerical values.
The modified values are based on the local geometry of Γ and on successive derivatives
of the interface conditions (2.10).

For numerical purpose, the single writing (2.10) is recasted as follows. First, the open
pores are written



































v0.n=vs1.n+w1.n,

−p0 n2=(σ1.n).n,

(σ1.n).t=0,

(σ1.n).n+p1 n2=0.

(3.4)

Second, the sealed pore conditions are written



































v0.n=vs1.n,

−p0 n2=(σ1.n).n,

(σ1.n).t=0,

w1.n=0.

(3.5)
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Third and last, the imperfect pore conditions are written







































v0.n=vs1.n+w1.n,

−p0 n2=(σ1.n).n,

(σ1.n).t=0,

(σ1.n).n+p1 n2+
1

K
w1.n|n|=0.

(3.6)

In the three cases (3.4)-(3.6), the four scalar interface conditions are divided into two jump
conditions and two boundary conditions on the Ω1 side. These conditions can be written
in matrix form

C1 U1=C0U0,

L1 U1=0,
(3.7)

where C0 is a 2×3 matrix, and C1, L1 are 2×8 matrices; they are provided in appendix
A. The vectors Ui(τ, t) denote the boundary values of the solution U (2.6) on the Ωi side
(i=0,1). The equations (3.7) are the basic ingredient of the immersed interface method.
Four steps are then successively involved:

• Step 1: high-order interface conditions. The conditions (3.7) are differentiated in
terms of t and τ. Time derivatives are replaced by spatial derivatives thanks to the
splitted evolution equations (equation (3.2), part (i)). For instance, L1U1=0 yields

∂

∂t
L1U1=L1

∂

∂t
U1=L1

(

−A1
∂

∂x
U1−B1

∂

∂y
U1

)

=0. (3.8)

Derivatives in terms of τ are replaced by spatial derivatives thanks to the chain-
rule. For instance, L1U1=0 yields

∂

∂τ
L1U1=

(

∂

∂τ
L1

)

U1+L1

(

x
′ ∂

∂x
U1+y

′ ∂

∂y
U1

)

=0. (3.9)

By iterating a similar procedure r times, one obtains the interface conditions satis-
fied by the solution and its spatial derivatives up to order r. The general procedure
is the same than in [24], appendix B.

• Step 2: high-order compatibility conditions. Some components of the successive
spatial derivatives of U are not independent. In the fluid medium Ω0, the acoustic
velocity is irrotational ∇∧v=0, or equivalently

∂v2

∂x
=

∂v1

∂y
. (3.10)
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In the porous medium Ω1, the symmetry of stress tensor yield the Beltrami-Michell
equation

∂2 σ12

∂x∂y
= θ0

∂2 σ11

∂x2
+θ1

∂2 σ22

∂x2
+θ2

∂2 p

∂x2
+θ1

∂2 σ11

∂y2
+θ0

∂2 σ22

∂y2
+θ2

∂2 p

∂y2
,

θ0=−
λ0

4(λ0+µ)
, θ1=

λ0+2µ

4(λ0+µ)
, θ2=

µβ

2(λ0+µ)
.

(3.11)

Equations (3.10) and (3.11) can be differentiated in terms of x and y as many times
as required, assuming a sufficiently smooth solution. The equations so-obtained
are satisfied at any point, in particular on both sides of Γ. They can be used to
reduce the number of unknown traces of the solution and its spatial derivatives,
which strongly influences the stability of the immersed interface method. For the
fluid medium Ω0, see the equations (21), (25) and (A1) of [23]. For the poroelastic
medium Ω1, see the equations (26), (27) and (B1) of [10].

• Step 3: high-order boundary values. The traces of the solution and of its spatial
derivatives, on one side of Γ, are expressed in terms of the traces on the other side.
To do so, we take advantage of the steps 1 and 2. However, the obtained linear sys-
tems of interface conditions are underdetermined. Consequently, the non-unique
solution is the sum of a least-squares pseudo-inverse and of a full span of vectors.
Details about the singular value decompositions and about the Lagrange multipli-
ers are given in [24], appendix B.

• Step 4: construction of modified values. At each irregular node, a matrix of ex-
trapolation is build. Taking the product of this matrix with the vector of numerical
values at close grid nodes gives the modified values used by the ADER scheme.
Once again, the procedure to be followed is the same than in [24], appendix B.

The main part of steps 1-4 can be done during a preprocessing stage. At each time step,
only small matrix-vector products need to be done. After optimization of the codes, the
CPU extra-cost can be made negligible, lower than 1% of the time-marching.

The integer r in step 1 is the order of the immersed interface method, and it plays a
crucial role on its accuracy. In practice, r=4−1=3 is sufficient to ensure overall fourth-
order accuracy of the ADER-4 scheme [19].

A special attention needs to be paid in the case of imperfect hydraulic contact (3.6).
Typical values of K range around 10−7 m/s/ Pa. From (3.7) and (A.3), it follows that
numbers close to 107 coexist with numbers close to 1 in the matrix L1. The underdeter-
mined systems and the extrapolation matrix, respectively involved in steps 3 and 4, are
then badly conditioned, which generates numerical instabilities during time-marching.
To overcome this difficulty, we normalize the physical parameters and the unknowns in
our codes. This normalization is described in appendix B. In practice, it is used whatever
the interface conditions.
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4 Numerical experiments

4.1 Physical parameters

Saturating fluid ρ f (kg/m3) 1000
c (m/s) 1500
η (Pa.s) 0 / 1.0510−3

Grain ρs (kg/m3) 2690
µ (Pa) 1.86109

Matrix φ 0.38
a 1.8
κ (m2) 2.7910−11

λ0 (Pa) 1.2108

m (Pa) 5.34109

β 0.95
Interface K (m/s/Pa) 5.10−7

Phase velocities cp f ( f0) (m/s) 2066.43

cps( f0) (m/s) 124.36
cs( f0) (m/s) 953.05
cp f (m/s) 2071.85

cps (m/s) 741.65
cs (m/s) 1006.32
fc (Hz) 1264.49

Table 1: Poroelastic medium Ω1: physical parameters and acoustic properties at f0=20 Hz.

The acoustic medium Ω0 is water (ρ f = 1000 kg/m3, c= 1500 m/s). The poroelastic
medium Ω1 is a water saturated unconsolidated sand, whose material properties are
summarized in table 1 and are issued from table 3 of [33]. In some experiments, an
inviscid saturating fluid is artificially considered: η =0 Pa.s, the other parameters being
unchanged. It is mainly addressed here for a numerical purpose. The cases of open pores
(3.4), sealed pores (3.5), and imperfect pores (3.6) are successively investigated. In the
latter case, the value of hydraulic permeability K is given in table 1.

Once the spatial mesh sizes ∆x = ∆y are chosen on the coarse grid, the time step
follows from the CFL number in Ω1: cp f ∆t/∆x = 0.95 < 1. The time evolution of the
source is a combination of truncated sinusoids

h(t)=



















4

∑
m=1

am sin(βm ω0 t) if 0< t<
1

f0
,

0 otherwise,

(4.1)
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where βm = 2m−1, ω0 = 2π f0; the coefficients am are: a1 = 1, a2 =−21/32, a3 = 63/768,
a4 =−1/512, ensuring C6 smoothness of the solution. The central frequency in (4.1) is
f0=20 Hz, much smaller than the critical Biot frequency: see (2.5) and table 1. Two types
of sources and boundary conditions are considered:

• no source term fp in (2.2), but an incident plane wave in Ω0 as initial conditions:

U(x,y, t0)=−













cosθ

c
sinθ

c

ρ f













h

(

t0−
x cosθ+ysinθ

c

)

, (4.2)

where θ is the angle between the wavevector and the x-axis, and t0 adjusts the
location of the plane wave in Ω0. In section 4.2, the diffracted plane waves are
computed exactly, and they are enforced numerically on the edges of the compu-
tational domain. In section 4.3, periodic computational edges are imposed along
y-direction, and hence the incident acoustic wave does not need to be enforced;

• null initial conditions, but a varying source term in (2.2)

fp=δ(x−xs)δ(y−ys)h(t) (4.3)

that generates cylindrical waves. The size of the domain and the duration of the
simulations are defined so that no special attention is required to simulate outgoing
waves, for instance with Perfectly-Matched Layers [27].

4.2 Test 1: plane wave on a plane interface

As a first test, we consider a domain [0,400] m2 cut by a plane interface Γ with slope 60
degrees. An incident plane wave propagates in the fluid, with θ =−30 degrees (figure
3-a). Consequently, the incident wave crosses the interface normally, leading to a 1-D con-
figuration; from a numerical point of view, however, the problem is fully bidimensional.
The advantage of such a 1-D configuration is that each diffracted wave has interacted
with the interface and is consequently very sensitive to the discretization of the interface
conditions (2.10).

The saturating fluid is inviscid (η=0): as a consequence, exact solutions are computed
very accurately without Fourier synthesis, and splitting errors of the scheme are avoided
(section 3.1). The computations are done on a uniform grid of N×N points, during 3N/8
time steps. Comparisons with the exact values of the pressure p are done on the sub-
domain [50,350] m×[150,250] m, in order to avoid spurious effects induced by the edges
of the computational domain (figure 3-b). One observes the reflected acoustic wave, the
transmitted fast wave and the transmitted slow compressional waves (no shear wave is
generated in 1D).
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Figure 3: test 1. Snapshots of p at the initial instant (a) and at the instant of measure, with open pore
conditions (b). The white rectangle denotes the zone where convergence errors are measured.
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Figure 4: test 1. Slices of p at the final instant, for various interface conditions. (a): reflected acoustic wave
Rp, transmitted fast compressional wave Tp f , transmitted slow compressional wave Tps. (b): zoom around the

wave reflected in the fluid domain (Rp).
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interface condition N r=1 order r=2 order r=3 order

open pores 400 4.987100 - 2.855100 - 2.008100 -

800 1.154100 2.212 4.04210−1 2.820 2.20710−1 3.186

1200 4.99710−1 2.064 1.16010−1 3.079 5.05210−2 3.636

1600 2.79110−1 2.025 4.72810−2 3.120 1.66110−2 3.867

2000 1.78810−1 1.996 2.36710−2 3.101 6.87010−3 3.956

2400 1.23910−1 2.012 1.34510−2 3.100 3.31810−3 3.992

sealed pores 400 5.226100 - 7.21410−1 - 6.14710−1 -

800 1.467100 1.833 8.65610−2 3.059 4.88610−2 3.653

1200 6.70410−1 1.931 2.44910−2 3.114 1.03110−2 3.837

1600 3.80910−1 1.965 1.00210−2 3.106 3.34610−3 3.912

2000 2.44910−1 1.979 5.02910−3 3.089 1.38910−3 3.940

2400 1.70610−1 1.983 2.86810−3 3.080 6.76410−4 3.947

imperfect pores 400 4.826100 - 1.739100 - 1.26210 -

800 1.200100 2.008 2.41210−1 2.850 1.28710−1 3.294

1200 5.23310−1 2.047 6.88210−2 3.093 2.91310−2 3.664

1600 2.91610−1 2.033 2.79210−2 3.136 9.51710−3 3.889

2000 1.85810−1 2.020 1.38910−2 3.129 3.92210−3 3.973

2400 1.28510−1 2.022 7.89110−3 3.101 1.89110−3 4.001

Table 2: test 1. Error measurements and convergence rate in l2 norm, for various interface conditions. Linear
(r=1), quadratic (r=2) or cubic (r=3) immersed interface method.

The influence of the interface conditions on the diffracted waves is illustrated in figure
4. The exact value of p at the final instant is shown at y = 200 m for the conditions
(3.4), (3.5) and (3.6). The main difference between these three cases is observed in the
transmitted slow wave. In real experiments, however, only the reflected acoustic wave is
measured: a zoom on this wave is given in figure 4-b. The hydraulic permeability K=
5.10−7 leads to an intermediate regime between open and sealed pores. If K≥10−5, the
results (not shown here) cannot be distinguished from those obtained with open pores.
In the same way, results obtained with K≤10−8 cannot be distinguished from the sealed
pores.

How accurate is the discretization of the interface conditions is assessed through com-
parisons with the analytical solutions (figure 5). In the left row, such comparisons are pro-
posed in two cases; r=0 means that no numerical treatment is done along the interface,
and the numerical solution does not converge towards the exact one. On the contrary,
excellent agreement is observed when r=2 is used (section 3.3).

Error measurements on successive refined grids are given in table 2. Convergence
rates are drawn on the right row of figure 5. Various values of the order r of the im-
mersed interface method are investigated. As stated in section 3.3, fourth-order accu-
racy is maintained if third-order extrapolations (r=3) are used in the immersed interface
method.
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Figure 5: test 1. Left row: comparisons between exact values and numerical values of p. Right row: errors
measured in l2 norm versus the number of grid nodes, with various order r of the immersed interface method.
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4.3 Test 2: plane wave on a circular interface

A circular interface Γ of radius 100 m is centered at (0,0) in the domain [−600,600]m2

(figure 6). This configuration is relevant to examine the discretization of an interface with
constant non-zero curvature. The cylinder is filled with the porous medium Ω1, while
the acoustic medium Ω0 lies outside. The computational domain is discretized on 8002

points, leading to ∆x=∆y=1.5 m. A locally refined mesh [−110,110]m2 is used around
the interface in order to compute accurately the different wave conversions. As in test 1,
the source is an acoustic plane wave initially in Ω0, with θ = 0 degree (4.2). The initial
conditions are illustrated in figure 6.
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Figure 6: test 2. Initial values of p: snapshot (a) and slice along the x-axis, at y=0 m (b). The dotted square
in (a) represents the frontiers of the refined mesh. The vertical lines in (b) denote the location of interfaces.

The first experiments concerns the inviscid case (η =0), where the poroelastic waves
are non dispersive. Based on the criterion (3.3) and on table 1, the refinement factor in the
local grid is set to q=3≈ cp f /cps. The numerical values of p after 430 time steps (t≃0.22
s) are displayed in the left row of figure 7, for the three types of interface conditions. The
pressure recorded during 900 time steps at R0 (xr =−120,yr = 0) in Ω0 is shown in the
right row for t>0.2 s: the incident wave and the first refracted wave are not represented,
in order to focus on the successive reflected/transmitted waves which strongly depend
on the interface conditions. This is particularly true for t>0.4 s, where shape and ampli-
tude of the recorded pressure completely differ depending on the hydraulic contact.

In the inviscid case, the analytical solutions can be computed very accurately, by a
decomposition of Fourier modes on a basis of circular functions. In practice, reference
values are obtained by using N f =32768 Fourier modes (with a frequency step ∆ f=0.0063
Hz) and a truncated basis of 70 Bessel functions. The agreement between numerical and
exact values is excellent in the three cases (figure 7, right row).

Similar experiments are also performed with a viscous saturating fluid. The numeri-
cal values of p after 430 time steps are displayed in figure 8-a, with imperfect pores. From
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Figure 7: test 2, inviscid saturating fluid (η = 0 Pa.s). Snapshots of p after 430 time steps (left row), time
history of p at the receiver R0 for t>0.2 s until t=0.618 s corresponding to 900 time steps (right row).
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Figure 8: test 2, viscous saturating fluid. (a): snapshots of p after 430 iterations for imperfect pore condition.
(b): time history of p at the receiver R0 in the acoustic medium, for various refinement factors q.

the criterion (3.3) and the phase velocities given in table 1, one obtains q= 16, which is
very costly. Nevertheless, the pressure recorded at R0 reveals that q = 9 suffices to get
reference solutions (figure 8-b).

Compared with the inviscid vase, the viscosity greatly modifies the signal recorded
at receiver R0 (figure 9-a). Figure 9-b shows the reflected waves obtained with the three
pore conditions. The differences between these signals are smaller than in the inviscid
case (right row of figure 7).
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Figure 9: test 2, viscous saturating fluid. Time history of p. (a): comparison between viscous and inviscid case
for imperfect pores; (b): comparison of the three pore conditions.
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Figure 10: test 3. Snapshot of p after 800 iterations, taking imperfect pore conditions. Horizontal black dotted
lines denote the frontiers of the refined grid.

4.4 Test 3: a sinusoidal interface

As a third and last test, we consider a sinusoidal interface separating the acoustic medium
Ω0 (top) and the poroelastic medium Ω1 (bottom). This configuration may model the sea-
floor; numerically, it is relevant to test the algorithms with a non-constant curvature of
the interface. The domain is [−1500,1500]m2 , and the interface is given by the relation
y=40sin

(

π
100 x

)

. The viscosity of the saturating fluid is taken into account (η =1.0510−3

Pa.s). A source term fp is put at the point (xs = 0,ys = 20) in Ω0 (4.3). The mesh size is
∆x=∆y=2 m, except in the vicinity of the interface, where a refinement factor of q=7 is
applied. The refined grid contains about 3.5106 nodes and 75544 irregular nodes where
the immersed interface method is applied (section 3.3).

The pressure field after 800 iterations (t≃ 0.73 s) is displayed in figure 10. From the
criterion (3.3) and the phase velocities given in table 1, one obtains q=16, which is very
costly. Nevertheless, the pressure recorded close to the interface, at R1 (x=750,y=−45.2)
in Ω1, reveals that grid convergence is satisfying when q=7 (figure 11-a).
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Figure 11: test 3. (a): time history of p at the receiver R1 in Ω1 for different refinement factors; time history
of p at the receiver R0 in Ω0, for t>0.435 s (b).

The time history of the pressure recorded at R0 (x= 500,y= 200) in Ω0 is displayed
in figure 11-b for the three pore conditions. As in test 2 (figure 9-b), the first reflected
waves almost do not depend on the hydraulic contact. Consequently, we focus on the
subsequent waves (t>0.435 s), where differences are clearly observed depending on the
interface conditions.

5 Conclusion

We have developed a robust and highly accurate numerical model to simulate wave
propagation in fluid / poroelastic media. Our model can incorporate various models of
interface conditions, in particular the case of imperfect hydraulic contact: to our knowl-
edge, it is the first time that such simulations are proposed. Arbitrary-shaped interfaces
can be handled and accuracy is ensured by a subcell resolution on a Cartesian grid.

Numerical experiments have shown that each part of the algorithm is required to
get efficiently reliable results: fourth-order scheme with time splitting, mesh refinement,
immersed interface method. The effect of interface conditions on the diffracted waves has
been illustrated. When the viscous effects are noticeable, the accurate computation of the
slow compressional wave in the poroelastic medium is crucial for the overall accuracy.
This diffusive wave propagates along the interface and plays a major role in the balance
equations.

This numerical model enables to investigate many physically-relevant configurations.
For instance, comparisons between real experiments and simulations could be used to
characterize the hydraulic permeability K in (2.10). Simulation of multiple scattering in
random or periodic media is another fruitful application. The objective is to estimate
numerically the properties of the homogenized effective medium [26]. Since a Cartesian
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grid is used and no meshing of the interfaces is required, our approach is very well suited
to the modeling of numerous scatterers (typically, a few hundreds [9]).

Our numerical model is valid only in the low-frequency range. For frequencies greater
than fc in (2.5), the second equation of (2.3) must be modified to account for the viscous
layer dissipation. Fractional derivatives of order 1/2 are then introduced [25]. We are
currently investigating this topic. Similar extensions are also required concerning the
hydraulic permeability in (2.10). Indeed, it is known that K depends not only on the
geometrical properties of the medium, but also on the frequency [32].

A Matrices of interface conditions

The matrices C0, C1 and L1 introduced in (3.7) are detailed. For open pore conditions
(3.4), it follows from (2.1)

C0(τ)=

(

y
′

−x
′

0

0 0 −
(

x
′2+y

′2
)

)

,

C1(τ)=

(

y
′

−x
′

y
′

−x
′

0 0 0 0

0 0 0 0 y
′2 −2x

′
y
′

x
′2 0

)

,

L1(τ)=

(

0 0 0 0 x
′
y
′

y
′2−x

′2 −x
′
y
′

0

0 0 0 0 y
′2 −2x

′
y
′

x
′2 x

′2+y
′2

)

.

(A.1)

For sealed pore conditions (3.5), one gets

C0(τ)=

(

y
′

−x
′

0

0 0 −
(

x
′2+y

′2
)

)

,

C1(τ)=

(

y
′

−x
′

0 0 0 0 0 0

0 0 0 0 y
′2 −2x

′
y
′

x
′2 0

)

,

L1(τ)=

(

0 0 0 0 x
′
y
′

y
′2−x

′2 −x
′
y
′

0

0 0 y
′

−x
′

0 0 0 0

)

.

(A.2)

For imperfect pore conditions (3.6), one gets

C0(τ)=

(

y
′

−x
′

0

0 0 −
(

x
′2+y

′2
)

)

,

C1(τ)=

(

y
′

−x
′

y
′

−x
′

0 0 0 0

0 0 0 0 y
′2 −2x

′
y
′

x
′2 0

)

,

L1(τ)=





0 0 0 0 x
′
y
′

y
′2−x

′2 −x
′
y
′

0

0 0
y
′

K

√

x
′2+y

′2 −
x
′

K

√

x
′2+y

′2 y
′2 −2x

′
y
′

x
′2 x

′2+y
′2



.

(A.3)
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B Normalization of the variables

As mentioned in section 3.3, normalized parameters and unknowns are used in our com-
puter codes. These quantities are denoted by overlines in the following. Given a real N ,
we define the normalized time

t=N t, (B.1)

the normalized variables

v=N v, vs =N vs, w=N w, σ=
σ

N
, p=

p

N
, (B.2)

and the normalized physical parameters

ρ f =
ρ f

N
, ρs =

ρs

N
, ρw =

ρw

N
,

λ f =
λ f

N 3
, µ=

µ

N 3
, m=

m

N 3
,

η=
η

N
, κ=N κ, K=N2K.

(B.3)

The value of the normalization parameter is set to N =1000 in numerical experiments.
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