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Abstract. This paper is concerned with stability behaviour and imperfection sensitivity of

elastic shells. The aim is to determine the reduction of the critical buckling load as a func-

tion of the imperfection amplitude. For this purpose, the direct calculation of the so-called fold

line connecting all the limit points of the equilibrium branches of the imperfect structures is

performed. An augmented system demanding the criticality of the equilibrium is used. In or-

der to solve the augmented system, the Asymptotic Numerical Method is used as an alternative

to Newton-like incremental-iterative procedures. It results in a very robust and efficient path-

following algorithm that takes the singularity of the tangent stiffness matrix into account. Two

specific types of imperfections are detailed and several numerical examples are discussed.
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1 Introduction

The development of new materials and the wide use of optimization techniques over the past

decades have conducted to very light but robust structures. However, for such slender structures,

structural stability has become a question of prime interest.

This stability analysis is all the more complex that such structures are often very sensitive to

imperfections. A small defect can significantly reduce the critical buckling load, causing the

collapse of the structure for a far smaller value than in the case of a perfect structure. The man-

ufacturing of the structure, unusual loadings, shocks or corrosion for example can cause such

defects. This imperfection sensitivity analysis will be discussed here in the case of thickness or

geometrical shape imperfections.

This analysis deals with two specific problems. On one hand, it concerns the evaluation of the

equilibrium branch of the structure and the precise detection of the associated singular points.

This is a common post-buckling problem. In the case of quasi-static linear elasticity, it can be

represented by the following one-parameter system

F (u, λ) = f (u) − p(λ) = 0 (1)

where the external loading p is assumed linearly proportional and the internal forces f depend

only on the displacement u. This nonlinear system is usually solved using an incremental-

iterative Newton-like procedure.

cλ

, ,

buckling
critical

load

λ

> 0

= 0

Λ

< 0Λ

bifurcated

)( o ou

Λ

fundamental branch

branch

starting limit point

fold line

λ oΛ
u

Figure 1: Fold line connecting the limit points and equilibrium branches for the perfect and

imperfect structure

On the other hand, our analysis is concerned with the imperfection sensitivity of the structure.

The aim is to study the variation of the critical buckling load when the structure is subjected

to a variable imperfection. A simple way for carrying this analysis consists in introducing an

imperfection in the structure and in solving problem (1) for the modified structure. Once this
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calculation has been performed for different values of the imperfection, the grid of equilib-

rium branches and their associated limit points can be represented as in Figure 1. The fold line

connecting the different limit points can then be drawn.

Even if this type of analysis is very simple to implement, it has major drawbacks. Indeed, this

succession of re-analyses is very costly since it requires a full computation on the structure for

each requested limit point. In order to reduce the computational time it is more advisable to to

isolate a starting limit point for a given value of the imperfection and then to directly follow

the branch of limit point. To this end, the imperfection amplitude Λ must become an additional

parameter in the governing equations of the structure

F (u, λ, Λ) = f (u, Λ) − p(λ) = 0 (2)

Doing so, the classical 1D "loading-displacement" solution sets become 2D " loading-imper-

fection-displacement" solution sets. On these surfaces, we are only interested in the critical

points that give the variation of the critical load with respect to the imperfection amplitude.

In order to directly obtain the branches of critical (limit) points, a constraint equation charac-

terizing the limit points is appended to the equilibrium equation. The two-parameter nonlinear

system (2) is then transformed in a so-called ’augmented’ system which reads

R (u, λ, Λ) =

(

F (u, λ, Λ)

G (u, Λ)

)

= 0 (3)

This augmented system has already been addressed by Jepson and Spence [1] , Wagner and

Wriggers [2], and Eriksson [3] using incremental-iterative strategies. The originality of this

work lies in the use of the Asymptotic Numerical Method (A.N.M.) in order to numerically

solve this problem.

2 Fold line following

This section is devoted to the direct computation of the fold line connecting all the limit points

of F when the imperfection varies. For this purpose, we assume that a starting limit point has

already been detected. As mentioned in the introduction, this preliminary work consists in com-

puting an equilibrium branch for a given value of the imperfection and in precisely calculating

the limit state corresponding to the critical buckling load. This stage will not be discussed here

(see [4] and [5]).

2.1 Augmented problem

Many alternatives concerning thconstraint equation G (u, Λ)=0 have been proposed in the lit-

erature. From a numerical point of view, the most efficient of these alternatives is due to Keener

and Keller [6]. It has been subsequently used by Moore and Spence [7], Jepson and Spence [1],

and numerically investigated by Wriggers and Simo [8] and Eriksson et al. [9] among others.
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It is based on the appearance of a null eigenvalue for the tangent operator KT = F,u at simple

critical states. This vector criterium leads to the following augmented system

R (u, ϕ, Λ, λ) =





F (u, Λ, λ)

F,u (u, Λ, λ) · ϕ

‖ϕ‖ − 1



 =





f (u, Λ) − λFe

f,u (u, Λ) · ϕ

‖ϕ‖ − 1



 = 0 (4)

where ϕ is the null eigenvector associated with the null eigenvalue. The last normalization

condition ensures its uniqueness.

2.2 Asymptotic Numerical Method (A.N.M.)

The previous two-parameter nonlinear augmented system (4) is solved using the Asymptotic

Numerical Method (A.N.M.). This method is inspired by the perturbation techniques developed

by Thompson and Walker [10] and used by Noor et al. [11] for designing "reduced bases"

algorithms. These perturbation techniques have been revisited by Cochelin, Damil and Potier-

Ferry [12, 13, 14] who coupled them with the finite element method to produce a very efficient

algorithm.

2.2.1 Power series expansions

Assuming that a starting limit point (u0, ϕ0, λ0, Λ0) is known, the basic idea of the A.N.M.

consists in seeking the solution branch (u, ϕ, λ, Λ) in a truncated power series form with respect

to a well chosen path parameter "a"

u(a) = u0 + a u1 + a2 u2 + . . .+ an un

ϕ(a) =ϕ0 + a ϕ1 + a2 ϕ2 + . . .+ an ϕn

λ(a) = λ0 + a λ1 + a2 λ2 + . . .+ an λn

Λ(a) = Λ0 + a Λ1 + a2 Λ2 + . . .+ an Λn

(5)

Because of the extra variable a, an additional equation is needed. This equation can be inspired

by the well-known arc-length continuation method. In that case, a is defined as follows

a = 〈u − u0, u1〉 + (λ − λ0)λ1 + (Λ − Λ0)Λ1 (6)

Introducing the developments (5) into the nonlinear system (4) and the scaling equation (6)

and identifying the power-like terms leads to a succession of well-posed linear problems. The

problem at order 1 reads









f,u 0 f,Λ −Fe

f,uu . ϕ0 f,u f,uΛ . ϕ0 0

0 ϕt
0 0 0

ut
1 0 Λ1 λ1























u1

ϕ1

Λ1

λ1















= 0 (7)

This linear system gives the tangent direction (u1, ϕ1, Λ1, λ1). It is exactly the same system as

for the predictor step in the incremental-iterative Newton-Raphson algorithm. It also exhibits
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the augmented tangent operator which will be the same for all other orders. The problem at

order p (p ≥ 2) reads









f,u 0 f,Λ −Fe

f,uu . ϕ0 f,u f,uΛ . ϕ0 0

0 ϕt
0 0 0

ut
1 0 Λ1 λ1























up

ϕp

Λp

λp















=















r.h.s.

r.h.s.

r.h.s.

r.h.s.















(8)

The difference with order 1 lies in the r.h.s. vector which is not null anymore. This r.h.s depends

on the solution at previous orders. Thus, the succession of linear problems can be solved in a

recursive way with the same tangent operator for each order.

The next step of the A.N.M. lies in the use of a finite element method in order to transform

the previous continuous problem into a discretized one. This will allow the succession of linear

problems to be solved efficiently.

2.2.2 Finite elements discretization

After FEM discretization, the displacement problem at order p (p ≥ 2) reads









KT 0 F1 −Fe

K
'

KT F2 0

0 ϕt
0 0 0

ut
1 0 Λ1 λ1

















up

ϕp

Λp

λp









=









F nl
p

Gnl
p

hnl
p

0









(N eq.)

(N eq.)

(1 eq.)

(1 eq.)

(9)

KT is the classical tangent stiffness matrix, calculated at the starting point. Its expression is

given by

KT (u0) = f,u(u0) =

∫

Ω

(

Bt(u0) D Bnl(u0) + Gt Ŝ0 G
)

dΩ (10)

with B(u)=Bl+Bnl(u). Here Bl and Bnl(u) are the linear and nonlinear parts of the Green-

Lagrange strain [15]. The matrix Ŝ0 contains the components of the second Piola Kirchhoff

stress S0 associated with u0 and D is the classical matrix which contains the elasticity con-

stants. Using the same notations K
'

reads

K
'

(u0, ϕ0) = f,uu . ϕ0 =

∫

Ω

(

Bt(u0) D Bnl(ϕ0) + Bt
nl(ϕ0) D B(u0) + Gt

Ψ̂0 G
)

dΩ

(11)

where Ψ̂0 contains the components of the second Piola Kirchhoff stress Ψ0 associated with ϕ0.

The two matrices KT and K
'

are the same whatever the type of imperfection is. In the tangent

operator, only the two vectors F1 and F2 depend on the imperfection. Indeed, they are the

derivatives of f with respect to the imperfection Λ

F1(u0) = f,Λ(u0) F2(u0, ϕ0) = f,uΛ(u0) . ϕ0 (12)

The r.h.s. terms F nl
p and Gnl

p also depend on the type of imperfection. Their expressions will

be detailed in section 3 in the case of a geometrical shape imperfection and in the case of a

thickness imperfection.
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These considerations are of prime interest. Indeed, they allow the implementation of a fairly

general algorithm for solving (9). The only thing to keep in mind is to switch to the correct

expressions of the vectors F1, F2, F nl
p and Gnl

p according to the type of imperfection.

2.2.3 Deflated block elimination

In practice, a deflated block elimination is used to solve the extended system (9) in order to

consider only subsystems of size N involving the KT matrix. Such a block-elimination scheme

can be found in Wriggers and Simo [8]. Its main interest relies on the fact that only the classical

KT matrix needs to be decomposed, thus saving a large amount of calculation time.

Besides this particular procedure, another numerical difficulty must be pointed out. Since all

the solution points of R are singular ones of F , the KT matrix is singular all along the fold line

connecting the computed solution points. That means that the classical matrix decomposition

techniques cannot be used. A special procedure, based on Lagrange multipliers, is introduced

to bypass this problem.

For a detailed description of the adaptation of the block-elimination and Lagrange multipliers

procedures to the system (9), the interested reader is referred to [5].

2.2.4 Continuation method

Because of the limited radius of convergence of the series, only a fraction of the solution curve

is obtained. The accuracy of the solution often deteriorates very quickly when the radius of

convergence is reached. Cochelin has proposed a residual criterium that gives the length of a

step [16]. For series truncated at order n, the maximal value of the path parameter a for which

the solution satisfies a requested accuracy ε is given by

aM =

(

ε

‖F nl
n+1‖

) 1

n+1

(13)

Using this formula, the step length is set after all the coefficients of the series have been com-

puted. By this way, the step length is guaranteed to be optimal.

Once the step has been stopped, the starting point is updated and the global procedure is

restarted. Thus, the solution curve is described in a step by step way, as it would be with the

classical continuation algorithms. The strong point of this procedure is its robustness. Further-

more, it is completely automatic from the user’s point of view. The only parameters that need

to be chosen are the order n of the series and the accuracy ε. Setting n equal to 20 or 30 and

ε = 10−6 is often a good compromise. Practice has demonstrated that computing higher orders

to extend the step length is not worth the required extra calculation time.

6
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3 Two specific types of imperfections

3.1 Geometrical shape imperfection

A variable geometrical shape imperfection u⋆ is introduced within the structure. In order to get

a scalar parameter, this imperfection is rewritten in the form

u⋆ = η u⋆
0 (14)

where u⋆
0 is a fixed vector that gives the shape of the imperfection and η is its amplitude. Here

the amplitude η stands for the parameter Λ of section 2. The resulting governing equation (2) of

the imperfect structure is

F (u, η, λ) =















∫

Ω

Bt(u) S + η Bt
nl(u

⋆
0) S dΩ − λFe = 0

S = D
(

Bl + 1

2
Bnl(u) + η Bnl(u

⋆
0)

)

u

(15)

The needed calculations to obtain F1, F2, F nl
p and Gnl

p are detailed in [5]. They will not be

reproduced here. It finally leads to

F1 =

∫

Ω

(

B̃t
0 D Bnl(u0) + Gt Ŝ0 G

)

u⋆
0 dΩ

F2 =

∫

Ω

(

B̃t
0 D Bnl(ϕ0) + Bnl(ϕ0) D Bnl(u0) + Gt

Ψ̂0 G
)

u⋆
0 dΩ (16)

F nl
p = −

∫

Ω

B̃t
0 Snl

p +

p−1
∑

r=1

Bt
nl(ur + ηru

⋆
0) Sp−r dΩ

Gnl
p = −

∫

Ω

B̃t
0 Ψ

nl
p + Bt

nl(ϕ0) Snl
p +

p−1
∑

r=1

Bt
nl(ϕr) Sp−r +

p−1
∑

r=1

Bt
nl(ur + ηru

⋆
0)Ψp−r dΩ

where B̃0 stands for B(u0 + η0u
⋆
0) and the pre-stress terms Snl

p and Ψ
nl
p read

Snl
p =

1

2
D

p−1
∑

r=1

Bnl(ur) up−r + D

p−1
∑

r=1

ηp−rBnl(ur) u⋆
0 (17)

Ψ
nl
p = D

p−1
∑

r=1

Bnl(ϕr) up−r + D

p−1
∑

r=1

ηp−rBnl(ϕr) u⋆
0

Sk and Ψk are the second Piola Kirchhoff stresses associated with uk and ϕk.

3.2 Thickness imperfection

In this section, the additional parameter Λ of section 2 is the thickness h of the structure. In order

to simplify the study, we focus on shell elements which are analytically integrated through the
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thickness, and where the thickness explicitly appears only in the matrix of elasticity constants

D. For this class of shell elements, the elasticity matrix D can be decomposed into a membrane

part and into a bending part, which are respectively linear and cubic with respect to h.

D(h) = D1 h + D3 h3 (18)

The governing equation (2) becomes

F (u, h, λ) =











∫

Ω

Bt(u) S dΩ − λFe = 0

S = D(h)
(

Bl + 1

2
Bnl(u)

)

u

(19)

Introducing the series expansion of h into D and replacing this expression into the augmented

system (4) leads to

F1 =

∫

Ω

Bt(u0) D̃ (Bl + 1

2
Bnl(u0)) u0 dΩ

F2 =

∫

Ω

Bt(u0) D̃ B(u0) ϕ0 + Bt
nl(ϕ0) D̃ (Bl + 1

2
Bnl(u0)) u0 dΩ

(20)

with

D̃ = D1 + 3h2
0 D3 (21)

The expressions of Snl
p and Ψ

nl
p are more complex and will not be given here. They will be fully

detailed in a forthcoming paper.

4 Numerical examples

4.1 Cylindrical panel with shape imperfection

This first example is concerned with a cylindrical panel submitted to a concentrated load at

its top. The geometrical and material properties and the boundary conditions of the panel are

defined in Figure 2a. This is a typical buckling example which involves limit points and snap-

through phenomenon. The aim of this example is to analyze the sensitivity of the critical buck-

ling load of the cylindrical panel to a geometrical shape imperfection. At first, the analysis

was performed on one half of the perfect structure, i.e. without any shape imperfection, using

symmetry conditions. For this purpose, a 20×10 mesh with 400 triangular DKT shell elements

[17] and 1386 degrees of freedom was used. All the results were obtained with the Asymptotic

Numerical Method. They are plotted in Figure 2b.

The fundamental equilibrium branch was obtained with only 12 A.N.M. continuation steps, i.e.

with only 12 KT tangent matrix decompositions. Two limit points and two bifurcation points

were isolated. The bifurcated branch joining these two bifurcation points was also computed.

This bifurcated branch and its corresponding bifurcation points disappear if only one quarter of
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Figure 2: (a) Problem definition (b) Equilibrium curve of the perfect cylindrical panel

the panel is discretized. It can inferred from this remark that this bifurcation corresponds to a

symmetry breaking.

Subsequently, the sensitivity analysis was conducted. Since we were only interested in the vari-

ation of the first limit point with respect to the imperfection amplitude, the bifurcation points

were ’removed’ by considering only one quarter of the panel, leading to a 10×10 mesh with 200

triangular DKT shell elements and 726 degrees of freedom. The first buckling eigenmode of the

panel is shown in Figure 3. It was normalized by setting the greatest value of its displacement

to 1 in order to provide the shape of the considered geometrical imperfection.

Figure 3: First buckling eigenmode of the perfect cylindrical panel

The procedure described in section 2 was then initiated to compute the fold line. This procedure

is completely automatic. The user only has to provide the order n of the series expansions, the

required accuracy ε for the solution, the number of steps and the initial imperfection amplitude

η0. A starting limit point is then isolated on the equilibrium branch of the structure including the

initial imperfection and the fold-line following procedure is started from this limit point. This

allows to choose any starting point for the fold curve and to follow it in either one direction

(increasing imperfection amplitude) or the opposite one (decreasing imperfection amplitude).

For this example, the starting point was evaluated for an initial imperfection amplitude

η0=-3mm, i.e. -0.47 times the thickness of the panel. The curve shown in Figure 4 is a 3D

representation of the resulting fold line connecting all the limit points when the imperfection

varies. Its projections are more suited to our analysis. Two of them are represented in Figure

5. The first projection is located in the load-deflection plane. Three equilibrium branches are

9
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Figure 4: Cylindrical panel : 3D "load-deflection-imperfection" fold curve and its projections

plotted for different values of the imperfection as well as the projection of the fold line. The

fold line intersects each equilibrium branch at its two limit points. The equilibrium branch of

Figure 2b for the perfect panel is represented here again as a reference. The values of the load at

its two limit points (maximum and minimum) can be also read on the right-hand-side Figure 5b

which gives the critical buckling load reduction with respect to the imperfection. The top and

bottom parts of this curve correspond respectively to the variation of the maximum and mini-

mum limit point of the equilibrium curves. The curve shows that the two limit points get closer

when the imperfection amplitude increases. For two extreme values η/h≃-3.5 and η/h≃5.3 of

the imperfection, the limit points merge and exchange their role. Beyond these extreme values,

there is no limit point anymore, i.e. no snap-through phenomenon anymore.

It can be noticed that the entire fold line was computed with only 25 continuation steps, i.e. only

25 tangent matrix decompositions.
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Figure 5: Cylindrical panel : (a) Fold line and equilibrium branches for various imperfection

amplitudes with associated limit points (b) Critical buckling load reduction with respect to the

imperfection
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4.2 Cylindrical panel with thickness imperfection

The second example refers to the same cylindrical panel, with geometrical and material proper-

ties as defined in the previous section. The aim is now to analyze the sensitivity of the critical

buckling load of the cylindrical panel to a thickness imperfection. This can be used to conduct

a simplified corrosion analysis. For this purpose, the thickness h is chosen as the additional

parameter Λ.

As before, after a starting limit point had been isolated, the fold line was followed using the

Asymptotic Numerical Method. Its "load-deflection-thickness" 3D representation is plotted in

Figure 6. This fold line was completely described with very few tangent matrix decompositions.

Indeed, only 20 A.N.M. continuation steps with series at order 30 were computed. The projec-
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Figure 6: Cylindrical panel : 3D "load-deflection-thickness" fold curve and its projections
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Figure 7: Cylindrical panel : (a) Fold line and equilibrium branches for various values of the

thickness with associated limit points (b) Critical buckling load reduction with respect to the

thickness
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tions on the load-deflection plane and on the load-thickness plane are plotted in Figure 7. On

the curve of Figure 7a, the fold line intersects the equilibrium branches at their two limit points,

excepted for the extreme value h≃22.15 of the thickness for which the two limit points merge

into an inflection point. Beyond this value, there is no snap-through phenomenon anymore. This

behaviour can also be observed on Figure 7b which shows the critical buckling load as a func-

tion of the panel thickness. For a given thickness, this curve gives the load corresponding to the

maximum and the minimum limit points of the equilibrium branches of Figure 7a. The results

obtained here are in very good agreement with those obtained by Eriksson et al. in [9].

4.3 Cylinder with geometrical shape imperfection under external pressure

L
P

h

L = 10 m

h = 10 mm

R = 1 m

E = 210000 MPa

 = 0.3ν
sym

sy
m

hinged

R

Figure 8: (a) Problem definition (b) First buckling eigenmode of the perfect cylinder (cross

section and perspective)

The third example concerns the instability behaviour of a cylinder under external pressure,

with geometrical and material properties as defined in Figure 8a. The aim is to investigate the

sensitivity of the cylinder to a geometrical shape imperfection.

Using symmetry conditions and hinged boundary conditions, only one half of the cylinder in

the longitudinal direction and a sector of 90◦ was discretized. A 32×5 mesh with 320 triangular

DKT shell elements and 1188 degrees of freedom was used. The first buckling eigenmode

shown in Figure 8b was used as the imperfection shape.

The fold-line following was initiated with an initial imperfection of one quarter of the thick-

ness of the shell and performed in the two directions (increasing and decreasing imperfection)

from this starting point. The resulting fold line and a few equilibrium branches for various

values of the imperfection are plotted in Figure 9. An extreme value of the imperfection am-

plitude Λ≃h/1.7 was detected. Beyond this value, the equilibrium branches have no limit point

anymore. Very few A.N.M. continuations steps were needed for this analyse. Indeed, the inter-

esting part of the fold line (from Λ=0 up to Λ≃h/1.7) was obtained with only 6 continuation

steps, i.e. 6 tangent matrix decompositions.
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Figure 9: Fold line and equilibrium branches for imperfection amplitudes from 1/40 up to 1/1.7

times the thickness of the cylinder

4.4 Axially compressed cylinder with geometrical shape imperfection

The last example is concerned with a cylindrical shell under axial load with geometrical and

material properties as in Figure 10a. It is certainly one of the most classical examples in shell

stability analysis. It is also one of the most spectacular ones because the sensitivity to imper-

fections is very important. Here the considered imperfection is a geometrical one with a shape

identical to the first eigenmode of the compressed cylinder, as represented in Figure 10b. Using

symmetry conditions and hinged boundary conditions, only half of the length and a sector of

90◦ of the cylinder was discretized. A 32×5 mesh with 320 triangular DKT shell elements and

1188 degrees of freedom was used.

E = 207000 MPa

 = 0.3ν

L = 20.32 m

h = 6.35 mm

R = 2.54 m
L

P

h

hinged

hinged

R

Figure 10: (a) Problem definition (b) First buckling eigenmode of the perfect cylinder (cross

section and perspective)

The fold line connecting the limit point as well as five equilibrium branches for different val-

ues of the imperfection amplitude are plotted in Figure 11. No more limit points are observed

beyond the value Λ≃19h of the imperfection amplitude. This value corresponds to a very seri-
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ous critical load reduction. At this level, the critical buckling load is 80% smaller than for the

perfect cylinder.

0

0.2

0.4

0.6

0.8

1

0 0.002 0.004 0.006 0.008 0.01 0.012

Λ/h=1/10

Λ/h=2

Λ/h=5

Λ/h=10

Λ/h=15

λ
/λ

c

Axial shortening of the cylinder (m)

Figure 11: Fold line and equilibrium branches for imperfection amplitudes from 1/10 up to 15

times the thickness of the cylinder

5 Conclusions

This paper has described a general procedure for the stability analysis and the imperfection

sensitivity analysis of elastic structures. The Asymptotic Numerical Method is used for the

numerical treatment of the problem. The required calculation cost is significantly reduced as

compared to the classical Newton-Raphson procedure. Moreover, this method is very robust

and the associated continuation procedure is completely automatic from the user’s point of

view.

With the developed calculation tool, global as well as local imperfections can be treated, in the

case of thickness or geometrical shape defects.

The future developments will concern the introduction of material nonlinearities. Also, a shell

element which handles large rotations will be implemented.
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