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Löwdin suggested in September 1961 that time was ripe for an attack on the dispersion energy contribution to the cohesive energy of molecular solids, in particular rare gas crystals, and assigned the task to JL who had just returned from a year with the Quantum Theory Project. The treatment of fluctuating dipole fields as the source of long range interactions was most readily tackled in terms of the concepts of propagators and associated elements of the field theoretical tool box. Decent results were found with moderately elaborate calculations [2].

The present authors were reunited at Uppsala in 1963 and were inspired by John Hubbard's paper on electron correlation in narrow energy bands [3] to apply his Green function decoupling procedure to the generalized Hückel model introduced by Pariser and Parr and by Pople [4]. Our results were exciting and were gracefully communicated by Coulson [5]. Additional results seemed to corroborate that we were onto to something useful [6].

Methods from field theory were not generally embraced in the molecular electronic structure community. Slater was particularly skeptical towards the techniques of second quantization that had become "stylish" [7] and Löwdin was concerned about the N-representability issue. There were efforts under way at Cambridge to further the use of second quantization, somewhat ironically published in a tribute to Slater [8].

McLachlan spearheaded the applications in molecular orbital theory [9] and his paper with Ball [10] remains a basic reference for time-dependent studies of electronic properties. We were not alone and continued our exploration of the options offered by second quantization, propagators and novel approximation methods. Both situations operate with a finite basis of spin orbitals U:{ u 1 (x), u 2 (x), …u M (x)} and the associated power set P(U), which has a one-to-one correspondence to the set of all Slater determinants that can be formed from U. The empty set is included i P(U) and represents the state without electrons, often called the vacuum. There are 2 M elements in the power set and they are either denoted by the list of the particular spin orbitals for a given element or by the occupation number of the individual basis orbitals, a M-digit binary number where each position corresponds to a spin orbital in U. Elements of the power set P(U) span a subspace of the full Fock space that can accommodate an arbitrary number of electrons.

Transformations or mappings between elements of the power set are composed of elementary creation (addition, a r † ) or annihilation (removal, a r ) operators for individual spin orbitals. A consistent algebra requires the anticommutation relations a r a s + a s a r = 0; a r † a s † + a s † a r † = 0; a r a s † + a s † a r = δ rs + S rs .

Overlap integrals S occur for most primitive bases and may be removed by linear transformations. General many electron operators occur as linear combinations of products, the hamiltonian, as an example, is H = Σ rs a r † h rs a s + ½Σ rr'ss' (rs|r's') a r † a r' † a s' a s .

Mulliken's notation is used for the Coulomb interaction between spin orbital densities 04/12/10 3 u r * (x)u s (x) and u r' * (x')u s' (x'). The formalism exposes the structural similarity between methods where the integrals, h rs and (rs|r's'), are derived from specified spin orbitals and proper integrations and methods where they are inferred from other sources. The evaluation of a matrix representation of the hamiltonian from the elements of the power set requires the standard rules as put forth by Löwdin and others [11].

The second quantization algebra offers an approach to avoid the explicit and a mean field theory obtains when the operator product a r' † a s' is replaced by its expectation value, the reduced density matrix γ s'r' , in the second form. Self-consistent fields It was shown above that a mean field model for an electronic system results from a replacement, in the operator equation of motion, of an operator product with its mean value: γ sr = 〈 a r † a s 〉. A second step is then to relate the expectation value to the field.

Hartree introduced the criterium of self-consistency and this remains in electronic structure theory as the Hartree-Fock scheme when proper exchange is accounted for. The Fock matrix with elements f rs = h rs + Σ r's' {(rs|r's')-(rs'|r's)}γ s'r' is hermitean and its eigenvalues determine the canonical spin orbitals. These are used with the build up principle to characterize the desired state. Neither spatial nor spin symmetry is explicitly invoked and the general solution is rarely desirable. It is self-consistent to assume spin invariance in a system with an even number of electrons and it is also consistent to assume spherical symmetry for an atomic or ionic system with "magic" number of electrons. Other cases will result in non-consistent situations. occupations. A proper ensemble was readily described in second quantization terms. Thus it holds that averages 〈 a r † a s 〉 = q r δ rs imply the ensemble operator

Γ = Π r [(1 -q r )a r a r † + q r a r † a r ]; Tr Γ = 1.
The standard Hartree-Fock state has occupation numbers q r either zero or one. The ensemble gives an average energy as a function of the occupation numbers, E =Tr ΓH = Σ r h rr q r +½Σ rs [ (rr|ss) -(rs|sr) ] q r q s, and optimization of the spin orbitals results in Fock equations with fractional occupation numbers, is so desired. Derivatives of the energy, ε r = ∂E/∂q r , are the orbital energies and eigenvalues of the Fock matrix. The ensemble operator is not an eigenoperator of the number operator N op = Σ r a r † a r and the dispersion comes to

〈 [ N op -< N op >] 2 〉 = Π r ( 1 -q r ) q r
showing that the ensemble has contributing of varying electron number, a grand canonical ensemble. Such a construct serves to define a suitable set of basis spin orbitals for situations when spatial and spin symmetry features are desirable. Kaijser demonstrated the usefulness of such a basis for the determination of transition moments and life times for the manifold of low lying states of the Ti II ion [13]. Viinikka [14] also applied the grand canonical ensemble construct to define a basis that performed well in the study of the multiplet structure of core hole states in transition metal ions. Recent developments in basis set design have found the ensemble average with fractional occupation numbers to have advantages [15].

The grand canonical as well as the canonical ensemble construct were used by Poul Jørgensen [16], one of many postdoctoral associates that have been exchanged 04/12/10 6 between the JL and YÖ groups over the years. He compared the detailsof the theoretical basis with that of the Slater construction of the Fock operator. He also applied [17] the grand canonical ensemble construction for a time-dependent Hartree-Fock treatment of the triplet-triplet absorption spectra of alternant hydrocarbons.

Detailed calculations on transition metals [18] showed that there was no indication that the orbital energy of the 4s-level should be below the 3d-level. It was interesting to note that a simple function could represent the dependence on the occupation number of the orbital energy: ε(q) = ε(0)[ 1 -q/q c ] 3/2 . The maximum occupation, q c , gives a slightly negative ion. This form can be compared to Jørgensen's differential ionization concept [19], Mulliken's electronegativity [20], and the concept of absolute hardness [21].

Calculations with fractional occupation numbers were also used to approximate excitation energies. Slater [22] showed that for an energy expression that is a continuous function of occupation numbers one may attempt to calculate energy differences from Taylor series expansions:

E(…q r -1…q s + 1…) -E(…q r …q s …) = ∂E/∂q s -∂E/∂q r + … while observing that the second order terms are eliminated when the derivatives are evaluated at the midpoint, ( q r -½, q s + ½), termed the transition state. Applications confirmed that this concept offered a viable alternative to the determination of separate self-consistent solutions to the two states.

Electron propagator approximations

Hubbard's model for narrow energy bands in solids [3] 

: 〈 [ A j , A k † ] + 〉= δ jk ,〈 [ [ A j , H ], A k † ] + 〉= ε j δ jk } is
defined and one infers that a useful approximation for the propagators follows:

« A j ; A k † » E = δ jk / ( E -ε j ).
Further analysis of consistency requires that the expectation values that are used to define M and K are derived from the propagators, i. e. by a contour integral in the complex Eplane:

〈 A k † A j 〉 = (2πi) -1 ∫ C dE « A j ; A k † » E
Fulfillment of these conditions can rarely be realized beyond the Hartree-Fock level and it is necessary to exercise caution.

Numerous calculations have demonstrated that a moderate extension of the operator manifold provides excellent interpretations of photoelectron spectra, including shake-up and shake-off processes, albeit not fully self-consistent. program suite called GREENFUNC, which survived in bits and pieces for over a decade in electronic structure software around the world. Early publications [24,25,26] set the standard and were followed by many others from QTP. This development in the propagator effort is covered in another publication in this issue of Molecular Physics.

Polarization propagator approximations

Lindhard [27] was concerned with the stoppage of particles in matter and derived the response of an electron gas to an external electric field by means of a self-consistent determination of the induced effects in the gas. His wave length and frequency dependent dielectric function exhibited the collective plasmon excitations as well as single particle features. This was the first detailed application of the linearized time-dependent Hartree method and remains a landmark in electronic structure theory. Dirac had delineated the equation of motion for the reduced density matrix in the time domain [28] and applications to non-homogeneous systems [10,29] appeared as complements to the elaborate diagrammatic and formal perturbation theory expansions that were the rule in many-electron theory during quite a few years.

Knowledge of response functions such as generalized polarizabilities and dielectric functions offers a route to correlation features through the fluctuationdissipation theorem. Thus Nozières and Pines [30] expressed the Coulomb interaction energy in the electron gas through integrals over the dielectric function. Dispersion energy contributions to the cohesion in crystals could similarly be obtained by accommodating periodicity and exchange [2].

Much emphasis has been centered on the possibility of the direct determination of 04/12/10 9 

Λ =〈 [ A, A † ] 〉 and Ω =〈 [ [ A, H ], A † ] 〉are such that Ω is a non-negative
hermitian form when the ground state/ensemble is stable towards distortions and an energy minimum. The proper diagonal expressions for Λ and Ω offer pairs of adjoint operators, A † and A, that can be normalized so that

1 =〈 [ [ A, H ], A † ] 〉=〈 [ [ A † , H ], A ] 〉; λ =〈 [ A, A † ] 〉> 0.
Eigenvalues λ are proportional to wave lengths of excitations created by A † and the associated propagator is « A; A † » E = λ 2 /( E λ -1 ). The λ spectrum is bounded from above by the inverse of the first excitation energy of the system but approximations in the matrix evaluations causes the bound to be approximate as well.

An attractive feature of the random phase type approximations is that transition moments and oscillator strengths can be calculated in either the dipole length or the dipole velocity form if the spin orbital basis is such that the length operator D = Σ d rs a r † a s and the velocity operator V = Σ v rs a r † a s are related by the commutation relation

iV = [ D, H ].
This holds for a complete basis and may be enforced in the Pariser-Parr-Pople model [31] and, occasionally, in general cases. ] ≠ 0, which has consequences for the choice of reference system orientation. Transition moments involving magnetic fields need operator representations that are consistent with translational symmetry [32].

Consistency implies that average values are determined from the propagators, vide infra, and can be achieved in simple situations [33]. The related quest for a explicit ground state representative resulted in the conclusion that the standard random phase approximation is consistent with an antisymmetrized geminal power state [34]. Further discussion of this form is presented in an another contribution to this issue.

Reflexions by old men

Momentous occurrences in the April quarter of 1968, among them the murders of Martin Luther King Jr. and Robert F. Kennedy, interspersed a very active scientific collaboration of the present authors at the Quantum Theory Project. We started a project that was to go on for a few years and resulted in "the little yellow book" [35] and were much concerned with the matters of fractional occupation numbers in variants of self-consistent theory.

Our paper on the underpinnings of the Pariser-Parr-Pople model [12] exposed the problem of total energy calculations from different but equivalent expressions. These difficulties arise from truncations in operator spaces and the lack of a proper variational functional beyond the Hartree-Fock approximation. Nozières's textbook [36] Density functional theory relies on the concept of a universal relation between the electron density and the total electronic energy. The precise functional has as yet eluded the practioners but quite satisfactory approaches are in use. This will also be dealt with by others in this issue. Time-dependent extensions lead to equations that are formally equivalent with the ones discussed above under the polarization propagator heading.

Several recent applications seem to deviate from the proper path by mixing elements such as exchange with the pure density functional formalism. The present authors perceive that electronic structure theory has reached a plateau where the next mountain range requires new ideas, concepts, and mathematics. The discretization of three-space by Gaussian basis sets was initiated by Boys and Preuss more than 50 years ago and the effect has been tremendous. We ask ourselves, however, about the essential information content in huge integral arrays and associated numerical processes that demand computational efforts that increase as some large power of the number of atoms in our systems. Most of the information is provided by very modest considerations and it is the small, albeit important, deviation that has necessitated the very large scale machinery. Löwdin maintained that theoretical advances could be as spectacular as the hardware improvement, it remains to be seen.

Among the formal tools that might have potential for substantial changes in the approach to electronic structure theory is the so called adiabatic connection. 

E(ξ) = 〈 H(ξ) 〉; dE(ξ)/d ξ = 〈 dH(ξ)/d ξ 〉.
This holds for eigenstates of the hamiltonian and for variationally stable states and is known as the Hellmann-Feynman theorem [37]. The adiabatic concept allows the integration to give

E(ξ 1 ) -E(ξ 0 ) = ∫d ξ 〈 dH(ξ)/d ξ 〉
and this is useful when a suitable expression is available for the integrand. This has been realized in Hückel theory where formal charges and bond orders serve as derivatives [38].

Changes in atomic parameters or bonds could then be estimated and indications be drawn about reactivities, induced spin densities and similar properties.

Both Hellmann and Feynman were concerned with the forces between atoms and explored the energy variation with changes in nuclear positions within the Born-Oppenheimer picture. Their results are accordingly relevant for considerations based on the virial theorem. Slater [39] deduced that the kinetic energy in the ground state of a diatomic molecule at internuclear distance R equals T = -E(R) -R∂E(R)/∂R while the potential energy is V =2E(R) + R∂E(R)/∂R. The first relation expresses the total energy in terms of an integral over the expectation value os a one-electron operator that can be evaluated from the electron propagator. Succes of such a procedure depends on the consistency of the approximation of the propagator.

So is also the case when the fluctuation-dissipation theorem is applied to the evaluation of the electron interaction energy in perturbation theory. Löwdin suggested in September 1961 that time was ripe for an attack on the dispersion energy contribution to the cohesive energy of molecular solids, in particular rare gas crystals, and assigned the task to JL who had just returned from a year with the Quantum Theory Project. The treatment of fluctuating dipole fields as the source of long range interactions was most readily tackled in terms of the concepts of propagators and associated elements of the field theoretical tool box. Decent results were found with moderately elaborate calculations [2].

The present authors were reunited at Uppsala in 1963 and were inspired by John Hubbard's paper on electron correlation in narrow energy bands [3] to apply his Green function decoupling procedure to the generalized Hückel model introduced by Pariser and Parr and by Pople [4]. Our results were exciting and were gracefully communicated by Coulson [5]. Additional results seemed to corroborate that we were on to something useful [6].

Methods from field theory were not generally embraced in the molecular electronic structure community. Slater was particularly skeptical towards the techniques of second quantization that had become "stylish" [7] and Löwdin was concerned about the N-representability issue. There were efforts under way at Cambridge to further the use of second quantization, somewhat ironically published in a tribute to Slater [8].

McLachlan spearheaded the applications in molecular orbital theory [9] and his paper with Ball [10] remains a basic reference for time-dependent studies of electronic properties. We were not alone and continued our exploration of the options offered by second quantization, propagators and novel approximation methods. Transformations or mappings between elements of the power set are composed of elementary creation (addition, a r † ) or annihilation (removal, a r ) operators for individual spin orbitals. A consistent algebra requires the anticommutation relations a r a s + a s a r = 0; a r † a s † + a s † a r † = 0; a r a s † + a s † a r = δ rs + S rs .

Overlap integrals S occur for most primitive bases and may be removed by linear transformations. General many electron operators occur as linear combinations of products, the hamiltonian, as an example, is H = Σ rs a r † h rs a s + ½Σ rr'ss' (rs|r's') a r † a r' † a s' a s .

Mulliken's notation is used for the Coulomb interaction between spin orbital densities and a mean field theory obtains when the operator product a r' † a s' is replaced by its expectation value, the reduced density matrix γ s'r' , in the second form. The essential Σ-Π separation of the Pariser-Parr-Pople model appears rather directly in the second quantization formulation [12] and details the role of the Σframework as a dielectric medium which screens the interaction within the Π-system. A link is also established to the form of a Heisenberg spin-hamiltonian in a weak coupling limit.

Self-consistent fields

It was shown above that a mean field model for an electronic system results from a replacement, in the operator equation of motion, of an operator product with its mean value: γ sr =〈 a r † a s 〉. A second step is then to relate the expectation value to the field.

Hartree introduced the criterion of self-consistency and this remains in electronic structure theory as the Hartree-Fock scheme when proper exchange is accounted for. The Fock matrix with elements f rs = h rs + Σ r's' {(rs|r's')-(rs'|r's)}γ s'r' is hermitean and its eigenvalues determine the canonical spin orbitals. These are used with the build up principle to characterize the desired state. Neither spatial nor spin symmetry is explicitly invoked and the general solution is rarely desirable. It is self-consistent to assume spin invariance in a system with an even number of electrons and it is also consistent to assume spherical symmetry for an atomic or ionic system with "magic" number of electrons. Other cases will result in non-consistent situations.

Slater chose to evaluate the reduced density matrix elements from an ensemble average based on an open shell configuration with a fixed number of electrons and obtained a Fock matrix with spin orbitals appropriate for a central field. The open shell spin orbitals were useful in further applications in the solid state but could not be related to ionization processes. Applications to transition metal atoms uncovered another awkwardness. A starting central field would indicate that the 4s-shell was filled and the least bound spin orbitals were the 3d's. The field from this occupation would lead to the opposite and a consistent solution was not obtained. A remedial approach introduced fractional occupations and acceptable solutions. Slater's derivation was not based on an ensemble average but came directly from an expression that is valid only for integer occupations. A proper ensemble was readily described in second quantization terms.

Thus it holds that averages 〈 a r † a s 〉 = q r δ rs imply the ensemble operator 

Γ = Π r [(1 -q r )a r a r † + q r a r † a r ]; Tr Γ = 1.
The standard Hartree-Fock state has occupation numbers q r either zero or one. The ensemble gives an average energy as a function of the occupation numbers, E =Tr ΓH = Σ r h rr q r +½Σ rs [ (rr|ss) -(rs|sr) ] q r q s, and optimization of the spin orbitals results in Fock equations with fractional occupation numbers, if so desired. Derivatives of the energy, ε r = ∂E/∂q r , are the orbital energies and eigenvalues of the Fock matrix. The ensemble operator is not an eigenoperator of the number operator N op = Σ r a r † a r and the dispersion comes to

〈 [ N op -< N op >] 2 〉 = Π r ( 1 -q r ) q r
showing that the ensemble has contributions of varying electron number, a grand canonical ensemble. Such a construct serves to define a suitable set of basis spin orbitals for situations when spatial and spin symmetry features are desirable. Kaijser demonstrated the usefulness of such a basis for the determination of transition moments and life times for the manifold of low lying states of the Ti II ion [13]. Viinikka [14] also applied the grand canonical ensemble construct to define a basis that performed well in the study of the multiplet structure of core hole states in transition metal ions. Recent developments in basis set design have found the ensemble average with fractional occupation numbers to have advantages [15].

The grand canonical as well as the canonical ensemble construct were used by Poul Jørgensen [16], one of many postdoctoral associates that have been exchanged between the JL and YÖ groups over the years. He compared the details of the theoretical basis with that of the Slater construction of the Fock operator. He also applied [17] the grand canonical ensemble construction for a time-dependent Hartree-Fock treatment of Detailed calculations on transition metals [18] showed that there was no indication that the orbital energy of the 4s-level should be below the 3d-level. It was interesting to note that a simple function could represent the dependence on the occupation number of the orbital energy: ε(q) = ε(0)[ 1q/q c ] 3/2 . The maximum occupation, q c , gives a slightly negative ion. This form can be compared to Jørgensen's differential ionization concept [19], Mulliken's electronegativity [20], and the concept of absolute hardness [21].

Calculations with fractional occupation numbers were also used to approximate excitation energies. Slater [22] showed that for an energy expression that is a continuous function of occupation numbers one may attempt to calculate energy differences from Taylor series expansions:

E(…q r -1…q s + 1…) -E(…q r …q s …) = ∂E/∂q s -∂E/∂q r + …
while observing that the second order terms are eliminated when the derivatives are evaluated at the midpoint, ( q r -½, q s + ½), termed the transition state. Applications confirmed that this concept offered a viable alternative to the determination of separate self-consistent solutions to the two states.

Electron propagator approximations

Hubbard's model for narrow energy bands in solids [3] led him to a decoupling of the equations of motion for the electron propagator or Green function G rs (E) = <<a r ;a s † >> E .

His approximation was reformulated by means of a matrix representation in an extended operator basis [23]. Later efforts were developed in operator spaces spanned by general 

:〈 [ A j , A k † ] + 〉= δ jk ,〈 [ [ A j , H ], A k † ] + 〉= ε j δ jk } is
defined and one infers that a useful approximation for the propagators follows:

« A j ; A k † » E = δ jk / ( E -ε j ).
Further analysis of consistency requires that the expectation values that are used to define M and K are derived from the propagators, i. e. by a contour integral in the complex Eplane:

〈 A k † A j 〉 = (2πi) -1 ∫ C dE « A j ; A k † » E
Fulfillment of these conditions can rarely be realized beyond the Hartree-Fock level and it is necessary to exercise caution.

Numerous calculations have demonstrated that a moderate extension of the operator manifold provides excellent interpretations of photoelectron spectra, including shake-up and shake-off processes, albeit not fully self-consistent.

Applications of electron propagator theory became possible with the seminal work of George Purvis, who joined the group of YÖ at QTP in 1970. He developed a program suite called GREENFUNC, which survived in bits and pieces for over a decade in electronic structure software around the world. Early publications [24,25,26] set the standard and were followed by many others from QTP. This development in the propagator effort is covered in another publication in this issue of Molecular Physics. Polarization propagator approximations Lindhard [27] was concerned with the stoppage of particles in matter and derived the response of an electron gas to an external electric field by means of a self-consistent determination of the induced effects in the gas. His wavelength and frequency dependent dielectric function exhibited the collective plasmon excitations as well as single particle features. This was the first detailed application of the linearized time-dependent Hartree method and remains a landmark in electronic structure theory. Dirac had delineated the equation of motion for the reduced density matrix in the time domain [28] and applications to non-homogeneous systems [10,29] appeared as complements to the elaborate diagrammatic and formal perturbation theory expansions that were the rule in many-electron theory during quite a few years.

Knowledge of response functions such as generalized polarizabilities and dielectric functions offers a route to correlation features through the fluctuationdissipation theorem. Thus Nozières and Pines [30] expressed the Coulomb interaction energy in the electron gas through integrals over the dielectric function. Dispersion energy contributions to the cohesion in crystals could similarly be obtained by accommodating periodicity and exchange [2].

Much emphasis has been centered on the possibility of the direct determination of excitation energies and transition moments from the poles and residues of the polarization propagator. The basic approximation has several flavors: linearized time-dependent Hartree-Fock, Random Phase Approximation, Equation of Motion method to mention the most common ones. Their formal equivalence derives from an operator algebra adapted to be similar to the one for the electron propagator. A number conserving operator is 

1 = 〈 [ [ A, H ], A † ] 〉 = 〈 [ [ A † , H ], A ] 〉; λ =〈 [ A, A † ] 〉 > 0.
Eigenvalues λ are proportional to wave lengths of excitations created by A † and the associated propagator is « A; A † » E = λ 2 /( E λ -1 ). The λ spectrum is bounded from above by the inverse of the first excitation energy of the system but approximations in the matrix evaluations causes the bound to be approximate as well.

An attractive feature of the random phase type approximations is that transition moments and oscillator strengths can be calculated in either the dipole length or the dipole velocity form if the spin orbital basis is such that the length operator D = Σ d rs a r † a s and the velocity operator V = Σ v rs a r † a s are related by the commutation relation

iV = [ D, H ].
This holds for a complete basis and may be enforced in the Pariser-Parr-Pople model [31] and, occasionally, in general cases. Limited basis sets may destroy fundamental commutation rules, e. g. [ D x , D y ] ≠ 0, which has consequences for the choice of reference system orientation. Transition moments involving magnetic fields need operator representations that are consistent with translational symmetry [32].

Consistency implies that average values are determined from the propagators, vide infra, and can be achieved in simple situations [33]. The related quest for an explicit ground state representative resulted in the conclusion that the standard random phase approximation is consistent with an antisymmetrized geminal power state [34]. Further discussion of this form is presented in another contribution to this issue.

Reflexions by old men

Momentous occurrences in the April quarter of 1968, among them the murders of Martin Luther King Jr. and Robert F. Kennedy, interspersed a very active scientific collaboration of the present authors at the Quantum Theory Project. We started a project that was to go on for a few years and resulted in "the little yellow book" [35] and were much concerned with the matters of fractional occupation numbers in variants of self-consistent theory.

Our paper on the underpinnings of the Pariser-Parr-Pople model [12] exposed the problem of total energy calculations from different but equivalent expressions. These difficulties arise from truncations in operator spaces and the lack of a proper variational functional beyond the Hartree-Fock approximation. Nozières's textbook [36] deals with higher order approximations and the ensuing Ward identities. No entirely satisfactory model has as yet been devised and the applications of propagators to total energy questions cannot maintain a variational bound to the results. This is similar to the variants of the coupled-cluster methods but these are being developed to offer reliable estimates to total energies as exemplified in adjoining contributions to this issue.

Density functional theory relies on the concept of a universal relation between the electron density and the total electronic energy. The precise functional has as yet eluded the practioners but quite satisfactory approaches are in use. This will also be dealt with by others in this issue. Time-dependent extensions lead to equations that are formally equivalent with the ones discussed above under the polarization propagator heading. Several recent applications seem to deviate from the proper path by mixing elements such as exchange with the pure density functional formalism. The present authors perceive that electronic structure theory has reached a plateau where the next mountain range requires new ideas, concepts, and mathematics. The discretization of three-space by Gaussian basis sets was initiated by Boys and Preuss more than 50 years ago and the effect has been tremendous. We ask ourselves, however, about the essential information content in huge integral arrays and associated numerical processes that demand computational efforts that increase as some large power of the number of atoms in our systems. Most of the information is provided by very modest considerations and it is the small, albeit important, deviation that has necessitated the very large-scale machinery. Löwdin maintained that theoretical advances could be as spectacular as the hardware improvement, it remains to be seen.

Among the formal tools that might have potential for substantial changes in the approach to electronic structure theory is the so-called adiabatic connection. It is based on the equality of the derivative of the expectation value of the hamiltonian with respect to a parameter and the expectation of the derivative of the operator itself:

E(ξ) = 〈 H(ξ) 〉; dE(ξ)/d ξ = 〈 dH(ξ)/d ξ 〉.
This holds for eigenstates of the hamiltonian and for variationally stable states and is known as the Hellmann-Feynman theorem [37]. The adiabatic concept allows the integration to give E(ξ 1 ) -E(ξ 0 ) = ∫d ξ 〈 dH(ξ)/d ξ 〉

and is useful when a suitable expression is available for the integrand. This has been realized in Hückel theory where formal charges and bond orders serve as derivatives [38]. Changes in atomic parameters or bonds could then be estimated and indications be drawn about reactivities, induced spin densities and similar properties.

Both Hellmann and Feynman were concerned with the forces between atoms and explored the energy variation with changes in nuclear positions within the Born-Oppenheimer picture. Their results are accordingly relevant for considerations based on the virial theorem. Slater [39] deduced that the kinetic energy in the ground state of a diatomic molecule at an internuclear distance R equals T = -E(R) -R∂E(R)/∂R while the potential energy is V =2E(R) + R∂E(R)/∂R. The first relation expresses the total energy in terms of an integral over the expectation value of a one-electron operator that can be evaluated from the electron propagator. Success of such a procedure depends on the consistency of the approximation of the propagator.

So is also the case when the fluctuation-dissipation theorem is applied to the evaluation of the electron interaction energy in perturbation theory. The premise is that expectation values 〈a r † a t † a u a s 〉 =δ st 〈 a r † a u 〉 +Σ n 〈0′a r † a s ′n〉〈n′a t † a u ′0〉 are obtainable from the corresponding response function or propagator and that these are calculated as functions of a formal interaction strength parameter. The integration from zero to unit strength offers an estimate of the total energy contribution. A simple application to the linear chain Hubbard model gives a modest improvement over the basic mean field approximation [40].

Propagators have been part of these authors' lives for the better part of the fifty years since the Quantum Theory Project was initiated. Their emphasis on processes rather than stationary states appeals to the physico-chemical realization that knowledge is obtained by probing the response of the material world. They do connect the pure state 

  schemes emanating from Boys's, Roothaan's and Hall's early development represent the

  Exponential operators provide compact representations of unitary transformations of the basis and unusual symmetries, e.g. particle-hole relations in alternant hydrocarbon molecules in the Pariser-Parr-Pople model, can be exposed. The developments of the coupled-cluster variants in current usage would probably have been more awkward in direct configuration space formulations. The essential Σ Π  separation of the Pariser-Parr-Pople model appears ratherdirectly in the second quantization formulation[12] and details the role of the Σframework as a dielectric medium which screens the interaction within the Π-system. A link is also established to the form of a Heisenberg spin-hamiltonian in a
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 31 transition moments from the poles and residues of the polarization propagator. The basic approximation has several flavors: linearized time-dependent Hartree-Fock, Random Phase Approximation, Equation of Motion method to mention the most common ones. Their formal equivalence derives from an operator algebra adapted to be similar to the one for the electron propagator. A number conserving operator is considered of the form A † = Σ a r † [ c rs + c rtus a t † a u + …] a s and the sesquilinear forms

  theory through the works by Gell-Mann and Brueckner and by Hubbard in the mid 50's.Thus he wanted to establish the connection to the configuration space methods that he was so familiar with and to this end he assigned one of us (JL) to give a seminar to the Quantum Chemistry Group at Uppsala on second quantization in the fall of 1957. The sources were the classical papers by Born and Jordan, the detailed treatment by Fock and the treatises by Dirac and Corson. Löwdin followed up with formal field theory but it was when Stig Lundqvist returned from a sabbatical with Brueckner that the concepts and techniques became more familiar topics at the Group. The lecture notes taken by Lars Hedin was the basis for the Technical Report from the Group [1] and Lundqvist's lectures at the first Winter Institute at Gainesville in December 1960 and Sanibel Island in January 1961. The authors spent a brief period together at Gainesville in early 1961 when YÖ began a two-year stay at the University of Florida.

  Exponential operators provide compact representations of unitary transformations of the basis and unusual symmetries, e.g. particle-hole relations in alternant hydrocarbon molecules in the Pariser-Parr-Pople model, can be exposed. The developments of the coupled-cluster variants in current usage would probably have been more awkward in direct configuration space formulations.
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  The premise is that expectation values 〈a r † a t † a u a s 〉=δ st 〈 a r † a u 〉+Σ n 〈0 a calculated as functions of a formal interaction strength parameter. The integration from zero to unit strength offers an estimate of the total energy contribution. A simple application to the linear chain Hubbard model gives a modest improvement over the basic mean field approximation[40].Propagators have been part of these authors lives for the better part of the fifty years since the Quantum Theory Project was initiated. Their emphasis on processes rather than stationary states appeals to the physico-chemical realization that knowledge is obtained by probing the response of the material world. They do connect the pure stateNearly fifty years of collaboration on the development of formulations of the many-electron theory for molecular, atomic and condensed matter in terms of propagators is surveyed.
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  The formalism exposes the structural similarity between methods where the integrals, h rs and (rs|r's'), are derived from specified spin orbitals and proper integrations and methods where they are inferred from other sources. The evaluation of a matrix representation of the hamiltonian from the elements of the power set requires the standard rules as put forth by Löwdin and others[11].
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