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Abstract

Position Weight Matrices (PWMs) are broadly used in computational biol-
ogy. The basic problems, Scan and MultipleScan, aim to find all the
occurrences of a given PWM or a set of PWMs in long sequences. Some
other PWM tasks share a common NP-hard subproblem, ScoreDistribu-

tion. The existing algorithms rely on the enumeration on a large set of
scores or words, and they are mostly not suitable for parallelization. We
propose a new algorithm, BucketScoreDistribution, that is both very
efficient and suitable for parallelization. We bound the error induced by this
algorithm. We realized a GPU prototype for Scan, MultipleScan and
BucketScoreDistribution with the CUDA libraries, and report for the
different problems speedups larger than 10× on several Nvidia cards.1

Keywords: Bioinformatics, Position Weight Matrices, P-value estimation,
pattern matching, score distribution, many-core architectures, GPU

1. Introduction

In molecular biology; the “central dogma” describes the transfer of the
information from the DNA to the protein. Genes are portions of the DNA,
they are first transcribed into messenger RNAs which are then translated
into proteins [2]. Proteins interact between themselves and also with the

Email address: mathieu.giraud@lifl.fr, jean-stephane.varre@lifl.fr

(Mathieu Giraud, Jean-Stéphane Varré)
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DNA, enabling transcription of other genes. To process the transcription
of a gene, proteins called transcription factors (TFs) bind to the DNA. In
order to bind to the DNA, TFs have a spatial conformation enabling them to
recognize a small stretch of the DNA, called the transcription factor binding

site (TFBS). The TFBSs are located mostly in regions preceding the genes.
Discovering such sites is rather difficult because of their very low information
content: For a given TF, the DNA fragment on which it can bind may vary
both in length and in the sequence of nucleic acids (see Figure 1 for example).

In order to locate putative TFBSs along the DNA, Position Weight Ma-
trices (PWMs) are often used. Basically, such a matrix is a kind of pattern
which associates, at each position, a score for each nucleic acid (see Figure 1,
and Section 2 for more details). Locating TFBSs requires to use a pattern
matching algorithm with a score threshold. The reference databases JASPAR
[3] and TRANSFAC [4] respectively contain 123 and 856 matrices of TFBSs.
Such matrices are broadly used in computation biology to model conserved
sequence patterns. New sequencing technologies enable large-scale mapping
of DNA-protein interactions: those “ChIP-Seq” methodologies produce new
collections of sequences and matrices [5, 6].

1.1. Solving the computation bottleneck in PWM algorithms

The exponential nature of some PWM problems is a limiting factor for
using matrices of medium or large length. Score threshold computations
for matrices whose length is greater than 15 usually require several seconds,
and hours or days for matrices of length greater than 20. The JASPAR
and TRANSFAC databases already contain almost 200 matrices of length
15 to 30, that is 20% of their total number of matrices. Moreover, the new
techniques using data from next-generation sequencers should produce longer
matrices.

In this paper, we give some parallel solutions to the common PWM prob-
lems. We propose a prototype implementation on graphic processing units
(GPUs) to test the ability to compute with longer matrices.

1.2. Parallel computation on GPUs

Everyone can have some teraflops of cheap computing power with the
recent Graphics Processing Units (GPUs). GPUs are a first step toward
new massively many-core architectures. GPUs were used in bioinformatics
since 2005 for phylogenetic studies [8], then for multiple sequence alignment
based on an optimized Smith-Waterman implementation [9]. The CUDA
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aaTTGCGTCAtttc

gccgtcatactgTGACGTCTttcag

actgaTGACGTCCatg

gctcgtTGACGTCAccaaga

gagcggagcccgTGACGCGGccgagcggc

tctctctttCCAGGTATctc

...

ggcttTGACGTCAgcctggc

tggaatctctgcTGACGTCAcgacactccgca

cggcgggcatTGACGTCAaacggcagc

acccctccccgcTGACCTCActcgagccgccg

M(i, x) = log2

frequency of letter x at position i

background frequency of letter x
(1)

A [ -3.219 -3.219 3.785 -3.219 1.396 -3.219 2.084 3.467 ]
C [ 1.396 1.396 -3.219 3.585 -3.219 2.488 3.334 -3.219 ]
G [ 1.396 3.690 -3.219 2.084 3.690 -3.219 1.396 1.396 ]
T [ 3.585 -3.219 -3.219 -3.219 -3.219 3.467 1.396 2.084 ]

Figure 1: A Position Weight Matrix (PWM) modeling the CREB1 transcription factor
binding site (from the JASPAR database) and the corresponding sequence logo [7] denoting
columns with high or low information content. The coefficients are log-odds ratios of letter
frequencies (computed thanks to equation 1): they indicate affinities between letters and
positions at the binding site.

libraries, first released in 2007 [10], have deeply simplified the development
on GPUs. Recent papers provide speedups on bioinformatics applications
involving suffix trees [11, 12] or again Smith-Waterman comparisons [13] or
motif discovery [14]. See [15] for a review on bioinformatics on GPUs.

The current Nvidia architectures [10] offer two levels of parallelism. For
the coarse-grained level, several multiprocessors execute blocks of indepen-
dent computations. Each multiprocessor is then a kind of large SIMD de-
vice, able to process several different fine-grained threads at a given time.
All those threads are executing exactly the same instructions: if a divergence

inside a conditional expression occurs, the two branches are serialized. A
16 KB shared memory is available for the threads in a same block. This local
memory is very fast and should be used to maximize the efficiency.
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1.3. Contents

The next section provides some bioinformatics background for this study,
defining Position Weight Matrices (PWMs) and common PWM tasks. Sec-
tion 3 addresses the Scan and MultipleScan problems, for which a simple
parallelization is very efficient. Section 4 is related to the three problems
ScoreToPvalue, PvalueToScore and Compare. Those three prob-
lems share a common NP-hard sub-problem, ScoreDistribution, whose
current solutions are not suitable for parallelization. We propose a new al-
gorithm, BucketScoreDistribution, that is both precise and suitable
for parallelization. Section 5 reports our prototype implementation of the
three first algorithms with the CUDA libraries [10], and discuss our solution
compared to other softwares and other parallelizing techniques.

2. Background: Position Weight Matrices (PWMs)

2.1. Definitions

Given a finite alphabet Σ and a positive integer m, a PWM M is a matrix
with |Σ| rows and m columns (Figure 1). The coefficient2 M(p, x) gives the
score at position p for the letter x in Σ. The PWM defines a function from
Σm to R, that associates a score to each word u = u1u2 . . . um of Σm:

ScoreM(u) =
m

∑

p=1

M(p, up),

Let α be a score threshold. We say that M has an occurrence in a
text T at position k if ScoreM(Tk . . . Tk+m−1) ≥ α. Biologically, a successful
occurrence at a given position means that the TF corresponding to the TFBS
has a chance to bind the DNA at this position.

2.2. PWM Tasks

The most recurrent task is to predict binding sites in a long DNA se-
quence, that is to look for occurrences of a PWM given a text and a score
threshold. The two problems are:

• Scan. Given a matrix M with a score threshold α and a text T , find
all the occurrences of M in T .

2Here the element M(i,j) refers to column i and row j.
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• MultipleScan. Given a set of matrices M = {M1, . . . ,Mk} with
associated score thresholds α1, . . . , αk and a text T , find all the occur-
rences of each matrix of M in T .

These basic tasks are often involved into a more general analysis pipeline.
After the occurrences have been found, a filter is applied in order to refine
the results. For example, TFM-Explorer [16] requires to look for occur-
rences in all gene promoters regions (sequences of length 10000 bases that
are upstream the genes, that is a total of almost 300 megabases for the
human genome) for all matrices available in databases (about 800). Tools
which compute occurrences often output the statistical significance, called
the P-value, of each occurrence.

Genomes are modeled through a background model. The simpliest back-
ground model is when one considers identically and independently distributed
character symbols. We call this the iid background model (which is a Markov
Model of order 0). Extensions to Markov Models with higher orders are
possible, but most of the time the iid background model is used.

The P-value PvM(s) is defined as probability that the background model
achieves a score at least equal to s: it is the proportion of words u (randomly
chosen according to the observed letter frequencies) whose score is greater
than s. In the iid background model, the P-value is simply

PvM(s) =
| {u ∈ Σm | ScoreM(u) ≥ s} |

|Σ|m

but other background models can be used by weighting the words u with
their relative probability in the background model. Figure 2 illustrates the
definition.

A P-value close to 0 means that the fact the matrix achieves such a score
is an exceptional event. Biologically, this means that the probability that
the corresponding TF binds the DNA at this position is very high. On the
contrary, a P-value close to 1 means that the score is random.

To decide if a PWM occurs at a position in a text, the score threshold
has to be chosen. Once again, the P-value is used to determine the score
threshold. Generally, a P-value p is chosen independently from the matrix
and the background model: this P-value reflects the expected number of
occurrences that will be found in the text [17]. Common thresholds used
in real applications range from 10−7 to 10−3. Then the score threshold is
computed for a given matrix M : the goal is to find the score α such that
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Figure 2: Illustration of the P-value. Left: The distribution of the scores among all
possible words. Right: The corresponding P-value. Considering an iid background model,
the P-value p for the score s is the sum of the frequencies of all the scores greater than s:
That is the gray area on the left side.

PvM(α) = p. The two underlying problems, which are both NP-hard [18, 19],
are:

• ScoreToPvalue. Given a matrix M and a score s, compute the
P-value PvM(s).

• PvalueToScore. Given a matrix M and a P-value p, compute the
score s such that PvM(s) = p.

Another task that attracted interest in the past few years is the design
of a method to compare matrices. Column-to-column comparisons with cor-
relation coefficients have been proposed by several authors [20, 21, 22]. A
better method is to consider that two matrices are similar if their occurrences
are almost the same [23]. The formalized problem is:

• Compare. Given two matrices M and M ′ of same length with respec-
tive score thresholds α and α′, compute the number of words with a
score greater than α for M and than α′ for M ′.

Being able to compare matrices serves several goals. Firstly, it can be used
to detect if two matrices are similar. This is useful to remove redundancy
from databases or to test if a new matrix has a similar one in a database
[21, 22, 23]. Secondly, it can be used to improve the Scan problem (see
page 7).
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3. Looking for occurrences of matrices

Finding all the occurrences of a matrix M of length m in a text T of
length n may be done by a naive algorithm in O(mn) time: for each position
k of the text, ScoreM(Tk . . . Tk+m−1) is computed.

3.1. Optimizations for Scan

In 2000, [24] proposed an improvement: for a given word u ∈ Σm, the
computation of ScoreM(u) can be stopped as soon as

ScoreM [1..j](u1 . . . uj) < α − max M [j + 1..m]

with max M [j + 1..m] =
∑m

k=j+1 max M [k], where max M [k] is the maximal
score of the k-th column of the matrix and α the score threshold. Indeed,
when the above condition is met, the score of u cannot be greater than α.
This property does not change the O(mn) worst-time complexity, but gives
an average O(m′n) time complexity, where m′ is the average stop position.
We reference this algorithm as the Lookahead Strategy Algorithm (LSA for
short).

In 2006, [25] proposed to precompute an index for the Scan of one or sev-
eral matrices. The main idea was to split the matrix into sub-matrices called
slices of length ℓ (typically 7 or 8, depending on the available memory). For
each slice, the |Σ|ℓ scores for each word are computed and stored into a ta-
ble. The time complexity remains O(m′n), but with only O(m′n/ℓ) memory
accesses. When several matrices are scanned (MultipleScan), the table is
organized such that scores for the set of matrices are in the same memory
location, thus avoiding memory latencies. On a MultipleScan involving a
large set of matrices, [25] reported a practical 8× speedup compared to the
LSA. For a single matrix, no significant speedup is obtained. We call this
idea the Slices Strategy.

Lastly, similarities between matrices can lead to another improvement
when searching for occurrences: one can avoid to look for occurrences of
each matrix but only for occurrences of one representative matrix [21, 25].
Occurrences of the other matrices are then computed only for positions where
the representative matrix occurred.

3.2. Preprocessing and indexation

Ideas can also be borrowed from the algorithms searching a pattern in
a text, as with the classical Aho-Corasick [26], Knuth-Morris-Pratt (KMP)
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[27], or Boyer-Moore [28] algorithms and their variants. This is more difficult
than in the usual pattern matching case, as the combination of the scores
does not always allow large shifts in the matrices. With KMP, [29] obtains
a 2× – 3× improvement on the LSA method. With Aho-Corasick, [30, 31]
obtains better speedups. For such techniques, the size of the automaton
becomes problematic for large matrices.

Instead of indexing the matrices, another way to speedup the Scan prob-
lem is to preprocess the text: [32] uses suffix trees (speedup 2× – 5×), [33]
uses suffix arrays and [34] compress the text (speedup 2× – 5×). Some
parallel implementations of suffix trees have been reported [11], but those
parallelizations are especially difficult due to the non-locality of memory ac-
cesses and the structure of the tree.

In fact, those evolved data structures do not fit well with approximate

pattern matching. The PWM Scan problem is far more difficult, as it can
be seen as a generalized pattern matching with a complex error function.
Other solutions could use seed-based indexing, in particular spaced seeds
that handle better errors [35].

3.3. A simple parallelization of Scan

The parallelization of the Scan problem can be done easily by splitting
the different positions of the text across several threads (Figure 3). Each
block of threads works on a segment of the text (of size 2048), that is copied
into the local shared memory. At a given time, each thread computes the
score of one word. If some occurrences are found, their positions and scores
are stored into the local memory, and copied to the global memory at the
end of the block.

As already mentioned, Liefooghe et al. [25] obtained a good speedup by
preprocessing the matrices in an index. This Slices Strategy could here bring
a small improvement. The limiting factor for the size of the slices is the
amount of available memory. For a parallel architecture, the tables with the
slices can be stored in a local, quickly accessible memory, or a more distant
but large memory. As the speedup is barely O(ℓ) for a O(|Σ|ℓ) memory size,
on most architectures the solution with local memory will be faster. Section 5
details some results on the Nvidia GeForce 8 or GT200 architecture.

On the contrary, LSA and KMP-like improvements do not apply on
SIMD-like architectures such as GPU. Their efficiency is indeed based on
a variable number of iterations in the most inner loops. As even close words
do not always lead to the same number of iterations, different threads with
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Figure 3: Parallel GPU Scan. The sequence is divided into small segments that are
processed by several blocks. The scores at each position are distributed across several
threads : N threads compute the scores of words from position 1 to N , then all threads
are shifted by N characters onto the sequence.

different words will diverge most of the time, thus providing a very bad par-
allel performance.

3.4. Parallelization of MultipleScan

Real instances of the Scan problem require to compute the occurrences
of a set of matrices, as example to look for all known matrices in a newly
sequenced genome.

In a parallel implementation of the brute-force algorithm, the best way
to deal with several matrices is to put the loop over the matrices as deep as
possible to avoid memory latencies due to sequence copy. This solution is
far better than repeating the Scan over the matrices. The straightforward
strategy is thus to copy several matrices once in the shared memory before
the loop over the matrices.

In the MultipleScan problem, the Slices Strategy is again better. We
saw that the limiting factor of this strategy is the memory latencies. However,
in the case of several matrices, the index is common: for each slice, only one
memory access is sufficient to get the values for all matrices. It remains that
the slices could not be very large and the number of matrices must be small
if one wants to store the index in shared memory. In this case, the set of
matrices is divided into smaller ones to fit the constraints imposed by the
available memory. On the other side, it is also possible to store a larger index
in global memory. We will discuss the two approaches in the Section 5.2.
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4. Computing score threshold, P-value and comparing matrices

4.1. Methods for score threshold and P-value computation

The computation of the P-value (ScoreToPvalue) can be done using
probability generating functions or dynamic programming [36, 17, 37, 18, 19].
In both cases, the time complexity is O(S), where S is the number of possible
different scores. Let QM(s) be the probability to achieve exactly the score s.
For a given score s′, the P-value is obtained with the equation:

PvM(s′) =
∑

s≥s′

QM(s)

Computing ScoreToPvalue (that is the score associated to a given P-
value) can be done by adding the values of QM(s′) from the maximal score
until the desired P-value is obtained.

Let M [1..i], 0 ≤ i ≤ n, denote the matrix consisting of the columns 1
to i of M . The matrix M [1..0] is the empty matrix. In a iid background
model, the QM [1..i] score distribution can be expressed from the QM [1..i−1]

score distribution by the following dynamic programming algorithm, where
p(x) is the probability of the letter x in the background model [17]:

QM [1..0](s) =

{

1 if s = 0
0 otherwise

QM [1..i](s) =
∑

x∈Σ

QM [1..i−1](s − M(i, x)) × p(x)

If the matrix has non-negative integer coefficient values, then S, the number
of possible different scores, is bounded by

∑m
i=1 max M [i]. Some polynomial

algorithms use these conditions. However, PWMs are built from log-ratios
and do not fulfill this constraint: S can be as large as |Σ|m, and thus the
worst-case time complexity is O(|Σ|m). Some methods [33, 19, 23] round the
coefficients of the matrix to maintain S low. Even if those methods claim to
compute exact P-values, this rounding induces an error on the P-value and
on the score threshold [19]. As an example, the implementation of Mosta

[23] rounds each column of the matrix to the nearest multiple of ε = 0.05,
and thus the total score has an error of at most mε.

10



4.2. A new algorithm to compute the score distribution

We propose to compute the score distribution by splitting the matrix M
in N slices M1, M2, . . . MN , and by combining the score distributions of the
slices (Figure 4):

QM(s) =
∑

s1+...+sN=s

(QM1
(s1) × . . . × QMN

(sN))

In the following algorithm, we use tables with B elements called buckets.
For any slice Mi, the scores are in the range [min Mi, max Mi], and we store
this distribution in a table with B buckets, thus rounding down the scores to
the nearest multiple of ∆Mi

, where ∆Mi
= (max Mi−min Mi)/B. We denote

by s the discretized score of s, SM the set of all possible scores the matrix
M can achieve and SM the set of all possible discretized scores the matrix
M can achieve.

Algorithm BucketScoreDistribution

• For each slice Mi, compute a score distribution QMi
by enumeration of

4m/N words, rounding the scores of each word. The result is stored in
a table QMi

with B entries. For a score s in SMi
,

QMi
[s] =

∑

s′ ∈ SMi

s′ = s

QMi
(s′) (2)

Note that we round the score of each word, and not of each column,
thus keeping the error low.

• A score distribution for M is then computed by recursively merging the
score distributions of the N slices (Figure 4). For a score s in SM1⊕2

,

QM1⊕2
[s] =

∑

s1 ∈ SM1

s2 ∈ SM2

s1 + s2 = s

QM1
[s1] × QM2

[s2]

All the tables have B buckets. One merge can be done in O(B2) time,
for a total time of at most O(NB2). The merge can also be computed
in O(NB log B) time using rapid convolution algorithms [38], but here
this step is not a limiting factor.
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Assuming that m is large enough, the time complexity of BucketScore-

Distribution is O(N4m/N), enabling the study of matrices N times larger
than the previous methods.

maximal

3∆M

2∆M

∆M

M2

M = M1⊕2⊕3⊕4

M1⊕2 M3⊕4

M3M1 M4
error

Figure 4: Algorithm BucketScoreDistribution. The matrix is split in several sub-
matrices (4 here). The score distributions are computed for them with an error bounded
by ∆M . Then they are combined to obtain the overall score distribution.

Once QM1⊕2⊕···⊕N
is known, the final step of computation, in O(B) time,

depends on the problem. For ScoreToPvalue, we obtain an approximate
P-value, PvM [s], defined for a score s in SM by

PvM [s] =
∑

s′ ∈ SM

s′ ≥ s

QM [s′]

For PvalueToScore, the score threshold s in SM is the biggest one such
that

p ≤
∑

s′ ∈ SM

s′ ≥ s

QM [s′]

4.3. Precision evaluation

We now bound the error induced by the score discretization and the error
induced by the convolution to show that they are similar to the errors of
other algorithms. At the first step, the maximum error when discretizing
the scores for a slice Mi is ∆Mi

. When combining two slices Mi and Mj into
Mi⊕j, the equation (2) is not more valid: now the maximum total error is

∆Mi
+ ∆Mj

+ ∆Mi⊕j

12



where ∆Mi⊕j
is the maximum error when discretizing the result. As the

combined scores are in the range [min Mi + min Mj, max Mi + max Mj], we
have ∆Mi⊕j

= ∆Mi
+ ∆Mj

. The maximum total error is thus 2∆Mi⊕j
. With

N slices, the maximal total error on M is

⌈1 + log N⌉
∑

∆Mi
= ⌈1 + log N⌉∆M

with ∆M = (max M − min M)/B. This O((log N)/B) maximal error is on
the scores. The actual error on the number of words depends on s and
on the score distribution of M : it is at most the number of words in the
⌈1 + log N⌉ buckets (gray area on the Figure 5). For the PvalueToScore

and the ScoreToPvalue problems, the error on the P-value is thus

PvM [ s ] ≤ PvM(s) ≤ PvM [ s + ⌈1 + log N⌉∆M ]

.

words

3∆M
error on score

error on

Figure 5: Error on P-value when computing the score distribution using BucketScore-

Distribution. The curve shows the actual score distribution and the rectangles the one
computed (scores on the x-axis, and the number of words achieving a score greater than
a given one on the y-axis). The error when computing the score threshold is bounded by
3∆M and the error on the number of words achieving a score greater than the threshold
is bounded by the sum of heights of the grey rectangles.

4.4. Parallelization

This new algorithm is perfectly suited for parallelization, as the word
enumerations can be split across different independent computations. In our
GPU prototype implementation, the enumeration of 4m/N words is split on
4β blocks with 4τ threads by block, leaving 4µ words to enumerate within
each thread, with µ = m/N − (β + τ) (Figure 6, on the left). At a given

13



time, all the threads of a same block are enumerating the same µ leftmost
characters. From one word to another, the score is evaluated only on the
modified positions, thus bringing no divergence between the threads of a
same block. Then each thread increments one of the B buckets (Figure 6,
on the right). As several threads can increment the same bucket at a given
time, atomic instructions or similar mechanisms must be used there. The
final merging operations, in O(NB2) time, can be performed on the host.

B

τµ

N slices

M

1

...

min Mi

... ......

4τ threads per block

block 1 block 4βblock 2

max Miβ

4m/N = 4µ × 4β × 4τ

slice Mi, length m/N

Figure 6: Parallel GPU BucketScoreDistribution. Each thread enumerates 4µ words
and there are 4β × 4τ threads for computing the score distribution of a given slice of the
matrix.

4.5. Similarity between two matrices

The computation of similarity between two matrices is very similar. Given
two matrices3 M and M ′ of length m with their respective score thresholds
α and β, the goal is to measure TPM ′

M , the number of true positive words
u ∈ Σm such that ScoreM(u) ≥ α and ScoreM ′(u) ≥ β. This number can
be computed with the following equation:

TPM ′

M (α, β) =
∑

s≥α,s′≥β

QM ′

M (s, s′)

3If the two matrices have different lengths m and m′, one has to choose an alignment,
i.e. a shift between the two matrices. Then it is sufficient to pad the two matrices with
zeros to obtain two matrices of same length. When one wants to compute such a similarity
score, one has to compute TP for all possible m + m′ shifts.
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where QM ′

M (s, s′) is now the probability to achieve exactly the score s with M
and the score s′ with M ′. False positives, true negatives and false negatives
are computed in a similar way. The score distribution is now expressed by
the following recurrence [25]:

Q
M ′[1..0]
M [1..0] (s, s

′) =

{

1 if s = 0 or s′ = 0
0 otherwise

Q
M ′[1..i]
M [1..i] (s, s

′) =
∑

x∈Σ

Q
M ′[1..i−1]
M [1..i−1] (s − M(i, x), s′ − M ′(i, x)) × p(x)

The same BucketScoreDistribution algorithm applies, but now the
B buckets induce a maximal O((log N)/

√
B) error on words.

5. Results and discussion

5.1. Testing environment

We benchmarked the four Scan, MultipleScan, ScoreToPvalue

and PvalueToScore algorithms with the CUDA 2.3 libraries from Nvidia
[10]. The sources or our implementation are available from our web site4.
Two GPU generations were tested: the Nvidia GeForce 8800 (GeForce 8
architecture, 16 × 8 cores, 1.3 GHz, 768 MB RAM), and the Nvidia GTX
280/285 (GT200 architecture, 30 × 8 cores, 1.3/1.4 GHz, 1 GB RAM).

The host systems and the CPUs are the following: CPU 1: Intel Core
2 Duo 6600 (2.40 GHz) with 3 GB RAM and 4 MB cache, CPU 2: Xeon
W3520 (2.66 GHz) with 1 GB RAM and 8 MB cache. These CPU have
several cores, but only one core was used in the benchmarks. The compiler
was Nvidia nvcc used with the -O3 option.

Benchmarks were done on real data (Table 1 and Figure 12) and on
random data (Figures 7 to 11). We found no significant difference in terms
of speedups between those datasets.

4http://bioinfo.lifl.fr/TFM/TFM-CUDA
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5.2. Scan and MultipleScan

For the parallel Scan, the target sequence was always in the shared
memory, enabling different threads in the same block to work on the same
data (see Figure 3). Table 1 details the results on a human chromosome
with 225 × 106 nucleotides. Using the GPU implies an overhead of 0.27s.
This overhead is mostly due to the transfer of the sequence data to the
GPU (even large collections of matrices are small compared to megabytes of
sequence data). The overhead is negligible starting with matrices of length
30, or as soon as a collection of matrices is scanned, as there is in this case
only one transfer of the sequence.

matrix length init + I/O kernel total

JASPAR 0075 5 0.27 0.27 0.54
JASPAR 0023 10 0.27 0.34 0.61
JASPAR 0106 20 0.27 0.48 0.75

random 40 0.27 2.04 2.31
random 80 0.27 2.88 3.15

Table 1: Results for parallel Scan on GeForce 8800, on the chromosome 1 of the human
genome (225 · 106 bases, release hg18). Times are in seconds.

Figures 7, 8 and 9 detail large-scale benchmarks, comparing the times
of the GPU implementations to a 1-thread CPU implementation. For small
sequences (Figures 7), no significant speedup is achieved. The best speedups,
between 15× and 20×, are obtained when the kernels perform a large number
of computations, either on long sequences, from 30 · 109 positions computed
(Figure 8), or on MultipleScan, when several matrices are simultaneously
searched (Figure 9).

Those speedups should be compared to a maximum 8× speedup using
128-bit SIMD instructions using a 16-bit precision, and to the 2× to 8×
speedups of the methods cited on page 7. We also provide comparisons with
Moods [30, 31], with default settings. As expected, Moods is a very good
solution for small matrices, but does not scale to larger matrices.

The Slices Strategy was tested with several slices length, and, as a con-
sequence, with different limits in the number of matrices per slices. To fit in
the shared memory, one can use all 123 matrices of the JASPAR collection
with no slices (ℓ = 1), or sets of 4 matrices sliced with ℓ = 2. In the global
memory, sets of 50 matrices can be stored with slices of length ℓ = 7. In
all cases, the search is done sequentially over different sets. The results are
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Figure 7: Results for Scan (random matrices) on a small random sequence (length 5 ·106).
No significant speedup is achieved.

5x

10x

15x

20x

25x

 0  10  20  30  40  50  60  70  80  90

S
p
e
e
d
u
p

Matrix length

SCAN, sequence of 500,000,000 nucleotides

CPU 1 (2.4 GHz)
GeForce 8800

5x

10x

15x

20x

25x

 0  10  20  30  40  50  60  70  80  90

S
p
e
e
d
u
p

Matrix length

SCAN, sequence of 500,000,000 nucleotides

CPU 2 (2.6 GHz)
GTX 285
MOODS

Figure 8: Results for Scan (random matrices) on a long random sequence (length 500·106).
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Figure 9: Results for MultipleScan (50 random matrices) on a small random sequence
(length 5 · 106).
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Figure 10: Results for MultipleScan on 123 JASPAR matrices (random sequences).
Different strategies are used to store the index: no slices, slices of length ℓ = 2 in shared
memory, and slices of length ℓ = 7 in global memory.

presented Figure 10. The algorithmic gain of using the slices is visible while
one works into the shared memory.

As expected, the strategies with some divergence in the threads (LSA and
KMP) do not provide any speedup (results not shown): the naive algorithm
is here the more efficient algorithm to parallelize.

5.3. Algorithms based on BucketScoreDistribution

Implementation and speedups. We required that the bucket table fit in the
shared memory, leading to B = 3600 32-bit buckets for one matrix. Figure 11
details the results for PvalueToScore with N = 4. The computation times
are the same for the ScoreToPvalue problem. Due to some overheads
in initializations and in memory transfers between the host and the GPU
(results not shown, similar to Table 1), a significant speedup starts only from
a slice size of ℓ = 48, that is from the enumeration of 412 words. Because of
its increased number of cores, the GTX 285 gives a 80% increased speedup
on GeForce 8800. For ℓ = 65, the CPU takes 1426 seconds: the speedup is
3.6× for the GeForce 8800 and 9.8× for the GTX 285.

The main limitation in those speedups is the bucket incrementation:
most of the time, several threads are incrementing the same bucket. On
the GeForce 8800, this incrementation is serialized between the threads of a
same block at the end of each score computation. An improved algorithm
could have here better results. On the GTX 280 and 285, we use atomic
instructions to increment the buckets in shared memory. This gives an ad-
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ditional 8× speedup compared to the serialized incrementation. For ℓ = 65,
the total speedup is thus 77× on the GTX 280 against the CPU 1.
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Figure 11: Results for PvalueToScore, with N = 4 slices on random matrices (other
N give similar speedups).

Precision. For algorithms based on BucketScoreDistribution, we do
not report times with other methods. Indeed, beside the parallelization,
the times mainly depends on N . However, we must state what precision is
achieved.

Figure 12 details the errors on P-value when computing PvalueToScore

for all matrices of JASPAR with length ≥ 10. We accept a relative error of
0.1, suitable for the usage of PWMs in computational biology (for a P-value
of 10−5, the error will be at most 10−6). Here 83 out of 101 matrices (of
which all matrices of length ≥ 13) fulfill this precision for a P-value of 10−5.
The relative error decreases when the P-value is higher and when the matrix
is longer. In both cases, this is because the position of the score s is more
“on the left” relative to the shape of the score distribution.

As an example, let us take the JASPAR matrix MA0066 modeling an
hormone nuclear receptor. This matrix has a length 20, and its total raw log
score ranges from -52.052 to 22.385. With N = 2 and B = 3600, the maximal
error made by BucketScoreDistribution is 0.042. As a comparison, the
maximal error done by Mosta on the same matrix is 20×ε = 20×0.05 = 1.

Our algorithm runs in less than 2 seconds, whereas Mosta is almost
immediate. However, Mosta does not scale to better precisions: setting ε
to lower values leads to longer running time, and Mosta does not end when
setting ε to 0.042/20.
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Other parallelization techniques. On any multi-core architecture, the Buck-

etScoreDistribution 4m/N enumerations can be split among several cores.
Even on general purpose CPUs, SIMD techniques can benefit from Buck-

etScoreDistribution, as only one common memory access is needed be-
tween all the 4τ “threads” that process the same leftmost characters at a
given iteration (see page 13). Nevertheless, at 16-bit precision, the maxi-
mum theoretical speedup using SSE 128-bit SIMD extensions is 8×, giving a
maximum 32× speedup on a quad-core CPU. These speedups remain beyond
the 77× speedup achieved on GTX 285.
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Figure 12: Relative error on P-value when computing PvalueToScore with N ∈ [2, 4]
for all 101 matrices of JASPAR of length ≥ 10.

5.4. Pipeline integration

Pipelines are common in bioinformatics. More specifically, projects such
as BioPerl [39], Biopython [40] or BioJava [41] help the linking of several
tools, handling different input and output formats through methods in a
unified framework.

Through the biomanycores.org project [42], we developed interfaces for
TFM-CUDA to the three frameworks cited above. With such an integration,
performances are decreasing. We still observe a speedup of around 6× on
large Scan queries (a few seconds) through a Biopython interface, demon-
strating that such developments may offer good performance in real cases.
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6. Conclusion and perspectives

We proposed parallel Scan and MultipleScan of one or several Po-
sition Weight Matrices (PWMs) in a text, and a new algorithm, Buck-

etScoreDistribution, that computes the score distribution of a PWM
and that resolves the ScoreToPvalue, PvalueToScore and Compare

problems. The error on P-value induced by the BucketScoreDistribu-

tion algorithm for the ScoreToPvalue and PvalueToScore problems
is not more than O((log N)/B), where B is the number of buckets used to
store the distributions. The BucketScoreDistribution can be adapted
to any parallel architecture, as it involves large blocks of independent com-
putations. On a GPU, threads simultaneously enumerate neighbor words
without divergence. The only bottleneck was in the buckets incrementation.
The best speedup is here obtained through the use of atomic instructions on
the GT200 architecture.

Further work could be done on benchmarking the Compare problem
on real data to see if the O((log N)/

√
B) error is suitable for clustering

applications. Other perspectives include testing and improving the Buck-

etScoreDistribution algorithm on other many-core architectures, in par-
ticular through the new OpenCL standard [43].
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