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Abstract– This paper deals with the challenging 

problem of mutual synchronization of discrete-time 

chaotic systems. This particular type of synchronization 

allows to model successfully the complex dynamics of 

diverse systems, such as ecological, economical, physical, 

chemical etc. Unlike the usual master-slave 

synchronization, here we consider bidirectionaly 

connected sub-systems with identical priority. Switched 

Luenberger observers are designed to carry out the mutual 

synchronization, and their performances are compared in 

the cases with, and without gaussian noise. 

 

1. Introduction 

 

Mutual synchronization describes a large variety of 
phenomena ranging from physics and biology to 

engineering and social sciences. Unidirectional and 

bidirectional synchronization of continuous time chaotic 

systems has been investigated in [1,2], fewer papers have 

been devoted to discrete time systems [3,4]. 

In [9], the problem of the classical unidirectional 

master-slave synchronization has been reformulated from 

control theory point of view, in terms of (non) linear 

observer design. The novelty in the present paper is that 

unlike the above master-slave configuration, here the 

synchronization is to be achieved bidirectionaly, using two 
symmetrical observers (one for each subsystem). The idea 

is to exploit the richness of the nonlinear dynamics: for 

identical parameters, the system can exhibit qualitatively 

different behaviors (multistability), such as periodic, 

chaotic etc according to the initial conditions. This 

provides the challenging opportunity to analyze the 

mutual synchronization between two subsystems, which 

have been tuned to different orbits, but also between 

subsystems with slightly different parameters. The latter 

assumption can be used to model physical systems subject 

to ageing, temperature variations etc. 

The function that has been chosen as an application 
example in this paper has already shown its excellent 

properties as an Efficient Chaotic Pseudo Random 

Number Generators (CPRNG). It uses chaotic sampling 

and ultra weak coupling which beats most of the classical 

random number generators [5]. 

 

2. System Definition 

 

The system under consideration has been introduced for 

the first time by Lozy in [6]. It can be written as 

              ��� � 1� � �	����
 � � 
	����
     (1) 

 

For a second order system, the matrix A is defined by: 

 

� � ��1 � ��� ���� �1 � ���� 

 

and 
 is the tent function evaluated by the components of 

the vector � � ��1,1��: 

 
��� � �� � 1  , � � � 2, � � 0�2, ���� �            (2)     
However, state-space representation of the system is 

more convenient for control theory analysis [5]. Taking 

into consideration that the system is also a switched piece-

wise affine system, it can be expressed as 

 ��� � 1� � � ���� � ! "��� � #����                                (3) 

 

where ��$ is associated to �� and ��$ to �� (see eq.2): 

 

� � ��1 � �����$ ����$����$ �1 � �����$� , ! � �11� 

 

It comes that the phase plane is divided into four 

different regions with locally linear behavior. 

 

2.1. Analysis of the System 

 

The chaoticity of the system depends on the choice of �� and ��. The fixed points determination has been 

completed by the parameter plane analysis to establish the 

chaotic regions in the parameter plane.  Fixed points are 

defined by: 
 ����� � �1 � �����$����� � ����$����� � 1 ����� � ����$����� �  �1 � �����$����� � 1     (4) 

 

Then, each component can be defined in function of the 

system parameters.  

As the values of s depend on the two 

components ���, ���, the fixed points determination have 

been studied independently in the four regions of the 

phase plane. The analysis gives two fixed points. In the 

region ��∈ ��1; 0�, ��∈ ��1; 0�, the coordinates of the 



   

 

fixed point are (-1,-1). In the region  ��∈ �0; 1�,  ��∈ �0; 1�, the fixed point is located at (1/3,1/3). 

Hereafter we are interested in the second fixed point 

whose Jacobean eigenvalues are 	��2, 2��1 � �� � ���
. 

It is a saddle between 0.5 ( �� � �� ( 1.5 and an 

unstable node outside. 

 
Figure 1. Parameter plane ���, ��� of the Lozi system. (1) 

 

Figure 1 shows the parameter plane ���, ��� of the 

system. The parameter plane sweeping is highly sensitive 

to the numerical precision, and therefore is not easy to 

interpret. Thus, the green color is supposed to indicate a 

convergence towards the fixed point (-1,-1) that is 

unstable, but numerically attractive; this problem can be 

avoided using a weak parameter coupling [8].  The black 

color indicates the chaotic behavior, and the red line 

corresponds to the fixed point (1/3,1/3), which bifurcates 

at �� � �� � 1.5. 
The inverse map of the system is given by: 

 

   ���� � �)�	��� � 1�
 � � )� ���� � 1� � !�     (5) 

 

with: 

� )� �
*
+,

�� � 1��� � �� � 1���$
1��$ � �� � 1��� � �� � 1���$����� � �� � 1���$

�� � 1��� � �� � 1���$ -
./ 

 

   Furthermore, the line ����� � ����� is associated with 

the stable manifold of the saddle fixed point (1/3,1/3). The 

diagonal is invariant for the recurrence, and its preimage 

is the anti-diagonal ����� � ������. For both of them we 
obtained the one dimensional Lozi map: 

 ���� � 1� � ���� � 1� � ��$����� � 1          (6) 

 

3. Mutual Synchronization 

 

Unlike [7], here we do not deal with the classical 

master slave synchronization of the Lozi system, but we 

are interested in the bidirectional coupling of two 

connected Lozi subsystems, and their synchronization 
towards different type of orbits (fixed point or chaotic 

behavior). To do this, a Luenberger observer has been 

used for the estimation of �.  

 �0�� � 1� � �1�0��� � ! � 2	"0��� � "���
        (7) 

 

Now, to achieve the mutual synchronization, an 

observer has been designed for each subsystem, called �3�� � 1� and �4�� � 1�. It should be noted that the 

super script M and S are chosen for convenience, but they 
do not indicate here any hierarchy. Thus, the two 

subsystems are now modeled by: 

 �3�� � 1� � � �3��� � 2 	"3��� � "4���
 �4�� � 1� � � �4��� � 2 	"4��� � "3 ���
      (8) 

 

    The gain 2 is the same for both subsystems and 

determines the dynamics of the error defined by: 

  ���� � �3��� � �4���                    (9) 
 

that is equivalent in the opposite direction �3��� ��4���. Then, the matrix that governs the error dynamics is 
calculated as follows: 

 ��� � 1� � � 	�3 ��� � �4���
 � 22 	"3 ��� � "4���
 ��� � 1� � �� � 22#� ����                 (10) 

 
The asymptotic convergence of the synchronization 

error is guaranteed if the error matrix has eigenvalues in 

the unit circle. The exact (finite time) convergence is 

achieved when the eigenvalues are at the origin. The aim 

is to find the values of  2 that synchronize both 

subsystems. As the error matrix is of second order, it can 

be achieved in two steps. Therefore, it has to be 

independent of the way of switching between the four 

regions of the plane. For 5 � 61; 48, 9 � 61; 48 : 
 ��: � 22:#�	�; � 22;#
 � 0            (11) 

 

The solution for the matrix 2 presented in [7], has been 

adapted to the mutual synchronization: 

 

For ��∈ �0; 1�, ��∈ �0; 1�: 

�� � 2 < ���1 � ��� ������ ��1 � ���� 2� � = 2 � �� � ���)�>?@>??@>A>?>A
B 

 

for ��∈ ��1; 0�, ��∈ �0; 1�: 
�� � 2 < �1 � �� ����� ��1 � ����  2� � C �� � ���)�>?@>??)>A>?>A

D 

 

for  ��∈ ��1; 0�, ��∈ ��1; 0�: �E � ���  2E � �2� 
 

and for  ��∈ �0; 1�, ��∈ ��1; 0� �F � ���  2F � �2�                                               (12) 



   

 

4. Results and Discussion 

 

The first analysis deals with the synchronization of two 

identical chaotic subsystems (same parameters), starting 

from different initial conditions (belonging to different 

locally linear regions). The evolution of the error between ��3 - ��4 , shown in Figure 2, illustrates the exact 

convergence for ���, ��� � �0.3,0.1� for both subsystems, 

and initial conditions 	��3�0�, ��3�0�
 � �0.154,0.289�; 	��4�0�, ��4�0�
 � �0.131, �0.085�.  

 
Figure 2: Evolution of the difference between ��3 and ��4 for 

the first ten iterations: exact synchronization. 

 
Figure 3. Quadratic synchronization error, exact observer. 

 

Figure 3 shows the exact quadratic synchronization 

error, and Figure 4 the quadratic synchronization error 

using an asymptotic observer with both poles placed at 
0.9.  It can be seen for Fig.2 that even though the two 

subsystems start from two different regions, the exact 

convergence is obtained in only two iterations as in the 

case of the classical master-slave synchronization [7]. The 

synchronization error 

  � � J���3 � ��4�� � ���3 � ��4��                 (13) 

 

is quite satisfactory (10)�K, which is close to the 

computer precision). In the case of asymptotic observer 

the synchronization is reached as well, but the 

convergence is much slower (Fig.4). Moreover, the 

performed tests have shown that unlike the expectations, 

the asymptotic observer did not outstand the exact 

observer in the presence of noise. 

 
Figure 4. Quadratic synchronization error, asymptotic 

observer. 
 

The Lozi system is very complex and exhibits most of 

the features characterizing nonlinear dynamical systems, 

such as the extreme sensitivity to the initial conditions and 

small parameters variations, and multistability: 
coexistence of fixed point and chaotic attractor has been 

found at the bifurcation line �� � �� � 1.5. Since the map 

has no stable fixed point, the saddle fixed point (1/3,1/3) 

has been selected to test the bidirectional synchronization. 

The saddle fixed point has been reached, initializing the 

first subsystem at the stable manifold, taking the initial 

conditions from  �)�. In this particular case, it easily 

achievable, because the first low rank preimages of the 

fixed point (1/3,1/3) lie on the diagonal ����� � �����, 

which is invariant by the map �, and also the preimage of 

the diagonal is the anti-diagonal ����� � ������, as 

already shown. 

It should be noted that parameters have been tuned 

outside the usual parameter range of weak coupling [8], 

but this choice has been done deliberately, in order to 

analyze the mutual synchronization for different 

coexisting dynamical behaviors.  

 
Figure 5. Exact synchronization between two subsystems 

(fixed point - chaotic attractor; identical parameters: alternated 

white noise). 

 

Figure 5 and Figure 6 show the exact synchronization 

and the quadratic error between two subsystems with 

identical parameters. The first one was tuned to exhibit a 
fixed point trajectory and the second one a chaotic 

trajectory. The initial conditions for the fixed point had 
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been chosen on the stable manifold, using the low rank 

preimages. After the synchronization, both subsystems 

converge towards the fixed point (1/3, 1/3) which turns 

out to be attractive after the synchronization. The same 

parameters have been chosen for both 

subsystems ���, ��� � �0.88,0.62�, i.e. at the bifurcation 

line �� � �� � 1.5 and synchronization has been obtained 

for different “master” and “slave” initial 

conditions 	��3 �0�, ��3�0�
 � �0.17,0.25�;	��4�0�, ��4�0�
 � �0.222,0.429�. Therefore, besides achieving the 

successful synchronization, it could be argued that the 

observer might have a stabilizing effect on the overall 

system’s behavior.  

 
Figure 6. Quadratic synchronization error. (13) 

 

 In addition, Gaussian white noise has been added 

between (2500,3000) and (6500,7000) with 5% amplitude 
in order to test the robustness of the observers in presence 

of noise. The obtained results show that the system 

resynchronizes back successfully when the noise has been 

removed. Compared to Fig. 6, the perturbation time 

intervals are longer in Fig. 5 because after the noise 

removal, there is a chaotic transient before the subsystems 

resynchronize at the fixed point. On the other hand, the 

noise could not been rejected; unlike the expectations, 

qualitatively similar results had been obtained with the 

asymptotic observer (not shown here for lack of space). 

 
Figure 7. Synchronization error between the two subsystems 

tuned at fixed point and chaotic attractor (slightly different 
parameters). 

 

Figure 7 shows the synchronization results for the same 

“master” but another choice of initial conditions and 

parameters for the “slave”. It exhibits again a chaotic 

behavior for 	��4�0�, ��4�0�
 � ��0.189,0.437� and in 

addition, a small variation of �� ∆�� � �10)�� has been 

applied: ���, ��� � �0.88,0.619�. The synchronization is 

successfully achieved again, but towards the chaotic 

behavior; the chaotic attractor lies on the diagonal �� ���. The quadratic synchronization error is represented in 

Fig. 7. If noise is added, the results are qualitatively 

similar to those in Fig. 6. 

 

Conclusion 

 

Mutual synchronization of two Lozi subsystems has 

been designed using symmetric Luenberger observers. 

Two different kind of observers have been used, exact and 

asymptotic one, and their performances have been tested 
in presence of noise. It has been shown that the two 

subsystems synchronize successfully when they start from 

different initial conditions, exhibit different permanent 

regimes, or have different parameters. Current works are 

carried out to generalize the results for more than two 

connected subsystems. 

 

Acknowledgements 

 

The authors would like to thank prof. Fournier-Prunaret 

et prof. Lozi for their useful suggestions and comments 
during the preparation of this paper. 

 

References 

 

 [1] ZM Ge, YS Chen, “Adaptive synchronization of 
unidirectional and mutual coupled chaotic systems”, Chaos, 

Solitons and Fractals, vol. 26, pp. 881–888, 2005. 

[2]Y Yu, S Zhang, “The synchronization of linearly 

bidirectional coupled chaotic systems”, Chaos, Solitons and 

Fractals, vol.22, pp.189–197, 2004. 
[3] M. Cencini, A. Torcini, “Nonlinearly driven transverse 

synchronization in coupled chaotic systems”, Physica D, 
vol.208, pp.191-208,2005. 

[4] I. Matskiv, Y. Maistrenko, E. Mosekilde, 
“Synchronization between interacting ensembles of globally 
coupled chaotic maps”, Physica D, vol.199, pp.45-60,2004. 

[5] S. Hénaff, I. Taralova et R. Lozi, “Statistical and spectral 
analysis of a new weakly coupled maps system”, Indian Journal 

of Industrial and Applied Mathematics, vol 2.N°2, pp. 1-17, 
2009. 

[6] R. Lozi, “New enhanced chaotic number generators”, 
Indian Journal of Industrial and Applied Mathematics, vol.1, pp. 
1-23, 2008. 

[7] S. Hénaff, I. Taralova et R. Lozi, “Exact and asymptotic 

synchronization of a new weakly coupled map”, Journal of 

Nonlinear Systems and Applications, vol 1 (2), 2010.  
[8] R. Lozi, “Emergence of Randomness from Chaos”, to 

appear in:  International Journal of Bifurcations and Chaos. 

[9] H. Nijmeijer, “A dynamical control view on 
synchronization”, Physica D, vol.154, pp. 219–228, 2001. 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

0 500 1000 1500 2000 2500 3000
-7

-6

-5

-4

-3

-2

-1

0


