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Stochastic dynamical systems in neuroscience

Nils Berglund

(joint work with Barbara Gentz, Christian Kuehn, Damien Landon)

The success of Statistical Physics is largely due to the huge separation between
microscopic and macroscopic scales, which enables us to apply limit theorems from
probability theory, such as the law of large numbers and the central limit theorem.
The difficulty of biological systems, such as those arising in neuroscience, is that
instead of only two scales, they involve a whole hierarchy of them:

• The dynamics of the brain as a whole can be modeled in the continuum
limit by neural field equations, which are partial differential or integro-
differential equations for the synaptic electric potential [1].

• Localised populations of excitatory and inhibitory neurons are described
by coupled integro-differential or delay equations, as in the Wilson–Cowan

model for decision making [2].
• The dynamics of the action potential along the axons of individual neu-

rons is described by partial or ordinary differential equations such as the
Hodgkin–Huxley equations [3].

• The number of open and closed ion channels, which regulate action po-
tentials across the neuron’s membrane, can be described by a Markovian
jump process [4]. Similarly, the interactions between genes, proteins and
enzymes within cells involve complicated networks that can be modeled
by large systems of coupled maps or differential equations [5].

Even though the scale separation is not as radical as in Statistical Physics, the
different levels of the hierarchy are often still separated by one or two orders of
magnitude.

Randomness arises in these models from simplifying the dynamics of higher or
lower levels in the hierarchy, using reduction procedures such as stochastic av-
eraging or continuum approximations (see Richard Sowers’ and Martin Riedler’s
contributions to these Reports). For instance, models for action potential gener-
ation involve two variables: the voltage x across the membrane, and the vector y
of proportions of open ion channels of different types. External noise, arising from
fluctuations in synaptic currents coming from other neurons, originates in the next
higher level of the hierarchy. Internal noise, stemming from the random dynamics
of ion channels, comes from the level below. In the simplest case, one is thus led
to a system of stochastic differential equations (SDEs) of the form

dxt =
1

ε
f(xt, yt) dt +

σ1√
ε

dW
(1)
t ,

dyt = g(xt, yt) dt + σ2 dW
(2)
t ,

(1)

where ε describes the time scale separation, and W
(1)
t and W

(2)
t are independent

Wiener processes, respectively modelling external and internal noise.
Choosing the appropriate model for noise is a difficult problem, influenced by

parameters such as the existence of space and time correlations, and the discrete or
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continuous nature of the dynamics. The simplest model for noise is Gaussian white
noise as used in (1), but depending on the situation it may be more appropriate
to use correlated noise such as Ornstein–Uhlenbeck processes, more general Lévy
processes including jumps, or discrete-time noise such as Poisson or more general
renewal processes.

Another important difference between Statistical Physics and biological prob-
lems is that while in the former, the emphasis lies on asymptotic behaviour, such as
existence of stationary states and convergence to them, in biology transients play a
fundamental rôle. There are several reasons for this: time-dependent forcing may
prevent the existence of equilibrium states; the system may spend very long time
spans in metastable states; non-equilibrium phenomena such as excitability and
stochastic resonance often are of central importance to the system’s behaviour.

As a paradigm illustrating transient behaviour, consider the SDE

(2) dxt = f(xt) dt + σ dWt , xt ∈ R
n

for a dissipative vector field f . For small noise intensity σ, solutions of (2) tend to
spend long time spans in localised regions of space, separated by quick transitions
between these regions. The stochastic exit problem consists in quantifying this
behaviour: Given a domain D ⊂ R

n, determine the distribution of the first-exit

time τ = inf{t > 0: xt 6∈ D}, and the law of the first-exit location xτ ∈ ∂D, known
as the harmonic measure. If τ is likely to be large, the dynamics in D is called
metastable, and can be described by a quasistationary distribution (QSD). The
transitions between metastable domains can typically be reduced to a Markovian
jump process, thereby providing an effective scale separation of the dynamics. A
number of different techniques are available in order to achieve this program:

• The theory of large deviations for sample paths of the SDE (2) has been
developed by Freidlin and Wentzell [6]. The probability of sample paths

tracking a given deterministic path {ϕt} behaves like e−I(ϕ)/2σ2

, for an ex-
plicitly known rate function I. This allows in particular to determine, by
solving a variational problem, a constant V (the quasipotential) such that

the expected first-exit time behaves like eV/σ2

in the limit σ → 0. Fur-
thermore, this approach provides a way to characterise metastable regions
and the transitions between them in this limit.

• A number of analytic techniques provide more detailed information on the
exit problem. In particular, the expected first-exit time and location are
linked, via Dynkin’s formula, to the solutions of Dirichlet–Poisson bound-
ary value problems involving the diffusion’s infinitesimal generator [7].
These equations can be explicitly solved only in dimension 1 and in cer-
tain linear cases, but are accessible to WKB perturbation theory in more
general cases.

• For fast–slow SDEs of the form (1), methods from stochastic analysis and
singular perturbation theory provide a sharp control of the behaviour of
sample paths in metastable regions and near bifurcation points [8] (see
Barbara Gentz’s contribution to these Reports).
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• The theory of random dynamical systems [9] provides information on the
asymptotic behaviour of the system, when it is meaningful to describe the
system’s reaction to the same random forcing, for different initial condi-
tions. This is the case, e.g., for the phenomenon of reliability (see Kevin
Lin’s contribution to these Reports).

As an illustration, consider the FitzHugh–Nagumo equations, given by (1) with

(3) f(x, y) = x − x3 + y , and g(x, y) = a − x .

The deterministic equations admit a stationary point at P = (a, a3 − a), which
is stable if δ = (3a2 − 1)/2 is positive. However, if δ is small, the system is
excitable, meaning that small random perturbations may cause large excursions in
phase space, corresponding to the neuron emitting a spike. For applications it is
important to determine the interspike interval statistics. The invariant measure of
the system is of little use here, as it only gives the probability of the neuron being
in the spiking or quiescent state at any given time.

Let D be a neighbourhood of P , and let F be a curve joining P to the bound-
ary ∂D, parametrised by a variable r ∈ [0, 1]. The successive intersections of
(xt, yt) with F up to its first exit from D define a substochastic Markov chain
(R0, R1, . . . , RN−1) with kernel K(r, A) = P{R1 ∈ A|R0 = r}.

Theorem 1 ([10]). Assume σ1, σ2 > 0. Then K admits a QSD π0, solution to

π0K = λ0π0, where the principal eigenvalue λ0 is strictly less than 1. The survival

time N of the Markov chain is almost surely finite and asymptotically geometric

in the sense that

(4) lim
n→∞

P{N = n + 1|N > n} = 1 − λ0 .

The random variable N determines the length of the quiescent phase between
spikes, and (4) shows that this length follows an approximately exponential law.
More quantitative information is provided by the following result:

Theorem 2 ([10]). For δ and ε small enough, and σ2
1 +σ2

2 6 (ε1/4δ)2/ log(ε/
√

δ),
there exists κ > 0 such that

(5) 1 − λ0 6 exp

{

−κ
(ε1/4δ)2

σ2
1 + σ2

2

}

.

Furthermore, the expectation of N satisfies

(6) E(N) > C(µ0) exp

{

κ
(ε1/4δ)2

σ2
1 + σ2

2

}

,

where C(µ0) depends on the initial distribution µ0 on F .

This result describes the weak-noise regime, and confirms the result of an ap-
proximate computation in [11]. An open problem which is currently under investi-
gation is to obtain similar results in other parameter regimes, as well as for other
models such as the Morris–Lecar equations.
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