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Abstract

Finite volume release gravity currents of large density contrast on steep slopes,
representing powder-snow avalanches, are simulated numerically using a dynamic mesh
adaptation technique. This technique allows to treat large Reynolds numbers and large density
contrast flows but it is (presently) restricted to two dimensions. Comparison of numerical
results with experiments in the Boussinesq limit shows that 2D simulations capture the
essential dynamics. The physics of powder-snow avalanches is analysed on hand of the
similarity model developed by Rastello and Hopfinger [1] and briefly reproduced here. The
numerical simulations provide the closure parameters required in this model and give access
to the flow structure. The non-Boussinesq effect is to decrease substantially the spatial growth
in height and to increase the aspect ratio, hence the overall flow structure.

1.Introduction

Powder-snow avalanches are dense clouds moving down steep slopes. The extra weight
of the cloud is due to the suspended snow particles in air of volume concentration 0.4 to 4 %.
This results in a bulk density of about 2 to 30 times the air density. During the motion, air is
entrained which leads to a dilution and growth of the cloud and, depending on the flow
conditions, snow can also be picked-up from the underlying snow cover which may cause a
continuous acceleration of the avalanche. In order to reach velocities of the order of 100 m/s,
a value often quoted for powder-snow avalanches [2, 3], a continuous down-slope
acceleration is required. This large front velocity and, consequently, the large turbulent
velocity, assures that the snow particles of diameter d, ~ 0.5 to Imm and density p, = 400 to
900 kg/m’ remain suspended and that an avalanche is capable of picking up further snow from
the snow cover as long as the volume concentration is less than the saturation concentration.
Furthermore, the Stokes number St=1,/1;, expressing the characteristic particle time scale t, to

flow time scale t ,~H /U, where Uyis the avalanche front velocity and H its height, is less

than 0.1, noting that because of the relatively large particle Reynolds numbers, t, is evaluated
for a particle drag larger than the Stokes drag. For the case of a particle stratified shear layer
Meiburg et al [4] showed that when the Stokes number is about 0.1 the particle loading has an
effect similar to that of a single phase stratified fluid. Therefore, it can be assumed that the
suspension cloud behaves like a single phase gravity flow of large density difference.

Beghin et al [5] conducted laboratory experiments with finite volume release gravity
currents, forming dense clouds on slopes, using small density ratio (Boussinesq) saline
solutions. Rastello and Hopfinger [1] (from here on referred to as RH) did similar experiments
with saline solutions and in addition with finite volume release turbidity currents moving over



a sediment layer on slopes. The turbidity clouds showed a similar behaviour to the single
phase saline clouds. A similarity model has been developed by RH which contains as closure
parameters an air (ambient fluid) entrainment coefficient £, and a sediment entrainment
coefficient E; An additional parameter is the aspect ratio of cloud length to height k. These
coefficients were obtained from the experiments in the Boussinesq limit and used in the
model to predict avalanche velocity variation, noting that the avalanche velocity depends on
E. and E, but not on k.

Further insight can be gained from direct numerical simulations especially in the case of
large density ratios. It has been shown by Etienne et al [6] that large Reynolds number
simulations of large density ratio gravity flows are possible by using a dynamic grid
adaptation technique. The drawback is that these techniques are presently limited to two-
dimensions. Although the turbulence structure is three-dimensional, it can be assumed that the
dynamics of the cloud movement is a two-dimensional process, controlled by the large scale
structures of principal vorticity component normal to flow direction. Two-dimensional
simulations of gravity currents [7] and of lock-exchange flows [8, 6] for instance are in good
agreement with experiments although the turbulence structure is three-dimensional.

In Section 2 the similarity model is presented and compared with measurements of the
front velocity reported for the Sion Valley avalanche by Dufour et al [9]. In Section 3 the 2D
numerical simulations are first applied to Boussinesq clouds for conditions corresponding to
the experiments of RH. Then, numerical results are presented for the same conditions but with
the density ratio increased to 20. These results show clearly the non-Boussinesq effect on the
flow structure; the acceleration length is substantially larger and the growth rate is reduced.

2 Similarity model

To a good approximation a powder-snow avalanche can be considered as a single phase
dense cloud moving down steep slopes. Arguments supporting this assumption are developed
above in Section 1. During the motion the size increases and, for a given slope angle, the
shape remains similar, that is the aspect ratio of height to length remains constant'. Fig. 1
shows a schematic representation of the cloud shape with the definition of the relevant
variables.

Lit)

Fig. 1. Definition sketch

' This is a first approximation because, as the present numerical simulations indicate, the
aspect ratio depends on density ratio which decreases with distance.



The momentum, mass and volume per unit width conservation equations are respectively:
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where p=p,C+p.(1-C), Ap=p—p., A=S kH?,P=S,~HL, k(0)=L/H, Cr is the bottom

friction coefficient, A, the snow cover depth, B is the fraction of the snow cover entrained
along the avalanche path, S; and S, are shape factors, k&, is the added mass coefficient and E,
and E; are air (ambient fluid) and snow (sediment) entrainment coefficients respectively. The
subscript a stands for air or ambient fluid, p for particles, s for snow cover (sediment) and b
for bed. After transforming time into space by setting U = dx/dt and neglecting bottom
friction (term in Cy), equation (1) can be integrated (see [1]) in the form:
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In the integration of equation (1) it was assumed that at x=0, U=0but A=4y and Ly/Hy = k.

Equation (2) gives (keeping S; constant):

E
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and from equation (3) the buoyancy variation with distance is obtained in the form:
ApA=Apy Ay +BApshs x (6)
Typical values for a powder-snow avalanche, the Sion Valley avalanche for instance [9]
are: Ay = 200 m’, Apy = 150 kg/m’, average slope angle 6 = 25°, Ap, = 150 kg/m’, A, = 1m.

The shape factors are closely approximated by an elliptic shape, namely S;= 0.8 and $,=2.4,
while k, is taken constant, equal to 0.5. It has been shown by RH that the velocity predicted



by this similarity model is in good agreement with measured avalanche velocities when taking
for the closure parameters £, and 3, respectively the values £.~0.25 (for 6 =25°) and B =1,
i.e. the whole snow cover is incorporated along the avalanche path. Bottom friction is
practically unimportant on steep slopes. This is demonstrated by integrating equation (1)
numerically with and without bottom friction. It is, however, the principal retarding force
when the avalanche moves onto nearly horizontal ground. Figure 2 shows a comparison of the
model predictions (neglecting bottom friction) with measurements. In this figure the front
velocity Uy rather than the mass centre velocity is plotted because this velocity is directly
accessible to measurements. The two are related by the spatial growth in cloud length. For the
prediction of this spatial growth of an avalanche, it is necessary to know, in addition to the air
entrainment coefficient E,, the aspect ratio k. Observations suggest that k =6 for the Sion
Valley avalanche.

Uy (m/s)

0 500 1000 1500 2000
%, (m)

Fig. 2. Avalanche front velocity Uy = U(1+Ek"?/4S,"?) as a function of front position.
- [C -, measured avalanche front velocity [9]; —, model prediction for 6 = 25°, E. =0.25,
B =1and C/= 0; ---, model prediction for = 0 (no snow entrainment).

Field observations of powder-snow avalanches are difficult and rare and measurements
of the variation of the front velocity with distance became available only recently [9].
Measurements of velocity and density distributions inside an avalanche are, however, nearly
impossible, although some attempts were made using radar. Turbulence closure models
(turbulent energy-dissipation models in particular), are used for practical applications and
give useful information for quasi-steady flows [10] but give no information about the time
dependency of local quantities (density and velocity variations). For this reason, and in order
to understand the avalanche dynamics in more detail, we turn to laboratory experiments and
numerical simulations. Laboratory experiments are, unfortunately, limited to Boussinesq
flows [11, 5, 1]. Only lock-exchange flow experiments have been performed for density ratios
of about 20 using gases [12]. It is hardly feasible to use gases for gravity current or dense
cloud experiments on slopes because of the large gas volumes needed. Direct numerical
simulations or large eddy simulations are, therefore, necessary tools of research in this area.

By using the automatic mesh adaptation technique, developed for gravitational flows by
Etienne et al [6], it is possible to reach large Reynolds numbers (order 10°) and large density
differences in direct numerical simulation. Since direct numerical simulations of dense clouds
on steep slopes seem not to have been conducted previously it is necessary to validate



numerical results by experiments at least in the Boussinesq limit. For this reason the
conditions of the numerical simulations presented in the following Section 3.3 are the same
as in the experiments of RH. The simulations are then extended to a density ratio of 20 to
quantify the non-Boussinesq effect.

3. Numerical simulations

3.1 Governing equations
We consider the isothermal flow of a single phase fluid with large density variations, and
equal, constant dynamic viscosity m under the conditions described above. For a perfect
mixture of two incompressible fluids, of density p, (the heavier one) and of density p, (the
lighter one), the local density is p=p,®+p, (1-D), where @ is the local volume fraction of
the fluid of density p . The density contrast is defined as o= (p, —p,)/p,, and the density

can be rewritten as p=p,(1+a®d). Lengths are non-dimensionalized according to the scale
L, = /4, of initial release, x=x/L, and velocities by the terminal velocity U, =.JogL ofa
fluid element of density p, in the ambient fluid of density pq, u=u/U,. Times are non-

dimensionalized as 7=tU,/L,. Momentum and mass conservation of the cloud and ambient air
are given by the Navier—Stokes equations,

~
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where the Reynolds number” is defined as Re = p,U,L./m,and Di=(Vi+Vi')/2. Since
the fluids are miscible, we cannot assume Dp/D=0, but rather that there are mass diffusion
fluxes in the flow governed by Fick’s law. This yields [6]:

DD N
— +Ddivii = VO, 9)
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where the Schmidt number is defined as Sc=n/p,D, with ® a reference diffusivity. Initial
conditions consist of given distribution of p initially, the velocity being set to zero
everywhere. No inflow or outflow across the boundaries of the flow domain has been
considered, thus boundary conditions are always V®-n=0, with either no-slip boundary

conditions (u,_=0) or zero wall friction (u-n=0 and o-n-[(c-n)-n]n=0, where n is the wall

o

normal and 6=2Du- (2/3) divu I).

System (7,8,9) was proposed by Etienne et al. [6] for the simulation of gas mixtures of high
density contrast. An algorithm was devised for its resolution in the framework of finite
elements and used for simulations of lock-exchange flows in two dimensions. These flows are
a good test for high density contrast flow simulation, because there have been experimental
and theoretical studies, and measurements for density contrasts up to a~20 are available [12].
Numerical results proved to be in good agreement with these measurements.

*Note that the choice of the reference velocity U, = . JagL,  implies that the Froude number is
simply \/& in the equations.



3.2 Numerical technique

Due to high Reynolds numbers and the flow structure, the flow of the buoyant clouds
considered in this paper present features of very different spatial scales (time dependent
strong local velocity and density gradients), which make dynamic mesh adaptation a
necessity. Though this technique is still poorly developed in 3D [13], and the very high
computational cost of three-dimensional DNS limits other approaches to Reynolds number
lower than 10° [7]. The numerical simulations presented here are thus restricted to the two
dimensions x and z, and make use of the dynamic mesh adaptation features of the mesh
generator BAMG [14].

The remaining difficulty is to simulate efficiently both the transport and viscous terms
on a general mesh. This is done by the Lagrange-Galerkin method [15], which consists in
using the method of characteristics to discretise directly the material derivative along with
finite elements for the discretisation in space. Etienne and Saramito [16] have designed an
algorithm for Egs. (7,8,9) and shown optimal error estimates, and have implemented it in the
open source free software RHEOLEF [17]. The finite element spaces are continuous,
piecewise quadratic for the velocity and volume fraction, and continuous, piecewise linear for
the pressure. The mesh refinement is an iterative process at each time step: a first estimate of
the solution is calculated on a coarse mesh, and then the mesh is repeatedly refined and the
solution recalculated until some mesh invariance is achieved. This is usually done in four re-
meshing iterations, with the final mesh having refinement ratios of order 10° between the
coarsest triangle size and the finest one, with an approximate total of 5x10° degrees of
freedom.

3.3 Results for Boussinesq clouds

The simulations are first performed for a Boussinesq cloud which allows comparison
with experiments. A volume of fluid of density p,; and length /) =20 cm and 4y = 6.5 cm, 4y =

hy Iy=130 cm’ and reference length L, =+/4, =11.4cm, is suddenly released in a stagnant

fluid of density p,, o = (ps-p.)/ps = 0.02, and of depth 6L, and length 20L,. The slope angle is
6 =32°.

Figure 3 shows a qualitative comparison of the density contours. What is of interest here
is the similar shape indicating a length to height ratio k£ of about 3. It should be noted,
however, that there are large fluctuations in k& (about +/- 10%) due to the time variations of the
large eddy structure.

In Fig. 4 the simulated front velocity is compared with the experimental values of

RH. There is good agreement when Re = U.L,p,/n = 10°, where U, =, agL, . In the

simulation free slip conditions on the bottom were used (this corresponds to C; =0 in the
model). The calculated and experimentally determined spatial growth rates are compared in
Fig. 5. There is reasonably good agreement in a range around the velocity maximum (2<x;/L,
<9). At large distances the 2D simulations give a larger growth rate. This is to be expected
since in 2D the large eddies are more persistent than in 3D. Note that x; is measured from the
gate of release of the dense fluid. The virtual origin was taken as xy = -3L, in all the plots
presented here.
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Fig. 3. Aspect of the cloud, (a), numerical simulation with o =0.02 and Re=10°, (b),
Experiments [1]. In the experiments the grid spacing is 5 cm and in (a) the coordinates are
non-dimensionalized by L, = 11.4 cm.
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Fig. 4. Front velocity vs. front position, —, Numerical simulation with o. =0.02 and Re=10°,
-- --, Numerical simulation with o =0.02 and Re=10*, — + —, Experimental results of RH, with

Reexp: p(tLr V a’ng /ua ~ 3X104 .
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Fig. 5. Height of the cloud vs. front position, —, Numerical simulation with o =0.02, 6 =32°
and Re=10", -- --, Numerical simulation with o =0.02 and Re=10", — —, Experimental results

of RH approximated by Z—H =3.6x1070+0.013 (H is determined with respect to the virtual
X
s

origin at x,= -3L,).

3.4 Results for non-Boussinesq clouds

The non-Boussinesq flow simulations were conducted for oo = 19 and a Reynolds
number Re = 10°. The flow domain was increased to 50L,, while the depth is reduced to 4L,.
The initial volume released and the slope angle were kept the same as in the Boussinesq case
allowing a direct comparison. Figure 6 shows an image of the density contrast of the flow; the
change in flow structure is clearly seen by comparing this image with Fig. 3.

1
St
S =N \O

()E . T . ' —— -
= 0 8

Fig. 6. Aspect of the cloud in a numerical simulation with o =19 and Re=10°: excess density
® in colour code as a function of the space variables x and z; coordinates are non-
dimensionalized by L,.

In Fig. 7 the calculated mass centre velocity is plotted as a function of the position of
the mass centre, non-dimensionalized by L,. The calculated velocity for o = 0.02 as well as
the solution of equations (1) to (3), taking B = 0, Cy= 0 and E. = 0.26 are presented for
comparison. There is good agreement with the model but the calculated velocity decreases
more rapidly than is predicted by the model. This may be due to a larger entrainment of
ambient fluid in the 2D simulations.
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Fig. 7. Mass centre velocity of the cloud vs. non-dimensional mass centre position, ---,
Numerical simulation for a = 19, 6 = 32° and Re=10"; —, numerical simulation for o =0.02
and Re=10°; - ,integrated model equation (1) for no snow-entrainment, § = 0 and £.=0.26,

k,=0.5, C;= 0. The velocity is non-dimensionalized by U, =yogL .

In Fig. 8 the non-dimensional height is plotted versus front position for o = 0.02 and
o = 19. There is clearly a substantial decrease in the spatial growth rate of the cloud when the
density ratio is large. The dashed straight line represents the experimentally determined

growth rate approximated by H =(3.6x1070+0.013)(x,—x,), and the dotted line
corresponds to the extrapolation to a non-Boussinesq cloud proposed by RH given

by dH|  —dH| FVPa/p,
dx " dx 1P 2

Boussinesq. The model predicts reasonably well the decrease in growth rate when the density
ratio is large (note that for the bed density p, the value of the initial density was used, py/p, =
20). RH assumed that the spatial growth in cloud length does not depend on density ratio. The
numerical simulations confirm this assumption (Fig. 9). The aspect ratio of the avalanche
(cloud), £k = L/H is, therefore, larger for large density difference clouds and is approximated

2
by kyy =k,

1+ V pa /pb
E ng=E.5\/(1++/pa/p,)/2 . For a Boussinesq cloud on a slope of 32° the value of E. is

approximately 0.32, which gives for the non-Boussinesq cloud with o= 19 a value of E. =
0.25. This justifies the value used for calculating the front velocity in Fig . 7.

, where subscripts NB and B stand for non-Boussinesq and

Consequently the entrainment coefficient £, is reduced by
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Fig. 8. Non-dimensional height of the cloud vs. front position. —, numerical simulation with
a =0.02 and Re=105, ---, Numerical simulation with oo =19 and Re=105, — —, Experimental
results of RH for Boussinesq clouds, -+ Extrapolation of experimental results to non-
Boussinesq conditions.
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Fig. 9. Non-dimensional length of the cloud vs. front position. —, numerical results for o =
2

1+4p,/p, .

0.02; ---, a=19. The dashed straight line corresponds to L = kH with k,,; =k,

4. Conclusions

To our knowledge the simulations presented in this paper are the first numerical
simulations of large density difference, finite volume release gravity currents on steep slopes
forming dense clouds. The finite element scheme used with dynamic mesh adaptation allows
to reach sufficiently large Reynolds numbers but simulations are limited to two dimensions. A
comparison of numerical results with experiments in the Boussinesq limit shows that the
essential physics is well captured by 2D such simulations. The simulations apply to powder-
snow avalanches under the assumption that avalanches can be treated as a single phase, large
density difference flow. This assumption is justified by the value of the Stokes number (St <

10



0.1) and is further supported by the similarity model presented in Section 2 which compares
well with measured avalanche velocities. The closure parameters in this similarity model were
determined from laboratory experiments in the Boussinesq limit and extrapolated to non-
Boussinesq clouds by RH. To a good approximation the present numerical simulations
support these theoretical extrapolations.
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