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Global search of non-linear systems periodic solutions: a rotordynamics
application

E. Sarrouy**®%, F. Thouvere%

8Ecole Centrale de Lyon, Bat. E6, 36 avenue Guy de Collondi846Ecully Cedex, France

Abstract

Introducing non-linearities into models contributes todgaa better reality description but leads to systems having
multiple solutions. It is then legitimate to look for all tleelutions of such systems, that is to have a global analysis
approach. However ndiective method can be found in literature for systems desdrily more than two or three
degrees of freedom. We propose in this paper a way to fin@-pkriodic solutions - wher& is known - of a non-
linear dynamical system. This method is compared to threerapproaches and is shown to be the méatient

on a Dufing oscillator. As a more complex example, a rotor model idiclg a squeeze-film damper is studied and a
second branch of solutions is exhibited.

Key words: Global analysis, Non-linear, Homotopy, Polynomial, Rdiaramics, Squeeze-film damper

1. Introduction

Global analysis of dynamical systems is of great intereshdiustrial development as well as in research area.
Introduction of non-linear organs in dynamical modelingige of the ways to a better reality description and so to
a better behavior prediction; though it induces multipleisons of varied nature (periodic, quasi-periodic...)neD
need to get them all in order to dimension a structure prgp&Hen, when trying to get the solutions of a set of non-
linear dynamical equations, two approaches, local or ¢glava possible. Local methods mostly consist in choosing
a startpoint and having many correction steps until a smiytoint is found. On the contrary, global analysis methods
consider the whole state space (or a bounded part of it) grd find all the solutions contained in it.

Many methods aim at global analysis of non-linear systenexjaations. They all share the same problem: their
computational fiiciency. In this paper a new approach is proposed for locatiinf-periodic solutions. It is based on
the transformation of the dynamical system into a ndfedential one followed by a polynomial approximation of the
non-linear part of this equivalent system; then a globalltg®n of the resulting polynomial system is achieved gsin

a homotopy method. Our approach is compared to three exisi@thods: simple cell-mapping, a test exclusion based
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method and one relying on interval analysis. Secfldhpresents a short overview and references for each existing
method used for comparison while secti2 exposes the proposed method in a detailed way.

The four methods are applied to a fng oscillator and compared in secti@nthis demonstratesfigciency of
the suggested approach. Finally, its ability to treat moreglex systems and the usefulness of such a global analysis

algorithm is illustrated in sectiofithrough a simplified model of a rotor using a squeeze-film damp

2. Global analysis methods at stake

This part is devoted to the four methods compared in the rentian. First, the principles of three existing
methods dedicated to global analysis are quickly explained second part, the three main steps of the proposed
method are detailed. Among the four treated methods, opecélrmapping) treats directly theffirential system of
equations 1) while the three others require its transformation into a-fioear (non-diterential) system of equations
(2). In the latter case the same transformation will be use@éxolusion test methods, approaches relying on interval
analysis and the proposed method. Finding all the T-periediutions of 1) or finding all the solutions of2) is

equivalent if a proper transformation is used. A way to dossexposed in pa2.2.1

Ordinary diferential equations.
Md -+ Cq+Ka+ f(q,6) = fe(t) (1)

whereM, C andK are respectively mass, damping anétiséss matricesf,A(q, g) stands for non-linearfBorts depend-

ing on displacements and velocities afaft) is the excitation vector.

Non-linear (non-dfferential) system.
HX+ H(X) = He ()

with % containing generalized unknowrid, denoting the linear part of equatiod(X) its non-linear part andHe its

constant term.

2.1. Existing methods overview

First of all is the cell-mapping10] which consists in discretization of a bounded part of ttaesspace in small
“cells” (the rest of the state space is represented by aapsaik cell”) and a short time integration of one or more
points of each of these cells. The entire state space ewnlatdong time can then be built and all kinds of solutions
and their basins of attraction can be found. For exampls,densider a non-linear dynamical system of dimension
1 (with dimension 2 state space) and deand g denote the displacement and velocity. Figlirehows a possible
discretization used for the state space portion of intég&) € [Umin, Amaxl X [Gmin Gmax- The eight cells centers are
startpoints for a time integration with duratier{for non-autonomous systempften refers to excitation period, and
to a characteristic time otherwise). The cell which corgdhre point after time-integration is the image cell of the

cell in which time integration started. In figufie this mapping is drawn using arrows. On such a simple example
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the analysis would lead to the detection of two cycles: oradirny through cells number 2,7 and 6 and the other one
alternating between cells 4 and 5. Basins of attractionedeltycles are respectively cell 1 and cell 3. Cell 8 maps to

the sink cell.
[Figure 1 about here.]

The illustrated branch of cell-mapping is the simple ceflpping; some more elaborated versions can be found in
literature ([7, 4]). This method is quite natural because it deals with dycaimequations and seems attractive by
finding all kinds of solutions and their basins of attractiabout what no other method can boast. The problem holds
in the huge storage resource and computational time retjtdgrapply such a method.

Methods using exclusion testquire the transformation ofl) into (2). Then, a bounded pag of R (wherex’
varies) needs to be defined: that is where the solutiong)adré sought. The algorithm tries to exclude portions of
Q using a cell-discarding-condition (CDQJ]: if the test is positive the cell contains no solution angbig away;
otherwise, the cell is kept and divided in two or more subisalat will be tested in turn. Figur2shows the general
scheme of such methods. Theffieiency depends on both the quality of the test regardingehefequations under
study and its complexity: if it does not manage to eliminatgdells (big parts of2) it will fail in investigating the
whole space in a reasonable amount of time, so it has to beoof guality but it should not cost too much (i.e. be too

much complex) to avoid spending a lot of time when applied¢elh
[Figure 2 about here.]

The authors chose to use a test based on phase | of the simglbad7]. This test is easy to implement and does
not require any property for the non-linearl(X). More specific tests can be found & p].

Interval analysis based methodiso process systems of for@) father than dierential systems. As the previous
method, they need a bounded p@rbf R to be defined. This first cell is then partitioned leading twbection of
cellsT". The main distinctive feature of these methods is that tleefpnger deal with real numbers but with intervals:
usual operations such as™ “-”, etc. are redefined]]. Such algorithms try both to exclude cells and to reduce
them (using other ways than simple splitting). Hansen antt/a9] propose an interesting algorithm that has two
different approaches depending on the current cell size: samiees are dedicated to “big” cells and are cheap in
term of computation cost; when a cell is “small” enough ansl$@me properties, some other techniques, more costly

are implemented to refine or exclude it. Fig@rgives a simplified overview of this algorithm.
[Figure 3 about here.]

Main steps are Global approach processing (designed focddig) and Local approach processing (designed for
small cells). As it is a far complex algorithm, we do not giVitlae details for each main step but we rather give one
representative routine for each. Let us dendtie cell being processed (interval®f) andxa point of this cell (in
RM.



e Global approach example: the hull consistency test. Thihaaktries to take advantage of the linear part of
system ) which is the easiest part to deal with. Looking for a solntad (2), one can rewrite the equation in
the following way

Yi € {l,...,ﬁ}, HiJ-)N(J- + |:||(>~()— Hei =0
s Vie {1,...,ﬁ}, vk e {1,...,ﬁ}, Hik)N(k+ZHij>~(,— + H,(;()— Hei=0
j#k
with fi denotingXdimension. It is then obvious that each component intéfyakn be reduced to its intersection
with X/ satisfying

Hik)~(,’( = —FL()Z) + Heiez Hij)~(j, 1<i<hi
j#k

with o standing forX e Y = [inf X —inf Y, supX — supY]. Reusing already reduceX| for reduction ofXy,
k < m, this technique can lead to a cell exclusionXifn )N(i’( is empty) or at least to a great reduction using only

simple operations.

e Local approach example: the newton like method. When theXcilsmall enough, some expansion around
a well chosen poink; e R™ is a good approximation of non-linear patt%) on the cell. Let's defingd(X) =

H% + H(X) — He. If H is regular enough
VX e X, AL € X, H(R) = H(%) + () (X - %)

with J(%) = [%(x)]
1] - -
The trick is to replace the unknowfby the whole celX. Then if a solutiork™ exists in the celKX, on can write

0 € H(x) + IX)(X - %)
This provides a newX’ interval containing all the solutionsct
J(X)(X~ %) = ~H(x0)
which is a Newton like equation. As in the hull consistencst,t& N X’ may be empty or lead & reduction.

Unfortunately, these three global analysis methods appdae indficient as soon as the system becomes greater
than 2 or 3 degrees of freedom (dofs): if their mathematiealkground ensures to obtain all the solutions, the
numerical resource and the computational time needed &b ttne problem explode and most of the time one can

predict neither this cost nor this time (see sec8pn

2.2. Proposed polynomial homotopic method

A polynomial approximation of the non-linear part of systéjis used in order to save time. Being in a well-
defined space of multi-variable polynomial systems hel@pialy more icient methods like homotopies in order to
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find all the solutions of the algebraic system. In order toilgklall T-periodic solutions of ), one need to convert
it into a non-diferential equivalent systen2)( then to turn this system into an algebraic one (i.e. a rvaltiable
polynomial system) and finally to solve this system “glojgalEach of these three steps is detailed in the followings

subsections.

2.2.1. From dfferential to non-dfferential equations

First of all, one needs to convert the dynamical formulafibninto a non-diferential system of form2j. This
is done by making assumptions on the nature of the soughti@oly(t) which, in the present case, is expected to be
aT—periodic solution. One insists on the fact that such a steguslly followed by a local resolution algorithm (of
Newton-Raphson type) which leads to one solution at mostevehglobal resolution method will here be applied to
the new set of equations in order to exhibit all its solutions

The transformation relies on the harmonic balance meth@&MH 16, 20, 17] which provides non-dferential
equations using a Galerkin approach. One assumegjthas well enough described by a truncated Fourier series

usingNy harmonics:
o
V2

with w = 27/T. Itis straightforward to expreggandd asag, ax andby functions and then to put back their expressions

Np
q(t) ~ —= + Z ay coskwt) + by sinfKwt)
k=1

into (1), obtaining a set oh non-diterential but time dependent equations withk-"n(2Ny + 1) unknowns &g, ax,
b, 1 < k < Ny) andn denotingq size. The Galerkin approach generates the expeteglations by projecting
this set of equations on each time dependent function useéedmmpose(t) (i.e. 1/ V2, coskwt) and sinkwt) with

1 <k < Np). The scalar product used is:

2 T
< f,g>r= Tf f(t)o(t)dt
0

The resulting set of equations is obviously of for@) (details are given in appendi).
It is interesting to note that constant solutions are a sppeeise ofT -periodic solutions when(t) is sought asg
only. Even if one mostly looks for cycles, it may be useful$§ome applications to be able to find all the fixed points

solutions.

Reduction of the problemUsed in local search context, one often apply a Newton-Rapssheme to these equations
which means that a linear system has to be solved repeatéélgmaller it is, the faster the solution is found. This
assumption is all the more true in your case where computatist grows severely with the system size; reducing
the system can help saving hours for the resolution s&@mrpposes the exact condensation procedure that follows:
let us partition the unknowns Which participate to the non-linear force expresstbrand those which do not and
denotexy the former andsthe latter. Rearrangin@), one gets:

Hi Hin { % }+{ Hi (%) } _ { Hel }
Har Haini Kol : Hni (%) Heni




The first rows, related to linear dofs, allow to writeas a function ofk;:
% = Hy* [Het = H(%) = Houl
Using this new expression, the second row set becomes a@mear-equation irx, of a much smaller size tha@)(
(Hnlnl - HnuHﬁle) Kol + (|:|n|(>~<n|) - Hn||Hﬁ1|:|(>~<nl)) = Hen — HutHy *Hel (3)

This equation is of siza(2Ny + 1) wheren'denotes the non-linear dofs number. In many cases thestelstmostly
linear and contains only a few non-linear elements. Thisasalse of this condensation interesting in local search as

well as in global search context.

2.2.2. From a non-linear set of equations to a polynomial one

Non-linear system3) or (3) has now to be “converted” into a polynomial system (or atgahbsystem) in order to
apply the final global analysis method which relies on poiyiad form of the system. The method will be exposed
for the non condensed formulatio?) (

Many ways of doing such an approximation exist. The authbose to use a least squares method. This simple
method may not be the most adequate but is easy to implemerbmparison with dferent methods should be
achieved, dealing not only with the error resulting from déip@roximation but with the shape of the polynomials used
and the consequences mainly on computational cost. Whatevenethod may be it has to be noticed that only the
non-linear parti(X) has to be fitted (bﬁ’): linear and constant parts have trivial polynomial expi@ss. Let us use

the following notations :

a) Polynomial syster® and its components;:
P1(%)
P(X) =
Pa(%)
b) Polynomial componer®; as a sum ofl; codficients and monomials products:
Vie(l. AL PiR)= Y Ak,

1<k<J;
n
Bik €R, o e N, g = 1—[ %
j=1
c) Total degreel; of each component:
n
o 5. — k) k) ik
¢ = deg) = max|a™|, lo*| = ;aj
Using a least square method, one has to gensmaintsy) = H(X1) and to choose the monomiat«that will
compose each componetof P. Monomials choice should be guided by the higher degree eed or can fiord

(see next section) to describe the true functiband obvious properties such as parity. Once this decisiomaide



one finds minima of the cost functiogswhose variables are cfigientsgi, 1 < k < J; (see Eq. 4)) by solving the

linear system obtained when equating their derivativegto ¢Eq. b) and €)):

S

Vi€ (Lo Bl G oBn) = ) (RED) - ) (@)
j=1
i _
Yke{l,...,J 5
€{ 8 B ®)
which is equivalent to:
AfBir} 1<r<J =b

As= > (KD)"+" 1 <r g< 3
JZ( ) ©)

Z(~(]))(Y y(l) 1<r< JI

Possessing, P which denotes the global polynomial system is obtained imphi adding the linear and constant

part contributions:

P1(X) 5

PR =1t P =P+ D Hi% - He 1<i < 7)

Po(%) .
One should notice that using the polynomial approximat®often cheaper than using the original non-linear ex-
pression obtained by HBM: HBM method requires an AFT (AlsenFrequency-Time) procedurg for H term
computation which is often costly enough. Using polynosjiahe has to computesttimes only.

We will now focus on finding all zeros of this multivariate gobmial system.

2.2.3. Global resolution of the polynomial system using dtopies
Finding all the roots of a multivariate polynomial (@) is not an easy task and one finds active research since
1977 with Garcia, Zangwill and Drexler work. More recentlamy papers dealt with solving multivariate polynomial
systems using homotopy methods (s&& 12, 14, 15, 29, 24] and [11] for a general overview); the reference bo@k]
written by Sommese and Wampler provides the full theory aedtgeflection about its numerical implementation.
Basically the homotopy method consists in a continuatiomfroots of a polynomial syste@ to the roots of the

system at stakP using the roots of the intermediate proble8h\yith A varying from 1 to 0:
R(X 1) = 1Q(X) + (1 - AP, 2 €[0,1] (8)

Having all complex zeros d?, it is easy to extract the real ones which are approximaigtisak of the initial non-
linear system2).

ObviouslyQ should have “easy-to-find” roots and it should also matchesoanditions to ensure that the homo-
topy process will provide all o zeros. First of all it should have as many zero®dsecause each zero must be

linked to aQ zero through a continuous path. Then, it must share stralgitwperties withP so as to avoid bifurcation
7



along continuation (which would make the whole procedustficient). A simpleQ that respects these conditions
and has easy to find roots is:

-1

Q) =y : . ¥y €C, d = degf) 9)

-1
A total-degree-homotopy theoren2(, Chap. 8, p. 123]) ensures that following &llroots, one will find all the
nonsingular solutions d?(X) = 0 (solved inC"). The problem is that most of th& = []", d; paths followed will
not converge to a sought solution but diverge to infinity amdase worthless to follow. If dealing with divergence is
no real problem (solved using a homogeneization technigpki@ed below), following a huge number of paths can
make this method become unusable practically. That is whst wicthe papers deal with building initial polynomial
setsQ that have the fewest roots while still having easy to find ones

Among these methods are the total degree homotopy methothamdultihomogeneous homotopy method (of-
ten referred to asrhomogeneous homotopy). The first one consists in using ynpolial Q as expressed irBf
considering that all variableg play the same role: no real analysisP®fs required but it generates the maximum
number of paths (majored byeBout numben). The second one usesgroups of variables taking into account, for
example, that most of them only have a linear contributiorend few have a non-linear (high degree) contribution.
The number of paths generated using such a method is givemel®érzout theorem adapted to multi-homogeneous
structures21]; optimal partitioning methods can be found R8[ 13, 22].

To better understand theftiirence between these two methods, one needs to describénavhageneization
means. The shortest way to explain it is: turning each moabwith degreed; of a polynomial with total degree
d = maxd; into monomials with the same degrdéoy multiplying them byxgd‘d‘) wherexg is a homogeneization
variable. Then

V(Ro, %1, - .., %) € CPD, v 2 0, P(u(Xo, %1, - - -, %)) = P (%o, &4, - . - » Xa)

which is at least an interesting property for dealing witredjence: iP(Xy, .. ., Xz) is the polynomial system to solve,
let's denotePy (%o, X4, . . . , %) the equivalent system where ed@hcomponent is homogeneized. Adding an unknown
Xo, One needs to add an equation; for example,

max|%| =1
OsisP|X'|

This leads to a homogeneized continuation syskyf(Xo, ..., Xx),4) = 0. If during continuation, one of thg ~

become huge to satis®p((Xo, .. ., Xx), 1) = 0, one can usg = 1/|%| and rewrite:

Rn(u(%o, - ., %), 2) = kRn((%o, . .., %), 4) = 0

u(Xo, ..., Xg) is not that huge anymore and still satisfies the continnagiguation. Plus, solutions obtained when
tends towards 0 whosg Component tends towards 0 are points to infinity.

Generalizing this, one can use more than one homogeneizatiable. For example variables denoted,. . ., Zy.
8



If generalized unknowns are partitionedrimgroupsz, = {%,i € Ky}, with UgcyemKk = {1,...,0A} andV1 < i <

j £m %K n%K; =0, a homogeneization variablg €an be #&ected to each group of generalized unknowps

A degree tableD = (dij)1<i<ii1<j<m Can then be established with, denoting the maximum degree of grodf
variables observed in monomials Bf. Then, for each?; component ofP a multi-homogeneization step can be
achieved by bringing eacR; monomial to the same degree, dij using them homogeneization variables: each
generalized unknowx; in group Z is temporarily replaced by;/Z and the resulting denominators are cleared
by multiplying P; by [T1<k<m 73*. The multi-homogenized polynomi&,(Zs, ..., Zm, X1, . . ., X3) has then component
Pni whose monomials share the same dedrgel;; but where generalized unknowns offérent groups are treated
differently. This approach is interesting whenever some Vasalzcur with low degrees only (generalized unknowns
related to linear dofs) and a few of them occur with high degr@eneralized unknowns related to non-linear dofs).
an initial polynomialQ as specified inX0) (the important point is tha® andQ have the same degree tali} can

then be used and has easy to find roots.

(%55 = 1)x - x (G = 1)
Q(X) =v» E .yeC (10)

(R - D% x (G- )

whereXg; stands for one of the generalized unknowns in grGip
These homotopy methods have a great advantage over ckisisxcor interval analysis based ones: they allow

computational time estimation. Knowing in advance the nendj paths to be followed, it is easy to compute a few
of them, obtaining then a rough estimation for the wholelst&tus, they do not require to be given an arbitrary initial
bounded space where to look for the solutions whereas the tithers do: they ensure to get all the solutions, letting

us decidea posterioriif they have a physical meaning or interest, or not.

3. Comparison with other global analysis methods on a simplBuffing oscillator

In order to evaluate thefficiency of the proposed approach, it will be compared to tdifferent methods using
a classical non-linear Oiing oscillator. The results exposed come from the PhD Thé§jswWhere details can be
found.

The forced Dtfing oscillator at stake is :

8+ 26wo + wig + B4 = I’ cost) (11)

with numerical valueg = 0.02,wo = 1rad.s™?, 8 = 1 s?andl’ = 0.1 m.s 2. This forced oscillator has the frequency
response given in figuré; this curve is obtained using a continuation method. Whitkieg for multiple solution
sets, global analysis methods are applieddfer 1.2 rad.s™ : three solutions - two stab®; andSz and one unstable

S, - coexist as shown on the figure.



[Figure 4 about here.]

The main characteristics of used methods are given below:

(a) simple cell-mapping: bounded state space portip@) considered isf2, 2] x [-3, 3] using 100 divisions in each
directions (leading to 10 000 cells to be examined). Eadicealter is a startpoint for a time-integration scheme
with durationr = 2r/ w.

(b) exclusion test method: dynamic equatidi)(is turned into a non-linear system using HBM withfdrent har-
monic numbers\}, in order to obtain dferent sizes for the problen2)( The exclusion test used is based on
simplex methodZ7]. Eachx; unknown is sought in a bounded box equal+a,[2].

(c) interval analysis method: dynamic equatidrd)(is turned into a non-linear set using HBM withfiirent har-
monic numberdNy, in order to obtain dierent sizes for the problen2)( The algorithm used is based on the one
proposed by Hansen and Walster®j fa matlab toolbox, Intlab, provided by the Institute forli@ble Computing
(httpy/www.ti3.tu-harburg.d@ is used to deal with intervals. Eashunknown is sought in an interval equal to
[-2,2].

(d) polynomial homotopy method: dynamic equatidd)(is turned into a non-linear set using HBM withfigirent
harmonic numbersl, in order to obtain dtferent sizes for the problen)( This problem is already polynomial
(total degree 3): no polynomial approximation step is panfed. A total degree homotopy method is used to

build the initial polynomialQ.

Every method is implemented by using Matlab 7; the calcoretiare made on a Core 2 Duo E6600 (4Go RAM).
[Figure 5 about here.]

First, methods are applied to the fing oscillator, with various harmonic decompositions fortimoels (b) to (d) in
order to get some reference times. Then, extrapolationscan@uted to investigate the methodBaency for larger
systems. Figur® summarizes the results. As cell-mapping is applied diyemtl the dynamic equation while other
methods are applied to the transformed non-linear set cdteans, results are not exposed the same way. The first
graphic deals with the simple cell-mapping method. It shttvescomputation time required to process systems of 1
to 3 dofs using 10, 20, 30, 40, 50 or 100 divisions in each toeof the investigated bounded portion of the state
space. The second graphic gives the time required for sgstétin up to 10x;"unknowns (with a degree 3 polynomial
approximation and an initial polynomial based on total degn case of method (d)). The number of dofs related to
this number of generalized unknowns depends on the harndeciemposition used: 5 dofs using only 1 harmonic
(no constant) leads to 10 generalized unknowns as do 2 dtfsawbnstant term and 2 harmonics. Axis of ordinate is
logarithmic and representative time units are indicatdds Shows that the proposed method is obviously faster than
methods (b) and (c); for comparison with method (a), one casider a 2 dofs system with a constant term and 2
harmonics decomposition (2 unknowns): the cell-mapping with 50 divisions in each di@tand the polynomial

homotopy method seem then cost equivalent. Drawbacks afelvenapping method is the need of a bounded state
10
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space where solutions are sought and the arbitrary numbdivisions used: with only 50 divisions, one may be
brought to refine some areas of interest and so to increasietheequired to get the solutions. Furthermore, required
time growth with system size is much bigger for the cell-magghan for the polynomial homotopy method. Finally,
the proposed approach can be easily parallelized as edtkaabe followed independently.

According to its éiciency and potential, one proposes to evaluate this mostipitag technique on a some more

complex example.

4. Application to a squeeze-film supported rotor
We will now apply homotopy methods to a simple model of rotamged using a squeeze-film bearing (8.
[Figure 6 about here.]

This system has already been studied28] using local methods. It consists in afstind damped rotamy, ¢, k;
(including rolling bearing and squeeze-film inner ring) mtad on a squeeze-film bearing with outer rmglinked to
the “basement” throughy,, ky; excitation comes from the unbalande Dynamic equations ard ?) (using notations

of appendixB) where the non-linearity is induced by the squeeze-filmught=x andF, efforts:

—Fx U cosr
B . -Fy Usint
Mg+ Cg+ Kqg+ = (12)
Fx 0
Fy 0

4.1. From dynamic to non-linear equations

Using the classical centered circular synchronous opiéissumption for the rotor and a concentric movement

assumption for the whole system, one can simplify the eqnatby rewritingg and the non-linearfeorts Fy andF:

ap bl
by -a1 | .
qt) = . COST + o sint (13)
2 2
b2 —ap
B €2
B\(n €
fo= ()G )

11



As harmonic cofficients in cos and sinr are bound because of circular orbiting assumption, onereeyls to solve

equations obtained by balancintg) with respect to cos:

—Hx U
0-1
10 o JHy 0 I A o
K-M+C X + = , Hyy(X) = = Fyy(X) cos@)dr (16)
_1 HX O T Jo
10 Hy| [0
H B N——
H(®) He

4.2. Building the polynomial approximation
We now need to build a polynomial approximati®(X) of the non-linear parti(X). First let us notice that it

depends only oa that is the relative displacemerXs — X; andY, — Y;: the change of variabled?) is applied.

1

q=58q, 8= (17)

ap b1
by —a|
o = COST + sint (18)
a br
br -8

This change of variables has small changesl@p lfut allows us to use a 2 variables polynomial (whose veembte
a- andb) instead of a 4 variables one which saves monomials usedpt@®x the polynomial and so computation

time required to evaluate it and even more, as we will seeam#éxt subsection when applying a homotopy method.
[Figure 7 about here.]

As mentioned in sectioB.2.2 a least squares method is used taifitTwo polynomial approximations are built:
one using degree 6 polynomials and the other using degreel§@gmials. The choice is made to generate points
y) used for fitting that respect 8 e < 0.6; that is,a andb;, couples are picked up such thak0+/aZ + b? < 0.6.
This is motivated by the physical reality: formulas usedgpraximate squeeze-filnfferts are not valid beyond such
eccentricities.

Figure7 allows some qualitative comparison between the true valfidg and the ones obtained using polynomial
approximations while figur@ gives quantitative results for degree 12 approximatiofdgf mean relative error is

plotted for small rings along and shows good agreement with the original function witls fg&n 5% error for
12



almost alle between @ and 06. Bad results obtained for very smalalues can be explained by almost zero value
of Hy for small eccentricities - such eccentricities are not efginterest anyway because non-line@@s are then

almost negligible.
[Figure 8 about here.]

Polynomial systems obtained after fitting are augmenteld hviear and excitation partd andH, to obtainP(X)

as defined in se@.2.2

4.3. Global analysis using homotopies

Different homotopy methods were tested for one configurascen {) and for each polynomial approximation
degreed (d = 6 ord = 12):

(a) Total degree homotopy on full system: the-"4 generalized unknowns are kept and considered the same way.
Each of the four equatior? () is of degree 6 or 12, leading tt paths to follow.

(b) 2-homogeneous homotopy on full system: the 4 unknowagpartitioned into 2 subsets; one of them contains
linear variablesa; andb; and the other contains non-linear orgaandb;. The number of paths to continue is
then &1,

(c) Total degree homotopy on reduced system: after applyiagxact condensation of secti@r2.l, a new poly-
nomial system is computed (containing the only 2 non-lineaiablesa, andb;) and a total degree homotopy

method is applied, generatimg paths.

The results in terms of number of paths and time required taiothe complex solutions are summed up in table
[Table 1 about here.]

Every method ends in a reasonable amount of time but thesésexigreat gap between each of them, the best being
the total degree homotopy used to solve the condensed system
This method was then used with degree 12 approximation faraks values. The real solutions - the only ones

of interest - are kept and plotted using red points on fiure
[Figure 9 about here.]

The solid blue and dashed green curves were obtained usingtewation scheme (se@][for details). The
solid (lower) one is the classical dynamic response obdiaivieen using a continuation scheme starting from a local
search for a smak value. The dashed (upper) one is the curve obtained afterahdearch using one of the global
analysis results as a startpoint. The gap between the sécandh depicted by global analysis points and the one
obtained using a local continuation scheme results froneth& made by the polynomial approximation for large

eccentricities.

13



This shows how important it is to possess a global analysis teithout it, one would not look for an another
branch of solutions, disconnected from the solid one, ajpgaithout any obvious bifurcation.

A stability study is conducted for these two branches usitogjiret theory (figurelQ): the second branch has
stable solutions of large eccentricities coexisting witlusons of the classical one. Figutd shows that the second
branch, on its stable part, consists in orbits of quite timeesanagnitude than orbits of the first branch for the rotor, but

squeeze-film orbits are much greater; in fact, the squebmeftiter-ring orbits outside the journal orbit.

[Figure 10 about here.]
[Figure 11 about here.]

One already mentioned that thdilm model was not a good one to describe such large ecciiesiso squeeze-
film damper users should not be afraid of this new branch atitér tests using proper models are done. Nevertheless,
this points out the need to be careful when working with suelageccentricities, and shows the ability of the method

to exhibit unexpected disconnected branches of solutighigh was at stake.

5. Conclusion

This paper exposes a global analysis method able to findell 4beriodic solutions of a dynamical non-linear
system. It is based on three major steps: first a harmoniabalep transform dynamic equations into a non-linear
non-diferential system; this system is then put into a polynomiainfin order to proceed to the global analysis
(finding all its roots) using a homotopy technique. It has i@ to be the mostficient approach when compared
to three other global analysis methods applied to &Bg oscillator.

A simple model of rotor supported by a squeeze-film damperhasipes then the ability of the method to find
disconnected solutions and its computatiorfitiency. High degree polynomial approximations of nondinpart
can be treated in a reasonable amount of time which allows#b tcomplex non-linearity expressions.

The harmonic balance was applied using a known peTiofilirther work will be achieved so as to let it free, by
adding for example a phase equatidf][ Another interesting improvement will be to comparéelient polynomial
approximation methods linked with variables space partitig to save computational time. Finally, parallelizatio
could be easily implemented as each path of the homotopycatepe processed independently which would help to

save a lot of computation time.

A. HBM elements definition

a) Vector of generalized unknowms X = {ag, a, by, . . ., ay,, by, }' € R"N+1)

Nh
ao .
— + E ak coskwt) + by sin(kwt)
N

Displacementy(t) is a function of q(t) = ¢, (X) =

14



b) Linear partHX:

Ao
Ao = K € Mu(R)
As _
H= , With K - (kw)®M —(kw)C
Ax = ,AKEMZN(R),].SkS Nh
(kw)C K — (kw)’M
ANh )
c) Non-linear parti(X) and constant terrdle:
< f(4,(%), 1/ V2 >1 < folt). 1/ V2 >1
H®) =1 < f($,(%), coskawt) >t vHe =1 < fe(t), coskwt) >7
< f(¢o(R), sinkat) >7 < fg(t), sin(kwt) >1
: 1<k<Nj : 1<k<Nj

B. Squeeze-film example notations

B.1. Initial system of equations
MyX] +C1 X +kaxa = fy +Myuw? cosgut)

mly’l’ +C1y1+ klyl = fy + m]_U(l.)2 Sin(a)t)

, Wwith Z = 2, leads to {2) after division bym;Cw?.

m2X'2'+02X'2+|(2X2=— fy
rr12y’2’ +C2y'2+ k2y2=— fy
B.2. Dimensionless variables

T=wt, 2=0z/0t, S= w/w1, @ = Mp/my, B =ko/ky, & = C1/(Mws), & = G/ (Mphwy),
Xi =x/C Y =Vi/C, U =u/C, Fy = fi/(mCuw?), q= (X1, Y1, X2, Y2}t, € = /(X1 — X2)2 + (Y1 — Y2)2

B.3. Matrices

M = dlag(l 19 a, G,’), C= %diagel’ é':l’ §2 @7 §2 @)! K= idla‘g(l 1aﬁ?ﬁ)

B.4. SF contribution using a short bearing approximatiom ax-film cavitation model
_( B)n l+262.+2 e . F—( B)2 € .7 € .
S/ zame ram e T S fam e - e
Fx = Ficosg + F, sing, Fy = —F, cos¢ + F;sing

B.5. Numerical values

B=0.1,U=04,¢& =0,6 =005, =0054=1
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Figure 1: Simple cell-mapping example
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Figure 2: Exclusion test methods: General algorithm
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Figure 3: Interval analysis methods: General algorithm
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Figure 4: Forced Dfiing oscillator: (a) Oscillator plan, (b) Frequency response
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Figure 6: Squeeze-film supported rotor: model
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Figure 7: Polynomial approximations bffy
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Figure 8: Degree 12 approximation ldf,: mean relative error per ring
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Figure 9: A new branch of solutions—-: classical branch (branch 1) obtained using a continuatitieme starting from a local search solution
point, — — new branch (branch 2) obtained using a continuation schéanting from global analysis solution point; global analysis solution
points
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Figure 11: Squeeze-film: time integrations: rotor centere: squeeze-film center - Dots become bigger as time increases.
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Deg 6 Deg 12
#Paths Time #Paths Time
(a) Total - Full 1296 7 min 20736 4h
(b) 2-hom - Full 216 69 s 864 10 min
(c) Total - Red 36 4s 144 36s

Table 1: Numerical cost for fierent homotopy methods
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