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SPLITTING METHODS FOR THE NONLOCAL FOWLER EQUATION

AFAF BOUHARGUANE AND REMI CARLES

ABSTRACT. We consider a nonlocal scalar conservation law proposed by Andrew C.
Fowler to describe the dynamics of dunes, and we develop a numerical procedure based on
splitting methods to approximate its solutions. We begin by proving the convergence of the
well-known Lie formula, which is an approximation of the exact solution of order one in
time. We next use the split-step Fourier method to approximate the continuous problem us-
ing the fast Fourier transform and the finite difference method. Our numerical experiments
confirm the theoretical results.

1. INTRODUCTION

We consider the Fowler equation [11}12]:
2
Opu(t, ) + 0y (UQ) (t,x) + Z[u(t, )] (x) — O?u(t,x) =0, =€ R,t>0,

u(O,x) = UO(:L')’ z€R,

(1.1)

where u = wu(t, ) represents the dune height and Z is a nonlocal operator defined as
follows: for any Schwartz function ¢ € S(R) and any x € R,

—+oo
_1
(12) Tllw) = [l @ -9
0
We refer to [1} 2} 6] for theoretical results on this equation.

Remark 1.1. The nonlocal term 7 is anti-diffusive. Indeed, it has been proved in [1]] that

2\ (1 V3
(13 F i) (O = 121 (3) 5 - s ) 1.
where F denotes the Fourier transform normalized in (I.11). Thus, Z can been seen as a
fractional power of order 2/3 of the Laplacian, with the “bad” sign. It will be clear from
the analysis below that our results can easily be extended to the case where Z is replaced
with a Fourier multiplier homogeneous of degree A €]0, 2], as in [4]], and not only A = 4/3.

We assume that the initial data uo belongs to H3(R.), and thus (T.T) has a unique solu-
tion belonging to C([0,t], H3(R)) for all t > 0, from [1]]. We will denote u(t, ) by Stuq;
St maps H3(R) to itself. Duhamel’s formula for the continuous problem (T.1)) reads

t
(1.4) u(t,-) == S'ug = K(t,-) * up — %/ 0 K(t—s,-) = (SSUO)z ds,
0

Key words and phrases. Nonlocal operator, numerical time integration, operator splitting, split-step Fourier
method, stability, error analysis.

2010 Mathematics Subject Classification. Primary 65M15; Secondary 35K59, 86A05.

This work was supported by the French ANR project MATHOCEAN, ANR-08-BLAN-0301-02.

1



2 A. BOUHARGUANE AND R. CARLES

where K (t,-) = F~! (e7¥7) is the kernel of the operator Z — 92, and 17 is defined by

(1.5) Pz(€) = 4n%€? — az|€|® + ibrele] 3,

where az, bz are positive constants.

Recently, to solve the Fowler equation some numerical experiments have been per-
formed using mainly finite difference approximation schemes [3 4]. However, these
schemes are not effective because if we opt for an explicit scheme, numerical stability re-
quires that the time step At is limited by O(Ax?). And, if we choose an implicit scheme,
we have to solve a large system which is a computationally expensive operation. Thus,
the splitting method becomes an interesting alternative to solve the Fowler model. To our
knowledge, there is no convergence result in the literature for the splitting method associ-
ated to the Fowler equation. This method is more commonly used to split different physical
terms, such as reaction and diffusion terms, see for instance [[18]]. Splitting methods have
also been employed for solving a wide range of nonlinear wave equations. The basic idea
of this method is to decompose the original problem into sub-problems and then to approx-
imate the solution of the original problem by solving successively the sub-problems. Vari-
ous versions of this method have been developed for the nonlinear Schrodinger, Korteweg-
de-Vries and modified Korteweg-de-Vries equations, see for instance [[13} 17,19} 211
For the Fowler model (I.1)), we consider, separately, the linear Cauchy problem

(1.6) % + Z[v(t, )] —nd%v =0; v(0,z) = vo(x),
and the nonlinear Cauchy problem

2
(1.7) %—1: +0, <“;) —ePw=0; w(0,z)=wo(z),

where ¢, 77 are fixed positive parameters such that € + n = 1. Equation (1.7) is simply the
viscous Burgers’ equation. We denote by X! and Y, respectively, the evolution operator

associated with (T.6) and (I.7):
v(t,-) = X'vg = D(t,-) * v,
where D(t, ) = F~1 (e7197) with ¢7(£) = 4n?n€? — az|¢[*/ + bz€|¢|Y/3, and
1 7t
(1.8) w(t,") == Yiwg = G(t,-) x wg — 5/ 0:G(t — s,-) % (st0)2 ds,
0

where G is the heat kernel defined by

[

G(t7 ) = .F_l(e_t(4ﬂ25"|2)) = %6_ ‘45‘ .
\Vanre

P

Furthermore, the following L?-estimate holds

(1.9) 1Y wl 2wy < llwllezw)-

Let us explain the choice of this decomposition. First, we can remark that if we do not
consider the nonlinear term in (I.I), the analytical solutions are available using the Fourier
transform. Thus, the linear part may be computed efficiently using a fast Fourier transform
(hereafter FFT) algorithms. Note also that the Laplacian and the fractional term Z cannot
be treated separately. Indeed, the equation u; + Z[u] = 0 is ill-posed. We next decide to
handle the nonlinear term by adding a bit of viscosity in order to avoid shock problems in
the standard Burgers’ equation. Therefore, the splitting approach presented in this article
differs from e.g. the one analyzed in [10], which corresponds to assuming € = 0 in the
above definitions. The splitting operators associated to this approach when Z = 0 (which
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amount to considering alternatively the heat equation and the Burgers equation) have been
studied in [[15] (as well as other equations involving the Burgers nonlinearity, such as the
KdV equation, see also [14]). The main difference with the result presented in [15] is
that the operator Z is not a differential operator, so its action on nonlinear terms is rather
involved , while this point would be needed to compute the Lie commutator between the
two operators
A(v) = nd?v — I[v], B(v) = —vdyv + 2020,

as in e.g. [15/[17]. Note that since we consider the Lie splitting operator, we could in
principle use the exact formula established in [7] for the local error. But then again, we
face the problem to compute [A, B], which is the only term that we cannot estimate in [[7,
Theorem 1]. We finally point out that we use smoothing effects associated to the viscous
Burgers equation; see Corollaries [3.8 and [3.9]

We motivate this choice by the presence of artificial diffusion in classical numerical
schemes used to solve the convection equations. An alternative to reduce this effect is to
consider numerical schemes of high order which are usually computationally expensive
and do not seem to be very useful for the Fowler model because of the diffusion term.

We consider the Lie formula defined by
(1.10) Zt = X'yt

The alternative definition Z! = Y*X* could be studied as well, leading to a similar result.
Also, the following evolution operators

Zt = X"PYIXY? or Zh =Y'PX'Y'2,

corresponding to the Strang method [20] could be considered. Following the computations
detailed in the present paper for the case (T.10), it would be possible to show that the other
Lie formula generates a scheme of order one, and to prove that the Strang method is of
order two (for smooth initial data), in the same fashion as in, e.g., [S, [17]. This fact is
simply illustrated numerically in Section@ to avoid a lengthy presentation. With Z¢ given
by (T.10), our main result is:

Theorem 1.2. For all ug € H*(R) and for all T > 0, there exist positive constants cy, ¢z
and At such that for all At €]0, Aty) and for all n € N such that 0 < nAt < T,

||(th)"u0 - S”AtuoHLz(R) <c At and ||(th)"u0||H3(R) < co.
Here, c1,cy and Atg depend only on T, p = maxcio, 1] [|S*uol| g2 (), and ||uo || g3 (w)-
Remark 1.3. Tt will follow from Lemma[3.11] that

p= max [|S"uol g2wr) < Cr(|luollm w))lluoll 2wy,

X
t€[0,T
for some nonlinear (increasing) function C'r depending on 7'.

In this paper, we begin by estimating the L2-stability for error propagation. We next
prove that the local error of the Lie formula is an approximation of order two in time. Fi-
nally we prove that this evolution operator represents a good approximation, of order one
in time, of the evolution operator .S * in the sense of Theorem
Furthermore, we apply Lie and Strang approximations in order to make some numerical
simulations using the split-step Fourier experiments.

This paper is organised as follows. In the next section we give some properties related
to the kernels G and K, and we prove two fractional Gronwall Lemmas. In SectionE], we
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establish some estimates on X*, Y?, Z! and S*. In Section {4} we prove a local L? error
estimate. Theorem[I.2]is proved in Section[5] We finally perform some numerical experi-
ments which show that the Lie and Strang methods have a convergence rate in O (At) and
O (At?)), respectively.

Notations.
- We denote by F the Fourier transform of f which is defined by: for all £ € R,

(1.11) FfE) = f(&) = / e 2 f () d.

R
We denote by F~1 its inverse.
- We denote by Cr(c1,co,--+) a generic constant, strictly positive, which depends on
parameters ci, co,---, and T. C' is assumed to be a monotone increasing function of its
arguments.

2. PRELIMINARIES

2.1. Properties of the kernels. We begin by recalling the properties of kernels involved
in the present analysis.

Proposition 2.1 (Main properties of K, [1]). The kernel K satisfies:
() Vt>0,K(t,-) € L' (R)and K € C* (]0,c0[xR)).
(2) Vs,t >0, K(s,)xK(t,") =K(s+t,-).
(3) VT > 0,3C7 > 0 such that for all t €]0,T), |0, K (t,-) |2r) < Crt=3/4
(4) VT > 0,3C7 > 0 such that for all t €]0,T), |0, K (t,-) |;1w) < Crt=1/2
(5) Foranyug € L*(R) andt > 0,

K (2, ) % uollL2m)y < € fluoll 2wy,
where cg = — min Re(¢z) > 0.

Proposition 2.2 (Main properties of G, [9]). The kernel G satisfies:
(1) G € C* (]0,00[xR).
(2) Vs,t >0, G(s,-) *x G(t,") = G(s + t,-).
3) Vi >0, ||G(t,-) ||L1(R) =1
(4) 3Cy > 0 such that for all t > 0,
(5) 3AC, > 0 such that for all t > 0,

9:G (t,) | L2y < Cot =3/
0.G (t, ) ||L1(R) < Cltil/z.

Remark 2.3. The kernel D of Z — 1 02 has similar properties to the kernel K. Moreover,
for all £ > 0, we have

2.2. Fractional Gronwall lemmas.

Lemma 2.4 (Fractional Gronwall Lemma). Let ¢ : [0,T] — R be a bounded measurable
function, and suppose that there are positive constants A, L and 6 €]0, 1] such that for all
te 0,7,

d70
2.2) 8(t) < A+ L0 0(0),

6

where C‘lit;_g is the Riemann—Liouville operator defined by
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d—@ 1 t
G0 = 1 [ =9 ol ds.

Then there exists C(0) such that
o(t) <eCTO'A Vi eo,T).
Proof. The proof of this Lemma is well-known and is based on an iteration argument; see

for instance [8, Lemma 4.3] or [22, Corollary 2]. We sketch the argument for the sake of
completeness. Iterating inequality (2:2)) once, we have

o(t) < A+ ﬁ / (t— )0 (s) ds

<A+ Ff@) /Ot(t — )01 <A + % /Os(s — ) 1e(r) dr) ds
= A (1 + eer)TG> + F(L;>2 /Ot(t —5)07! /Os(s — )7L (r) dr ds.

From Fubini’s Theorem, we get
t s t t
t— 6—1 _ 6—1 drds = t— 0—1 _ Hfld d
Ja=r [=nrtomyaras= [Co) [0 -9 s =) tasar
t 1
= o(r)(t —r)201 (/ (1—7‘)9_17'9_1d7'> dr
0

0

t
= [5(6, 9)/ o(r)(t — )2 Lar,
0
where (3 is the beta function. Therefore, we have

L2 t
23) 8(6) < Cr(O)A + [ 8(6.0) /O o(s)(t — )2 ds.

Iterating the estimate @) n times, with nf > 1, we get the following estimate:
t
o) < Cr0)A+ Lr(0) [ os)(t - 9)°ds
0

with a > 0, and where L1 () is a positive constant which depends on 7" and #. The lemma
then follows from the classical Gronwall Lemma. ]

Lemma 2.5 (Modified fractional Gronwall Lemma). Let ¢ : [0,7] — R be a bounded
measurable function and P be a polynomial with positive coefficients and no constant term.
We assume there exists two positive constants C and 0 €]0, 1] such that for all t € [0,T],

d70
2.4 0<9(t) < o(0) + P(t) + Cwéf’(t)-
Then there exists Cr(8) such that for all t € [0,T],

¢(t) < Or(0) (0) + Cr(0) P(1).
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Proof. Arguing as in the proof of Lemma[2.4] we iterate the previous inequality. After one
iteration, we get

6(t) < C(0) + P(t) + r?e) / (t— )"~ P(s)ds

bos [ ([ netoar) as

2 t
< Co(0) + CP(t) + 1€Wﬂ(0’9)/0 () (t — 5)20~1ds,

where we have used the assumptions on P, and Fubini’s Theorem again for the last term.
Iterating sufficiently many times, we infer like in the proof of Lemma@

2.5) 6(t) < cod(0) + coP(t) + C / o(s)(t — s)ds,
with o > 0. Set
=c & t $)(t — s)%ds | e~ C1t,
010 = (060 + oP(t) +.C [ ols)(e - 517 )
Then
v = («P'(t) + Ca /O 6(5)(t — 5)°1ds

t
— (coqs(()) +eoP(t) + Q/ é(s)(t — s)ads))efclt.
0
Using (2.5) to control the second term, and choosing C; sufficiently large, we infer:
V' (t) < ¢oP'(t)e” L.

Since P(O) = 0, ¢(O) = Cod)(o), forallt € [0’ T],
t

6(t) SP(B)e™" < cod(0)e™ + o / P/(5)e% (=) ds
0

t
< CO¢(0)601T + coeclT/ P'(s)ds < coerT (¢(0) + P(t)) .
0

This completes the proof. (|

3. ESTIMATES ON THE VARIOUS FLOWS

3.1. Estimates on linear flows. In this paragraph, we collect several estimates concerning
the convolutions with D, K and GG, which will be useful in the estimates of the local error
of the scheme.

Proposition 3.1. Let s € R and ¢ € H*(R). Then Z[p] € H*~*/3(R) and we have

2
G el < 45°T (3 ) Dol
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Proof. Forall s € R and all p € H*(R), we have, using (T.3)

1/2
IZ1 s -1/3(my = (/R(1+ |£2)54/3|f(1[90])(£)|2d€)

) 1/2
2 1 3
—awr (3) { [ irys Z—isgn@)ﬂ EFPIF O de
1/2
_ 2 2 |§‘2 8 2\s 2
—iwr (3) (/R(Hw) (1+ PV RO de
1/2

<awr (3) | [avieprireere] = (3) e,

hence the result. O

Lemma 3.2. (1) Let n € N. Then, forallv € H"(R) and all t > 0,
HXtUHHn(R) < eﬁot||'U||[{n(1}l)7

where 3y = — min Re(¢z) > 0.
(2) Let n € N. There exists C such that for allv € H*(R) and all t > 0,

(32) ||Xt’U —’U”Hn(R) < Ct660t||’UHHn+2(R).
Proof. Using Plancherel formula, we have
X 0|72 m) = ID(E, ) * 072 (R)
= |7 (D(t,-)) Folzm) = /R |F(D(t,-)) ()| Fu()| de
= [ OO de < P ol
Moreover, since
X' = D(t,-) x OMv
then, from again Plancherel formula, we have
107 X || L2(ry < €030l 2Ry,

hence the first point of the lemma.
Letn € N,v € H""2(R). We have

t .
| X 0 = vl|gnw) = H/ X°wvds
0

H™(R)

But from the definition of X, X* is given by

X% v =n02X% — I|X 5] = nX*0%0 — I[X "],
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since X*0%v = D(s,-) * 92v = 92 (D(s, ) * v). Thus, using Proposition3.1{and the first
point of this lemma, we get

t t
1 X 0 — v g (m) < 77/ | X°020]| zm () ds +/ 1Z[X>0]|| i (w) ds
0 0
t
< nteBOtHU||Hn+2(R) +/ I Z[X 0] || e (m) A
0
2 t
g nt@ﬂotHU||Hn+2(R) +47T2F <3> / ||XS’UHH11,+4/3(R)dS
0

2 t
< nteﬂotHv||Hn+z(R) —|—47T2F (3) / ||XS1}HH"+2(R)CZS
0

2
< ("7 + 4772F <3>> teBOtHU||Hn+2(R),

hence the result. O

Recalling that K corresponds to D in the case = 1, we readily infer:
Corollary 3.3. Forallw € H*(R) and all t > 0,
(3.3) K (t, ) xw—wlr2m) < Cte®||w|mm),
where C' is a positive constant independent of t and w.
We conclude this paragraph with an analogous result on the heat kernel G:
Lemma 3.4. Forallw € H*(R) and all t > 0,
1G(t, )+ w = w]lamy < et lwll 2 gry-

Proof. Proceeding as above, we have:
t t
G(t,-)*w—wz/ %(G(s,)*w) ds:a/ 02 (G(s,-) xw) ds
0 0

t
26/ G(s,") * O%wds.
0

Taking the norm L? and using Proposition Young’s inequality yields

t
1G(t,-) xw —wllL2m) < 6/0 G (s, ) 1wy 105wl 2Ry ds < et [[w]| 2wy,
hence the result. U

3.2. Estimates on Y'. We now turn to the viscous Burgers’ equation (T.7):
(3.4) Oyw — 58510 +wdw =0; w9 = wo.
Remark 3.5 (Hopf—Cole transform). It is well-known that the change of unknown function

w = —25%@@ = 2:0, (Ing),

turns the viscous Burgers’ equation into the heat equation:

pp —€d2¢ = 0.
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We infer the explicit formula:

1 400 (x —y)? 1 [v
= 20, In [ ——— I kDS _
w(t, ) €0, n( oo /_OO exp( p 26/0 wo(z)dz> dy)

However, this formula does not seem very helpful in order to establish Proposition [3.6]

Proposition 3.6. Let wy € H*(R). Then (3:4) has a unique solutionw € C(Ry; HY(R)).
In addition, there exists C = C (e, ||wol| g1 (r)) such that for all t > 0,

5/8
lw®)l2r) < lwollz2wy,  10zw(t)][z2m) < ||w6||L2(R)6C(t ),

If in addition wy € H™(R), for some n > 2, then w € C(R4; H"(R)) and for all T > 0,
there exists M = M (e, H2(R)) Such that for all t € [0,T7,

”w()”H"(R) ||wo||Hn(R)6

Proof. The existence and uniqueness part being standard, we focus on the estimates. The
L? estimate yields (formally, multiply (3:4) by w and integrate)

1d
(3.5) 5 71wl + el dw (@)l =0,
and the H'! estimate (differentiate (3.4)) with respect to =, multiply by 9, w and integrate),
1
(3.6) 2 o, u(t iz +ellouwt)ll: = "/ (Osw(t,x))” da.
2 dt 4 /r

The L? estimate (3.3) shows that the map ¢ — [|w(t)||%. is non-increasing:
lw®llz> < l[wollz2, VE=0

An integration by parts and Cauchy—Schwarz inequality then yield

(3.7) 10z w(t)l|72 < lw(t)al|0Zw(t)]] 2 < llwollz2llOFw(t)l| .

In order to take advantage of the smoothing effect provided by the viscous part, integrate
(3-6) in time and write

t t
1 1
= [ 1006 Bads < Gluplie+ 7 [ 10swl)]Lsds.
0 0
Gagliardo—Nirenberg inequality yields
5/6 1/6
0]l 2s < Clldswl| 720w 2,
so using (3.7), we infer:

‘ 1
o [ 1) ds < gt +0 [l (s s

=N

5/4 7/4
< 5 llwhlze + Cllwoll 7% / 192w (s)| 74" ds.

[\

In view of Holder inequality in the last integral in time,

t 1 t 7/8
: / 102w (s)|ads < L llublZs + Cllwol 22 (/ ||a§w<s>|izds) 8

< Lupz. + € /\\82 9)2ads + C (Juoll2) 1,

[\

DN —
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where we have used Young inequality ab < a®/7 + b®. We infer

69 o [ 1020 s < 3+ ool
Gagliardo—Nirenberg inequality || f|| .~ < V2| f ||1L/22 IIf ’||2/22 now yields

t t
/0 19010 (s)|| 1o ds < x/E/O |0,w(s)|| 12 1|02w(s)|| 1> ds
t
< C (e, Jwollz2) / 102w(s)|| ¥4t ds

t 3/8
<C(€,||wo||L2)< / 3§w(8)||%zds> 58

< C e wolla) (L0 £/ < O (e ol ) (£7° + ).

where we have used (3.7), Holder inequality and (3.8), successively.
Integrate the H' estimate (3.6) with respect to time, and now discard the viscous part
whose contribution is non-negative:

I .
102w (®)72 < llwpllZz + 5 / 105w (s)||7sds
0

(3.9) Lot
<lhwplite + 5 [ 10wl [0 3.
The first part of the proposition then follows from the Gronwall lemma.

To complete the proof of the proposition, we use the general H™ estimate, for n € N:
set A = (1 — 92)'/2. Applying A" to (3.4) yields
1d

——|[A"w(t)||rz = —/ ANtw(t, 2)A™ (woyw) (t,x)dm+5/ A w(t, ) A" w(t, x)dx.
2 dt R R

Integrating by parts, the last term is non-positive, since
/ A"w(t, ) A"O*w(t, x)dr = — / IA"Ow(t, )| da.
R R
Write
/ Arw(t, ) A" (wo,w) (t, x)dx = / AN'w(t, z) (WO A"w) (¢, x)dx
R R
+ / AN'w(t, z) (WO A"w — A™ (wd,w)) (¢, z)dz.
R
Integrating by parts the first term yields

/ Aw(t, z) (WO A" w) (t, z)dx
R

_ % ‘/Ram (A™w(t, )2 w(t, z)de

_ % ‘ /R (A™w(t, 2))? Dew(t, )da
[19zw() || Lo
2

N

[w ()] Fn-
In view of Kato-Ponce estimate [|16]

(3.10) IA™(fg) — fA"gllL> < CllOxfllLo< gl mn—s + [ fl|n

g”L‘”a
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we have (with f = w and g = J,w)

|lwo A"w — A" (wd,w) ||r2 < C||0sw] L= ||w| gn-

Leaving out the viscous term, Gronwall lemma yields the a priori estimate

¢
3.11) [lw(@®) || g < ||wollgn exp (C/ ||az'UJ(S)|Lood8>7
0

where C' depends only on n € N. In particular, for n = 2, Gronwall lemma implies
102w(t)||L: < l[wo | r2eC ™" +8), where C' = C(e, |lwol|zr1). We bootstrap, thanks to
Gagliardo—Nirenberg inequality again:

5/
[Ozw ()] < \/inaxw(t)”lL/fHaiw(t)||}4/22 < V2| wo | 2S¢+,

Therefore, for ¢ € [0, 7],

/ 9y(s)| s < VEpllge x £ x T
0
The last estimates of the proposition then follow from (3.1T). (]
Lemma 3.7. Let T > 0. For allw € H'(R), there exists C = C(T, |w||L2(r)) such that
(3.12) 1Y w1 ry < e wllmwy, V€ [0,T).
Proof. Differentiating the Duhamel formula (T.8) in space, we have
0. Y 'w = G(t,-) * Opw — /t 0:G(t — s,°) x (Y°w)0, (Y w) ds.
0
Using Young inequality and inequality (T.9), we infer:
0. w| L2r) < [|02w]|2(R)
+ /Ot 10:G(t = 5, )| L2(r) (Y *w) 02 (Y w) || 11 () dis.
In view of Proposition[2.2] this implies:
10:Y wll L2y < [|0xw]| 12 (r)
# 0o [0 70 00 ) sy .
Writing
(Y *w) 0y (Y w) |22 < Y wl|2]|0: (Y w)| L2 < [Jw][r2[|02 (Y w)| L2,
and invoking the fractional Gronwall Lemma[2.4|with 6 = 1 / 4, the lemma follows. O
Corollary 3.8. Letn > landw € H"(R). Let T, > 0. If
[wll2®r) < @,
then there exists c depending only on T and o such that

1Y wll g ry < e lwlmnm), V€ [0,T].
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Proof. Denote w(t) = Y'w. From Lemma[3.7]

@l ry < llwoll e,

where C' depends only on « and T'. From the proof of the first part of Proposition [3.6] (see
the estimate after (3.8)), we infer

t
/ 19w (s)|[Leds < C(a, T), ¥t € [0,T].
0
The corollary then stems from (3.11). O

3.3. Estimates on the splitting operator Z!. Combining the estimates on X* and Y
established in the previous two sections, we infer:

Corollary 3.9. (1) Forallu € L*>(R) and all t > 0,
12 ull2my < €% |Jull 2wy,

where 3y = —min Re(¢z) > 0.
(2) Let T > 0,n € N* andu € H"(R). There exists C = C(T, ||u||2(r)) such that
forallt €10,T),

||Zz uHHn(R) < eCt||u||Hn(R).

Proof. The first point is a direct consequence of the relation (I.9) and Lemma[3.2]
The second point is readily established with Lemma [3.2]and Corollary [3.8] O

3.4. Estimates on the exact flow S°.

Lemma 3.10 (L2-a priori estimate). Let ug € L?>(R) and T > 0. Then, the unique mild
solution v € C([0,T]; L*(R)) N C(]0, T); H*(R)) of (1) satisfies, for all t € [0, T

lult, MLz my < e lluoll 2wy,
where ag = —min Re(¢z) > 0.

Proof. Multiplying (T-I)) by v and integrating with respect to the space variable, we get:

/Rutudﬂc—k/R(I[u]—um)udx:O

because the nonlinear term is zero. Using (T3) and the fact that u and [ (Z[u]—02,u)u dz
are real, we get

/ (T[] — 82, u)u dz = / F (e Fu)udz = / ozl Ful? dé = / Re(sbz)| Ful? de.
R R R R

We infer

1d
7 g Ut I17: < aollu(®)]|7:
where ag = — min Re(tpz) > 0. The result then follows from the Gronwall lemma. [

Lemma 3.11. Letn € N*, up € H"(R) and T > 0. There exists Cr(||uo| gn—1(r))
such that the unique mild solution v € C([0,T]; H"(R)) satisfies

(3.13) [u(t, Mm@y < Cr(luollge—1w))luoll n (w)-
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Proof. The proof is similar to the one given in Lemma Differentiating the Duhamel
formula (T-4) in space, we have

Ozu = K(t,-) * Opug — /0 0 K(t —s,-) * (u(s)0zu(s)) ds.

Using Young inequality and Proposition [2.1] we infer, for any integer n > 1:

||8$u(t) HH'"*l(R) < 6a0t H(‘)IUOHH,LA(R)

t
+ / ||8TK(t — S, ')||L2(R) ||u(5)3tu(s)HWn711(R) ds.
0
In view of Proposition[2.] this implies:

||a$u(t)||H”_1(R) < 6a0t||azU0||Hn—1(R)

#Co [0 7 5105 s .
For n = 1, we use Lemma[3.10]to have
lu(s)0puls)llzr < [lu(s)] z2lldzu(s)llzz < e lluol| 2| au(s) ] 2
The fractional Gronwall Lemmawith 6 = 1/4 then yields
10zu(t) | L2 ry < e“ | Opuol| L2 (r)

where C' depends only on T and ||ug|| z2. From (T.9), this implies the lemma in the case
n = 1. For n > 1, Leibniz rule and Cauchy—Schwarz inequality yield

lu()2u(5) lwn-11 ) < COu(s) -1 g 10w 1 -

The lemma then easily follows by induction on n. |

We will also need the fact that the flow map S? is uniformly Lipschitzean on balls of
H?(R).

Proposition 3.12. Let T, R > 0. There exists K = K(R,T) < oo such that if
[uollzr2(r) < R, [lvollm2m) < R,
then
1S ug — Stv0||L2(R) < Kluo — voll 2wy, YVt € [0,T].
Proof. Setu(t) = Stug, v(t) = S'vp and w = u — v. It solves
(3.14) Opw + Tw] — 02w = v0,v — udpu = —udpw — WO,v.
The L? energy estimate yields:
Ld
2dt
where the term [ w (I [w] — aiww) has been estimated as in the proof of Lemma We
infer

1d 1
31O < (a0 + 310,00l + 1000 ) FoIF:

< C (1A lu®)llzz + @) lw®)]Z: < CR.T)[w)|Z2,

where we have used Sobolev embedding and Lemma [3.1T} Gronwall lemma yields the
result. =

l|wl|22 Jr/Rw(uamw+w8zv) < apllw(t)|?2,
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4. LOCAL ERROR ESTIMATE

As pointed out in the introduction, the formalism of Lie derivatives does not seem to
be easy to use in the framework of this paper, since the action of the nonlocal operator 7
on nonlinearities is rather involved. As a consequence, we prove an L? error estimate by a
rather pedestrian way.

Proposition 4.1 (L? local error estimate). Let ug € H?(R). There exists C (|luo| 12(r))
such that for all t € [0, 1],

125 u0 — S*uoll 2wy < C (luollz2®)) £ luollFrs m)-

Proof. From the definition of Z% and Remark we have

t
Zhug = X'Y'lug = X* (G(t) * Uy — %/ G(t — 5) * 0, (Y5ug)? ds)
0
t
= D(t) * G(t) * ug — %/ D(t) x G(t — s) % 0 (Y®ug)* ds
0

t
4.1) = K(t) *up — %/ D(t) « G(t — s) * 8I(Ysu0)2 ds.
0

Thus, from Duhamel formula for the Fowler equation (T.4) and the Lie formula @I)), we
have:

¢ ¢
Zhug — Stug = %/ 0. K (t — ) % (Sug)* ds — %/ D(t) % 0,G(t — 5) * (Yup)* ds
0 0

1 t
“2) zi/aﬁw—g*aywﬁ—wm@ﬂm+3@,
0
where the remainder R(t) is written as
1 t
R(t) = 5/ Ri(s)ds, with Ry(s) = 0, K (t—s)%(Ziug)?—D(t)*0,G(t—s, )*(Y *ug)?.
0

Then, from Proposition 2.1} Corollary [3.9and Lemma[3.10} we have, for ¢ € [0, 1]:
I ,
1Z1u0 — S*uoll 2wy < 5/ 10K (t — s,) || L2®)ll(S*w0)® — (Z3u0)? || 1 (m) ds
0
+IR®)] 2(m)

t
<C [ 6= 918w ~ Ziuoll o 1S°u0 + Ziuolacy ds + ROl oy
0

t
< C(e™" + ) ||uol| r2(r) /O (t — )" S*uo — Zjuol|r2(w) ds + | R1) || 22 (r)>
where C is a positive constant. To estimate the remainder, we decompose it as follows
Ri(s) = Ti+To+ T3+ Ty,
where
Ty =K(t—s,) % 0.(Z5ug)? — 0x(Ziug)?,
Ty = 0,(Y®up)? — G(t — s,-) % 0, (Yug)?,
T3 =Gt —s,) % 0z (Yug)® — D(t,-) x G(t — 5, ) * 0.(Yup)?,
Ty = 8, (Zjuo)® — 8, (Youp)? .
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Let us first study the term 7. From Corollaries[3.3|and[3.9] we have (recall that ¢ € [0, 1])

ITull 2y = 1K (t = 5, °) % 0u(Z]u0)? — 0u(Z]0)?[|12(w)
Ce =) (t — 5)(10:(Z7 u0)* || 2 r)

Ceo(t=9) (¢ — s)HZZUOH%ﬁ(R)

N

NN

C (luollzzry) €2t — s) w0l 35 r)-
In the same way, from Lemma[3.4]and Corollary 3.8 we control the term 7% as
ITeliamy = 10 (Y*u0)? — Gt — 5,) % (¥ *u)? L 2qmy
<e(t = 9)[10:(Y*u0)? | m2my < O ([[uoll2ry) (¢ = 5)|uollFrawy-
From Lemma 3.2]and Corollary [3.8]
T3]l 2my = [G(t = s,) % 8u(Yu0)® = D(t,-) % G(t — 5,-) % 0o (Y *u0)?[| L2 (m)
< CPGt — 5,7) # (Y ")l irocry
< C e 0,(Y*u0)? ey
< C (luollL2my) €%t lluollFrsry-
For the term T, write
1Tl zamy = 10n (Zi0)? — 0a (V*u0)? | ory
= 2[|(ZLu0)0x (Ziuo) — (Y?u0)0z (Y uo) | L2(R)-
By linearity of the evolution operator X, we have
61 (ZEUO) = Xs&t (YSUO) 5
hence
T4l 2 ) = 2[[(Z7u0) X°0p (Y uo) — (Y u0)0z (Y uo) || 2(w)
+ 2 ||(Y5u0) (Xsax (Ysuo) — Oy (YSUO))”L?(R) .
Now from Sobolev embedding, Lemma [3.2]and Corollary 3.8] we get:
1Tall L2y < 2 X702 (Y uo) || oo (r) 1 XY Puo — Youo || 2 (m)
+ 2[|Y *uo|| oo (r) [ X 02 (Vo) — 0 (Y:u0) [|22(R)
< C||X58I (YSUO) ||H1(R) 6’808 S HYSUOHH2(R)
+ C”YSU()”HI(R) eﬂos S ||('9z (YSUO) ||H2(R)
< C ¥ s ||V ug f2ry + C € s Y uo s (m)
< Cllluollzz(ry) €270° s [|uolla gy
Finally, since Ri(s) =11 + T2+ T5 + Ty thenfor 0 < s < ¢ < 1,
[R1(3)l|2ry < C ([uoll2ry)  l[wollirs w)»
and by integration for s € [0, ¢],
IR 2wy < C (lluollzzmw)) 2 [luollFsmy-
We conclude by applying the modified fractional Gronwall Lemma [2.3]
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5. PROOF OF THEOREM [I.2]

The proof follows the same lines as in [[15} Section 5]. Denote by u, = (Z ft)k ug the
numerical solution, and

uk _ S(nfk)At

n U,

which corresponds to the exact evolution of the numerical value wuy, at time ¢, = kAt up
to time ¢,, = nAt. From Lemma[3.10] there exists p such that

Ja®) gy < py V€ 0,T].

We prove by induction that there exists v, Aty, ¢ > 0 such that if 0 < At < Aty, for all
n € N with nAt < T,

lunllLzm) < 20, |un —u(tn)|lL2m) < VAL,

<
[t || 2Ry < € [Juoll msr) < Co,

where Cy = e“T'||ug|| zs. The above properties are satisfied for n = 0. Let n > 1, and
suppose that the induction assumption is true for 0 < £ < n — 1. Since u,, = u] and
u(t,) = u?, we estimate

n»
n—1

e — u(t)lze < 3 bt — bl o
k=0

n—1
< Z HS(n—k—l)At (ZLAtUk) _ gn—k—1)At (SAtuk)‘
k=0

L2’
For k < n — 2, Z8%u; = wuy41 and Proposition yields, along with the induction
assumption,

155 url| 2 < (185 ur, — S ulte) 2 + 152 u(ty) || 2

<
< Kllug — ute)|| 22 + [u(tesr) |2 < KyAt + p,

which is bounded by 2p if 0 < At < Aty < 1. Up to replacing K with max(K, 1), we
obtain, for k <n —1land nAt < T,

HS(nfkfl)At (ZLAtuk) _ g(n—k-1)At (Smu/c)”m < K| Z8% — 5% 2.
Using Proposition 1] we infer

HS(n—k—l)At (ZLAtuk) _ gln—k=1)At (SAtuk)HL2 < CK(At)QGQCkAt||uO||?{S7
for some uniform constant C'. Therefore,

tn — u(tn) |2 < nCK (A2 ||ug||3s < CTKe** T At,

which yields the first two estimates of the induction, provided one takes v = CTKe?°T,

which is uniform in n and At. Finally, the last estimate of the induction stems from
Corollary 3.9
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6. NUMERICAL EXPERIMENTS

The aim of this section is to numerically verify the Lie method convergence rate in
O (At) for the Fowler equation (I.T)).
To solve the linear sub-equation (I.6)), discrete Fourier transform is used and for the non-
linear sub-equation (I.7), different numerical approximations can be used. Here, we use
the finite difference method.
Since the discrete Fourier transform plays a key role in these schemes, we briefly review
its definition, which can be found in most books. In some situation, when the mesh nodes
number N is chosen to be N = 2P for some integer p, a fast Fourier transform (FFT)
algorithm is used to further decrease the computation time. In this work we will use a
subroutine implemented in Matlab. In this program, the interval [0, 1] is discretized by N
equidistant points, with spacing Az = 1/N. The spatial grid points are then given by
xzj =j/N,j=0,..,N.If u;(t) denotes the approximate solution to u(t, x;), the discrete
Fourier transform of the sequence {u; };V;Ol is defined by

N-1
k) = Fiug) = 3 wge2mNN,
j=0

fork =0,---, N — 1, and the inverse discrete Fourier transform is given by
| N1 ‘
uj = Fy (i) = N e,
k=0
forj =0,---, N —1. Here 7% denotes the discrete Fourier transform and F~% its inverse.

In what follows, the linear equation is solved using the discrete Fourier transform
and time marching is performed exactly according to

6.1) utt = (e’¢1(k)Ath(u;?)) .
To approximate the viscous Burgers’ equation (I.7), we use the following explicit centered
scheme:
At w2\" w\" uf g —2uf +uf
62  u'tl=wt - —— () = () +eAt-2 -
J 7 2Ax 2 /)in 2/, Ax?

which is stable under the CFL-Peclet condition

Az Ax?
(6.3) At =min [ 22 22

lv] 7 2e

where v is an average value of v in the neighbourhood of (", z;).

Remark 6.1. In the case where the linear sub-equation is solved using a finite differ-
ence scheme instead of a FFT computation, an additional stability condition is required,
see [3]. Moreover, the computation time becomes very long because of the discretiza-
tion of the nonlocal term which is approximated using a quadrature rule. Indeed, in [3],
the Fowler equation has been discretized using finite difference method and the numerical
analysis showed that this operation is computationally expensive. This observation has
also motivated the use of splitting methods, in particular the implementation of split-step
Fourier methods.
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In order to avoid numerical reflections due to boundaries conditions and to justify the
use of the FFT method, we consider initial data with compact support displayed in Figurel|T]
to perform numerical simulations.

FIGURE 1. Initial data used for numerical experiments.

Since we do not know the exact solution of the Fowler equation, a classical numerical
way to determine the convergence numerical order of schemes is to plot the logarithm of
the error ||uy(T) — ua(T)||z2 in function of the logarithm of the step time A¢, where u;
and us are computed for time steps At/2 and At/4, respectively, up to the final time 7.
Hence, the numerical order corresponds to the slope of the curve, see Figures 2] [3] For
reference, a small line of slope one (resp. two) is added in Figure 2] (resp. [3). We see
that the slopes for the three initial data match well and so we can conclude that numerical
simulations are consistent with the theoretical results established above.

"4 Fig. (a)
—Fig. (c)
|~ Reference

~=~Fig. (b)
,7

log(llu, -l 2)

" [ 5 7 - 5 4 3 2

log(at)

FIGURE 2. Lie method
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We also study numerical convergence of Strang splittings using initial data displayed in

Figure[T] Results are plotted in Figure[3] We can see that the Strang formulation is of order
two in time for smooth initial data.

““““ Fig. (a)
==~Fig. (%)
=Fig. (c)
— reference

Y.

log(llu, -l 2)

s -5 -45 -4 -35 -3 -25 -2 -15

log(at)

FIGURE 3. Strang method

From numerical simulations, we emphasize the fact that both formulas defining a Lie

operator, as well as both formulas defining a Strang operator, lead to the same results.
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