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Résumé — The industrial optimization needs nowadays the treatment of coupled phenomena such as

aero-thermal or aero-elasticity. The following paper presents the construction and validation of a coupled

software assembly, through the realization of simple test cases with a known analytical solution, with the

aim to subsequently use it to solve an industrial configuration coming from the solid propulsion.
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1 Introduction

Large solid propellant rocket motors may suffer aero-acoustic instabilities arising from a coupling

between the burnt gas flow and the acoustic eigenmodes of the combustion chamber [3]. During the

firing, these instabilities generate pressure oscillations leading to thrust oscillations that could endanger

the launcher integrity. Given the size and cost of any single firing test or launch, being able to predict

and avoid these instabilities at the design level is of the utmost industrial importance. The full scale

calculations of the Ariane 5 Solid Rocket Motors (P230) have allowed to highlight the impact of fluid-

structure coupling on some elements of the structure such as the frontal thermal inhibitors. Inhibitors are

designed with elastomers which burn at a lower speed than propergol, creating diaphragms with small

rigidity across the flow. The large deformation and the flapping of these thermal inhibitors have already

been calculated in a fully coupled way in the region of the second segment [19] . It was shown that

they have a strong influence on the amplitude of the thrust oscillations [15][4] . However, interaction

between the structural response of some parts of the launcher, like the head end or the propergol, with

the instabilities have not been investigated. The objective of this paper is to evaluate and validate the

articulation of the numerical tools needed for these investigations, through the realization of simple test

cases for which analytical solution can be obtained. This will lead, in a latter paper to an application on

a subscaled version of the Ariane 5 SRM.

2 Presentation of the numerical software

Classically, the fluid-structure interaction problem consits in solving simultaneously both the fluid

(1) and the structural (2) equations where some variables of one work as a source term for the other.

d

dt
(AW )+Fc(W,~x,~̇x) = R(W,~x) (1)

M
d2

dt
(~U)+D

d

dt
(~U)+K~U = f ext(W (~x, t),~x) (2)

In this semidiscrete formulation already presented by Lesoinne in [10], dots stand for time-derivatives,

~x is the displacement or position vector of the moving fluid grid points, W is the fluid state vector, A

results from the discretization of the fluid equations, Fc = F − ẋW is the vector of Arbitrary Lagrangian

Eulerian (ALE) convective fluxes, F is the vector of convective fluxes, R the vector of diffusive fluxes,
~U the structural displacement vector, and finally M, D and K are respectively the mass, damping and

stiffness matrices of the structural system. In order to solve the problem of fluid-structure interactions,

we have chosen to use a Conventional Serial Staggered (CSS) method with subcycling, which has already
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been well studied and advocated [6][13][14]. Used software are quicly presented in this part, then the

CSS method is reminded.

2.1 AVBP

Two different modeling tools are used for this work. First of all, aero-acoustics calculations are per-

formed with the Large Eddy Simulation (LES) solver AVBP [17] developed at CERFACS and IFP, which

has already been validated for aero-acoustic applications [16] . AVBP is designed to solve the Navier-

Stokes equations for three-dimensional compressible flows over unstructured meshes. The numerical

discretization can be based on a Lax-Wendroff scheme which is 2nd order in both space and time. The

sub-grid scale terms are modelled thanks to the Smagorinsky or the WALE model [12].

2.2 MARC

The solids deformations are computed thanks to the structural analysis software MARC, using a fi-

nite element method (FEM) and developed by MSC-SOFTWARE. It is specialized in the treatment of

non-linear materials, commonly encountered in solid propulsion. It allows static, dynamic and modal

computations [20]. The numerical scheme used in our computations is the trapezoidal Newmark me-

thod [8] which has already been advocated for coupling applications [7][14]. It consists of writing the

structure’s equilibrium at the time tn+1, knowing its state at tn, and the external force f at tn+1 :
(

4

∆t2
s

M +
2

∆ts
D+K

)

un+1 = f n+1 +

(

4

∆t2
s

M +
2

∆ts
D

)

un +

(

4

∆ts
M +D

)

u̇n +Mün (3)

2.3 PALM

The PALM coupler developed at CERFACS is used to synchronize these two solvers [2]. It also pro-

vides data transmission between the different tools at the fluid-structure interface without large intrusion

in the different solvers. As a first step, the interpolation between the unmatching meshes is achieved with

a nearest-point method.

2.4 Coupling architecture

In most cases the time step ∆t f for the fluid is smaller than the structural one ∆ts. We consider that the

coupling time step ∆tc is equal to the structural one ∆ts. The following steps are done for each coupling

step of the CSS method in order to go from tn to tn+1 = tn +∆ts :

– 1 : Predict the structural un+1 p
displacement at time tn+1. A common predictor is :

un+1 p
= un +α0∆tsu̇

n +α1∆ts(u̇
n − u̇n−1) (4)

It is worth to notice that the choice of α0 = 1 and α1 = 0 raises to a first order predictor, while

α0 = 1 and α1 = 0.5 defines a second order predictor.

– 2 : Advance the fluid system to tn + ∆ts while updating the position of the fluid grid in order to

match the position un+1 p
at the end of the coupling steps. Because ∆t f < ∆ts this step is achieve

by subcycling the fluid solver.

– 3 : Transfer the fluid pressure Pn+1
S to the structure. It’s worth to notice that Pn+1

S is not necessary

the fluid pressure at the interface at time tn+1. Many choices for Pn+1
S can be found in the literature

and we have retained three of them which are explained in details later.

– 4 : Finally integrate the structure to tn+1.

In order to ensure the Geometric Conservation Law (GCL) [11] the velocity of the fluid/structure inter-

face is kept constant during the subcycling and equal to un+1 p
−un p

∆ts
. If no thermal inhibitors are considered,

the assumption of small deformations is well justified in the context of solid propulsion described in the

introduction. This approximation allows to model the wall motion in the LES solver by a transpiration

boundary condition, which reproduces correctly the coupled solid surfaces motion speed [13][18]. This

approach was preferred as a first step since it avoids considering mesh deformation, so it simplifies the

overall chain complexity.
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3 0D test configuration

3.1 Device description

The coupled system is composed for its fluid portion of an adiabatic room, closed at its left side by

a fixed wall and at its right by a movable piston. It has a section S0 and a length L0 when the piston is at

x = 0. The piston has a mass m and is attached to an external fixed point through a spring of rigidity k.

Displacement, velocity, and acceleration of the piston at time t are respectively x(t), ẋ(t), and ẍ(t).

P
0
 

K 

X X=0 

L
0
 

FIGURE 1 – 0D coupling system

The following assumptions are first made for the

system :

– The gas is perfect with an adiabatic coeffi-

cient γ

– The gravity effect is neglected

– The spring mass is neglected

– The spring is considered with no dissipation

3.2 0D Modelling

Lefrançois and Boufflet have shown in [9] that applying Newton’s second law to the piston and

considering that its position at rest corresponds to x(t) = ˙x(t) = ¨x(t) = 0 and P = P0 leads to :

mẍ(t) = −k x(t)+S0 (P(x(t), t)−P0) (5)

All fluid variables are supposed to be to be uniform in the chamber (0D assumption), which means that

P(x(t), t) = P(t). Due to adiabatic walls, there is no thermal flux between the gas and the chamber. Then,

supposing that the compression is done in reversible way, allows to apply Laplace’s law which states

that :

P(x(t), t) = P(t) =
P0 L

γ
0

(L0 + x(t))γ
(6)

By re-injecting (6) in (5) and linearizing for small displacements around x = 0, we get :

m∗ ẍ(t) = −k x(t)+S0
−γ P0

L0

x(t) (7)

Solving (7) gives us both the temporal evolution of the piston position and the chamber’s pressure. This

corresponds respectively to equations (8) and (9).

x(t) = x0 cos

(
√

k + γP0S0/L0

m
t

)

(8)

P(t) = P0 +
γP0

L0

x0 cos

(
√

k + γP0S0/L0

m
t +π

)

= P0 +P1 cos

(
√

k + γP0S0/L0

m
t +π

)

(9)

3.3 Energy consideration

By using a simple switch of variable, it is possible to write that pressure and structure are vibrating

at the same circular frequency ω =
√

k+γP0S0/L0

m
, but with a phase difference φ = π.

Two scalars are introduced as follow : ke = x0 P1 cos(φ), and h = ω∆tc. Piperno and Fahrat [14] have
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calculated the amount of energy imbalance created at the fluid structure interface ∆EN after N oscillations

for a general case including structural dissipation and for different choices of Pn+1
S . According to their

results ∆EN ∼ Nπ(δEF +δES) and in our particular case with subcycling we have :

δEF = ke

[

(α0 −1)h+

(

1

4
−

7α0

12
+

3α1

2

)

h3

]

+O(h4) (10)

δES is depending on the choice of Pn+1
S .

For the first choice, Pn+1
S = Pn+1 :

δES = O(h4) (11)

For the second choice, Pn+1
S = 1

∆tc

R tn+1

tn P(t)dt :

δES = ke

[

−
h

2
+

h3

8

]

+O(h4) (12)

For the third choice, Pn+1
S = 2

∆tc

R tn+1

tn P(t)dt −Pn
S :

δES = O(h4) (13)

Using a first order predictor (which means α0 = 1 and α1 = 0) and noticing that in this case ke < 0,

the first and third choice of Pn+1
S are attended to produce energy at the third order, which is sufficient

with regard to the accuracy of the fluid and structural solvers. On the other hand, the second choice of

Pn+1
S will create energy at the first order, which must be seen in our simulations as a linear growth of the

oscillations’s amplitudes

3.4 Numerical Results

The structure is modeled in two dimensions for this test case, the spring being represented in MARC

by a bloc of material of Young’s Modulus EM. It has a section SM0 = S0 and an unstretched lenght of

LM0. Assuming that the poisson coefficient is set to zero, and that the displacements are small, this is

equivalent to a spring of rigidity k = EM∗S0

LM0
. Considering the 0D assumption, AVBP is replaced in the

coupled software assembly by a simple 0D program which uses the information from MARC to compute

Pn+1
S according to Laplace’s law. Figure(2) shows that the three choices of Pn+1

S give a good agreement

with theoretical results, the piston vibrating at the predicted frequency. In the same way figure(3), shows

that the first and third choices of Pn+1
S seem to well conserve the energy of the system, whereas as

predicted previously, the second choice leads to a linear growth of the amplitude, thus of the energy.

FIGURE 2 – Fourrier’s Transform of the displa-

cement
FIGURE 3 – Displacement’s amplitude
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4 Acoustic test configuration

This one dimensional test case is designed in order to account for the acoustics in a fluid-solid coupled

system. Starting from rest, the fluid part will be disturbed with a pressure Dirac impulsion. After some

iterations, coupled eigenfrequencies should appear while looking at the pressure signal in the chamber.

4.1 Device description

The set-up is composed of an adiabatic chamber filled with gas, closed at its left by a fixed wall and

at the right by a deformable block of rubber fixed on its right side, see figure (4). The fluid chamber has

a section S0 and length l0 when the block of rubber is at rest at x = l0. The rubber of density ρS, has a

Young modulus E and a Poisson ratio ν, and is fixed at x = L0. Displacement (or position, depending

the contest), velocity, and acceleration of a point ~U of the solid at time t are respectively ~U(t), ~̇U(t), and

~̈U(t).

Solid Fluid 

Interface 

reflection/transmission 

x

A+
S 

A-
S 

A+
F 

A-
F 

reflection reflection 

0 l0 L0 

FIGURE 4 – Acoustic coupling system

The following assumptions are first made for the

system :

– The gas is perfect with an adiabatic coeffi-

cient γ

– There is no external volume forces nor on the

solid, neither on the fluid

– Both fluid and solid are considered with no

dissipation

– The deformations of the solid are small,

which allows to approximate the interface lo-

cation by l0

4.2 Acoustic Modelisation

Considering an eigen circular frequency ωc of the coupled system, we have :

For the Fluid :

CG =
√

γRT and kG = ωc

CG

For the Solid :

CS =
√

(1−ν)E
ρS(1+ν)(1−2ν) and kS = ωc

CS

The reader can find a general method to evaluate the speed of sound in a solid in [1]. P being the

oscillating pressure and U̇ the oscillating velocity, the wave propagation for both fluid and solid, can be

written :

PG,S = A+
G,Se jkG,Sx +A−

G,Se− jkG,Sx (14)

U̇G,S =
1

ρG,SCG,S
(A+

G,Se jkG,Sx −A−
G,Se− jkG,Sx) (15)

Using (14) and (15) with the boundary conditions which are :

– U̇G(0) = U̇S(0) = 0 (wall no-slip condition for the fluid and embedding for the solid)

– U̇G(l) = U̇S(l) (velocity continuity at the fluid structure interface located at l0)

– PG(l) = PS(l) (Stress continuity at the fluid structure interface located at l0)

one can find that ωc has to be the solution of (16) which can be solved numerically.

tan(ωc

CS
(l0 −L0))

tan( ωc

CG
(l0))

=
ρSCS

ρGCG

(16)
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4.3 Numerical Results

Both fluid and structure are modeled in two dimensions for this test case. In order to avoid any

acoustic interference, a symmetry boundary condition has been used for the fixed bottom and top walls.

This trick still ensures the absence of flow and thermal flux normal to the walls, and suppresses the

impact of a noslip condition on the one dimensional assumption.

The solid is modelled in MARC by a bloc of material of Young’s Modulus E = 4.274 105 Pa and

Poisson’s coefficient ν = 0. It has a section SM0 = S0 and an unstretched length of LM0 . The calculation

with the first and second choice of Pn+1
S have been achieved using coupling time step ten times bigger than

the fluid one (ie ∆tcoupling = ∆tMARC = 10∆tAV BP), and frequencies results are represented on figure(5).

Unfortunately the third choice for Pn+1
S appeared to be quickly numerically unstable. We don’t have any

valuable explanation to this behavior for the moment.

FIGURE 5 – Fourrier’s Transform of the pressure at the middle of the chamber for the first choice of Pn+1
S

on the left hand side and for for the second choice on the right hand side

It’s worth to notice on Fig.(5) that each choice of Pn+1
S presents a good capacity to retrieve the

coupling eigen frequency of the system. Nevertheless, looking at the spectra of the second choice of

Pn+1
S (ie Pn+1

S = 1
∆tc

R tn+1

tn P(t)dt), one can notice that some modes are damped while others seem to be

fed in comparison with the spectra obtained with Pn+1
S = Pn+1. This results is explainable with the same

energy consideration than in the 0D part. Indeed, writing pressure and displacement at the fluid structure

interface for one of the coupled eigen-modes leads to (17) which shows that the pressure and the structure

are vibrating at the same circular frequency ωc but with a phase depending of kG and l0. The reader can

check that the phase φ is π if 1
2

sin(4π fcl0
CG

) > 0 where fc is en eigenfrequency of the coupled system, and

φ = 0 in other cases. Using the same scalar ke and h as in the 0D part, it comes out that the second choice

of Pn+1
S will feed in energy some modes and damp the others. This can be visualized on Fig.(6).







UG(l0, t) =
−2A+

G

ρGCGωc

sin(kGl0)e
− jωct

PG(l0, t) = 2A+
G cos(kGl0)e

− jωct

(17)

Hz 

F
e
d
 m

o
d
e
s 

D
a
m
p
e
d
 m

o
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e
s 

FIGURE 6 – Feeded and Damped modes
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5 Conclusion

As predicted in the literature, it follows from these two test cases that the choice of Pn+1
S is an

important factor of the CSS method. As expected analytically, the first choice has shown a good energy

conservation and a good behavior when dealing with acoustics. That is the reason why it appears to be

adapted for our next applications. Indeed, including the fluid-structure interaction in solid propulsion

simulation implies to be able to deal correctly with self-exited acoustic modes (see figure(8)) rising from

a coupling between the hydrodynamics and the acoustic eigenmodes of the propellant’s chamber (see

figure(7) and figure(9)). The second choice must be avoided due to its poor energy conservation and it

has shown unphysical feeding or damping for some modes. The third one gives good results in 0D, but

it has shown itself numerically unstable in the 1D case.

1 
2 

3 

4 

5 

Vortex 

genera0on (1) 

Vortex 

convec0on (2) 

Vortex 

impact (3) 

Acous0c 

exita0on (3) 

Acous0c 

feedback (3) 

FIGURE 7 – Instabilities mechanism
FIGURE 8 – Example of self-exited frequencies

in a solid rocket motor

FIGURE 9 – Example of propellant’s chamber
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