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Abstract

In this paper we derive an a posteriori error estimate for the numerical approximation of the solution

of a system modeling the flow of two incompressible and immiscible fluids in a porous medium. We

take into account the capillary pressure, which leads to a coupled system of two equations: parabolic

and elliptic. The parabolic equation may become degenerate, i.e., the nonlinear diffusion coefficient may

vanish over regions that are not known a priori. We first show that, under appropriate assumptions, the

energy-type-norm differences between the exact and the approximate nonwetting phase saturations, the

global pressures, and the Kirchhoff transforms of the nonwetting phase saturations can be bounded by

the dual norm of the residuals. We then bound the dual norm of the residuals by fully computable a

posteriori estimators. Our analysis covers a large class of conforming, vertex-centered finite volume-type

discretizations with fully implicit time stepping. As an example, we focus here on two approaches: a

“mathematical” scheme derived from the weak formulation, and a phase-by-phase upstream weighting

“engineering” scheme. Finally, we show how the different error components, namely the space dis-

cretization error, the time discretization error, the linearization error, the algebraic solver error, and the

quadrature error can be distinguished and used for making the calculations efficient.

1 Introduction

Two-phase porous media flow models are of fundamental importance in various real life applications, such
as petroleum reservoir engineering or CO2 sequestration in the subsurface. Such processes can be modelled
by a system consisting of two equations: an elliptic one for the total velocity, coupled to a parabolic one for
the nonwetting phase saturation, see, e.g., [7, 12, 8]. In the latter equation, the diffusion coefficient depends
nonlinearly on the unknown quantities and vanishes over regions that are not known a priori and can vary
in time and space, leading to a degenerate, free boundary problem. Our aim here is to develop a rigorous a
posteriori error estimate for such a model.

A large amount of publications are devoted to the mathematical and numerical analysis of two-phase flow
models. In particular, the existence, uniqueness, and regularity of a (weak) solution are studied in [35, 12, 5,
6, 14, 15]. In the same spirit, much work has been carried out for developing appropriate numerical methods
and proving their convergence, or a priori error estimates, like in [16] for a finite element discretization. In
this paper we focus on the finite volume method [29]. In this context, the convergence of a cell-centered
“mathematical” scheme involving the global pressure and the Kirchhoff transform has been obtained in [37].
Alternatively, the convergence of a cell-centered finite volume scheme with phase-by-phase upstream weighting
(the so-called “engineering” scheme) has been shown in [30]. Vertex-centered finite volume methods in the
“mathematical” context have been studied in, e.g., [28], and in the “engineering” context in, e.g., [32], see
also the references therein.

To the best of our knowledge, contrarily to the case of a priori error estimates, almost no results are
available for rigorous a posteriori error estimates for the two-phase flow model. The arguments used in [17]
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are rather of a priori type. The results of [4] refer to the density-driven flow in porous media, whereas
an posteriori error estimate for miscible displacement of one incompressible fluid by another can be found
in [13]. Recently, a framework for a posteriori error estimation of the dual norm of the residuals for the
two-phase flow problem has been derived in [56]. It has been applied to the cell-centered finite volume
phase-by-phase upstream weighting scheme in [20]. Rigorous a posteriori error estimates for nonlinear, time-
dependent problems are obtained in [24, 31, 53, 39, 41, 42, 18, 2, 19], see also the references given therein;
for basic results on a posteriori error estimates, in particular for linear elliptic model problems, we refer to
the textbooks [52, 1, 38, 50] and to the references therein.

The content of this paper is as follows. In Section 2 we introduce the immiscible incompressible two-
phase flow model. The governing physical equations are given in Section 2.1, while Section 2.2 provides the
mathematical formulation relying on the Kirchhoff transform of the nonwetting saturation (sometimes called
the “complementary pressure”) and on the global pressure. The physical meaning of these mathematical
quantities is less obvious, but they are needed for giving a proper definition of the weak solution. The
existence and uniqueness of a weak solution is guaranteed under certain assumptions on the data and on the
model parameters, which are summarized in Assumption A.

In Section 3, we give the main result of the paper, Theorem 1. This theorem states that the energy-type-
norm of the differences between the exact and the approximate nonwetting phase saturations, the global
pressures, and the Kirchhoff transforms of the nonwetting phase saturations can be bounded by a fully
computable a posteriori error estimate. This theorem is formulated as generally as possible; in particular,
it does not require specifying the underlying discretization. We merely need the technical Assumption B
on the data and mainly the reconstructions un,hτ and uw,hτ of the Darcy fluxes for each of the two phases.
These are vector fields, constant on each time interval and belonging on each time interval to the functional
space H(div,Ω), with continuous normal trace over any d − 1 dimensional manifold, and satisfying a local
conservation over the mesh elements, as summarized in Assumption C. Such an approach develops those
used in [55, 25, 56], see also the references therein, and relies on concepts going back to the Prager–Synge
equality [46] for linear elliptic problems.

In Section 4 we apply the abstract result of Theorem 1 to particular finite volume discretizations. This
implies specifying the reconstruction of the phase fluxes (in practice, un,hτ and uw,hτ are constructed in the
Raviart–Thomas–Nédélec finite-dimensional subspaces of H(div,Ω)) and verifying the Assumption C. These
steps are carried out for two quite distinct vertex-centered finite volume schemes, a “mathematical” one
derived from the weak formulation and a phase-by-phase upstream weighting “engineering” one.

Section 5 is devoted to the proof of the a posteriori error estimate. We first define the residuals stemming
from the weak formulation in Section 5.1. Next, in Section 5.2, we show that under Assumption A the
energy-type-norm of the differences between the exact and the approximate solutions can be bounded by the
dual norm of the residuals. The result is stated in Theorem 2. Next, under Assumptions B, C, we show in
Section 5.3 that the dual norm of the residuals is bounded by a computable a posteriori error estimate. This
result is stated in Theorem 3.

Finally, in Appendices A and B, we focus on the particular case of the “mathematical” scheme. At first, in
Appendix A we apply the methodology developed in [34, 23, 25, 26, 27, 56, 21] to obtain Theorem 4, showing
how the estimators of Theorem 1 can be used to distinguish the different error components. These components
are namely the space discretization error, the time discretization error, the linearization error, the algebraic
solver error, and the quadrature error. We demonstrate how they can be employed to stop the various iterative
procedures and to equilibrate the spatial and temporal errors in order to use the computational resources as
efficiently as possible. Then, in Appendix B we study the efficiency of the estimators of Theorem 4. Theorem 5
states that these estimators are also, on each time interval, a lower bound for the time-localized dual norm of
the residuals, up to a generic constant. Some numerical experiments for simpler but related model problems
with the present-type a posteriori error estimates and adaptive strategies can be found in [26, 27, 22, 21].

2 The immiscible, incompressible two-phase flow in porous media

In this section we give the mathematical model for the immiscible incompressible two-phase flow in a porous
medium and bring it in a form that is more suitable for the mathematical and numerical analysis. Then
we state the assumptions on the model parameters and the data, define the weak solution, and recall its
existence and uniqueness.
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2.1 The governing equations

For the ease of reading the model under discussion is presented in a dimensionless context. Given a porous
medium occupying an open, bounded, polyhedral subset Ω ⊂ R

d, d = 2, 3, consider two incompressible and
immiscible phases flowing within the pores of the medium. For simplicity we restrict ourselves to the case
of horizontal flow and thus neglect the gravity effects. With α ∈ {n,w} being the index for the nonwetting,
respectively the wetting phase, the unknown quantities are the phase saturations sα and pressures pα, as
well as the Darcy velocities uα. The saturations are assumed reduced, thus taking (physical) values between
0 and 1. For each phase, the velocity and the pressure are related by the Darcy–Muskat law

uα := −Kηα(sα)∇pα, α ∈ {n,w}. (2.1)

Above, K is the (intrinsic) permeability tensor, which is assumed symmetric and uniformly positive definite.
Here we allow K to be location-dependent, K = K(x). Further, the mobilities ηα are functions of the phase
saturations sα, ηα = ηα(sα). Their specific form depends on the medium and on the phase and is determined
experimentally. In particular, these functions are continuous and increasing on [0, 1], satisfying

ηα(0) = 0, α ∈ {n,w}.

Note that this implies the boundedness of ηα. For mathematical completeness we extend the functions ηα by
constants outside the physically relevant interval [0, 1],

ηα(sα ≤ 0) := 0 and ηα(sα ≥ 1) := ηα(1). (2.2)

Disregarding the porosity of the medium, which is allowed after a proper scaling of the time, the mass
balance for each phase gives (see, e.g., [12, 8])

∂tsα +∇·uα = qα(sα), α ∈ {n,w}, (2.3)

where the source terms qα are given functions of the phase saturations. Inserting (2.1) into (2.3) allows to
eliminate the Darcy velocities uα. Note that a vanishing mobility ηα, which is encountered whenever sα ≤ 0,
leads to a degeneracy in (2.3). In this case the second term on the left becomes 0, and the equation looses
its originally parabolic character.

We further assume that the volume of all pores is filled by the two phases (thus no other fluid phase is
present), implying

sn + sw = 1. (2.4)

Under equilibrium conditions at the pore scale, the phase pressures pw and pn are related by

pn − pw = π(sn), (2.5)

where π, the capillary pressure, is an increasing function.
Defining the total velocity

ut := −K (ηn(sn)∇pn + ηw(sw)∇pw) (2.6)

and adding both equations (2.3) for α = w, n, thanks to (2.4), one gets

∇·ut = qn(sn) + qw(1− sn) =: qt(sn). (2.7)

Using (2.6) in (2.3) for α = n provides

∂tsn +∇· (utf(sn)−Kλ(sn)∇π(sn)) = qn(sn), (2.8)

where the nonlinear functions f and λ are defined as

f(s) :=
ηn(s)

ηn(s) + ηw(1− s)
, λ(s) := ηw(1 − s)f(s).

The problem is completed by initial and boundary conditions, introduced below after a suitable reformulation.
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2.2 A mathematical formulation

The mathematical results below are expressed in terms of the nonwetting phase saturation, denoted from
now on by s, i.e.,

s := sn.

Clearly, the wetting phase saturation is then given by sw = 1 − s. Next we reformulate the equations (2.6)
and (2.8) in terms of more convenient unknowns. This involves the following constructions. First, as in [3],
we define the Kirchhoff transform as

ϕ(s) :=

∫ s

0

λ(a)π′(a) da, (2.9)

and observe that ϕ is increasing on [0, 1]. Next, we follow [12, 5] and introduce the global pressure P , defined
by

P := P (s, pw) := pw +

∫ π(s)

0

ηn(π
−1(a))

ηn(π−1(a)) + ηw(1− π−1(a))
da (2.10a)

= P (s, pn) := pn −

∫ π(s)

0

ηw(1− π−1(a))

ηn(π−1(a)) + ηw(1− π−1(a))
da. (2.10b)

Using these definitions in (2.6) gives
ut = −KM(s)∇P, (2.11)

where
M(s) := ηw(1− s) + ηn(s).

The equation (2.7) then becomes
−∇· (KM(s)∇P ) = qt(s). (2.12)

Similarly to the extension (2.2) of ηn and ηw, the functions f , λ, and M defined above are extended
continuously by constants outside of [0, 1]. Clearly, M is uniformly bounded away from 0 over the entire real
axis. From now on, the function ηw will not appear explicitly anymore. For the ease of reading we therefore
remove the subscript n in ηn, i.e., we use

η(s) := ηn(s).

This allows rewriting (2.8) into

∂ts−∇· (K(η(s)∇P +∇ϕ(s))) = qn(s). (2.13)

After having done these steps, we consider the problem on the time interval (0, T ] for some T > 0 and
prescribe the initial data

s(·, 0) = s0. (2.14)

For the sake of simplicity, only Dirichlet boundary conditions for the saturation and the global pressure are
considered, i.e.,

s|∂Ω×(0,T ) = s, P |∂Ω×(0,T ) = P , (2.15)

where s and P are given functions. The generalization to inhomogeneous Dirichlet conditions on a part of
∂Ω and to inhomogeneous Neumann condition on its complement is possible, by following the steps described
in [16]. However, this leads to more technicalities and notations that would affect the clarity of the exposition.

For any t ∈ (0, T ] we use the notations:

Qt := Ω× (0, t], and 1(0,t)(τ) :=

{
1 if τ ∈ (0, t),
0 otherwise.

To define a solution in the weak sense, we make use of common notations in the functional analysis. In
particular, H−1(Ω) is the dual of H1

0 (Ω) and 〈·, ·〉 denotes the corresponding duality pairing. Let

E :=
{
(s, P ) | s ∈ C([0, T ];L2(Ω)), ∂ts ∈ L2((0, T );H−1(Ω)),

ϕ(s)− ϕ(s) ∈ L2((0, T );H1
0 (Ω)), P − P ∈ L2((0, T );H1

0 (Ω))
}
.

(2.16)

Then a weak solution of (2.12), (2.13) with the initial and boundary condition (2.14), (2.15) is introduced
by:
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Definition 2.1 (Weak solution). A weak solution is a pair (s, P ) ∈ E such that s(·, 0) = s0 and for all
ψ ∈ L2((0, T );H1

0 (Ω)), there holds

∫ T

0

〈∂ts(·, θ);ψ(·, θ)〉H−1 ,H1
0
dθ +

∫∫

QT

K (η(s)∇P +∇ϕ(s)) · ∇ψ dxdθ =

∫∫

QT

qn(s)ψ dxdθ, (2.17a)

∫∫

QT

KM(s)∇P · ∇ψ dxdθ =

∫∫

QT

qt(s)ψ dxdθ. (2.17b)

The results in this paper are obtained under the following assumptions on the model:

Assumption A (Data and weak solution).

1. The functions M, η : R → R are continuous and there exist positive constants cM , CM , and Cη such
that, for all a ∈ [0, 1],

cM ≤M(a) ≤ CM , η(a) ≤ Cη. (2.18)

2. The diffusion tensor K ∈ [L∞(Ω)]d×d is symmetric and uniformly positive definite.

3. The function P in (2.15) belongs to L∞((0, T );H1/2(∂Ω)). Thus there exists an extension, still denoted
by P , such that

P ∈ L∞((0, T );H1(Ω)).

Similarly, the function s in (2.15) belongs to L∞(∂Ω × (0, T )) with 0 ≤ s ≤ 1. Moreover, s can be
extended on QT into a measurable function, still denoted by s, such that

∂ts ∈ L1(QT ), ϕ(s) ∈ L2((0, T );H1(Ω)), s(·, 0) = s0.

4. Concerning the sources qn, qw (and qt = qw + qn), we assume that for all (x, t) ∈ QT , the functions

qα(·;x, t) :

{
[0, 1] → R,

s 7→ qα(s;x, t),
(α ∈ {n,w})

are Lipschitz continuous. Hence, for all v ∈ L∞(QT ) with 0 ≤ v ≤ 1 a.e. in QT , one has

qn(v) ∈ L2(QT ), qw(v) ∈ L2(QT ) (hence qt(v) ∈ L2(QT )).

We moreover assume that
qn(0; ·, ·) ≥ 0, qw(1; ·, ·) ≥ 0.

5. The initial saturation satisfies

s0 ∈ L∞(Ω) with 0 ≤ s0 ≤ 1 a.e. in Ω.

6. The Kirchhoff transform function ϕ defined in (2.9) is increasing in [0, 1] and Lϕ-Lipschitz continuous.

7. There exists a positive constant C0 such that, for all (a, b) ∈ R and for almost all (x, t) ∈ QT ,

(η(a)− η(b))2 + (M(a)−M(b))2

+(qn(a;x, t)− qn(b;x, t))
2
+ (qt(a;x, t)− qt(b;x, t))

2
≤ C0(a− b)(ϕ(a) − ϕ(b)). (2.19)

8. There exists a weak solution (s, P ) in the sense of Definition 2.1 which is such that ∇P ∈ [L∞(QT )]
d
.

As for η, see (2.2), ϕ is extended on R by

ϕ(s) =

{
Lϕs if s < 0,
Lϕ(s− 1) + ϕ(1) if s > 1.

(2.20)

Here Lϕ is the minimal Lipschitz constant of ϕ on [0, 1]. In this way the properties assumed above for the
interval [0, 1] extend trivially to R.
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The assumptions stated above deserve some comments. Points 1 and 6 are satisfied by most of the one-
or two-phase porous media flow models currently used in oil engineering. Point 3 is natural and does not
impose any severe restrictions on the boundary data. As mentioned above, one can apply the techniques
in [16] to extend the present results to inhomogeneous Neumann boundary conditions that are prescribed on
some parts of the boundary.

For point 4, since qt(s) belongs to L∞((0, T );L2(Ω)), the total velocity ut is essentially bounded in
H(div,Ω) with respect to time. Moreover, the last assertion of this point is nothing but claiming that one
cannot extract a missing phase.

The condition (2.19) appearing in point 7 is similar to Assumption (A7) in [16] (see also [14]). For scalar
degenerate parabolic equations, it ensures the uniqueness of a solution (see [3, 43]). This condition can
further be employed for deriving a priori error estimates (see [44, 49]), and is mainly relevant for the behavior
of η close to the degeneracy values, 0 and 1. For example, referring to the van Genuchten curves relating the
permeability and the dynamic capillarity to the saturation (see, e.g., [8]), (2.19) holds if the van Genuchten
parameters m and n are such that n = 1/(1−m) and m ∈ [2/3, 1).

Concerning point 8, it obviously requires more analysis since a weak solution as introduced in Definition 2.1
does not necessary fulfill the requirement on the pressure gradient. For domains Ω having a smooth boundary,
[14, Theorem 4.5] provides the essential boundedness of ∇P under slightly more restrictive assumptions on
the data. This result is, however, not usable here as we assume Ω as polyhedral.

Finally, it is worth mentioning that the assumptions in the last two points are not needed for the existence
of a solution (see, e.g., [5, 6, 14]), but are stated here since these will be used later. Essentially we use the
following existence and uniqueness result proved in [14]:

Corollary 2.2 (Existence and uniqueness). Under Assumption A, there exists a unique weak solution to the
problem (2.12)–(2.15) in the sense of Definition 2.1.

Remark 2.3 (Continuity in time of the saturation). The space E in (2.16) requires that s is continuous in
time. To justify this we recall (2.13), (2.8), and (2.7) and note that if (s, P ) is a weak solution, the equation
(2.17a) can formally be written as

∂ts+∇· (utf(s)−K∇ϕ(s)) = qn(s).

For fixed ut, this operator involves a L1-contraction semi-group with a comparison principle [11, 36, 43].
Thanks to Assumption A4, s = 0 is a sub-solution, while s = 1 is a super-solution. Therefore 0 ≤ s ≤ 1 a.e.
in QT . The fact that s ∈ C([0, T ];L2(Ω)) then follows from [10].

3 The a posteriori error estimate

This section provides the main result, an abstract a posteriori estimate on the difference between the exact
and the approximate solutions. This is obtained in the context of an Euler implicit time stepping, whereas
the spatial discretization is left unspecified.

3.1 Time mesh and some additional notations and assumptions

We consider a strictly increasing sequence of discrete times {tn}0≤n≤N such that t0 = 0 and tN = T . For
all 1 ≤ n ≤ N , we define the time interval In := (tn−1, tn] and the time step τn := tn − tn−1. For each
0 ≤ n ≤ N , we consider a partition Dn

h of Ω. We denote by Dext,n
h the volumes from Dn

h having an intersection

with ∂Ω of nonzero measure and by Dint,n
h the remaining elements of Dn

h . An example is given in Section 4.1
below. The following weighted norm on subsets D of Ω, for v ∈ [L2(D)]d, will be used often below:

‖v‖
K

−
1
2 ;L2(D)

:=

{∫

D

∣∣K− 1
2 (x)v(x)

∣∣2 dx
} 1

2

.

We now define the following space:

Vτ := {v ∈ C([0, T ];L2(Ω)), v is affine in time on each In for all 1 ≤ n ≤ N}.

Further, for 0 ≤ n ≤ N , we let vn stand for the function v(·, tn). Note that for functions v ∈ Vτ , ∂tv|In =
(vn − vn−1)/τn, where v|In denotes the restriction of v to the time interval In.

In addition to Assumption A, we now make the following:
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Assumption B (Boundary conditions and sources).

1. The boundary condition for the saturation s is continuous and piecewise affine in time, s ∈ Vτ .

2. The source functions qn and qw are piecewise constant in time, with values in L2(Ω).

Since qα, α ∈ {n, t}, are assumed piecewise constant in time, we set qnα := qα|In for all n = 1, . . .N .

Remark 3.1 (Boundary conditions and sources). Assumption B is made only for the clarity of presentation.
More general boundary conditions and source terms can be taken into account, giving rise to additional error
terms in the analysis carried out below.

Having in mind the time discretization introduced above, relying on the space Vτ , we consider the following
restriction of the set E introduced in (2.16)

Eτ :=
{
(s, P ) | s ∈ Vτ , ∂ts ∈ L2(QT ),

ϕ(s)− ϕ(s) ∈ L2((0, T );H1
0 (Ω)), P − P ∈ L2((0, T );H1

0 (Ω))
}
.

(3.1)

3.2 Reconstructions of the phase fluxes

Let an arbitrary pair (shτ , Phτ ) ∈ Eτ be given. In order to proceed in a fairly general manner, particularly
without specifying the discretization scheme, we make the following assumption:

Assumption C (Locally conservative fluxes reconstructions). There exist two vector fields un,hτ and ut,hτ ,
piecewise constant in time, such that

unn,h := un,hτ |In , u
n
t,h := ut,hτ |In ∈ H(div,Ω) for all n ∈ {1, . . . , N}

and such that

∫

D

(
snh − sn−1

h

τn
+∇·unn,h

)
dx =

∫

D

qnn (s
n
h) dx for all n ∈ {1, . . . , N} and for all D ∈ Dint,n

h , (3.2a)

∫

D

∇·unt,h dx =

∫

D

qnt (s
n
h) dx for all n ∈ {1, . . . , N} and for all D ∈ Dint,n

h . (3.2b)

The function unn,h will be called nonwetting phase flux reconstruction, whereas the function unt,h will be
called total flux reconstruction. These two functions are discrete counterparts of the nonwetting phase flux
un in (2.1) (with α = n), respectively of the total flux ut in (2.6). These fluxes need to be constructed from
the given numerical scheme, see Sections 4.2.2 and 4.3.2 below for two examples. Remark that (3.2a)–(3.2b)
represents a discrete weak form of the continuous mass balance equation (2.3) for α = n, and of (2.7). Finally,
note that with uw,hτ := ut,hτ − un,hτ , one gets from (3.2a)–(3.2b)

∫

D

(
−
snh − sn−1

h

τn
+∇·unw,h

)
dx =

∫

D

qnw(1− snh) dx for all n ∈ {1, . . . , N} and for all D ∈ Dint,n
h , (3.3)

which is a fully discrete counterpart of (2.3) for α = w.

3.3 The estimators

We can now define the a posteriori error estimators. For given n ∈ {1, . . . , N}, t ∈ In, and D ∈ Dn
h , define

the flux estimators

ηnF,n,D(t) := ‖unn,h +K (η(shτ )∇Phτ +∇ϕ(shτ )) (t)‖
K

−
1
2 ;L2(D)

, (3.4a)

ηnF,t,D(t) := ‖unt,h +KM(shτ )∇Phτ (t)‖
K

−
1
2 ;L2(D)

(3.4b)

and the residual estimators

ηnR,n,D := mD‖∂tshτ +∇·unn,h − qnn (s
n
h)‖L2(D), (3.5a)

ηnR,t,D := mD‖∇·unt,h − qnt (s
n
h)‖L2(D). (3.5b)
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Here mD = CP,DhD c
− 1

2

K,D if D ∈ Dint,n
h , respectively mD = CF,D,∂ΩhD c

− 1
2

K,D if D ∈ Dext,n
h . The notation hω

stands for the diameter of the domain ω, whereas cK,ω stands for the smallest eigenvalue of the tensor K on

the domain ω. The constant CP,D, D ∈ Dint,n
h , appears in the Poincaré–Wirtinger inequality

‖ϕ− ϕD‖L2(D) ≤ CP,DhD‖∇ϕ‖L2(D) ∀ϕ ∈ H1(D), (3.6)

where ϕD is the mean value of the function ϕ over D given by ϕD :=
∫
D
ϕdx/|D| (|D| is the measure

of D). For a convex D, CP,D can be evaluated as 1/π. Similarly, CF,D,∂Ω, D ∈ Dext,n
h , appears in the

Poincaré–Friedrichs inequality

‖ϕ‖L2(D) ≤ CF,D,∂ΩhD‖∇ϕ‖L2(D) ∀ϕ ∈ H1(D) such that ϕ = 0 on ∂Ω ∩ ∂D; (3.7)

CF,D,∂Ω can be typically taken equal to 1. We refer for more details to [55] and the references therein. Finally,
the time quadrature estimators are given by

ηnQ,n,D(t) := CF,ΩhΩc
− 1

2

K,Ω‖q
n
n (s

n
h)− qnn (shτ )(t)‖L2(D), (3.8a)

ηnQ,t,D(t) := CF,ΩhΩc
− 1

2

K,Ω‖q
n
t (s

n
h)− qnt (shτ )(t)‖L2(D). (3.8b)

As above, CF,Ω is the constant from the Poincaré–Friedrichs inequality

‖ϕ‖L2(Ω) ≤ CF,ΩhΩ‖∇ϕ‖L2(Ω) ∀ϕ ∈ H1
0 (Ω), (3.9)

and we can take CF,Ω = 1.

3.4 The a posteriori error estimate

We are now ready to state the main result of this paper.

Theorem 1 (A posteriori error estimate for problem (2.12)–(2.15)). Let (s, P ) be the weak solution introduced
in Definition 2.1 and (shτ , Phτ ) ∈ Eτ be an arbitrary approximate solution. Under Assumptions A, B, and C,
there exists a generic constant C > 0, depending neither on the approximate solution nor on the space–time
discretization of QT , such that

C
(
‖shτ − s‖2L2(0,T ;H−1(Ω)) + ‖Phτ − P‖2L2(0,T ;H1

0 (Ω)) + ‖ϕ(shτ )− ϕ(s)‖2L2(QT )

)

≤ ‖shτ (·, 0)− s0‖2H−1(Ω)

+

N∑

n=1

∑

α∈{n,t}

∫

In







∑

D∈Dn
h

(ηnF,α,D(t) + ηnR,α,D)
2





1
2

+




∑

D∈Dn
h

(ηnQ,α,D(t))
2





1
2




2

dt.

Moreover, if ϕ−1 belongs to C0,r(R), the term ‖ϕ(shτ )− ϕ(s)‖2L2(QT ) can be replaced by ‖shτ − s‖1+rL1+r(QT ).

The assumption that ϕ has a Hölder continuous inverse holds for most of the retention curves used in the
subsurface (see, e.g., [7]). For example, considering again the van Genuchten framework with the parameters
m and n = 1/(1 − m) provides a ϕ having a Hölder continuous inverse with exponent 2m/(3m + 2). As
follows from above, this provides better a priori estimates for the saturation (see also [49]), and the situation
remains unchanged for a posteriori estimates.

Theorem 1 is an immediate consequence of the estimates in Theorems 2 and 3 below. Its application to
two examples of finite volume schemes is illustrated in the next section. Appendix A deals with the additional
errors that are due to the numerical quadrature, the iterative linearization, and the iterative algebraic solver,
which are taken into account explicitly. Furthermore, the spatial and temporal errors are identified and
adaptive stopping criteria are proposed in Appendix A. Appendix B then studies an inequality converse to
that of Theorem 1, answering to the question whether the a posteriori error estimate also represents a lower
bound for some measure of the error.

4 An application to two types of vertex-centered finite volume

discretizations

In this section we consider two relatively distinct vertex-centered finite volume discretizations of prob-
lem (2.12)–(2.15), and show how Theorem 1 can be applied in both situations.
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T n

h

Dn
h

T n

h

Sn

h

Figure 1: Simplicial mesh T n
h and the dual mesh Dn

h (left); simplicial submesh Snh (right)

4.1 The spatial meshes and the discrete functional spaces

Let 0 ≤ n ≤ N be fixed. We denote by T n
h the partition of Ω (the mesh) involved in the numerical calculation

of the approximate solution at time tn; T 0
h is the initial mesh. All partitions T n

h (0 ≤ n ≤ N) consist of
d-dimensional simplices and are matching. This means that the intersection of two elements K and L is
either empty, or a common vertex, or an ℓ-dimensional face with 1 ≤ ℓ ≤ d− 1.

For any 0 ≤ n ≤ N , we define the space

V nh := {vh : Ω → R, vh is continuous and piecewise affine on T n
h }.

We will also need

Vhτ :={vhτ : Ω× [0, T ] → R, vhτ is affine in time on each In for all 1 ≤ n ≤ N,

vnh := vhτ (·, t
n) ∈ V nh for all 0 ≤ n ≤ N}.

In reinforcement of Assumption B1, we need (cf. Remark 3.1) that s ∈ Vhτ and P ∈ Vhτ . We then define

V nh;s := {vh ∈ V nh , vh = s(·, tn) on ∂Ω}, V n
h;P

:= {vh ∈ V nh , vh = P (·, tn) on ∂Ω},

Vhτ ;s := {vhτ ∈ Vhτ , vhτ = s on ∂Ω× (0, T ]}, Vhτ ;P := {vhτ ∈ Vhτ , vhτ = P on ∂Ω× (0, T ]}.

For each T n
h , we next consider a dual mesh Dn

h . Every element (dual volume) D ∈ Dn
h is associated

with one vertex of T n
h , and constructed around this vertex by joining the face and element barycenters as

indicated in the left picture of Figure 1 for d = 2. The set Dint,n
h contains the dual volumes associated

with the interior vertices of T n
h ; similarly, Dext,n

h consists of the dual volumes associated with the boundary
vertices of T n

h . We emphasize that the meshes T n
h (and consequently Dn

h) may change in time, typically by
refining or coarsening of some elements of the previous mesh. The discrete times and meshes are typically
constructed by a space–time adaptive time-marching algorithm, following, e.g., Section A.3 below.

In addition to the meshes T n
h and Dn

h , we will also need below a third mesh for each 1 ≤ n ≤ N . This
mesh is called Snh , consists of d-dimensional simplices, and is matching. It is constructed by joining the
barycenters of the elements of T n

h with the vertices and the barycenters of the corresponding ℓ-dimensional
faces (1 ≤ ℓ ≤ d − 1), see the right picture in Figure 1 for d = 2. Note that Snh are submeshes of both T n

h

and Dn
h ; given a volume D ∈ Dn

h , we denote by SD the restriction of Snh onto D. On Snh , we define the lowest
order Raviart–Thomas–Nédélec space of vector functions, cf. [9, 51],

RTN0(S
n
h ) :=

{
vh ∈ H(div,Ω) ;vh|K ∈ RTN0(K) for all K ∈ Snh

}
. (4.1)

Here, RTN0(K) := [P0(K)]d + xP0(K), where K is a given simplex and P0(K) is the space of constants on
K. In particular, vh ∈ RTN0(S

n
h ) is such that ∇·vh ∈ P0(K) for all elements K of Snh , vh·ne ∈ P0(e) for all

(d− 1)-dimensional faces e of Snh , and such that its normal trace is continuous.

4.2 A “mathematical” scheme

We first discuss a scheme stemming from the Definition 2.1 of the weak solution. We call it here “mathemati-
cal” since it makes use of the Kirchhoff transform. This provides the unknown ϕ(s) that has more regularity,
but no particular physical meaning.
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4.2.1 The scheme

Let s0h ∈ V 0
h;s denote the discretization of the initial condition s0. Then the “mathematical” vertex-centered

finite volume discretization of problem (2.12)–(2.15) reads:

Definition 4.1 (“Mathematical” finite volume scheme). Find a pair (shτ , Phτ ) ∈ Vhτ ;s×Vhτ ;P such that for

all 1 ≤ n ≤ N and all D ∈ Dint,n
h , (snh , P

n
h ) ∈ V nh;s × V n

h;P
are solutions of

∫

D

(
snh − sn−1

h

τn

)
dx−

∫

∂D

K(η(snh)∇P
n
h +∇ϕ(snh))·nD dσ =

∫

D

qnn (s
n
h) dx, (4.2a)

−

∫

∂D

KM(snh)∇P
n
h ·nD dσ =

∫

D

qnt (s
n
h) dx. (4.2b)

Formally, to construct Phτ on the first time interval I1 one needs an approximation P 0
h at the initial time.

Since the initial saturation s0h is known, one possibility is to solve (4.2b) for n = 0. However, the particular
construction of P 0

h has no influence on the final approximation.

Remark 4.2 (A scheme based on the Kirchhoff transform). As follows from the analysis of the continuous
problem presented in Section 2, the Kirchhoff transform ϕ(s) has better regularity than the nonwetting satura-
tion s. This motivates the following adjustment of the scheme (4.2a)–(4.2b). Let Θ := ϕ(s) and Θ0 := ϕ(s0).
Let V n

h;Θ
and Vhτ ;Θ be as V nh;s and Vhτ ;s with s replaced by ϕ(s). Let finally Θ0

h ∈ V 0
h;Θ

denote the discretiza-

tion of the initial condition Θ0. Then a Kirchhoff transform vertex-centered finite volume discretization of
problem (2.12)–(2.15) is a pair (Θhτ , Phτ ) ∈ Vhτ ;Θ × Vhτ ;P , such that for all 1 ≤ n ≤ N and all D ∈ Dint,n

h ,
(Θnh, P

n
h ) ∈ V n

h;Θ
× V n

h;P
are solutions of

∫

D

(
ϕ−1(Θnh)− ϕ−1(Θn−1

h )

τn

)
dx−

∫

∂D

K(η(ϕ−1(Θnh))∇P
n
h +∇Θnh)·nD dσ =

∫

D

qnn (ϕ
−1(Θnh)) dx, (4.3a)

−

∫

∂D

KM(ϕ−1(Θnh))∇P
n
h ·nD dσ =

∫

D

qnt (ϕ
−1(Θnh)) dx. (4.3b)

We then define the approximate saturations snh := ϕ−1(Θnh), 0 ≤ n ≤ N .
The above approach applies whenever ϕ is strictly increasing and thus the function ϕ−1(·) is well defined

(this being satisfied for most of the parameterizations commonly used for modeling porous media flows). If
ϕ is not invertible, a regularization step can be employed, considering, e.g., a small number ε > 0 and
approximating ϕ by ϕε satisfying for all s ∈ R

ε ≤ ϕ′(s) ≤ Lϕ, |ϕ(s)− ϕε(s)| ≤ Cε, (4.4)

for some constant C > 0. This approach is often used in analyzing degenerate problems and leads to effective
numerical algorithms (see, e.g., [40, 49]).

Note that the two schemes, (4.2a)–(4.2b) and (4.3a)–(4.3b), only differ by a numerical quadrature, see
Remark A.1 below. Therefore from now on we only focus on the scheme (4.2a)–(4.2b).

4.2.2 The reconstruction of the fluxes

Here we show how to obtain, from the scheme (4.2a)–(4.2b), the flux reconstructions un,hτ , ut,hτ satisfying
Assumption C. To do so we let 1 ≤ n ≤ N and D ∈ Dn

h be given and construct unn,h,u
n
t,h ∈ RTN0(S

n
h ) as

follows. For each face e of the mesh SD included in ∂D but not in ∂Ω, we take

unn,h·ne := −
1

|e|

∫

e

K
(
η(snh)∇P

n
h +∇ϕ(snh)

)
·ne dσ, (4.5a)

unt,h·ne := −
1

|e|

∫

e

KM(snh)∇P
n
h ·ne dσ. (4.5b)

Observe that in (4.5a)–(4.5b), the degrees of freedom of unn,h and unt,h are not prescribed on all faces of Snh .
So, equations (4.5a)–(4.5b) do not specify unn,h and unt,h completely. The remaining degrees of freedom can
be specified in various ways, as discussed in [55, 23, 25, 21], typically by the solution of local (Dirichlet–
)Neumann problems by the mixed finite element method or by direct prescription. By the Green theorem,
from (4.5a)–(4.5b) and (4.2a)–(4.2b), we immediately get:
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Lemma 4.3 (Assumption C for the scheme (4.2a)–(4.2b)). Let unn,h and unt,h satisfy (4.5a)–(4.5b). Then
Assumption C holds true.

Lemma 4.3 guarantees the validity of the a posteriori error estimate of Theorem 1 for (shτ , Phτ ) provided
by the scheme (4.2a)–(4.2b). For identifying the error components and for the stopping criteria, we refer to
Appendix A below, and for efficiency to Appendix B below.

4.3 A phase-by-phase upstream weighting “engineering” scheme

We now turn to a scheme that is often used in the industrial setting, see, e.g., [32]. Compared to (4.2a)–(4.2b),
it solves the mass balance for both phases explicitly, and involves a stabilizing upwinding term.

4.3.1 The scheme

Let s0h ∈ V 0
h;s denote the discretization of the initial condition s0, as in Section 4.2.1. Then the “engineering”,

phase-by-phase upstream weighting, vertex-centered finite volume discretization of problem (2.12)–(2.15)
reads:

Definition 4.4 (“Engineering” finite volume scheme). Find a pair (shτ , pw,hτ ) ∈ Vhτ ;s × Vhτ such that

P (shτ , pw,hτ )|∂Ω = P with P (·, ·) the function of (2.10), and for all 1 ≤ n ≤ N and all D ∈ Dint,n
h , (snh, p

n
w,h)

are solutions of

−

∫

D

(
snh − sn−1

h

τn

)
dx−

∫

∂D

[K(ηw(1 − snh)∇(pnw,h))]
upw·nD dσ =

∫

D

qnw(1− snh) dx, (4.6a)

∫

D

(
snh − sn−1

h

τn

)
dx−

∫

∂D

[Kη(snh)∇(pnw,h + π(snh))]
upw·nD dσ =

∫

D

qnn (s
n
h) dx. (4.6b)

Here, the superscript upw denotes the fact that the concerned quantity is evaluated using the values at the
vertices in the upstream direction.

4.3.2 The reconstruction of the fluxes

Although the scheme (4.6a)–(4.6b) is quite different from the scheme (4.2a)–(4.2b), the flux reconstructions
un,hτ , ut,hτ satisfying Assumption C are obtained here in the same easy way as in Section 4.2.2.

Letting 1 ≤ n ≤ N and D ∈ Dn
h given, we construct unw,h,u

n
n,h ∈ RTN0(S

n
h ) as follows. For each face e

of the mesh SD included in ∂D but not in ∂Ω, we take

unw,h·ne := −
1

|e|

∫

e

[K(ηw(1 − snh)∇(pnw,h))]
upw·ne dσ, (4.7a)

unn,h·ne := −
1

|e|

∫

e

[Kη(snh)∇(pnw,h + π(snh))]
upw·ne dσ. (4.7b)

Then we define unt,h := unw,h+unn,h. Once again, the Green theorem, (4.7a)–(4.7b), and (4.6a)–(4.6b) readily
imply:

Lemma 4.5 (Assumption C for the scheme (4.6a)–(4.6b)). Let unw,h and unn,h satisfy (4.7a)–(4.7b) and set
unt,h := unw,h + unn,h. Then Assumption C holds true.

As before, Lemma 4.5 ensures that the error estimate in Theorem 1 holds true for (shτ , P (shτ , pw,hτ ))
provided by the scheme (4.6a)–(4.6b).

5 Proof of the a posteriori error estimate

In this section, we introduce the residuals of the weak formulation (2.17a)–(2.17b), show that the er-
ror between the exact solution (s, P ) ∈ E given by Definition 2.1 and an arbitrary approximate solution
(shτ , Phτ ) ∈ E can be bounded by the dual norm of the residuals, and finally show how to bound from above
this dual norm by computable a posteriori error estimates when (shτ , Phτ ) ∈ Eτ . This altogether gives the
proof of Theorem 1.
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5.1 Definition of the residuals

Recall the set E from (2.16). We start by the following definition:

Definition 5.1 (Residuals). Let (shτ , Phτ ) ∈ E by an arbitrary pair. Define the following continuous linear
forms Rn(shτ , Phτ ), Rt(shτ , Phτ ) on L

2((0, T );H1
0 (Ω)): for all ψ, ξ ∈ L2((0, T );H1

0 (Ω)),

〈Rn(shτ , Phτ ), ψ〉 :=

∫ T

0

〈∂tshτ (·, θ);ψ(·, θ)〉H−1 ,H1
0
dθ

+

∫∫

QT

K (η(shτ )∇Phτ +∇ϕ(shτ )) · ∇ψ dxdθ −

∫∫

QT

qn(shτ )ψ dxdθ, (5.1a)

〈Rt(shτ , Phτ ), ξ〉 :=

∫∫

QT

KM(shτ )∇Phτ · ∇ξ dxdθ −

∫∫

QT

qt(shτ )ξ dxdθ. (5.1b)

Clearly, for any pair (shτ , Phτ ) ∈ E with shτ (·, 0) = s0, one has

(shτ , Phτ ) is a weak solution ⇔ Rn(shτ , Phτ ) = Rt(shτ , Phτ ) = 0. (5.2)

In obtaining the estimates, we let ‖ · ‖H1
0 (Ω) stand for the energy norm on H1

0 (Ω),

‖v‖H1
0(Ω) :=

{∫

Ω

∣∣K 1
2 (x)∇v(x)

∣∣2 dx
} 1

2

, (5.3)

and ‖ · ‖L2(0,T ;H1
0 (Ω)) for the energy norm on L2(0, T ;H1

0 (Ω)) given by

‖v‖L2(0,T ;H1
0 (Ω)) :=

{∫∫

QT

∣∣K 1
2 (x)∇v(x, θ)

∣∣2 dxdθ
} 1

2

.

These norms are equivalent to the usual H1(Ω)-norms due to the boundary conditions and the properties of
K. The corresponding norm in H−1(Ω) is defined as

‖ζ‖H−1(Ω) = sup
ψ∈H1

0 (Ω), ‖ψ‖
H1

0
(Ω)

=1

〈ζ, ψ〉H−1,H1
0
.

Further, for the functionals introduced in Definition 5.1, in a standard way we define

|||Rn(shτ , Phτ )||| := sup
ψ∈L2(0,T ;H1

0(Ω))

‖ψ‖
L2(0,T ;H1

0
(Ω))

=1

〈Rn(shτ , Phτ ), ψ〉,

|||Rt(shτ , Phτ )||| := sup
ξ∈L2(0,T ;H1

0(Ω))

‖ξ‖
L2(0,T ;H1

0(Ω))
=1

〈Rt(shτ , Phτ ), ξ〉.

Finally, for proving the results below, the following elementary inequality will be used often: for all
a, b ∈ R and all δ > 0,

ab ≤
a2

2δ
+ δ

b2

2
. (5.4)

5.2 Bounding the error by the dual norm of the residuals

In this part we show that the error between the exact and approximate solutions can be bounded by the dual
norms of the residuals. The results are obtained under Assumption A, employing a duality technique.

Let (s, P ) ∈ E be the weak solution introduced in Definition 2.1, and satisfying in particular ∇P ∈
[L∞(QT )]

d (cf. Assumption A8). Consider an arbitrary pair (shτ , Phτ ) ∈ E . For any given t ∈ (0, T ], we
denote by Ghτ (·, t) ∈ H1

0 (Ω) the function satisfying
∫

Ω

K∇Ghτ (·, t) · ∇ψ dx =

∫

Ω

(shτ − s)(·, t)ψ dx (5.5)

for all ψ ∈ H1
0 (Ω). For any t ∈ (0, T ], the existence and uniqueness of Ghτ (·, t) is guaranteed by standard

arguments. Moreover, since shτ and s are in C([0, T ];L2(Ω)), we obtain Ghτ ∈ L2(0, T ;H1
0(Ω)).

We have the following:
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Lemma 5.2. Under Assumption A, there exists a constant C1 > 0 such that, for all t ∈ (0, T ], one has

|||Rn(shτ , Phτ )|||
2 ≥ ‖(shτ − s)(·, t)‖2H−1(Ω) − ‖shτ (·, 0)− s0‖2H−1(Ω)

+

∫∫

Qt

(shτ − s)(ϕ(shτ )− ϕ(s)) dxdθ − C1‖s− shτ‖
2
L2(0,t;H−1(Ω)) (5.6)

+2

∫∫

Qt

η(shτ )K(∇Phτ −∇P ) · ∇Ghτ dxdθ.

Proof. The H1
0 norm (5.3) (and consequently the H−1 norm) are involving the symmetric, positive definite

tensor K. Proceeding as for the standard norms in H−1, respectively H1
0 , for all t ∈ [0, T ], the definition (5.5)

gives

‖Ghτ (·, t)‖H1
0 (Ω) = sup

ψ∈H1
0 (Ω),‖ψ‖

H1
0 (Ω)

=1

∫

Ω

K∇Ghτ (·, t) · ∇ψ dx

= sup
ψ∈H1

0 (Ω),‖ψ‖
H1

0 (Ω)
=1

∫

Ω

(shτ − s)(·, t)ψ dx (5.7)

= ‖(shτ − s)(·, t)‖H−1(Ω).

Note that, thanks to (5.2), for all ψ ∈ L2(0, T ;H1
0 (Ω)), one has

〈Rn(shτ , Phτ ), ψ〉 = 〈Rn(shτ , Phτ ), ψ〉 − 〈Rn(s, P ), ψ〉.

In particular, choosing ψ = Ghτ1(0,t) as the test function in this relation provides

〈Rn(shτ , Phτ ), Ghτ 〉 = A1 +A2 +A3 +A4 +A5, (5.8)

where

A1 :=

∫ t

0

〈∂t(shτ − s)(·, θ);Ghτ (·, θ)〉H−1,H1
0
dθ,

A2 :=

∫∫

Qt

η(shτ )K(∇Phτ −∇P ) · ∇Ghτ dxdθ,

A3 :=

∫∫

Qt

(η(shτ )− η(s))K∇P · ∇Ghτ dxdθ,

A4 :=

∫∫

Qt

K (∇ϕ(shτ )−∇ϕ(s)) · ∇Ghτ dxdθ,

A5 := −

∫∫

Qt

(qn(shτ )− qn(s))Ghτ dxdθ.

Recalling (5.5), ∂tGhτ solves

{
−∇· (K∇(∂tGhτ )) = ∂t(shτ − s) in Ω,

∂tGhτ = 0 on ∂Ω,

for a.e. t ∈ (0, T ], in a weak sense. Since ∂t(shτ − s) ∈ L2(0, T ;H−1(Ω)), we have ∂tGhτ ∈ L2(0, T ;H1
0 (Ω)),

ensuring that Ghτ ∈ C([0, T ];H1
0 (Ω)). Thus, it follows from the definition (5.5) of Ghτ that

A1 =

∫∫

Qt

K(∂t∇Ghτ ) · ∇Ghτ dxdθ =
1

2

(
‖Ghτ (·, t)‖

2
H1

0 (Ω) − ‖Ghτ (·, 0)‖
2
H1

0 (Ω)

)
.

Hence, using (5.7), we obtain that

A1 =
1

2

(
‖(shτ − s)(·, t)‖2H−1(Ω) − ‖shτ (·, 0)− s0‖2H−1(Ω)

)
. (5.9)
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Further, with C denoting a positive constant, not necessarily the same at each occurrence, since K
1
2∇P ∈

[L∞(Qt)]
d
we get

A3 ≥ −C‖η(shτ )− η(s)‖L2(Qt)‖Ghτ‖L2(0,t;H1
0(Ω))

≥ −
1

2C0
‖η(shτ )− η(s)‖2L2(Qt)

−
C2C0

2
‖Ghτ‖

2
L2(0,t;H1

0 (Ω)),

where C0 is the constant appearing in relation (2.19).
Third, one has

A5 ≥ −
1

2C0
‖qn(shτ )− qn(s)‖

2
L2(Qt)

−
C0

2
‖Ghτ‖

2
L2(Qt)

.

Thanks to the Poincaré–Friedrichs inequality (3.9), there exists a C > 0 such that, for almost all θ ∈ (0, t],

‖Ghτ (·, θ)‖L2(Ω) ≤ C‖Ghτ (·, θ)‖H1
0 (Ω) = C‖(shτ − s)(·, θ)‖H−1(Ω).

Therefore, there exists a C > 0 such that

A5 ≥ −
1

2C0
‖qn(shτ )− qn(s)‖

2
L2(Qt)

− C‖shτ − s‖2L2(0,t;H−1(Ω)).

By (5.7) and Assumption A7,

A3 +A5 ≥ −
1

2

∫∫

Qt

(shτ − s)(ϕ(shτ )− ϕ(s)) dxdθ − C‖shτ − s‖2L2(0,t;H−1(Ω)). (5.10)

Fourth, recalling (5.5), since ϕ(s)− ϕ(shτ ) ∈ L2(0, T ;H1
0(Ω))), we obtain

A4 =

∫∫

Qt

(shτ − s)(ϕ(shτ )− ϕ(s)) dxdθ. (5.11)

Finally, using (5.7) gives

〈Rn(shτ , Phτ ), Ghτ 〉 ≤ |||Rn(shτ , Phτ )||| ‖shτ − s‖L2(0,t;H−1(Ω))

≤
1

2
|||Rn(shτ , Phτ )|||

2
+

1

2
‖shτ − s‖2L2(0,t;H−1(Ω)). (5.12)

Employing (5.9)–(5.12) in (5.8) provides (5.6).

Lemma 5.3. Under Assumption A, there exist the constants C2, C3, C4 > 0 such that, for all t ∈ (0, T ], one
has

|||Rt(shτ , Phτ )|||
2 ≥ C2‖Phτ − P‖2L2(0,t;H1

0 (Ω)) −
C3

2

∫∫

Qt

(shτ − s)(ϕ(shτ )− ϕ(s)) dxdθ

−2C3

∫∫

Qt

η(shτ )K(∇Phτ −∇P ) · ∇Ghτ dxdθ − C4‖shτ − s‖2L2(0,t;H−1(Ω)).(5.13)

Proof. For any t ∈ (0, T ], we denote by Ĝhτ (·, t) the function in H1
0 (Ω) satisfying

∫

Ω

M(shτ (·, t))K∇Ĝhτ (·, t) · ∇ψ dx = −

∫

Ω

η(shτ (·, t))K∇Ghτ (·, t) · ∇ψ dx (5.14)

for all ψ ∈ H1
0 (Ω), where Ghτ (·, t) ∈ H1

0 (Ω) solves (5.5). The existence and uniqueness of Ĝhτ (·, t) is again
guaranteed by standard arguments.

Choosing Ĝhτ (·, t) as test function in (5.14) and using (2.18) and (2.19) gives

‖Ĝhτ (·, t)‖H1
0 (Ω) ≤

Cη
cM

‖Ghτ (·, t)‖H1
0 (Ω) =

Cη
cM

‖(shτ − s)(·, t)‖H−1(Ω). (5.15)

With λ > 0 an arbitrary parameter that will be fixed later, choosing ξhτ :=
(
Phτ − P + λĜhτ

)
1(0,t) as test

function in (5.1b) yields

〈Rt(shτ , Phτ ), ξhτ 〉 = 〈Rt(shτ , Phτ ), ξhτ 〉 − 〈Rt(s, P ), ξhτ 〉 = B1 +B2 +B3 +B4 +B5 +B6, (5.16)
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where

B1 :=

∫∫

Qt

M(shτ )K (∇Phτ −∇P ) · (∇Phτ −∇P ) dxdθ,

B2 :=

∫∫

Qt

(M(shτ )−M(s))K∇P · (∇Phτ −∇P ) dxdθ,

B3 := λ

∫∫

Qt

M(shτ )K (∇Phτ −∇P ) · ∇Ĝhτ dxdθ,

B4 := λ

∫∫

Qt

(M(shτ )−M(s))K∇P · ∇Ĝhτ dxdθ,

B5 := −

∫∫

Qt

(qt(shτ )− qt(s)) (Phτ − P ) dxdθ,

B6 := −λ

∫∫

Qt

(qt(shτ )− qt(s)) Ĝhτ dxdθ.

First, thanks to (2.18), one has
B1 ≥ cM‖Phτ − P‖2L2(0,t;H1

0(Ω)). (5.17)

Second, since K
1
2∇P ∈ [L∞(Qt)]

d
, we get, for some C > 0,

B2 ≥ −C‖M(shτ)−M(s)‖L2(Qt)‖Phτ − P‖L2(0,t;H1
0(Ω))

≥ −C‖M(shτ)−M(s)‖2L2(Qt)
−
cM
4

‖Phτ − P‖2L2(0,t;H1
0(Ω)).

By Assumption A7, there exists a C > 0, not depending on (shτ , Phτ ), such that

B2 ≥ −C

∫∫

Qt

(shτ − s)(ϕ(shτ )− ϕ(s)) dxdθ −
cM
4

‖Phτ − P‖2L2(0,t;H1
0 (Ω)). (5.18)

Third, it follows from the definition (5.14) of Ĝhτ that

B3 = −λ

∫∫

Qt

η(shτ )K(∇Phτ −∇P ) · ∇Ghτ dxdθ. (5.19)

Fourth, since K
1
2∇P ∈ [L∞(Qt)]

d, by Assumption A7 and (5.15) we get

B4 ≥ −Cλ‖M(shτ )−M(s)‖L2(Qt)‖Ĝhτ‖L2(0,t;H1
0 (Ω))

≥ −C‖M(shτ)−M(s)‖2L2(Qt)
− λ2‖Ĝhτ‖

2
L2(0,t;H1

0 (Ω))

≥ −C

∫∫

Qt

(shτ − s)(ϕ(shτ )− ϕ(s)) dxdθ − Cλ2‖shτ − s‖L2(0,t;H−1(Ω)). (5.20)

Fifth, by (5.4), for all µ > 0 one has

B5 ≥ −
1

4µ
‖qt(shτ )− qt(s)‖

2
L2(Qt)

− µ‖P − Phτ‖
2
L2(Qt)

.

Therefore, using the Poincaré–Friedrichs inequality (3.9), a convenient choice of µ, and Assumption A7 lead
to

B5 ≥ −C

∫∫

Qt

(shτ − s)(ϕ(shτ )− ϕ(s)) dxdθ −
cM
4

‖P − Phτ‖
2
L2(0,t;H1

0 (Ω)). (5.21)

Sixth, using Assumption A7,

B6 ≥ −λ2‖Ĝhτ‖
2
L2(Qt)

− C

∫∫

Qt

(shτ − s)(ϕ(shτ )− ϕ(s)) dxdθ.

The Poincaré–Friedrichs inequality (3.9) and (5.15) give

B6 ≥ −λ2C‖shτ − s‖2L2(0,t;H−1(Ω)) − C

∫∫

Qt

(shτ − s)(ϕ(shτ )− ϕ(s)) dxdθ. (5.22)
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From (5.16)–(5.22), one gets

〈Rt(shτ , Phτ ), ξhτ 〉 ≥
cM
2

‖Phτ − P‖2L2(0,t;H1
0 (Ω)) − C

∫∫

Qt

(shτ − s)(ϕ(shτ )− ϕ(s)) dxdθ

−λ

∫∫

Qt

η(shτ )K(∇Phτ −∇P ) · ∇Ghτ dxdθ − λ2C‖shτ − s‖2L2(0,t;H−1(Ω)).(5.23)

On the other hand, we deduce from (5.15) that

‖ξhτ‖L2(0,t;H1
0 (Ω)) ≤ ‖Phτ − P‖L2(0,t;H1

0 (Ω)) + λ
Cη
cM

‖shτ − s‖L2(0,t;H−1(Ω)),

leading to

〈Rt(shτ , Phτ ), ξhτ 〉 ≤ |||Rt(shτ , Phτ )|||
(
‖Phτ − P‖L2(0,t;H1

0 (Ω)) + λC‖shτ − s‖L2(0,t;H−1(Ω))

)
.

With (5.4), we can prove that

2

cM
|||Rt(shτ , Phτ )|||

2 ≥ 〈Rt(shτ , Phτ ), ξhτ 〉 −
cM
4

‖Phτ − P‖2L2(0,t;H1
0(Ω)) − λ2C‖shτ − s‖L2(0,t;H−1(Ω)).

Using the relation (5.23), this provides

|||Rt(shτ , Phτ )|||
2 ≥

c2M
8

‖Phτ − P‖2L2(0,t;H1
0 (Ω)) −

C3

2

∫∫

Qt

(shτ − s)(ϕ(shτ )− ϕ(s)) dxdθ

−
λcM
2

∫∫

Qt

η(shτ )K(∇Phτ −∇P ) · ∇Ghτ dxdθ − Cλ2‖shτ − s‖L2(0,t;H−1(Ω)).

Choosing λ = 4 C3

cM
leads to (5.13).

Note that the fifth term on the right in (5.6) and the third term on the right in (5.13) differ by a constant.
Therefore, a straightforward consequence of Lemmas 5.2 and 5.3 is:

Lemma 5.4. Under Assumption A, there exist the constants C5, C6, C7 > 0 such that, for all t ∈ (0, T ), one
has

|||Rt(shτ , Phτ )|||
2 + C3|||Rn(shτ , Phτ )|||

2

≥ C3

(
‖(shτ − s)(·, t)‖2H−1(Ω) − ‖shτ(·, 0)− s0‖2H−1(Ω)

)

+C5

∫∫

Qt

(shτ − s)(ϕ(shτ )− ϕ(s)) dxdθ

+C6‖Phτ − P‖L2(0,t;H1
0 (Ω)) − C7‖shτ − s‖L2(0,t;H−1(Ω)). (5.24)

The last term on the right-hand side of (5.24) appears with a negative sign. We bound it as follows:

Lemma 5.5. Under Assumption A, there exists a constant C8 > 0 such that

‖shτ − s‖2L∞(0,T ;H−1(Ω)) ≤ C8

(
‖shτ (·, 0)− s0‖2H−1(Ω) + |||Rn(shτ , Phτ )|||

2 + |||Rt(shτ , Phτ )|||
2
)
.

Proof. Since ϕ is increasing on R, for all t ∈ (0, T ],

∫∫

Qt

(shτ − s)(ϕ(shτ )− ϕ(s)) dxdθ ≥ 0.

By Lemma 5.4, for all t ∈ (0, T ] one has

‖(shτ − s)(·, t)‖2H−1(Ω) ≤ ‖shτ (·, 0)− s0‖2H−1(Ω) + |||Rn(shτ , Phτ )|||
2

+
1

C3
|||Rt(shτ , Phτ )|||

2 +
C7

C3

∫ t

0

‖(shτ − s)(·, θ)‖2H−1(Ω) dθ.
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The Gronwall lemma yields for all t ∈ [0, T ]

‖(shτ − s)(·, t)‖2H−1(Ω) ≤ e
C7T
C3

(
‖shτ (·, 0)− s0‖2H−1(Ω) + |||Rn(shτ , Phτ )|||

2 +
1

C3
|||Rt(shτ , Phτ )|||

2

)
.

The conclusion follows with C8 = e
C7T

C3 max {1, 1/C3}.

We now give the following lemma, which is a straightforward consequence of Lemma 5.5.

Lemma 5.6. Under Assumption A, there exists a constant C9 > 0 such that

‖shτ − s‖L2((0,T );H−1(Ω)) ≤ C9

(
‖shτ (·, 0)− s0‖2H−1(Ω) + |||Rn(shτ , Phτ )|||

2 + |||Rt(shτ , Phτ )|||
2
)
.

Having proved all the results above we can now state the main result of this section:

Theorem 2 (Upper bound on the error by the residuals). Let (s, P ) ∈ E be the weak solution introduced in
Definition 2.1 and let (shτ , Phτ ) ∈ E be arbitrary. Under Assumption A, there exists a constant C > 0 such
that

‖shτ − s‖2L2(0,T ;H−1(Ω)) + ‖Phτ − P‖2L2(0,T ;H1
0 (Ω)) + ‖ϕ(shτ )− ϕ(s)‖2L2(QT )

≤ C
(
‖shτ (·, 0)− s0‖2H−1(Ω) + |||Rn(shτ , Phτ )|||

2 + |||Rt(shτ , Phτ )|||
2
)
. (5.25)

Moreover, if ϕ−1 belongs to C0,r(R), then there exists C > 0 such that

‖shτ − s‖2L2(0,T ;H−1(Ω)) + ‖Phτ − P‖2L2(0,T ;H1
0 (Ω)) + ‖shτ − s‖1+rL1+r(QT )

≤ C
(
‖shτ (·, 0)− s0‖2H−1(Ω) + |||Rn(shτ , Phτ )|||

2 + |||Rt(shτ , Phτ )|||
2
)
. (5.26)

Proof. Since ϕ is increasing and Lϕ-Lipschitz continuous, one has, for all (a, b) ∈ R

(a− b)(ϕ(a)− ϕ(b)) ≥
1

Lϕ
(ϕ(a) − ϕ(b))2.

As a consequence,
∫∫

QT

(shτ − s) (ϕ(shτ )− ϕ(s)) dxdθ ≥
1

Lϕ
‖ϕ(shτ )− ϕ(s)‖2L2(QT ). (5.27)

On the other hand, if ϕ−1 is r-Hölder continuous, for all (a, b) ∈ R one has

(a− b)(ϕ(a) − ϕ(b)) ≥ C(a− b)1+r.

This gives ∫∫

QT

(shτ − s) (ϕ(shτ )− ϕ(s)) dxdθ ≥ C‖shτ − s‖1+rL1+r(QT ). (5.28)

Choosing t = T in (5.24), one by (5.27) obtains

C
(
‖ϕ(shτ )− ϕ(s)‖2L2(QT ) + ‖P − Phτ‖

2
L2(0,T ;H1

0 (Ω))

)

≤ ‖shτ (·, 0)− s0‖2H−1(Ω) + |||Rn(shτ , Phτ )|||
2 + |||Rt(shτ , Phτ )|||

2 + C‖shτ − s‖2L2(0,T ;H−1(Ω)).

The first result now follows from Lemma 5.6. The second one can be shown in the same way, by using (5.28)
instead of (5.27).

Remark 5.7 (Uniqueness and continuous dependence on the initial data). Let (s, P ) and (s̃, P̃ ) be two weak
solutions following Definition 2.1 for the initial data s0, respectively s̃0. Thanks to (5.2), (5.25) gives

‖s− s̃‖L2(0,T ;H−1(Ω)) + ‖P − P̃‖L2(0,T ;H1
0 (Ω)) + ‖ϕ(s)− ϕ(s̃)‖L2(QT ) ≤ C‖s0 − s̃0‖H−1(Ω).

This provides the uniqueness of the weak solution for a given initial data, as well as the continuous dependence
with respect to the initial data for the above topology.

Remark 5.8 (Hölder continuity of ϕ−1). The estimate in (5.26) is obtained assuming additionally that ϕ−1

is Hölder continuous. This is fulfilled by parameterizations that are commonly encountered in the literature,
like, e.g., the Brooks–Corey or van Genuchten–Mualem models (see [7]).
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5.3 Bounding the dual norm of the residuals by the a posteriori estimate

We now finally bound the dual norm of the residuals by a fully computable a posteriori error estimate. Recall
the definitions (2.16) and (3.1). Herein, we need to assume (shτ , Phτ ) ∈ Eτ instead of merely (shτ , Phτ ) ∈ E .

Theorem 3 (Upper bound on the residuals). Let Assumptions A1–A3 and B hold. Let (shτ , Phτ ) ∈ Eτ be
arbitrary. Let the estimators be defined by (3.4), (3.5), and (3.8). Under Assumption C, there holds

|||Rn(shτ , Phτ )|||
2 + |||Rt(shτ , Phτ )|||

2

≤

N∑

n=1

∑

α∈{n,t}

∫

In







∑

D∈Dn
h

(ηnF,α,D(t) + ηnR,α,D)
2





1
2

+




∑

D∈Dn
h

(ηnQ,α,D(t))
2





1
2




2

dt.

Proof. Let ψ, ξ ∈ L2(0, T ;H1
0 (Ω)) with ‖ψ‖L2(0,T ;H1

0 (Ω)) = ‖ξ‖L2(0,T ;H1
0 (Ω)) = 1 be given. Using the defini-

tion (5.1a), adding and subtracting un,hτ · ∇ψ, and employing the Green theorem and (3.2a) leads to

〈Rn(shτ , Phτ ), ψ〉 =

∫∫

QT

(∂tshτ +∇·un,hτ − qn(shτ ))ψ dxdt

+

∫∫

QT

(K (η(shτ )∇Phτ +∇ϕ(shτ )) + un,hτ ) · ∇ψ dxdt

=

N∑

n=1

∫

In





∑

D∈Dint,n
h

∫

D

(∂tshτ +∇·unn,h − qnn (s
n
h))(ψ − ψD) dx

+
∑

D∈Dext,n
h

∫

D

(∂tshτ +∇·unn,h − qnn (s
n
h))ψ dx



 dt

+

N∑

n=1

∫

In

∑

D∈Dn
h

∫

D

(qnn (s
n
h)− qnn (shτ ))ψ dxdt

+

N∑

n=1

∫

In

∑

D∈Dn
h

∫

D

(
K (η(shτ )∇Phτ +∇ϕ(shτ )) + unn,h

)
· ∇ψ dxdt.

Here ψD stands for the mean value of the function ψ over the volume D. Let 1 ≤ n ≤ N and t ∈ In be fixed.
For any D ∈ Dint,n

h , the Cauchy–Schwarz inequality, the Poincaré–Wirtinger inequality (3.6), the properties
of K, and the definition (3.5a) give

∫

D

(∂tshτ +∇·unn,h − qnn (s
n
h))(ψ − ψD) dx ≤ ηnR,n,D‖K

1
2∇ψ‖L2(D)(t).

Similarly, the Poincaré–Friedrichs inequality (3.7) gives, for any D ∈ Dext,n
h ,

∫

D

(∂tshτ +∇·unn,h − qnn (s
n
h))ψ dx ≤ ηnR,n,D‖K

1
2∇ψ‖L2(D)(t).

In the same manner, for any D ∈ Dn
h , recalling (3.4a), one can use the Cauchy–Schwarz inequality to obtain

∫

D

(
K (η(shτ )∇Phτ +∇ϕ(shτ )) + unn,h

)
· ∇ψ dx ≤ ηnF,n,D(t)‖K

1
2∇ψ‖L2(D)(t),

whereas definition (3.8a), the Cauchy–Schwarz inequality, and the Poincaré–Friedrichs inequality (3.9) give

∑

D∈Dn
h

∫

D

(qnn (s
n
h)− qnn (shτ ))ψ dx ≤




∑

D∈Dn
h

(ηnQ,n,D(t))
2





1
2

‖K
1
2∇ψ‖L2(Ω)(t).

This leads to

|||Rn(shτ , Phτ )|||
2 ≤

N∑

n=1

∫

In







∑

D∈Dn
h

(ηnF,n,D(t) + ηnR,n,D)
2





1
2

+




∑

D∈Dn
h

(ηnQ,n,D(t))
2





1
2




2

dt.
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Similarly, from (5.1b) and (3.2b), we obtain

〈Rt(shτ , Phτ ), ξ〉 =

∫∫

QT

(
KM(shτ )∇Phτ + ut,hτ ) · ∇ξ dxdt+

∫∫

QT

(∇·ut,hτ − qt(shτ ))ξ dxdt

=

N∑

n=1

∫

In





∑

D∈Dint,n
h

∫

D

(∇·unt,h − qnt (s
n
h))(ξ − ξD) dx

+
∑

D∈Dext,n
h

∫

D

(∇·unt,h − qnt (s
n
h))ξ dx



 dt

+

N∑

n=1

∫

In

∑

D∈Dn
h

∫

D

(qnt (s
n
h)− qnt (shτ ))ξ dxdt

+

N∑

n=1

∫

In

∑

D∈Dn
h

(
KM(shτ )∇Phτ + unt,h

)
· ∇ξ dxdt.

Using the same arguments as above to bound |||Rt(shτ , Phτ )|||
2, the assertion of the theorem follows.

A Distinguishing the error components and stopping criteria

Here we consider the scheme of Section 4.2.1 and show how the estimators of Theorem 1 can be further
developed to distinguish between the different error components, derive stopping criteria for iterative lin-
earizations and algebraic solvers, and show how to equilibrate the principal error components. We follow the
approach introduced in [23, 25, 26, 27, 34, 21] and extended to the context of two-phase flows in [56].

A.1 Numerical quadrature, linearization, and algebraic solver

We start by describing the steps taken in the practical implementation of (4.2a)–(4.2b). For the sake of
clarity, we only consider some simple but illustrative examples, but mention that other choices are also
possible.

A.1.1 Numerical quadrature

In the practical calculations, one does not solve (4.2a)–(4.2b) exactly. This is because of the particular
nature of the (nonlinear) functions η(snh), M(snh), ϕ(s

n
h), q

n
n (s

n
h), and qnt (s

n
h), making an exact evaluation

of the integrals over elements difficult or even impossible. For this reason, one typically uses a numerical
quadrature.

In this sense, consider an arbitrary (nonlinear) function f : Ω → R. Given 1 ≤ n ≤ N and vh ∈ V nh , f(vh)
does not necessary belong to V nh . Therefore we define the operator fh : V nh → V nh by

(fh(vh))(x) = (f(vh))(x) (A.1)

for all vh ∈ V nh and for all vertices x of T n
h . Clearly, fh(vh) is a quadrature-based approximation of f(vh).

A practical implementation of the “mathematical” vertex-centered finite volume method in (4.2a)–(4.2b)
is employing the numerical quadrature (A.1). This leads to the problem of finding a pair (shτ , Phτ ) ∈

Vhτ ;s × Vhτ ;P such that for all 1 ≤ n ≤ N and all D ∈ Dint,n
h , (snh, P

n
h ) ∈ V nh;s × V n

h;P
are solutions of

∫

D

(
snh − sn−1

h

τn

)
dx−

∫

∂D

K(ηh(s
n
h)∇P

n
h +∇ϕh(s

n
h))·nD dσ =

∫

D

(qnn )h(s
n
h) dx, (A.2a)

−

∫

∂D

KMh(s
n
h)∇P

n
h ·nD dσ =

∫

D

(qnt )h(s
n
h) dx. (A.2b)

Remark A.1 (Link to the Kirchhoff transform scheme of Remark 4.2). Remark 4.2 gives the scheme (4.3a)–
(4.3b), which is similar to (4.2a)–(4.2b), but makes use of the Kirchhoff transform. As above, in the practical
implementation of (4.3a)–(4.3b), one can consider the numerical quadrature in (A.1). The resulting scheme
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leads to the same system of nonlinear algebraic equations as (A.2a)–(A.2b). Consequently, the resulting nodal
values of snh, P

n
h , and Θnh = ϕ(snh) are the same and the two schemes only differ in the interpretation of the

results: the first scheme is given in terms of shτ ∈ Vhτ ;s, whereas Θhτ ∈ Vhτ ;Θ appears in the Kirchhoff-based
approach.

A.1.2 Linearization

At each time step n, (A.2a)–(A.2b) represents a system of nonlinear algebraic equations. Solving it requires
an iterative linearization procedure. Here we only give a simple illustrative example of a fixed point approach;
fixed point or Newton-type linearizations for the equivalent Kirchhoff transform based scheme (4.3a)–(4.3b)
are considered, together with the rigorous convergence proof, in [33, 45, 47].

For a given 1 ≤ n ≤ N , let sn,0h be a given initial guess for the saturation snh. A typical choice is

sn,0h = sn−1
h . We consider the following fixed point linearization of (A.2a)–(A.2b). Starting with k = 1, at

each step k we determine the pair (sn,kh , Pn,kh ) ∈ V nh;s × V n
h;P

such that, for all D ∈ Dint,n
h ,

∫

D

(
sn,kh − sn−1

h

τn

)
dx−

∫

∂D

K
(
ηh(s

n,k−1
h )∇Pn,kh +∇ϕh(s

n,k−1
h )

)
·nD dσ =

∫

D

(qnn )h(s
n,k−1
h ) dx, (A.3a)

−

∫

∂D

KMh(s
n,k−1
h )∇Pn,kh ·nD dσ =

∫

D

(qnt )h(s
n,k−1
h ) dx. (A.3b)

A.1.3 Algebraic solver

At each time step n and each linearization step k, (A.3a)–(A.3b) represents a system of linear algebraic
equations, which is typically solved by an iterative solver (i being the corresponding iteration index). Here
we keep the discussion general without specifying any particular solver.

For a given 1 ≤ n ≤ N and k ≥ 1, let sn,k,0h be a given initial guess for the saturation sn,kh . Typically,

sn,k,0h = sn,k−1
h . Starting from i = 1, on each step i an iterative algebraic solver for (A.3a)–(A.3b) provides

the pair (sn,k,ih , Pn,k,ih ) ∈ V nh;s × V n
h;P

such that, for all D ∈ Dint,n
h ,

∫

D

(
sn,k,ih − sn−1

h

τn

)
dx−

∫

∂D

K
(
ηh(s

n,k−1
h )∇Pn,k,ih +∇ϕh(s

n,k−1
h )

)
·nD dσ

=

∫

D

(qnn )h(s
n,k−1
h ) dx−Rn,k,in,D , (A.4a)

−

∫

∂D

KMh(s
n,k−1
h )∇Pn,k,ih ·nD dσ =

∫

D

(qnt )h(s
n,k−1
h ) dx−Rn,k,it,D . (A.4b)

Here, Rn,k,in and Rn,k,it are the algebraic residual vectors at the given step i and Rn,k,in,D , Rn,k,it,D are the

components of these vectors corresponding to the dual volumes D ∈ Dint,n
h .

Altogether, the approximate solution obtained at the time step n, the linearization step k, and the
algebraic solver step i is a pair (sn,k,ihτ , Pn,k,ihτ ) ∈ Vhτ ;s|In × Vhτ ;P |In given by

sn,k,ihτ (tn) = sn,k,ih , sn,k,ihτ (tn−1) = sn−1
h , (A.5a)

Pn,k,ihτ (tn) = Pn,k,ih , Pn,k,ihτ (tn−1) = Pn−1
h . (A.5b)

A.2 Distinguishing the error components

As we have seen, computing the pair (sn,k,ihτ , Pn,k,ihτ ) defined by (A.5a)–(A.5b) involves a numerical quadrature,
an iterative linearization, and an iterative algebraic solver. Therefore this approximate solution does not solve
the initial equations (4.2a)–(4.2b) and henceforth the flux reconstructions (4.5a)–(4.5b) do not necessarily
satisfy Assumption C. We show below how these fluxes can be reconstructed in such a way that Assumption C
is still satisfied, allowing to apply Theorem 1. We further show how to distinguish and estimate separately the
additional errors arising from iterative linearizations and algebraic solvers that have not converged completely.
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A.2.1 Reconstruction of the fluxes

Let a time step n, a linearization step k, and an algebraic solver step i be given. We construct here the fluxes
u
n,k,i
n,h and u

n,k,i
t,h satisfying Assumption C. To distinguish the different error components, we set

u
n,k,i
n,h = d

n,k,i
n,h + l

n,k,i
n,h + a

n,k,i
n,h + q

n,k,i
n,h , (A.6a)

u
n,k,i
t,h = d

n,k,i
t,h + l

n,k,i
t,h + a

n,k,i
t,h + q

n,k,i
t,h , (A.6b)

where all the fluxes above are constructed in the space RTN0(S
n
h ), cf. Section 4.1; dn,k,in,h ,dn,k,it,h are called

the discretization fluxes, ln,k,in,h , ln,k,it,h the linearization error fluxes, an,k,in,h , an,k,it,h the algebraic error fluxes, and

q
n,k,i
n,h ,qn,k,it,h the space quadrature–linearization error fluxes.

Let D ∈ Dn
h . We first specify d

n,k,i
n,h ,dn,k,it,h . For each face e of the mesh SD included in ∂D but not in ∂Ω,

we define

d
n,k,i
n,h ·ne := −

1

|e|

∫

e

K
(
ηh(s

n,k,i
h )∇Pn,k,ih +∇ϕh(s

n,k,i
h )

)
·ne dσ, (A.7a)

d
n,k,i
t,h ·ne := −

1

|e|

∫

e

K
(
Mh(s

n,k,i
h )∇Pn,k,ih

)
·ne dσ. (A.7b)

Next, ln,k,in,h and l
n,k,i
t,h are specified implicitly by

(dn,k,in,h + l
n,k,i
n,h )·ne := −

1

|e|

∫

e

K
(
ηh(s

n,k−1
h )∇Pn,k,ih +∇ϕh(s

n,k−1
h )

)
·ne dσ, (A.8a)

(dn,k,it,h + l
n,k,i
t,h )·ne := −

1

|e|

∫

e

K
(
Mh(s

n,k−1
h )∇Pn,k,ih

)
·ne dσ. (A.8b)

As discussed in Section 4.2.2, for the remaining degrees of freedom one can proceed as in [55, 23, 25, 21]. As

for an,k,in,h , an,k,it,h and q
n,k,i
n,h , qn,k,it,h , for all D ∈ Dint,n

h we merely require that

∫

D

∇·an,k,in,h dx = Rn,k,in,D , (A.9a)

∫

D

∇·an,k,it,h dx = Rn,k,it,D (A.9b)

and
∫

D

∇·qn,k,in,h dx =

∫

D

(
(qnn )h(s

n,k−1
h )− qnn (s

n,k,i
h )

)
dx, (A.10a)

∫

D

∇·qn,k,it,h dx =

∫

D

(
(qnt )h(s

n,k−1
h )− qnt (s

n,k,i
h )

)
dx. (A.10b)

From Rn,k,iα,D and (qnα)h(s
n,k−1
h ) − qnα(s

n,k,i
h ), α ∈ {n, t}, an,k,in,h , an,k,it,h and q

n,k,i
n,h , qn,k,it,h can be constructed

using, for instance, the algorithm of [34, Section 7.3] or proceeding as in [26, 27]. The goal is to ensure that

‖qn,k,iα,h ‖
K

−
1
2 ;L2(Ω)

, ‖an,k,iα,h ‖
K

−
1
2 ;L2(Ω)

, and ‖ln,k,iα,h ‖
K

−
1
2 ;L2(Ω)

, α ∈ {n, t}, go to zero as the quadrature error

gets negligible and the algebraic and linearization solver, respectively, converge.
Using (A.4a)–(A.4b), the above definitions lead to:

Lemma A.2 (Assumption C for time step n, linearization step k, and algebraic solver step i). Let un,k,in,h

and u
n,k,i
t,h satisfy (A.6)–(A.10). Then Assumption C holds true for u

n,k,i
n,h and u

n,k,i
t,h .
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A.2.2 Distinguishing the error components

Given a time step n, a time t ∈ In, a volume D ∈ Dn
h , a linearization step k, and an iterative solver step i,

we introduce the following notations, refining the ones in (3.4), (3.5), and (3.8):

ηn,k,iF,n,D(t) := ‖un,k,in,h +K
(
η(sn,k,ihτ )∇Pn,k,ihτ +∇ϕ(sn,k,ihτ )

)
(t)‖

K
−

1
2 ;L2(D)

, (A.11a)

ηn,k,iF,t,D(t) := ‖un,k,it,h +KM(sn,k,ihτ )∇Pn,k,ihτ (t)‖
K

−
1
2 ;L2(D)

, (A.11b)

ηn,k,iR,n,D := mD‖∂ts
n,k,i
hτ +∇·un,k,in,h − qnn (s

n,k,i
h )‖L2(D), (A.11c)

ηn,k,iR,t,D := mD‖∇·un,k,it,h − qnt (s
n,k,i
h )‖L2(D), (A.11d)

ηn,k,iQ,n,D(t) := CF,ΩhΩc
− 1

2

K,Ω‖q
n
n (s

n,k,i
h )− qnn (s

n,k,i
hτ )(t)‖L2(D), (A.11e)

ηn,k,iQ,t,D(t) := CF,ΩhΩc
− 1

2

K,Ω‖q
n
t (s

n,k,i
h )− qnt (s

n,k,i
hτ )(t)‖L2(D). (A.11f)

The quantities K
(
η(sn,k,ihτ )∇Pn,k,ihτ +∇ϕ(sn,k,ihτ )

)
(tn) and K

(
M(sn,k,ihτ )∇Pn,k,ihτ

)
(tn) are likely to be nonpoly-

nomial and are approximated by the quadratures in Section A.1.1. For this reason, we introduce their
quadrature polynomial approximations in the space RTN0(K) on each K ∈ Snh : for each face e of the
element K, we define

u
n,k,i
n,h |K ·ne := −

1

|e|

∫

e

K
(
ηh(s

n,k,i
h )∇Pn,k,ih +∇ϕh(s

n,k,i
h )

)
|K ·ne dσ, (A.12a)

u
n,k,i
t,h |K ·ne := −

1

|e|

∫

e

K
(
Mh(s

n,k,i
h )∇Pn,k,ih

)
|K ·ne dσ. (A.12b)

Note that u
n,k,i
n,h and u

n,k,i
t,h do not belong to RTN0(S

n
h ) as their normal trace may be discontinuous. We

then define the spatial error estimators by

ηn,k,isp,n,D :=ηn,k,iR,n,D + ‖dn,k,in,h − u
n,k,i
n,h ‖

K
−

1
2 ;L2(D)

,

ηn,k,isp,t,D :=ηn,k,iR,t,D + ‖dn,k,it,h − u
n,k,i
t,h ‖

K
−

1
2 ;L2(D)

,

the temporal error estimators by

ηn,k,itm,n,D(t) :=‖K
(
η(sn,k,ihτ )∇Pn,k,ihτ +∇ϕ(sn,k,ihτ )

)
(t)−K

(
η(sn,k,ihτ )∇Pn,k,ihτ +∇ϕ(sn,k,ihτ )

)
(tn)‖

K
−

1
2 ;L2(D)

+ ηn,k,iQ,n,D(t),

ηn,k,itm,t,D(t) :=‖KM(sn,k,ihτ )∇Pn,k,ihτ (t)−KM(sn,k,ihτ )∇Pn,k,ihτ (tn)‖
K

−
1
2 ;L2(D)

+ ηn,k,iQ,t,D(t),

the linearization error estimators by

ηn,k,ilin,n,D := ‖ln,k,in,h ‖
K

−
1
2 ;L2(D)

,

ηn,k,ilin,t,D := ‖ln,k,it,h ‖
K

−
1
2 ;L2(D)

,

the algebraic error estimators by

ηn,k,ialg,n,D := ‖an,k,in,h ‖
K

−
1
2 ;L2(D)

,

ηn,k,ialg,t,D := ‖an,k,it,h ‖
K

−
1
2 ;L2(D)

,

and the space quadrature–linearization error estimators by

ηn,k,iquad,n,D := ‖qn,k,in,h ‖
K

−
1
2 ;L2(D)

+‖un,k,in,h +K
(
η(sn,k,ihτ )∇Pn,k,ihτ +∇ϕ(sn,k,ihτ )

)
(tn)‖

K
−

1
2 ;L2(D)

,

ηn,k,iquad,t,D := ‖qn,k,it,h ‖
K

−
1
2 ;L2(D)

+‖un,k,it,h +K
(
M(sn,k,ihτ )∇Pn,k,ihτ

)
(tn)‖

K
−

1
2 ;L2(D)

.
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The estimators introduced above have global counterparts, defined as

(
ηn,k,isp

)2
:= 2τn

∑

α∈{n,t}

∑

D∈Dn
h

(
ηn,k,isp,α,D

)2
, (A.13a)

(
ηn,k,itm

)2
:= 4

∑

α∈{n,t}

∫

In

∑

D∈Dn
h

(
ηn,k,itm,α,D(t)

)2
dt, (A.13b)

(
ηn,k,ilin

)2
:= 2τn

∑

α∈{n,t}

∑

D∈Dn
h

(
ηn,k,ilin,α,D

)2
, (A.13c)

(
ηn,k,ialg

)2
:= 2τn

∑

α∈{n,t}

∑

D∈Dn
h

(
ηn,k,ialg,α,D

)2
, (A.13d)

(
ηn,k,iquad

)2
:= 2τn

∑

α∈{n,t}

∑

D∈Dn
h

(
ηn,k,iquad,α,D

)2
. (A.13e)

With the above notations, we have the following:

Theorem 4 (Distinguishing the space, time, linearization, algebraic solver, and quadrature errors). Let the
time step n, the linearization step k, and the iterative solver step i be fixed. The estimators of (A.11) can be
bounded locally as

ηn,k,iF,α,D(t) + ηn,k,iR,α,D + ηn,k,iQ,α,D(t) ≤ ηn,k,isp,α,D + ηn,k,itm,α,D(t) + ηn,k,ilin,α,D + ηn,k,ialg,α,D + ηn,k,iquad,α,D, t ∈ In, α ∈ {n, t},

and globally as





∑

α∈{n,t}

∫

In







∑

D∈Dn
h

(ηn,k,iF,α,D(t) + ηn,k,iR,α,D)
2





1
2

+




∑

D∈Dn
h

(ηn,k,iQ,α,D(t))
2





1
2




2

dt





1
2

≤ ηn,k,isp + ηn,k,itm + ηn,k,ilin + ηn,k,ialg + ηn,k,iquad.

A.3 Stopping criteria and adaptivity

Based on the estimate of Theorem 4, we now give criteria for stopping the iterative linearization and the
iterative algebraic solver, for controlling the space quadrature error, and for adaptive space–time mesh re-
finement.

A.3.1 A stopping criterion for iterative algebraic solvers

Let 0 < γalg be a user-given weight, typically close to 1. Following [34, 26, 27], the iterative algebraic solver
can be stopped whenever

ηn,k,ialg ≤ γalg max{ηn,k,isp , ηn,k,itm , ηn,k,ilin , ηn,k,iquad}. (A.14)

Essentially (A.14) indicates when the error due to the iterative algebraic solver starts to be dominated
by other terms in the global error. After meeting this criterion, one should focus on reducing the other
components in the overall error.

A local version of (A.14) can also be stated. Given D ∈ Dn
h , let 0 < γalg,D. The iterative algebraic solver

should be stopped whenever

ηn,k,ialg,α,D ≤ γalg,Dmax{ηn,k,isp,α,D, η
n,k,i
tm,α,D, η

n,k,i
lin,α,D, η

n,k,i
quad,α,D}, α ∈ {n, t}. (A.15)

A.3.2 A stopping criterion for iterative linearizations

Let 0 < γlin be a user-given weight, typically close to 1. Following [23, 26, 27, 21], the iterative linearization
solver can be stopped whenever

ηn,k,ilin ≤ γlinmax{ηn,k,isp , ηn,k,itm , ηn,k,iquad}. (A.16)
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Whenever (A.16) holds, the overall error is dominated by the other components than the linearization er-
ror, therefore no improvement in the approximation can be expected by when continuing iterating in the
linearization step.

A local version of (A.16) can be defined as in the previous paragraph. Given D ∈ Dn
h , let 0 < γlin,D.

Then the iterative linearization solver should be stopped whenever

ηn,k,ilin,α,D ≤ γlin,Dmax{ηn,k,isp,α,D, η
n,k,i
tm,α,D, η

n,k,i
quad,α,D}, α ∈ {n, t}. (A.17)

A.3.3 Controlling the quadrature errors

As above, let 0 < γquad be a user-given weight, typically close to 1. We require

ηn,k,iquad ≤ γquadmax{ηn,k,isp , ηn,k,itm }, (A.18)

i.e., that the error stemming from the approximation of the nonlinear functions is controlled by the spatial
and temporal ones. Locally, given D ∈ Dn

h , let 0 < γquad,D. Then the quadrature errors are to be controlled
by

ηn,k,iquad,α,D ≤ γquad,Dmax{ηn,k,isp,α,D, η
n,k,i
tm,α,D}, α ∈ {n, t}. (A.19)

A.3.4 Adaptive space–time mesh refinement

Once the conditions (A.14), (A.16), and (A.18) or (A.15), (A.17), and (A.19) are verified, we are left with
balancing the spatial and temporal errors. Let 0 < γ

st
< γst be two user-given weights, typically close to 1.

First, we require that
γ
st
ηn,k,isp ≤ ηn,k,itm ≤ γstη

n,k,i
sp . (A.20)

In contrast to (A.14), (A.16), and (A.18), the goal here is to have ηn,k,itm and ηn,k,isp of comparable size instead

of getting ηn,k,itm much smaller than ηn,k,isp [—]. Further, a local version of (A.20) can also be stated: for all
D ∈ Dn

h , consider user-given weights 0 < γ
st,D

< γst,D. We then require

γ
st,D

ηn,k,isp,α,D ≤ ηn,k,itm,α,D ≤ γst,Dη
n,k,i
sp,α,D, α ∈ {n, t}. (A.21)

Achieving (A.20) or (A.21) is to be done by changing the time step τn or the spatial mesh T n
h .

Finally, changing the spatial mesh T n
h amounts to ensure that all ηn,k,isp,α,D, α ∈ {n, t}, D ∈ Dn

h , are of
comparable size, i.e., that the error is equally distributed in space, by local mesh refinement.

B Efficiency of the final estimators

In this last section we present a result concerning the efficiency of the final a posteriori error estimators of
Appendix A. This is obtained using the techniques of [54, 23, 21].

The meshes T n
h and T n−1

h , n ≥ 1, are not necessarily the same; we assume that T n
h was obtained from

T n−1
h by refining (a limited number of times) some elements and coarsening (a limited number of times)

some other ones. Recall the notation Snh of Section 4.1 for the fine simplicial mesh. We also introduce the

simplicial mesh Sn−1,n
h , which is the coarsest common refinement of Sn−1

h and Snh , and suppose that Sn−1,n
h

is shape-regular. For simplicity, we also suppose that the nonlinearities of the source functions qnn and qnt are

such that qnn (s
n,k,i
h ) and qnt (s

n,k,i
h ) are piecewise polynomials; proceeding without this assumption is possible

modulo some further technicalities.
For (shτ , Phτ ) ∈ E arbitrary and all 1 ≤ n ≤ N , define the continuous linear forms Rn

n(shτ , Phτ ) and
Rn

t (shτ , Phτ ) on L2(In;H
1
0 (Ω)) as in Definition 5.1, while replacing the integrals over the whole time slab

(0, T ) by the integrals over the time intervals In. Similarly, define

|||Rn
n (shτ , Phτ )||| := sup

ψ∈L2(In;H1
0
(Ω))

‖ψ‖
L2(In ;H1

0(Ω))
=1

〈Rn
n(shτ , Phτ ), ψ〉, (B.1)

|||Rn
t (shτ , Phτ )||| := sup

ξ∈L2(In ;H1
0
(Ω))

‖ξ‖
L2(In;H1

0
(Ω))

=1

〈Rn
t (shτ , Phτ ), ξ〉 (B.2)
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and note that

|||Rn(shτ , Phτ )|||
2 =

N∑

n=1

|||Rn
n(shτ , Phτ )|||

2, |||Rt(shτ , Phτ )|||
2 =

N∑

n=1

|||Rn
t (shτ , Phτ )|||

2.

The following theorem states that, under the stopping criteria of Section A.3, the estimators of Theorem 4
also represent a lower bound for the error measured by these dual norms:

Theorem 5 (Efficiency of the estimators of Theorem 4). Consider the time step n, the linearization step k,

and the algebraic solver step i for the scheme (4.2a)–(4.2b), fixing the approximate solution (sn,k,ihτ , Pn,k,ihτ ) ∈
Vhτ ;s|In × Vhτ ;P |In by (A.5a)–(A.5b). Let the stopping criteria (A.14), (A.16), and (A.18) hold with γalg,
γlin, and γquad small enough. Let also the right inequality in (A.20) be satisfied with γst small enough. Then
there exists a generic constant C > 0, independent of the exact solution, the approximate solution, and the
space–time discretization of QT , such that

ηn,k,isp + ηn,k,itm + ηn,k,ilin + ηn,k,ialg + ηn,k,iquad ≤ C(|||Rn
n (s

n,k,i
hτ , Pn,k,ihτ )|||2 + |||Rn

t (s
n,k,i
hτ , Pn,k,ihτ )|||2)

1
2 .

Proof. In this proof, C stands for a generic constant, independent of the exact solution, the approximate
solution, and the space–time discretization of QT , which can take different values at different occurrences.

Let 1 ≤ n ≤ N , k ≥ 1, and i ≥ 1 be fixed. The stopping and balancing criteria (A.14), (A.16), (A.18),
and (A.20) imply

ηn,k,isp + ηn,k,itm + ηn,k,ilin + ηn,k,ialg + ηn,k,iquad ≤ Cηn,k,isp . (B.3)

For each element K ∈ Sn−1,n
h , define the element residual estimators

ηn,k,i♯,n,K := hKc
− 1

2

K,K‖∂ts
n,k,i
hτ +∇·un,k,in,h − qnn (s

n,k,i
h )‖L2(K), (B.4a)

ηn,k,i♯,t,K := hKc
− 1

2

K,K‖∇·un,k,it,h − qnt (s
n,k,i
h )‖L2(K), (B.4b)

and for each interior face e of the mesh Sn−1,n
h , define the face residual estimators

ηn,k,i♭,n,e := h
1
2
e c

− 1
2

K,Te
‖[[Ku

n,k,i
n,h ]]·ne‖L2(e), (B.5a)

ηn,k,i♭,t,e := h
1
2
e c

− 1
2

K,Te
‖[[Ku

n,k,i
t,h ]]·ne‖L2(e), (B.5b)

where Te stands for the elements sharing the face e. Here, the jump operator [[·]] yields the difference of (the
traces of) the argument from the two mesh elements that share e on interior faces and the actual argument
if e is a boundary face. Introduce also global versions of these estimators by

ηn,k,i♯ :=



τ

n
∑

α∈{n,t}

∑

K∈Sn−1,n
h

(
ηn,k,i♯,α,K

)2




1
2

, (B.6)

ηn,k,i♭ :=



τ

n
∑

α∈{n,t}

∑

e∈∂Sn−1,n,int
h

(
ηn,k,i♭,α,e

)2




1
2

, (B.7)

where ∂Sn−1,n,int
h stands for the interior faces of the mesh Sn−1,n

h . We next proceed following [54, 23] and
most particularly as in [21, Appendix A.1].

Fix D ∈ Dn
h . Definition (A.11c) of ηn,k,iR,n,D, (A.6a), and the triangle inequality give

ηn,k,iR,n,D ≤ mD

(
‖∂ts

n,k,i
hτ +∇·un,k,in,h − qnn (s

n,k,i
h )‖L2(D) + ‖∇·(dn,k,in,h − u

n,k,i
n,h )‖L2(D)

+‖∇·ln,k,in,h ‖L2(D) + ‖∇·an,k,in,h ‖L2(D) + ‖∇·qn,k,in,h ‖L2(D)

)
.

Proceeding similarly for ηn,k,iR,t,D given by (A.11d) while employing (A.6b) gives

ηn,k,iR,t,D ≤ mD

(
‖∇·un,k,it,h − qnt (s

n,k,i
h )‖L2(D) + ‖∇·(dn,k,it,h − u

n,k,i
t,h )‖L2(D)

+‖∇·ln,k,it,h ‖L2(D) + ‖∇·an,k,it,h ‖L2(D) + ‖∇·qn,k,it,h ‖L2(D)

)
.
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Thus, recalling that all dn,k,iα,h , u
n,k,i
α,h , l

n,k,i
α,h , a

n,k,i
α,h , and q

n,k,i
α,h , α ∈ {n, t}, are piecewise polynomials be-

longing to the space RTN0(K) for any K ∈ Snh , the inverse inequality (cf. [48, Proposition 6.3.2]) and
definitions (A.13c)–(A.13e) yield



τ

n
∑

α∈{n,t}

∑

D∈Dn
h

(
ηn,k,iR,α,D

)2




1
2

≤ C

(
ηn,k,i♯ + ηn,k,ilin + ηn,k,ialg + ηn,k,iquad

+



τ

n
∑

α∈{n,t}

∑

K∈Sn−1,n
h

‖dn,k,iα,h − u
n,k,i
α,h ‖2

K
−

1
2 ;L2(K)





1
2


 .

(B.8)

Using (A.14), (A.16), (A.18), and (A.20) gives ηn,k,ilin + ηn,k,ialg + ηn,k,iquad ≤ C0η
n,k,i
sp with the constant C0 only

depending on the parameters γalg, γlin, γquad, and γst. Choosing these parameters small enough and using

definition (A.13a) enables to discard the contribution of
{
τn
∑

α∈{n,t}

∑
D∈Dn

h

(
ηn,k,iR,α,D

)2} 1
2

from the right-

hand side of (B.8), as it also appears on the left-hand one. Finally, we need the inequality



τ

n
∑

α∈{n,t}

∑

K∈Sn−1,n
h

‖dn,k,iα,h − u
n,k,i
α,h ‖2

K
−

1
2 ;L2(K)





1
2

≤ C(ηn,k,i♯ + ηn,k,i♭ ) (B.9)

which follows from (A.7a)–(A.7b), (A.12a)–(A.12b), and any of the prescription of the remaining degrees of

freedom of dn,k,in,h and d
n,k,i
t,h as in [55, 23, 25, 21]. We thus arrive at



τ

n
∑

α∈{n,t}

∑

D∈Dn
h

(
ηn,k,iR,α,D

)2




1
2

≤ C(ηn,k,i♯ + ηn,k,i♭ ).

Combining this with (B.3), definition (A.13a), and (B.9) gives

ηn,k,isp + ηn,k,itm + ηn,k,ilin + ηn,k,ialg + ηn,k,iquad ≤ C(ηn,k,i♯ + ηn,k,i♭ ). (B.10)

The next step is to show that



τ

n
∑

K∈Sn−1,n
h

(
ηn,k,i♯,n,K

)2




1
2

≤ C


|||Rn

n (s
n,k,i
hτ , Pn,k,ihτ )||| +





∫

In

∑

D∈Dn
h

(ηn,k,iquad,n,D + ηn,k,itm,n,D(t))
2 dt





1
2


 .

(B.11)

For all K ∈ Sn−1,n
h , we let vK := (∂ts

n,k,i
hτ +∇·un,k,in,h − qnn (s

n,k,i
h ))|K . By our assumptions, vK is polynomial

in K. We denote by ψK the bubble function on K given by the product of the d+1 barycentric coordinates,
set ξK := h2KψKvK for all K ∈ Sn−1,n

h , and let ξ|K := ξK . Clearly, ξ ∈ H1
0 (Ω) and ξ|K ∈ H1

0 (K) for all

K ∈ Sn−1,n
h . Using the equivalence of norms on finite-dimensional spaces, integrating by parts in space,

and (B.1) together with the Cauchy–Schwarz inequality, we infer, cf. [54],

τn
∑

K∈Sn−1,n
h

(
ηn,k,i♯,n,K

)2

≤ C

∫

In

∑

K∈Sn−1,n
h

∫

K

h2KvKψKvKdxdθ

= C

∫

In

∫

Ω

(
∂ts

n,k,i
hτ ψ +K

(
η(sn,k,ihτ )∇Pn,k,ihτ +∇ϕ(sn,k,ihτ )

)
· ∇ψ − qnn (s

n,k,i
hτ )ψ

−
(
K
(
η(sn,k,ihτ )∇Pn,k,ihτ +∇ϕ(sn,k,ihτ )

)
+ u

n,k,i
n,h

)
· ∇ψ +

(
qnn (s

n,k,i
hτ )− qnn (s

n,k,i
h )

)
ψ
)
dxdθ

≤ C


|||Rn

n(s
n,k,i
hτ , Pn,k,ihτ )|||+





∫

In

∑

D∈Dn
h

(ηn,k,iquad,n,D + ηn,k,itm,n,D(t))
2 dt





1
2


 ‖ψ‖L2(In;H1

0 (Ω)).

(B.12)
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By the shape regularity of the mesh Sn−1,n
h and the inverse inequality, we have, for any K ∈ Sn−1,n

h ,

‖∇ψ‖L2(K) = h2K‖∇(ψKvK)‖L2(K) ≤ ChK‖ψKvK‖L2(K) ≤ hK‖vK‖L2(K).

An immediate consequence is that ‖ψ‖L2(In;H1
0 (Ω)) ≤ C

{
τn
∑
K∈Sn−1,n

h

(
ηn,k,i♯,n,K

)2} 1
2

and (B.11) follows.

Proceeding in the same way for ηn,k,i♯,t,K then leads to

ηn,k,i♯ ≤ C
(
(|||Rn

n (s
n,k,i
hτ , Pn,k,ihτ )|||2 + |||Rn

t (s
n,k,i
hτ , Pn,k,ihτ )|||2)

1
2 + ηn,k,iquad + ηn,k,itm

)
,

whereas the face bubble technique, cf. [54, 21], yields similarly

ηn,k,i♭ ≤ C
(
(|||Rn

n (s
n,k,i
hτ , Pn,k,ihτ )|||2 + |||Rn

t (s
n,k,i
hτ , Pn,k,ihτ )|||2)

1
2 + ηn,k,iquad + ηn,k,itm

)
.

Finally, using (B.10) and choosing γquad and γst small enough so that ηn,k,iquad and ηn,k,itm can be discarded from
the right-hand side gives the assertion of the theorem.

Remark B.1 (Extensions of Theorem 5). Similarly to the general setting of Theorem 1, the results of
Theorem 5 can be extended to a much wider class of discretizations than that of Section 4.2.1, provided that
the corresponding developments of Appendix A are performed. We refer for example of such an approach
to [26, 27, 21].
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[20] D. A. Di Pietro, M. Vohraĺık, and C. Widmer, An a posteriori error estimator for a finite volume
discretization of the two-phase flow, in Finite Volumes for Complex Applications VI, J. Fořt, J. Fürst,
J. Halama, R. Herbin, and F. Hubert, eds., Berlin, Heidelberg, 2011, Springer-Verlag, pp. 341–349.
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[29] R. Eymard, T. Gallouët, and R. Herbin, Finite volume methods, in Handbook of Numerical
Analysis, Vol. VII, North-Holland, Amsterdam, 2000, pp. 713–1020.

[30] R. Eymard, R. Herbin, and A. Michel, Mathematical study of a petroleum-engineering scheme,
M2AN Math. Model. Numer. Anal., 37 (2003), pp. 937–972.
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