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We study the boundary value problem with measures for (E1) -∆u + g(|∇u|) = 0 in a bounded domain Ω in R N , satisfying (E2) u = µ on ∂Ω and prove that if g ∈ L 1 (1, ∞; t -(2N +1)/N dt) is nondecreasing (E1)-(E2) can be solved with any positive bounded measure. When g(r) ≥ r q with q > 1 we prove that any positive function satisfying (E1) 1 admits a boundary trace which is an outer regular Borel measure, not necessarily bounded. When g(r) = r q with 1 < q < q c = N +1 N we prove the existence of a positive solution with a general outer regular Borel measure ν ≡ / ∞ as boundary trace and characterize the boundary isolated singularities of positive solutions. When g(r) = r q with q c ≤ q < 2 we prove that a necessary condition for solvability is that µ must be absolutely continuous with respect to the Bessel capacity C 2-q q ,q ′ . We also characterize boundary removable sets for moderate and sigma-moderate solutions.

Introduction

Let Ω ⊂ R N be a bounded domain with C 2 boundary and g : R + → R + a nondecreasing continuous function vanishing at 0. In this article we investigate several boundary data questions associated to nonnegative solutions of the following equation

-∆u + g(|∇u|) = 0 in Ω, (1.1) 
and we emphasize on the particular case of

-∆u + |∇u| q = 0 in Ω. (1.2)
where q is a real number mainly in the range 1 < q < 2. We investigate first the generalized boundary value problem with measure associated to (1.1)

-∆u + g(|∇u|) = 0 in Ω u = µ on ∂Ω (1.3)
where µ is a measure on ∂Ω. By a solution we mean an integrable function u such that g(|∇u|) ∈ L for all ζ ∈ X(Ω) := {φ ∈ C 1 0 (Ω) : ∆φ ∈ L ∞ (Ω)}, where n denotes the normal outward unit vector to ∂Ω. The integral subcriticality condition for g is the following

∞ 1 g(s)s -2N +1 N ds < ∞.
(1.5)

When g(r) ≤ r q , this condition is satisfied if 0 < q < q c := N +1 N . Our main existence result is the following. Theorem 1.1 Assume g satisfies (1.5). Then for any positive bounded Borel measure µ on ∂Ω there exists a maximal positive solution u µ to problem (1.3). Furthermore the problem is closed for weak convergence of boundary data.
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Note that we do not know if problem (1.4) has a unique solution, except if g(r) = r q with 0 < q < q c and µ = cδ 0 in which case we prove that uniqueness holds. A natural way for studying (1.1) is to introduce the notion of boundary trace. When g(r) ≥ r q with q > 1 we prove in particular that the following result holds in which statement we denote Σ δ = {x ∈ Ω : d(x) = δ} for δ > 0: Theorem 1.2 Let u be any positive solution of (1.1). Then for any x 0 ∈ ∂Ω the following dichotomy occurs: (i) Either there exists an open neighborhood U of x 0 such that

Ω∩U g(|∇u|)d(x)dx < ∞ (1.6)
and there exists a positive Radon measure µ U on ∂Ω ∩ U such that u| Σ δ ∩U converges to µ U in the weak sense of measures when δ → 0.

(ii) Or for any open neighborhood U of x 0 there holds

Ω∩U g(|∇u|)d(x)dx = ∞, (1.7) 
and lim

δ→0 Σ δ ∩U udS = ∞. (1.8) 
The set S(u) of boundary points x 0 with the property (ii) is closed and there exists a unique Borel measure µ on R(u) := ∂Ω \ S(u) such that u| Σ δ converges to µ in the weak sense of measures on R(u). The couple (S(u), µ) is the boundary trace of u, denoted by tr ∂Ω (u). The trace framework has also the advantage of pointing out some of the main questions which remain to be solved as it was done for the semilinear equation -∆u + h(u) = 0 in Ω. (1.9) and the associated Dirichlet problem with measure

-∆u + h(u) = 0 in Ω u = µ on ∂Ω, (1.10) 
where h : R → R is a continuous nondecreasing function vanishing at 0. Much is known since the first paper of Gmira and Véron [START_REF] Gmira | Boundary singularities of solutions of some nonlinear elliptic equations[END_REF] and many developments are due to Marcus and Véron [START_REF] Marcus | The boundary trace of positive solutions of semilinear elliptic equations: the subcritical case[END_REF]- [START_REF] Marcus | The boundary trace and generalized boundary value problem for semilinear elliptic equations with coercive absorption[END_REF] in particular when (1.9) is replaced by .11) with q > 1. We recall below some of the main aspects of the results dealing with (1.9)- (1.11), this will play the role of the breadcrumbs trail for our study.

-∆u + |u| q-1 u = 0 in Ω. ( 1 
-Problem (1.10) can be solved (in a unique way) for any bounded measure µ if h satisfies ∞ 1 (h(s) + |h(-s)|)s -2N N -1 ds < ∞.

(1.12)

If h(u) = |u| q-1 u the condition (1.12) is verified if and only if 1 < q < q s , the subcritical range; q s = N +1 N -1 is a critical exponent for (1.11). -When 1 < q < q s , boundary isolated singularities of nonnegative solutions of (1.11) can be completely characterized i.e. if u ∈ C(Ω \ {0}) is a nonnegative solution of (1.11) vanishing on ∂Ω \ {0}, then either it solves the associated Dirichlet problem with µ = cδ 0 for some c ≥ 0 (weak singularity), or u(x) ≈ d(x)|x| -q+1 q-1 as x → 0. (strong singularity)

(1.13)

-Always in the subcritical range it is proved that for any couple (S, µ) where S ⊂ ∂Ω is closed and µ is a positive Radon measure on R = ∂Ω \ S there exists a unique positive solution u of (1.11) with boundary trace (S, µ) (in the sense defined in Theorem 1.2).

-When q ≥ q s , i.e. the supercritical range, any solution u ∈ C(Ω \ {0}) of (1.11) vanishing on ∂Ω \ {0} is identically 0, i.e. isolated boundary singularities are removable. This result due to Gmira-Véron has been extended, either by probabilistic tools by Le Gall [START_REF] Gall | The Brownian snake and solutions of ∆u = u 2 in a domain[END_REF], [START_REF] Gall | A probabilistic approach to the trace at the boundary for solutions of a semilinear parabolic partial differential equation[END_REF], Dynkin [START_REF] Dynkin | A probabilistic approach to one class of nonlinear differential equations[END_REF], Dynkin and Kuznetsov [START_REF] Dynkin | Superdiffusions and removable singularities for quasilinear partial differential equations[END_REF], [START_REF] Dynkin | Solutions of Lu = u α dominated by harmonic functions[END_REF], with the restriction q s ≤ q ≤ 2, or by purely analytic methods by Marcus and Véron [START_REF] Marcus | The boundary trace of positive solutions of semilinear elliptic equations: the subcritical case[END_REF], [START_REF] Marcus | The boundary trace of positive solutions of semilinear elliptic equations: the supercritical case[END_REF] in the whole range q s ≤ q. The key tool for describing the problem is the Bessel capacity C 2 q ,q ′ in dimension N -1 (see [START_REF] Adams | Function Spaces and Potential Theory[END_REF] for a detailled presentation of capacities). We list some of the most striking results. The associated Dirichlet problem can be solved with µ ∈ M + (∂Ω) if and only if µ is absolutely continuous with respect to the C 2 q ,q ′ -capacity. If K ⊂ ∂Ω is compact and u ∈ C(Ω \ K) is a solution of (1.11) vanishing on ∂Ω \ K, then u is necessary zero if and only if C 2 q ,q ′ (K) = 0. The complete characterization of positive solutions of (1.11) has been obtained by Mselati [START_REF] Mselati | Classification and probabilistic representation of the positive solutions of a semilinear elliptic equation[END_REF] when q = 2, Dynkin [START_REF] Dynkin | Superdiffusions and positive solutions of nonlinear partial differential equations[END_REF] when q s ≤ q ≤ 2, and finally Marcus [START_REF] Marcus | Complete classification of the positive solutions of -∆u + u q = 0[END_REF] when q s ≤ q; they proved in particular that any positive solution u is sigma-moderate, i.e. that there exists an increasing sequence of positive measures µ n ∈ M + (∂Ω) such that the sequence of the solutions u = u µn of the associated Dirichlet problem with µ = µ n converges to u.

Concerning (1.2) we prove an existence result of solutions with a given trace belonging to the class of general outer regular Borel measures (not necessarily locally bounded).

Theorem 1.3 Assume 1 < q < q c and S ∂Ω is closed and µ is a positive Radon measure on R := ∂Ω \ S, then there exists a positive solution u of (1.2) such that tr ∂Ω (u) = (S, µ).

When 1 < q < q c we prove a stronger result, using the characterization of singular solutions with strong singularities (see Theorem 1.6 below). When q c ≤ q < 2 we prove that Theorem 1.3 still holds with µ = 0 if S = G where G ∂Ω is relatively open, ∂G satisfies an interior sphere condition. Surprisingly the condition S ∂Ω is necessary since there cannot exists any large solution, i.e. a solution which blows-up everywhere on ∂Ω.

In order to characterize isolated singularities of positive solutions of (1.2) we introduce the following problem on the upper hemisphere S N -1

+ of the unit sphere in R N          -∆ ′ ω + 2-q q-1 2 ω 2 + |∇ ′ ω| 2 q 2
-2-q q-1 q q-1 -N ω = 0 in S N -1 + ω = 0 on ∂S N -1 + , (1.14) where ∇ ′ and ∆ ′ denote respectively the covariant gradient and the Laplace-Beltrami operator on S N -1 . To any solution ω of (1.14) we can associate a singular separable solution u s of (1.2) in R N + := {x = (x 1 , x 2 , ..., x N ) = (x ′ , x N ) : x N > 0} vanishing on ∂R N + \ {0} written in spherical coordinates (r, σ) = (|x|, x |x| )

u s (x) = u s (r, σ) = r -2-q q-1 ω(σ) ∀x ∈ R N + \ {0}.
(1.15)

Theorem 1.4 Problem (1.14) admits a positive solution if and only if 1 < q < q c . Furthermore this solution is unique and denoted by ω s .

This singular solution plays a fundamental role for describing isolated singularities.

Theorem 1.5 Assume 1 < q < q c and u ∈ C 2 (Ω) ∩ C(Ω \ {0}) is a nonnegative solution of (1.
2) which vanishes on ∂Ω \ {0}. Then the following dichotomy occurs:

(i) Either there exists c ≥ 0 such that u = u cδ0 solves (1.3) with g(r) = r q , µ = cδ 0 and

u(x) = cP Ω (x, 0)(1 + o(1)) as x → 0 (1.16)
where P Ω is the Poisson kernel in Ω.

(ii) Or u = lim c→∞ u cδ0 and lim

Ω ∋ x → 0 x |x| = σ ∈ S N -1 + |x| 2-q q-1 u(x) = ω s (σ).
(1.17)

We also give a sharp estimate from below for singular points of the trace Theorem 1.6 Assume 1 < q < q c and u is a positive solution of (1.2) with boundary trace (S(u), µ). Then for any z ∈ S(u) there holds

u(x) ≥ u ∞δz (x) := lim c→∞ u cδz (x) ∀x ∈ Ω. (1.18)
The description of u ∞δz is provided by u s defined in (1.15), up to a translation and a rotation.

The critical exponent q c plays for (1.2) a role similar to that of q s plays for (1.11) which is a consequence of the following theorem Theorem 1.7 Assume q c ≤ q < 2, then any nonnegative solution u ∈ C 2 (Ω) ∩ C(Ω \ {0}) of (1.2) vanishing on ∂Ω \ {0} is identically zero.

The supercritical case for equation (1.2) can be understood using the Bessel capacity C 2-q q ,q ′ in dimension N -1, however we can only deal with moderate and sigma-moderate solutions. Following Dynkin [START_REF] Dynkin | Superdiffusions and positive solutions of nonlinear partial differential equations[END_REF], [START_REF] Dynkin | Fine topology and fine trace on the boundary associated with a class of semilinear differential equations[END_REF] we define Definition 1.8 A positive solution u of (1.2) is moderate if there exists a bounded Borel measure µ ∈ M + (∂Ω) such that u solves problem (1.3) with g(r) = r q . It is sigma-moderate if there exists an increasing sequence of solutions {u µn }, with boundary data {µ n } ∈ M + (∂Ω), which converges to u when n → ∞, locally uniformly in Ω.

Notice that the boundary trace theorem implies that the sequence {µ n } is increasing. Equivalently we shall prove that a positive solution u is moderate if and only if it is integrable in Ω and |∇u| ∈ L q d (Ω). Theorem 1.9 Assume q c ≤ q < 2 and K ⊂ ∂Ω is compact and satisfies C 2-q q ,q ′ (K) = 0.

Then any positive moderate solution u ∈ C 2 (Ω) ∩ C(Ω \ K) of (1.2) vanishing on ∂Ω \ K is identically zero.
As a corollary we prove that the above result remains true if u is a sigma-moderate solution of (1.2). The counterpart of this result is the following necessary condition for solving problem (1.3). Theorem 1.10 Assume q c ≤ q < 2 and u is a positive moderate solution of (1.2) with boundary data µ ∈ M + (∂Ω). Then µ is absolutely continuous with respect to the C 2-q q ,q ′capacity.

For the sake of completeness we give, in Section 5, the results corresponding to the two extreme cases, q = 2 and q = 1 for equation (1.2). If q = 2 the Hopf-Cole change of unknown u = ln v transforms (1.2) into a Poisson equation. When q = 1, equation (1.2) is homogeneous of order 1 and the equation inherits many properties of the Laplace equation.

We end this article with a result concerning the question of existence and removability of solutions of

-∆u + g(|∇u|) = µ in Ω (1.19)
where Ω is a bounded domain in R N and µ a positive bounded Radon measure on Ω. We prove that if g is a locally Lipschitz nondecreasing function vanishing at 0 and such that

∞ 1 g(s)s -2N -1 N -1 ds < ∞ (1.20)
then problem (1.19) admits a solution. In the power case

-∆u + |∇u| q = µ in Ω (1.21)
with 1 < q < 2, the critical exponent is q * = N N -1 . We prove that a necessary condition for solving (1.21) with a positive Radon measure µ is that µ vanishes on Borel subsets E with C 1,q ′ -capacity zero. The associated removability statement asserts that if K a compact subset of Ω such that C 1,q ′ (K) = 0, any positive solution of

-∆u + |∇u| q = 0 in Ω \ K (1.22)
is bounded and can be extended as a solution to the whole Ω.

The Dirichlet problem and the boundary trace

Throughout this article Ω is a bounded domain in R N (N ≥ 2) with a C 2 boundary ∂Ω and c will denote a positive constant, independent of the data, the value of which may change from line to line. When needed the constant will be denoted by c i or C i for some indices i = 1, 2, ..., or some dependence will be made explicit such as c(a, b, ...) for some data a, b...For r > 0 and x ∈ R N , we denote by B r (x) the ball with radius r and center x. If x = 0 we write B r instead of B r (0).

Boundary data bounded measures

We consider the following problem where µ belongs to the set M(∂Ω) of bounded Borel measures on ∂Ω -∆u

+ g(|∇u|) = 0 in Ω u = µ on ∂Ω. (2.1)
We assume that g belongs to the class G 0 which means that g : R + → R + is a locally Lipschitz continuous nonnegative and nondecreasing function vanishing at 0. The integral subcriticality condition is the following

∞ 1 g(s)s -2N +1 N ds < ∞. (2.2) If g(r) = r q the integral subcriticality condition is satisfied if 0 < q < q c := N +1 N . Definition 2.1 A function u ∈ L 1 (Ω) such that g(|∇u|) ∈ L 1 d (Ω) is a weak solution of (2.1) if Ω (-u∆ζ + g(|∇u|)ζ) dx = - ∂Ω ∂ζ ∂n dµ (2.3) for all ζ ∈ X(Ω) := {φ ∈ C 1 0 (Ω) : ∆φ ∈ L ∞ (Ω)}.
If we denote respectively by G Ω and P Ω the Green kernel and the Poisson kernel in Ω, with corresponding operators G Ω and P Ω it is classical from linear theory that the above definition is equivalent to

u = P Ω [µ] -G Ω [g(|∇u|)].
(2.4)

We recall that M p h (Ω) denote the Marcinkiewicz space (or weak L p space) of exponent p ≥ 1 and weight h > 0 defined by

M p h (Ω) = v ∈ L 1 loc (Ω) : ∃C ≥ 0 s. t. E |v|hdx ≤ C|E| 1-1 p h , ∀E ⊂ Ω, E Borel , (2.5) 
where |E| h = χ E hdx. The smallest constant C for which (2.5) holds is the Marcinkiewicz quasi-norm of v denoted by v M p h (Ω) and the following inequality will be much useful:

|{x : |v(x)| ≥ λ}| h ≤ λ -p v p M p h (Ω) ∀λ > 0. (2.6)
The main result of this section is the following existence and stability result for problem (2.1).

Theorem 2.2 Assume g ∈ G 0 satisfies (2.2), then for any µ ∈ M + (∂Ω) there exists a max-

imal solution ū = ūµ to problem (2.1). Furthermore ū ∈ M N N -1 (Ω) and |∇ū| ∈ M N +1 N d (Ω).
Finally, if {µ n } is a sequence of positive bounded measures on ∂Ω which converges to µ in the weak sense of measures and {u µn } is a sequence of solutions of (2.1) with boundary data µ n , then there exists a subsequence such that {u µn k } converges to a solution u µ of (2.1) in L 1 (Ω) and {g(|∇u

µn k |)} converges to g(|∇u µ |) in L 1 d (Ω).
We recall the following estimates [START_REF] Bidaut-Véron | An elliptic semilinear equation with source term involving boundary measures: the subcritical case[END_REF], [START_REF] Gmira | Boundary singularities of solutions of some nonlinear elliptic equations[END_REF], [START_REF] Véron | Elliptic equations involving measures[END_REF] and [START_REF] Véron | Singularities of solutions of second other Quasilinear Equations[END_REF].

Proposition 2.3 For any α ∈ [0, 1], there exist a positive constant c 1 depending on α, Ω and N such that

G Ω [ν] L 1 (Ω) + G Ω [ν] M N +α N +α-2 d α (Ω) ≤ c 1 ν M d α (Ω) , (2.7 
)

∇G Ω [ν] M N +α N +α-1 d α (Ω) ≤ c 1 ν M d α (Ω) , (2.8 
)

where ν M d α (Ω) := Ω d α (x)d|ν| ∀ν ∈ M d α (Ω), (2.9) 
P Ω [µ] L 1 (Ω) + P Ω [µ] M N N -1 (Ω) + P Ω [µ] M N +1 N -1 d (Ω) ≤ c 1 µ M(∂Ω) , (2.10) 
∇P

Ω [µ] M N +1 N d (Ω) ≤ c 1 µ M(∂Ω) , (2.11) 
for any ν ∈ M d α (Ω) and any µ ∈ M(∂Ω).

Since ∂Ω is C 2 , there exists δ * > 0 such that for any δ ∈ (0, δ * ] and x ∈ Ω such that d(x) < δ, there exists a unique σ(x) ∈ ∂Ω such that |xσ(x)| = d(x). We set σ(x) = P roj ∂Ω (x). Furthermore, if n = n σ(x) is the normal outward unit vector to ∂Ω at σ(x), we have x = σ(x)d(x)n σ(x) . For δ ∈ (0, δ * ], we set

Ω δ = {x ∈ Ω : d(x) ≤ δ}, Ω ′ δ = {x ∈ Ω : d(x) > δ}, Σ δ = ∂Ω ′ δ = {x ∈ Ω : d(x) = δ}, Σ := Σ 0 = ∂Ω.
For any δ ∈ (0, δ * ], the mapping x → (δ(x), σ(x)) defines a C 1 diffeomorphism from Ω δ to (0, δ) × Σ. Therefore we can write x = σ(x)d(x)n σ(x) for every x ∈ Ω δ . Any point x ∈ Ω δ * is represented by the couple (δ, σ) ∈ [0, δ * ] × Σ with formula x = σδn σ . This system of coordinates which will be made more precise in the boundary trace construction is called flow coordinates.

Proof of Theorem 2.2. Step 1: Construction of approximate solutions. Let {µ n } be a sequence of positive functions in C 1 (∂Ω) such that {µ n } converges to µ in the weak sense of measures and µ n L 1 (∂Ω) ≤ c 2 µ M(∂Ω) for all n, where c 2 is a positive constant independent of n. We next consider the following problem

-∆v + g(|∇(v + P Ω [µ n ])]) = 0 in Ω v = 0 on ∂Ω. (2.
12)

It is easy to see that 0 and -P Ω [µ n ] are respectively supersolution and subsolution of (2.12). By [START_REF] Kazdan | Invariant criteria for existence of solutions to secondorder quasilinear elliptic equations[END_REF]Theorem 6.5] there exists a solution v n ∈ W 2,p (Ω) with 1 < p < ∞ to problem (2.12) satisfying

-P Ω [µ n ] ≤ v n ≤ 0. Thus the function u n = v n + P Ω [µ n ] is a solution of -∆u n + g(|∇u n |) = 0 in Ω u n = µ n on ∂Ω. (2.13)
By the maximum principle, such solution is the unique solution of (2.13).

Step 2: We claim that {u n } and {|∇u n |} remain uniformly bounded respectively in

M N N -1 (Ω) and M N +1 N d (Ω).
Let ξ be the solution to

-∆ξ = 1 in Ω ξ = 0 on ∂Ω, (2.14) 
then there exists a constant c 3 > 0 such that

1 c 3 < - ∂ξ ∂n < c 3 and d(x) c 3 ≤ ξ ≤ c 3 d(x). (2.15) 
By multiplying the equation in (2.13) by ξ and integrating on Ω, we obtain

Ω u n dx + Ω g(|∇u n |)ξdx = - ∂Ω µ n ∂ξ ∂n dS, which implies Ω u n dx + Ω d(x)g(|∇u n |)dx ≤ c 4 µ M(∂Ω) (2.16)
where c 4 is a positive constant independent of n. By Proposition 2.3 and by noticing that u n ≤ P Ω [µ n ], we get

u n M N N -1 (Ω) ≤ P Ω [µ n ] M N N -1 (Ω) ≤ c 1 µ n L 1 (∂Ω) ≤ c 1 c 2 µ M(∂Ω) .
(2.17)

Set f n = -g(|∇u n |) then f n ∈ L 1 d (Ω) and u n satisfies Ω (-u n ∆ζ -f n ζ)dx = - ∂Ω µ n ∂ζ ∂n dS (2.18)
for any ζ ∈ X(Ω). From (2.4) and Proposition 2.3, we derive that

∇u n M N +1 N d (Ω) ≤ c 1 f n L 1 d (Ω) + µ n L 1 (∂Ω) , (2.19) 
which, along with (2.16), implies that

∇u n M N +1 N d (Ω) ≤ c 5 µ M(∂Ω) (2.20)
where c 5 is a positive constant depending only on Ω and N . Thus the claim follows from (2.17) and (2.20).

Step 3: Existence of a solution. By standard results on elliptic equations and measure theory [9, Cor. IV 27], the sequences {u n } and {|∇u n |} are relatively compact in L 1 loc (Ω). Therefore, there exist a subsequence, still denoted by {u n }, and a function u such that {u n } converges to u in L 1 loc (Ω) and a.e. in Ω. (i) The sequence {u n } converges to u in L 1 (Ω): let E ⊂ Ω be a Borel subset, then

E u n dx ≤ |E| 1 N u n M N N -1 (Ω) ≤ c 1 c 2 |E| 1 N µ M(∂Ω) .
(2.21)

The convergence of {u n } in L 

- t λ g(s)dω n (s) = g(λ)ω n (λ) -g(t)ω n (t) + t λ ω n (s)g ′ (s)ds ≤ g(λ)ω n (λ) -g(t)ω n (t) + c 6 µ N +1 N M(∂Ω) t λ s -N +1 N g ′ (s)ds ≤ ω n (λ) -c 6 µ N +1 N M(∂Ω) λ -N +1 N g(λ) -ω n (t) -c 6 µ N +1 N M(∂Ω) t -N +1 N g(t) + c 6 N +1 N µ N +1 N M(∂Ω) t λ g(s)s -2N +1 N ds.
We have already used the fact that ω n (λ) ≤ c 6 µ

N +1 N M(∂Ω) λ -N +1
N , and since the condition (2.2) holds, lim inf t→∞ t -N +1 N g(t) = 0. Letting t → ∞ we derive

E∩{x:|∇un(x)|>λ} d(x)g(|∇u n |)dx ≤ c 6 N + 1 N µ N +1 N M(∂Ω) ∞ λ g(s)s -2N +1 N ds. (2.23)
For ǫ > 0 we fix λ in order that the right-hand side of (2.23) be smaller than ǫ 2 . Thus, if

|E| d ≤ ǫ 2g(λ)+1 , we obtain E d(x)g(|∇u n |)dx ≤ ǫ.
(2.24)

The convergence follows again by Vitali's theorem. Next for any ζ ∈ X(Ω), we have

Ω (-u n ∆ζ + g(|∇u n |)ζ)dx = - ∂Ω µ n ∂ζ ∂n dS (2.25)
By taking into account the fact that |ζ| ≤ cd in Ω, we can pass to the limit in each term in (2.25) and obtain (2.3); so u is a solution of (2.1). Clearly u ∈ M Step 4: Existence of a maximal solution. We first notice that any solution u of (2.1) is smaller than

P Ω [µ]. Then u ≤ P Ω [µ] in Ω ′
δ and by the maximum principle u ≤ u δ which satisfies

-∆u δ + g(|∇u δ |) = 0 in Ω ′ δ u δ = P Ω [µ] on Σ δ . (2.26)
As a consequence, 0 < δ < δ ′ =⇒ u δ ≤ u δ ′ in Ω ′ δ ′ and u δ ↓ ūµ which is not zero if µ is so, since it is bounded from below by the already constructed solution u. We extend u δ , |∇u δ | and g(|∇u δ |) by zero outside Ω ′ δ and still denote them by the same expressions. Let E ⊂ Ω be a Borel set and put

E δ = E ∩ Ω ′ δ then (2.21) becomes E δ u δ dx ≤ |E δ | 1 N u δ M N N -1 (Ω ′ δ ) ≤ c 1 c 2 |E δ | 1 N P Ω [µ]| Σ δ L 1 (Σ δ ) ≤ c 1 c 2 c 7 |E| 1 N µ M(Σ) .
(2.27)

Set d δ (x) := dist (x, Ω δ ) (= (d(x) -δ) + if x ∈ Ω δ * := Ω \ Ω ′ δ * ), we have E δ ∩{x:|∇u δ |>λ} d δ (x)g(|∇u δ |)dx ≤ - ∞ λ g(s)dω δ (s),
where

ω δ (s) = |{x ∈ Ω : |∇u δ (x)| > s}| d δ . Since P Ω [µ]| Σ δ L 1 (Σ δ ) ≤ c 7 µ M(Σ) , (2.22) and 
(2.23) become respectively

E δ ∩{x:|∇u δ (x)|≤λ} d δ (x)g(|∇u δ |)dx ≤ g(λ)|E δ | d δ . (2.28) 
and 

E δ ∩{x:|∇u δ (x)|>λ} d δ (x)g(|∇u δ |)dx ≤ c 6 N + 1 N µ N +1 N M ∞ λ g(s)s -2N +1 N ds. ( 2 
-∆ζ δ = -∆ζ in Ω ′ δ ζ δ = 0 on Σ δ . (2.31) 
Then Step 5: Stability. Consider a sequence of positive bounded measures {µ n } which converges weakly to µ. By estimates (2.17) and (2.20), u µn and g(|∇u µn |) are relatively compact in L 1 loc (Ω) and respectively uniformly integrable in L 1 (Ω) and L 1 d (Ω). Up to a subsequence, they converge a.e. respectively to u and g(|∇u|) for some function u. As in Step 3, u is a solution of (2.1).

Ω ′ δ (-u δ ∆ζ δ + g(|∇u δ |)ζ δ )dx = - Σ δ ∂ζ δ ∂n P Ω [µ]dS (2.
A variant of the stability statement is the following result which will be very useful in the analysis of the boundary trace. The proof is similar as Step 4 in the proof of Theorem 2.2.

Corollary 2.4 Let g in G 0 satisfy (2.2). Assume {δ n } is a sequence decreasing to 0 and {µ n } is a sequence of positive bounded measures on Σ δn = ∂Ω ′ δn which converges to µ in the weak sense of measures and let u µn be solutions of (2.1) with boundary data µ n . Then there exists a subsequence {u µn k } of solutions of (2.1) with boundary data µ n k which converges to a solution u µ with boundary data µ.

Boundary trace

The construction of the boundary trace of positive solutions of (1.1) is a combination of tools developed in [START_REF] Marcus | The boundary trace of positive solutions of semilinear elliptic equations: the subcritical case[END_REF]- [START_REF] Marcus | Removable singularities and boundary trace[END_REF] with the help of a geometric construction from [START_REF] Bandle | Dependence of Blowup Rate of Large Solutions of Semilinear Elliptic Equations, on the Curvature of the Boundary[END_REF]. Definition 2.5 Let µ δ ∈ M(Σ δ ) for all δ ∈ (0, δ * ) and µ ∈ M(Σ). We say that µ δ → µ as δ → 0 in the sense of weak convergence of measures if

lim δ→0 Σ δ φ(σ(x))dµ δ = Σ φdµ ∀φ ∈ C c (Σ).
(2.33)

A function u ∈ C(Ω) possesses a measure boundary trace µ ∈ M(Σ) if lim δ→0 Σ δ φ(σ(x))u(x)dS = Σ φdµ ∀φ ∈ C c (Σ). (2.34)
Similarly, if A is a relatively open subset of Σ, we say that u possesses a trace µ on A in the sense of weak convergence of measures if µ ∈ M(A) and (2.34) holds for every φ ∈ C c (A).

We recall the following result [START_REF] Marcus | The boundary trace and generalized boundary value problem for semilinear elliptic equations with coercive absorption[END_REF]Cor 2.3], adapted here to (1.1), Proposition 2.6 Assume g : R + → R + and let u ∈ C 2 (Ω) be a positive solution of (1.1). Suppose that for some z ∈ ∂Ω there exists an open neighborhood U such that

U∩Ω g(|∇u|)d(x)dx < ∞. (2.35)
Then u ∈ L 1 (K ∩ Ω) for every compact set K ⊂ U and there exists a positive Radon measure Clearly R(u) is relatively open and there exists a positive Radon measure µ on R(u) such that u admits µ := µ(u) as a measure boundary trace on R(u) and µ(u) is uniquely determined. The couple (S(u), µ) is called the boundary trace of u and denoted by tr ∂Ω (u).

ν on Σ ∩ U such that lim δ→0 Σ δ ∩U φ(σ(x))u(x)dS = Σ∩U φdν ∀φ ∈ C c (Σ ∩ U ). ( 2 
The main question is to determine the behaviour of u near S(u). The following result is proved in [START_REF] Marcus | The boundary trace and generalized boundary value problem for semilinear elliptic equations with coercive absorption[END_REF]Lemma 2.8].

Proposition 2.8 Assume g : R + → R + and u ∈ C 2 (Ω) be a positive solution of (1.1) with the singular boundary set S(u). If z ∈ S(u) is such that there exists an open neighborhood U ′ of z such that u ∈ L 1 (U ′ ∩ Ω), then for every neighborhood U of z there holds

lim δ→0 Σ δ ∩U u(x)dS = ∞.
(2.37)

Corollary 2.9 Let u ∈ C 2 (Ω) is a positive solution of (1.
2) with 3 2 < q ≤ 2. Then (2.37) holds for every z ∈ S(u).

Proof. This is a direct consequence of Lemma 3.2 since q-2 q-1 > -1 implies u ∈ L 1 (Ω). We prove below that this result holds for any 1 < q ≤ 2.

Theorem 2.10 Assume g : R + → R + is continuous and satisfies

lim inf r→∞ g(r) r q > 0 (2.38) where 1 < q ≤ 2. If u ∈ C 2 (Ω)
is a positive solution of (1.1), then (2.37) holds for every z ∈ S(u).

Proof. Up to rescaling we can assume that g(r) ≥ r qτ for some τ ≥ 0. We recall some results from [START_REF] Berger | On the asymptotic solution of a nonlinear Dirichlet problem[END_REF] in the form exposed in [3, Sect 2]. There exist an open cover {Σ j } k j=1 of Σ, an open set D of R N -1 and C 2 mappings T j from D to Σ j with rank N -1 such that for each σ ∈ Σ j there exists a unique a ∈ D with the property that σ = T j (a). The couples {D, T -1 j } form a system of local charts of Σ. If we set Ω j = {x ∈ Ω δ * : σ(x) ∈ Σ j } then for any j = 1, ..., k the mapping

Π j : (δ, a) → x = T j (a) -δn
where n is the outward unit normal vector to Σ at T j (a) = σ(x) is a C 2 diffeomorphism from (0, δ * ) × D to Ω j . The Laplacian obtains the following expressions in terms of this system of flow coordinates provided the lines σ i = ct are the vector fields of the principal curvatures κi on Σ

∆ = ∆ δ + ∆ σ (2.39)
where

∆ δ = ∂ 2 ∂δ 2 -(N -1)H ∂ ∂δ (2.40) with H = H(δ, .) = 1 N -1 N -1 i=1 κi 1-δκi being the mean curvature of Σ δ and ∆ σ = 1 |Λ| N -1 i=1 ∂ ∂σ i |Λ| Λii (1 -δκ i + κ ii δ 2 ) ∂ ∂σ i . (2.41)
In this expression, Λ = ( Λij ) is the metric tensor on Σ and it is diagonal by the choice of coordinates and

|Λ| = Π N -1 i=1 Λii (1 -δκ i ) 2 .
In particular

|∇ξ| 2 = N -1 i=1 ξ 2 σi Λii (1 -δκ i + κ ii δ 2 ) + ξ 2 δ (2.42) and ∇ξ.∇η = N -1 i=1 ξ σi η σi Λii (1 -δκ i + κ ii δ 2 ) + ξ δ η δ = ∇ σ ξ.∇ σ η + ξ δ η δ . (2.43)
If z ∈ S(u) we can assume that U Σ := U ∩ Σ is smooth and contained in a single chart Σ j . Let φ be the first eigenfunction of ∆ σ in W 1,2 0 (U Σ ) normalized so that max U Σ φ = 1 and α > 1 to be made precise later on. From -∆ δ u -∆ σ u + 1 2 (|∇u| qτ ) + 1 2 g(|∇u|) ≤ 0, we obtain by multiplying by φ α and integrating over

U Σ - d 2 dδ 2 UΣ uφ α dS + (N -1) UΣ ∂u ∂δ φ α HdS + α UΣ φ α-1 ∇ σ u.∇ σ φ dS + 1 2 UΣ φ α (|∇u| q -τ )dS + 1 2 UΣ φ α g(|∇u|)dS ≤ 0.
(2.44)

Provided α > q ′ -1 we obtain by Hölder inequality

UΣ φ α-1 ∇ σ u.∇ σ φdS ≤ UΣ |∇u| q φ α dS 1 q UΣ |∇ σ φ| q ′ φ α-q ′ dS 1 q ′ ≤ ǫ UΣ |∇u| q φ α dS + ǫ 1 1-q UΣ |∇ σ φ| q ′ φ α-q ′ dS, (2.45) and UΣ ∂u ∂δ φ α HdS ≤ ǫ H L ∞ UΣ |∇u| q φ α dS + ǫ 1 1-q H L ∞ UΣ φ α dS (2.46)
with ǫ > 0. We derive, with ǫ small enough,

d 2 dδ 2 UΣ uφ α dS ≥ 1 2 -c 8 ǫ UΣ |∇u| q φ α dS + 1 2 UΣ φ α g(|∇u|)dS -c ′ 8 (2.47)
where

c 8 = c 8 (q, H) and c ′ 8 = c ′ 8 (N, q, H). Integrating (2.47) twice yields to UΣ u(δ, .)φ α dS ≥ 1 2 -c 8 ǫ δ * δ UΣ |∇u| q φ α dS(τ -δ)dτ + 1 2 UΣ φ α g(|∇u|)dS -c ′′ 8 .
(2.48) Since z ∈ S(u), the right-hand side of (2.48) tends monotically to ∞ as δ → 0, which implies that (2.37) holds.

Remark. It is often usefull to consider the couple (S(u), µ) defining the boundary trace of u as an outer regular Borel measure ν uniquely determined by

ν(E) = µ(E) if E ⊂ R(u) ∞ if E ∩ S(u) = ∅ (2.49)
for all Borel set E ⊂ ∂Ω, and we will denote tr ∂Ω (u) = ν(u).

The integral blow-up estimate (2.37) remains valid if g ∈ G 0 and the growth estimate (2.38) is replaced by (2.2).

Theorem 2.11 Assume g ∈ G 0 satisfies (2.2). If u ∈ C 2 (Ω) is a positive solution of (1.1), then (2.37) holds for every z ∈ S(u).

Proof. By translation we assume z = 0 ∈ S(u) and (2.37) does not hold. We proceed by contradiction, assuming that there exists an open neighborhood U of z such that lim inf

δ→0 Σ δ ∩U udS < ∞.
(2.50) By Proposition 2.8, for any neighborhood U ′ of z there holds

Ω∩U ′ udx = ∞, (2.51) which implies lim sup δ→0 Σ δ ∩U ′ udS = ∞. (2.52)
For n ∈ N * , we take U ′ = B 1 n ; there exists a sequence {δ n,k } k∈N satisfying lim k→∞ δ n,k = 0 such that lim

k→∞ Σ δ n,k ∩B 1 n udS = ∞. (2.53)
Then, for any ℓ > 0, there exists

k ℓ := k n,ℓ ∈ N such that k ≥ k ℓ =⇒ Σ δ n,k ∩B 1 n udS ≥ ℓ (2.54)
and k n,ℓ → ∞ when n → ∞. In particular there exists m := m(ℓ, n) > 0 such that

Σ δ n,k ℓ ∩B 1 n inf{u, m}dS = ℓ. (2.55) By the maximum principle u is bounded from below in Ω ′ δ n,k ℓ by the solution v := v δ n,k ℓ of -∆v + g(|∇v|) = 0 in Ω ′ δ n,k ℓ v = inf{u, m} on Σ δ n,k ℓ . (2.56)
When n → ∞, inf{u, m(ℓ, n)}dS converges in the weak sense of measures to ℓδ 0 . By Corollary 2.4 there exists a solution u ℓδ0 such that v δ n,k ℓ → u ℓδ0 when n → ∞ and consequently u ≥ u ℓδ0 in Ω. Even if u ℓδ0 may not be unique, this implies

lim inf δ→0 Σ δ uζ(x)dS ≥ lim δ→0 Σ δ u ℓδ0 ζ(x)dS = ℓ (2.57) for any nonnegative ζ ∈ C ∞ (R N ) such that ζ = 1 in a neighborhood of 0. Since ℓ is arbitrary we obtain lim inf δ→0 Σ δ uζ(x)dS = ∞ (2.58)
which contradicts (2.50).

3 Boundary singularities

Boundary data unbounded measures

Since the works of Keller [START_REF] Keller | On solutions of ∆u = f (u)[END_REF] and Osserman [START_REF] Osserman | On the inequality ∆u ≥ f (u)[END_REF], universal a priori estimates became classical in the study of nonlinear elliptic equations with a superlinear absorption. Similar results holds for posiitive solutions of (1.2) under some restrictions. We recall that for any q > 1, any solution u of (1.2) bounded from below satisfies [21, Th A1] the following estimate: for any ǫ > 0, there exists

C ǫ > 0 such that sup d(x)≥ǫ |∇u(x)| ≤ C ǫ . (3.1)
Later on Lions gave in [24, Th IV 1] a more precise estimate that we recall below.

Lemma 3.1 Assume q > 1 and u ∈ C 2 (Ω) is any solution of (1.2) in Ω. Then |∇u(x)| ≤ C 1 (N, q)(d(x)) -1 q-1 ∀x ∈ Ω. (3.2)
Similarly, the following result is proved in [START_REF] Lions | Quelques remarques sur les problème elliptiques quasilineaires du second ordre[END_REF].

Lemma 3.2 Assume q > 1 and u ∈ C 2 (Ω) is a solution of (1.2) in Ω. Then |u(x)| ≤ C 2 (N, q) 2 -q (d(x)) q-2 q-1 -δ * q-2 q-1 + max{|u(z)| : z ∈ Σ δ * } ∀x ∈ Ω (3.3) if q = 2, and |u(x)| ≤ C 3 (N ) (ln δ * -ln d(x)) + max{|u(z)| : z ∈ Σ δ * } ∀x ∈ Ω (3.4) if q = 2, for some C 2 (N, q), C 3 (N ) > 0. Proof. Put M δ * := max{|u(z)| : z ∈ Σ δ * } and let x ∈ Ω δ * , x = σ(x) -d(x)n σ(x)
, and

x 0 = σ(x) -δ * n σ(x)
. Then, using Lemma 3.1 and the fact that σ(x) = σ(x 0 ),

|u(x)| ≤ M δ * + 1 0 d dt u(tx + (1 -t)x 0 ) dt ≤ M δ * + C 1 (N, q) 1 0 (td(x) + (1 -t)δ * ) -1 q-1 (δ * -d(x))dt. (3.5) 
Thus we obtain (3.3) or (3.4) according to the value of q.

If q = 2 and u solves (1.2), v = e u is harmonic and positive while if q > 2, any solution remains bounded in Ω. Although this last case is interesting in itself, we will consider only the case 1 < q < 2.

Lemma 3.3 Assume 1 < q < 2, 0 ∈ ∂Ω and u ∈ C(Ω \ {0}) ∩ C 2 (Ω) is a solution of (1.2) in Ω which vanishes on ∂Ω \ {0}. Then u(x) ≤ C 4 (q)|x| q-2 q-1 ∀x ∈ Ω. (3.6)
Proof. For ǫ > 0, we set

P ǫ (r) =    0 if r ≤ ǫ -r 4 2ǫ 3 + 3r 3 ǫ 2 -6r 2 ǫ + 5r -3ǫ 2 if ǫ < r < 2ǫ r -3ǫ 2 if r ≥ 2ǫ
and let u ǫ be the extension of P ǫ (u) by zero outside Ω. There exists R 0 such that Ω ⊂ B R0 . Since 0 ≤ P ′ ǫ (r) ≤ 1 and

P ǫ is convex, u ǫ ∈ C 2 (R N ) and it satisfies -∆u ǫ + |∇u ǫ | q ≤ 0. Furthermore u ǫ vanishes in B c R0 . For R ≥ R 0 we set U ǫ,R (x) = C 4 (q) (|x| -ǫ) q-2 q-1 -(R -ǫ) q-2 q-1 ∀x ∈ B R \ B ǫ ,
where C 4 (q) = (q -1)

q-2 q-1 (2 -q) -1 , then -∆U ǫ,R + |∇U ǫ,R | q ≥ 0. Since u ǫ vanishes on ∂B R and is finite on ∂B ǫ it follows u ǫ ≤ U ǫ,R in B R \ B ǫ . Letting successively ǫ → 0 and R → ∞ yields to (3.6).
Using regularity we can improve this estimate Lemma 3.4 Under the assumptions of Lemma 3.3 there holds

|∇u(x)| ≤ C 5 (q, Ω)|x| -1 q-1 ∀x ∈ Ω.
(3.7)

and u(x) ≤ C 6 (q, Ω)d(x)|x| -1 q-1 ∀x ∈ Ω. (3.8)
Proof. For ℓ > 0, we set

T ℓ [u](x) = ℓ 2-q q-1 u(ℓx) ∀x ∈ Ω ℓ := 1 ℓ Ω. (3.9) If x ∈ Ω, we set |x| = d and u d (y) = T d [u](y) = d 2-q q-1 u(dy). Then u d satisfies (1.2) in Ω d = 1 d Ω. Since d ≤ d * := diam(Ω)
, the curvature of ∂Ω d is uniformly bounded and therefore standard a priori estimates (see e.g. [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF]) imply that there exists c depending on the curvature of Ω d and max{|u d (y)| : In the next statement we obtain a local estimate of positive solutions which vanish only on a part of the boundary. Proposition 3.5 Assume 1 < q < 2. Then there exist 0 < r * ≤ δ * and C 7 > 0 depending on N , q and Ω such that for compact set K ⊂ ∂Ω, K = ∂Ω and any positive solution

1 2 ≤ |y| ≤ 3 2 } such that |∇u d (z)| ≤ c ∀z ∈ Ω d , 3 4 ≤ |z| ≤ 5 4 . ( 3 
u ∈ C(Ω \ K) ∩ C 2 (Ω) vanishing on ∂Ω \ K of (1.2), there holds u(x) ≤ C 7 d(x)(d K (x)) -1 q-1 ∀x ∈ Ω s.t. d(x) ≤ r * , (3.11 
)

where d K (x) = dist (x, K).
Proof. The proof is based upon the construction of local barriers in spherical shells. We fix

x ∈ Ω such that d(x) ≤ δ * and σ(x) := Proj ∂Ω (x) ∈ ∂Ω \ K. Set r = d K (x) and consider 3 4 r < r ′ < 7 8 r, τ ≤ 2 -1 r ′ and ω x = σ(x) + τ n x . Since ∂Ω is C 2 , there exists r * ≤ δ * , depending only on Ω such that d K (ω x ) > 7 8 r provided d(x) ≤ r * . For A, B > 0 we define the functions s → ṽ(s) = A(r ′ -s) q-2 q-1 -B and y → v(y) = ṽ(|y -ω x |) respectively in [0, r ′ ) and B r ′ (ω x ). Then -ṽ ′′ (s) - N -1 s ṽ′ (s) + |ṽ ′ (s)| q = A 2 -q q -1 (r ′ -s) -q q-1 - 1 q -1 - (N -1)(r ′ -s) s + (2 -q)A q -1 q-1
.

We choose A and τ > 0 such that

1 q -1 -1 + N + (N -1)r ′ τ ≤ (2 -q)A q -1 q-1 (3.12) so that inequality -∆v + |∇v| q ≥ 0 holds in B r ′ (ω x ) \ B τ (ω x ). We choose B so that v(σ(x)) = ṽ(τ ) = 0, i.e. B = A(r ′ -τ ) q-2 q-1 . Since τ ≤ δ * , B τ (ω x ) ⊂ Ω c therefore v ≥ 0 on ∂Ω ∩ B r ′ (ω x ) and v ≥ u on Ω ∩ ∂B r ′ (ω x ). By the maximum principle we obtain that u ≤ v in Ω ∩ B r ′ (ω x ) and in particular u(x) ≤ v(x) i.e. u(x) ≤ A (r ′ -τ -d(x)) q-2 q-1 -(r ′ -τ ) q-2 q-1 ≤ A(2 -q) q -1 (r ′ -τ -d(x)) -1 q-1 d(x). (3.13)
If we take in particular τ = r ′ 2 and d(x) ≤ r 4 , then A = A(N, q) and

u(x) ≤ c 9 r ′-1 q-1 d(x). (3.14) 
where c 9 = c 9 (N, q). If we let r ′ → 7 8 r we derive (3.11).

Next, if x ∈ Ω is such that d(x) ≤ δ * and d(x) > 1 4 d K (x)
, we combine (3.11) with Harnack inequality [START_REF] Trudinger | On Harnack type inequalities and their applications to quasilinear elliptic equations[END_REF], and a standard connectedness argument we obtain that u(x) remains locally bounded in Ω, and the bound on a compact subset G of Ω depends only on K, G, N and q. Since d K (x) ≥ d(x) > As a consequence we have existence of positive solutions of (1.2) in Ω with a locally unbounded boundary trace. Corollary 3.6 Assume 1 < q < q c . Then for any compact set K ∂Ω, there exists a positive solution u of (1.2) in Ω such that tr ∂Ω (u) = (S(u), µ(u)) = (K, 0).

Proof. For any 0 < ǫ, we set K ǫ = {x ∈ ∂Ω : d K (x) < ǫ} and let ψ ǫ be a sequence of smooth functions defined on ∂Ω such that 0 ≤ ψ ǫ ≤ 1, ψ ǫ = 1 on K ǫ , ψ ǫ = 0 on ∂Ω \ K 2ǫ (ǫ < ǫ 0 so that ∂Ω \ K 2ǫ = ∅). Furthermore we assume that ǫ < ǫ ′ < ǫ 0 implies ψ ǫ ≤ ψ ǫ ′ . For k ∈ N * let u = u k,ǫ be the solution of

-∆u + |∇u| q = 0 in Ω u = kψ ǫ on ∂Ω. (3.15)
By the maximum principle (k, ǫ) → u k,ǫ is increasing. Combining Proposition 3.5 with the same Harnack inequality argument as above we obtain that u k,ǫ (x) remains locally bounded in Ω and satisfies (3.11), independently of k and ǫ. By regularity it remains locally compact in the C 1 -topology of Ω \ K. If we set u ∞,ǫ = lim k→∞ u k,ǫ , then it is a solution of (1.2) in Ω which satisfies lim

x→y∈Kǫ u ∞,ǫ (x) = ∞ ∀ y ∈ K ǫ , locally uniformly in K ǫ . Furthermore, if y ∈ K ǫ is such that B θ (y) ∩ ∂Ω ⊂ K ǫ for some θ > 0, then for any k large enough there exists θ k < θ such that ∂Ω χ B θ k (y)∩∂Ω dS = k -1 .
For any ℓ > 0, u kℓ,ǫ is bounded from below by u := u kℓ,B θ k (y)∩∂Ω which satisfies

   -∆u + |∇u| q = 0 in Ω u = kℓχ B θ k (y)∩∂Ω on ∂Ω. (3.16)
When k → ∞, u kℓ,B θ k (y) converges to u ℓδy by Theorem 2.2 for the stability and Theorem 3.17 for the uniqueness. It follows that u ∞,ǫ ≥ u ℓδy . Letting ǫ → 0 and using the same local regularity-compactness argument we obtain that u K := u ∞,0 = lim ǫ→0 u ∞,ǫ is a positive solution of (1.2) in Ω which vanishes on ∂Ω \ K and satisfies

u K ≥ u ℓδy =⇒ lim δ→0 Σ δ ∩Bτ (y) u K (x)dS ≥ ℓ,
for any τ > 0. Since τ and ℓ are arbitrary, (2.37) holds, which implies that y ∈ S(u K ).

Clearly µ(u K ) = 0 on R(u K ) = ∂Ω \ S(u K ) which ends the proof.

In the supercritical case the above result cannot be always true since there exist removable boundary compact sets (see Section 4). The following result is proved by an easy adaptation of the ideas in the proof of Corollary 3.6. Corollary 3.7 Assume q c ≤ q < 2 and let G ⊂ ∂Ω. We assume that the boundary ∂ ∂Ω G ⊂ ∂Ω satisfies the interior boundary sphere condition relative to ∂Ω in the sense that for any y ∈ ∂ ∂Ω G, there exists ǫ y > 0 and a sphere such that B ǫy ∩ ∂Ω ⊂ G and y ∈ B ǫy . If S := G = ∂Ω there exists a positive solution u of (1.2) with boundary trace (S, 0).

Remark.

It is worth noticing that the condition for the singular set to be different from all the boundary is necessary as it is shown in a recent article by Alarcón-García-Melián and Quass [START_REF] Alarcón | Existence and non-existence of solutions to elliptic equations with a general convection term[END_REF]. When q c ≤ q < 2 and Θ ⊂ ∂Ω it is always possible to construct a positive solution u ǫ (ǫ > 0) of (1.2) with boundary trace (Θ c ǫ , 0), where Θ ǫ = {x ∈ ∂Ω : d Θ (x) < ǫ} and the complement is relative to ∂Ω. Furthermore ǫ → u ǫ is decreasing. If Θ has an empty interior, Proposition 3.5 does not apply. We conjecture that lim ǫ→0 u ǫ depends on some capacity estimates on Θ.

The condition that a solution vanishes outside a compact boundary set K can be weakened and replaced by a local integral estimate. The next result is fundamental for existence a solution with a given general boundary trace. Proposition 3.8 Assume 1 < q < 2, U ⊂ ∂Ω is relatively open and µ ∈ M(U ) is a positive bounded Radon measure. Then for any compact set Θ ⊂ Ω there exists a constant 

C 8 = C 8 (N, q, H, Θ, µ M(U) ) > 0 such that any positive solution u of (1.2) in Ω with boundary trace (S, µ ′ ) where S is closed, U ⊂ ∂Ω \ S := R and µ ′ is a positive Radon measure on R such that µ ′ | U = µ, there holds u(x) ≤ C 8 ∀ x ∈ Θ. ( 3 
u(δ, .)φ α dS - U u(δ * , .)φ α dS ≥ (1 -c 10 ǫ) δ * δ U |∇u| q φ α dS(τ -δ)dτ -(δ * -δ) U ∂u ∂δ (δ * , .)φ α dS -c ′ 10 
(3.18) where c 10 = c 10 (q, H) and c ′ 10 = c ′ 10 (N, q, H). Since the second term in the right-hand side of (3.18) is uniformly bounded by Lemma 3.1, it follows that we can let δ → 0 and derive,

U u(δ * , .)φ α dS + (1 -c 10 ǫ) δ * 0 U |∇u| q φ α τ dSdτ ≤ U φ α dµ + c ′′ 10 ≤ µ M(U) + c ′′ 10 , (3.19) 
where c ′′ 10 depends on the curvature H, N and q. This implies that there exist some ball B α (a), α > 0 and a ∈ U such that B α (a) ∩ ∂Ω ⊂ U and where c ′′′ 10 = c ′′′ 10 (N, q, H, µ M(U) ). By Lemma 3.1 the second term in the right-hand side remains bounded by a constant depending on δ 1 , H, N and q. Therefore UΣ u(δ, .)φ α dS remains bounded by a constant depending on the previous quantities and of µ M(U) and consequently, assuming that d

Bα(a)∩Ω |∇u| q d(x)dx ≤ µ M(U) + c ′′ 10 , (3.20) 
Thus, if B β (b) is some ball such that B β (b) ⊂ B α (a) ∩ Ω, we have B β (b) |∇u| q dx ≤ (d(b) -β) -1 µ M(U) + c ′′ 10 . (3.21) 
(x) ≥ δ 1 for all x ∈ B β (b) (i.e. d(b) -β ≥ δ 1 ) u B β (b) := 1 |B β (b)| B β (b) udx ≤ c 11 (3.23)
where c 11 depends on δ 1 , H, N , q and µ M(U) . By Poincaré inequality

B β (b) u q dx 1 q ≤ c ′ 11   B β (b) |∇u| q dx 1 q + |B β (b)| 1 q u B β (b)   . (3.24) 
Combining (3.21) and (3.23) we derive that u W 1,q (B β (b)) remains bounded by a quantity depending only on δ 1 , H, N and q and µ M(U) . By the classical trace theorem in Sobolev spaces, u L q (∂B β (b)) remains also uniformly bounded when the above quantities are so. By the maximum principle

u(x) ≤ P B β (b) [u| ∂B β (b) ](x) ∀ x ∈ B β (b), (3.25) 
where P B β (b) denotes the Poisson kernel in B β (b). Therefore, u remains uniformly bounded in B β 2 (b) by some constant c ′′ 11 which also depends on µ M(U) , N , q, Ω, b and β, but not on u. We end the proof by Harnack inequality and a standard connectedness argument as it has already be used in Corollary 3.6.

The main result of this section is the following Theorem 3.9 Assume 1 < q < q c , K ∂Ω is closed and µ is a positive Radon measure on R := ∂Ω \ K. Then there exists a solution of (1.2) such that tr ∂Ω (u) = (K, µ).

Proof. For ǫ ′ > ǫ > 0 we set ν ǫ,ǫ ′ = kχ K ǫ ′ + χ K c ǫ
µ and denote by u ǫ,ǫ ′ ,k,µ the maximal solution of -∆u

+ |∇u| q = 0 in Ω u = ν ǫ,ǫ ′ on ∂Ω. (3.26) 
We recall that K ǫ := {x ∈ ∂Ω : d K (x) < ǫ}, so that ν ǫ,ǫ ′ is a positive bounded Radon measure. For 0 < ǫ ≤ ǫ 0 there exists y ∈ R and γ > 0 such that B γ (y

) ⊂ K c ǫ0 . Since χ K c ǫ µ M(R)
is uniformly bounded, it follows from Proposition 3.8 that u ǫ,ǫ ′ ,k,µ remains locally bounded in Ω, uniformly with respect to k, ǫ and ǫ

′ . Furthermore (k, ǫ, ǫ ′ ) → u ǫ,ǫ ′ ,k,µ is increasing with respect to k. If u ǫ,ǫ ′ ,∞,µ = lim k→∞ u ǫ,ǫ ′ ,k,µ , it is a solution of (1.2) in Ω.
By the same argument as the one used in the proof of Corollary 3.6, any point y ∈ K is such that u ǫ,ǫ ′ ,∞,µ ≥ u ℓδy for any ℓ > 0. Using the maximum principle

(ǫ 2 ≤ ǫ 1 , ǫ ′ 1 ≤ ǫ ′ 2 , k 1 ≤ k 2 ) =⇒ (u ǫ 1 ,ǫ ′ 1 ,k 1 ,µ ≤ u ǫ 2 ,ǫ ′ 2 ,k 2 ,µ ) (3.27)
Since u ǫ,ǫ ′ ,∞,µ remains locally bounded in Ω independently of ǫ and ǫ ′ , we can set u K,µ = lim ǫ ′ →0 lim ǫ→0 u ǫ,ǫ ′ ,∞,µ then by the standard local regularity results u K,µ is a positive solution of (1.2) in Ω. Furthermore u K,µ > u ℓδy , for any y ∈ K and ℓ > 0; thus the set of boundary singular points of u K,µ contains K. In order to prove that tr ∂Ω (u K,∞ ) = (K, µ) consider a smooth relatively open set U ⊂ R. Using the same function φ α as in Proposition 3.8, we obtain from (3.19

) U u K,∞ (δ * , .)φ α dS + (1 -c 10 ǫ) δ * 0 U |∇u K,∞ | q φ α τ dSdτ ≤ U dµ + c ′′ 10 . (3.28)
Therefore U is a subset of the set of boundary regular points of u K,∞ , which implies tr ∂Ω (u) = (K, µ) by Proposition 2.6.

Remark. If q c ≤ q < 2, it is possible to solve (3.26) if µ is a smooth function defined in R and to let successively k → ∞; ǫ → 0 and ǫ ′ → 0 using monotonicity as before. The limit function u * is a solution of (1.2) in Ω. If tr ∂Ω (u * ) = (S * , µ * ), then S * ⊂ K and µ * | R = µ. However interior points of K, if any, belong to S * (see Corollary 3.7).

Boundary Harnack inequality

We adapt below ideas from Bauman [START_REF] Bauman | Positive solutions of elliptic equations in nondivergence form and their adjoints[END_REF], Bidaut-Véron-Borghol-Véron [START_REF] Bidaut-Véron | Boundary Harnack inequality and a priori estimates of singular solutions of quasilinear elliptic equations[END_REF] and Trudinger [START_REF] Trudinger | Local estimates for subsolutions and supersolutions of general second order elliptic quasilinear equations[END_REF]- [START_REF] Trudinger | On Harnack type inequalities and their applications to quasilinear elliptic equations[END_REF] in order to prove a boundary Harnack inequality which is one of the main tools for analyzing the behavior of positive solutions of (1.2) near an isolated boundary singularity. We assume that Ω is a bounded C 2 domain with 0 ∈ ∂Ω and δ * has been defined for constructing the flow coordinates.

Theorem 3.10 Assume 0 ∈ ∂Ω, 1 < q < 2. Then there exist 0 < r 0 ≤ δ * and C 9 > 0 depending on N , q and Ω such that for any positive solution

u ∈ C(Ω ∪ ((∂Ω \ {0}) ∩ B 2r0 )) ∩ C 2 (Ω) of (1.2) vanishing on (∂Ω \ {0}) ∩ B 2r0 there holds u(y) C 9 d(y) ≤ u(x) d(x) ≤ C 9 u(y) d(y) (3.29)
for every x, y ∈ B 2r 0 3

∩ Ω satisfying |y| 2 ≤ |x| ≤ 2|y|.
Since Ω is a bounded C 2 domain, it satisfies uniform sphere condition, i.e there exists r 0 > 0 sufficiently small such that for any x ∈ ∂Ω the two balls B r0 (xr 0 n x ) and B r0 (x + r 0 n x ) are subsets of Ω and Ω c respectively. We can choose 0 < r 0 < min{δ * , 3r * } where r * is in Proposition 3.5.

We first recall the following chained property of the domain Ω [START_REF] Bauman | Positive solutions of elliptic equations in nondivergence form and their adjoints[END_REF].

Lemma 3.11 Assume that Q ∈ ∂Ω, 0 < r < r 0 and h > 1 is an integer. There exists an integer N 0 depending only on r 0 such that for any points x and y in Ω ∩ B 3r 2 (Q) verifying min{d(x), d(y)} ≥ r/2 h , there exists a connected chain of balls B 1 , ..., B j with j ≤ N 0 h such that

x ∈ B 1 , y ∈ B j , B i ∩ B i+1 = ∅ for 1 ≤ i ≤ j -1 and 2B i ⊂ B 2r (Q) ∩ Ω for 1 ≤ i ≤ j. (3.30)
The next result is an internal Harnack inequality.

Lemma 3.12 Assume Q ∈ (∂Ω \ {0}) ∩ B 2r 0 3 and 0 < r ≤ |Q| /4. Let u ∈ C(Ω ∪ ((∂Ω \ {0}) ∩ B 2r0 )) ∩ C 2 (
Ω) be a positive solution of (1.2) vanishing on (∂Ω \ {0}) ∩ B 2r0 . Then there exists a positive constant c 12 > 1 depending on N , q, δ * and r 0 such that

u(x) ≤ c h 12 u(y), (3.31) 
for every x, y ∈ B 3r 2 (Q) ∩ Ω such that min{d(x), d(y)} ≥ r/2 h for some h ∈ N. Proof. We first notice that for any ℓ > 0, T ℓ [u] satisfies (1.2) in Ω ℓ where T ℓ is defined in (3.9). If we take in particular ℓ = |Q|, we can assume |Q| = 1 and the curvature of the domain Ω |Q| remains bounded. By Proposition 3.5

u(x) ≤ C ′ 7 ∀x ∈ B 2r (Q) ∩ Ω (3.32)
where C ′ 7 depends on N , q, δ * . By Lemma 3.11 there exist an integer N 0 depending on r 0 and a connected chain of j ≤ N 0 h balls B i with respectively radii r i and centers x i , satisfying (3.30). Hence due to [START_REF] Trudinger | Local estimates for subsolutions and supersolutions of general second order elliptic quasilinear equations[END_REF]Corollary 10] and [34, Theorem 1.1] there exists a positive constant c ′ 12 depending on N , q, δ * and r 0 such that for every 1 ≤ i ≤ j,

sup Bi u ≤ c ′ 12 inf Bi u, (3.33) 
which yields to (3.31) with c 12 = c ′N0 12 . By proceeding as in [START_REF] Bauman | Positive solutions of elliptic equations in nondivergence form and their adjoints[END_REF] and [START_REF] Bidaut-Véron | Boundary Harnack inequality and a priori estimates of singular solutions of quasilinear elliptic equations[END_REF], we obtain the following results. Lemma 3.13 Assume the assumptions on Q and u of Lemma 3.12 are fulfilled. If P ∈ ∂Ω ∩ B r (Q) and 0 < s < r, there exist two positive constants δ and c 13 depending on N , q and Ω such that

u(x) ≤ c 13 |x -P | δ s δ M s,P (u) (3.34)
for every x ∈ B s (P ) ∩ Ω, where M s,P (u) = max{u(z) : z ∈ B s (P ) ∩ Ω}.

Corollary 3.14 Assume Q ∈ (∂Ω \ {0}) ∩ B 2r 0 3 and 0 < r ≤ |Q| /8. Let u ∈ C(Ω ∪ ((∂Ω \ {0}) ∩ B 2r0 )) ∩ C 2 (Ω) positive solution of (1.
2) vanishing on (∂Ω \ {0}) ∩ B 2r0 . Then there exists a constant c 14 depending only on N , q, δ * and r 0 such that

u(x) ≤ c 14 u(Q - r 2 n Q ) ∀x ∈ B r (Q) ∩ Ω. (3.35) Lemma 3.15 Assume Q ∈ (∂Ω \ {0}) ∩ B 2r 0 3 and 0 < r ≤ |Q| /8. Let u ∈ C(Ω ∪ ((∂Ω \ {0}) ∩ B 2r0 )) ∩ C 2 (Ω) positive solution of (1.2) vanishing on (∂Ω \ {0}) ∩ B 2r0 .
Then there exist a ∈ (0, 1/2) and c 15 > 0 depending on N , q, δ * and r 0 such that

1 c 15 t r ≤ u(P -tn P ) u(Q -r 2 n Q ) ≤ c 15 t r (3.36)
for any P ∈ B r (Q) ∩ ∂Ω and 0 ≤ t < a 2 r.

Proof of Theorem 3.10. Assume x ∈ B 2r 0 3

∩ Ω and set r = |x| 8 .

Step 1: Tangential estimate: we suppose d(x) < a 2 r. Let Q ∈ ∂Ω \ {0} such that |Q| = |x| and x ∈ B r (Q). By Lemma 3.15, 

8 c 15 u(Q -r 2 n Q ) |x| ≤ u(x) d(x) ≤ 8c 15 u(Q -r 2 n Q ) |x| . (3.37) We can connect Q -r 2 n Q with -2rn 0 by m 1 (depending only on N ) connected balls B i = B(x i , r 4 ) with x i ∈ Ω and d(x i ) ≥ r 2 for every 1 ≤ i ≤ m 1 . It follows from (3.33) that c ′-m1 12 u(-2rn 0 ) ≤ u(Q - r 2 n Q ) ≤ c ′m1 12 u(-2rn 0 ),
i ∈ C(Ω ∪ ((∂Ω \ {0}) ∩ B 2r0 )) ∩ C 2 (Ω) (i = 1,
2) be two nonnegative solutions of (1.2) vanishing on (∂Ω\ {0})∩B 2r0 . Then there exists a constant C 10 depending on N , q and Ω such that for any r ≤ 2r0

3 sup u 1 (x) u 2 (x) : x ∈ Ω ∩ (B r \ B r 2 ) ≤ C 10 inf u 1 (x) u 2 (x) : x ∈ Ω ∩ (B r \ B r 2 ) .
(3.41)

Isolated singularities

Theorem 2.2 assert the existence of a solution to (2.1) for any positive Radon measure µ if g ∈ G 0 satisfies (2.2), and the question of uniqueness of this problem is still an open question, nevertheless when µ = δ z with z ∈ ∂Ω, we have the following result Theorem 3.17 Assume 1 < q < q c , z ∈ ∂Ω and c > 0. Then there exists a unique solution u := u cδz to -∆u

+ |∇u| q = 0 in Ω u = cδ z on ∂Ω (3.42)
Furthermore the mapping c → u cδz is increasing.

Lemma 3.18 Under the assumption of Theorem 3.17, there holds

|∇u(x)| ≤ C 11 c |x -z| -N ∀x ∈ Ω (3.43)
with C 11 = C 11 (N, q, κ) > 0 where κ is the supremum of the curvature of ∂Ω.

Proof. Up to a translation we may assume z = 0. By the maximum principle 0 < u(x) ≤ cP Ω (x, 0) in Ω. For 0 < ℓ ≤ 1, set v ℓ = T ℓ [u] where T ℓ is the scaling defined in (3.9), then

v ℓ satisfies -∆v ℓ + |∇v ℓ | q = 0 in Ω ℓ v ℓ = ℓ 2-q q-1 +1-N cδ 0 on ∂Ω ℓ (3.44)
where Ω ℓ = 1 ℓ Ω and by the maximum principle

0 < v ℓ (x) ≤ ℓ 2-q q-1 +1-N cP Ω ℓ (x, 0) ∀x ∈ Ω ℓ .
Since the curvature of ∂Ω ℓ remains bounded when 0 < ℓ ≤ 1, there holds (see [START_REF] Libermann | Boundary regularity for solutions of degenerate elliptic equations[END_REF])

sup{|∇v ℓ (x)| : x ∈ Ω ℓ ∩ (B 2 \ B 1 2 )} ≤ C ′ 11 sup{v ℓ (x) : x ∈ Ω ℓ ∩ (B 3 \ B 1 3 )} ≤ C ′ 11 ℓ 2-q q-1 sup{u(ℓx) : x ∈ Ω ℓ ∩ (B 3 \ B 1 3 )} ≤ C 11 cℓ 2-q q-1 +1-N (3.45)
where C 11 and C ′ 11 depend on N , q and κ. Consequently

ℓ 2-q q-1 +1 |∇u| (ℓx) ≤ C 11 (N, q, κ)cℓ 2-q q-1 +1-N ∀x ∈ Ω ℓ ∩ (B 2 \ B 1 2 ), ∀ℓ > 0 Set ℓx = y and |x| = 1, then |∇u(y)| ≤ C 11 |y| -N ∀y ∈ Ω. Lemma 3.19 lim |x|→0 G Ω [|x| -N q ] P (x, 0) = 0. (3.46)
We recall the following estimates for the Green fuction ( [START_REF] Bidaut-Véron | Boundary Harnack inequality and a priori estimates of singular solutions of quasilinear elliptic equations[END_REF], [START_REF] Gmira | Boundary singularities of solutions of some nonlinear elliptic equations[END_REF], [START_REF] Véron | Elliptic equations involving measures[END_REF] and [START_REF] Véron | Singularities of solutions of second other Quasilinear Equations[END_REF])

G Ω (x, y) ≤ c 16 d(x) |x -y| 1-N ∀x, y ∈ Ω, x = y and G Ω (x, y) ≤ c 16 d(x)d(y) |x -y| -N ∀x, y ∈ Ω, x = y.
where c 16 = c 16 (N, Ω). Hence, for α ∈ (0, N + 1 -N q), we obtain

G Ω (x, y) ≤ c 16 d(x) |x -y| 1-N α c 16 d(x)d(y) |x -y| -N 1-α = c 16 d(x)d(y) 1-α |x -y| α-N ∀x, y ∈ Ω, x = y, (3.47) 
which follows that

G Ω [|x| -N q ] P Ω (x, 0) ≤ c 16 |x| N R N |x -y| α-N |y| 1-N q-α dy (3.48)
By the following identity (see [23, p. 124]),

R N |x -y| α-N |y| 1-N q-α dy = c ′ 16 |x| 1-N q (3.49)
where c ′ 16 = c ′ 16 (N, α), we obtain

G Ω [|x| -N q ] P Ω (x, 0) ≤ c 16 c ′ 16 |x| N +1-N q .
(3.50)

Since N + 1 -N q > 0, (3.46) follows.

Proof of Theorem 3.17.

Since u = c P Ω [δ 0 ] -G Ω [|∇u| q ], lim |x|→0 u(x) P Ω (x, 0) = c. (3.51)
Let u and ũ be two solutions to (3.42). For any ε > 0, set

u ε = (1 + ε)u then u ε is a supersolution. By step 3, lim x→0 u ε (x) P Ω (x, 0) = (1 + ε)c.
Therefore there exists δ = δ(ǫ) such that u ǫ ≥ ũ on Ω ∩ ∂B δ . By the maximum principle,

u ε ≥ ũ in Ω \ B δ .
Letting ε → 0 yields to u ≥ ũ in Ω and the uniqueness follows. The monotonicity of c → u cδ0 comes from (3.51).

As a variant of the previous result we have its extension in some unbounded domains.

Theorem 3.20 Assume 1 < q < q c , and either Ω = R N + := {x = (x ′ , x N ) : x N > 0} or ∂Ω is compact with 0 ∈ ∂Ω. Then there exists one and only one solution to problem (3.42).

Proof. The proof needs only minor modifications in order to take into account the decay of the solutions at ∞. For R > 0 we set Ω R = Ω ∩ B R and denote by u := u R cδ0 the unique solution of -∆u

+ |∇u| q = 0 in Ω R u = cδ 0 on ∂Ω R . (3.52) Then u R cδ0 (x) ≤ cP ΩR (x, 0) ∀x ∈ Ω R . (3.53)
Since R → P ΩR (., 0) is increasing, it follows from (3.51) that R → u R cδ0 is increasing too with limit u * and there holds

u * (x) ≤ cP Ω (x, 0) ∀x ∈ Ω. (3.54) Estimate (3.43) is valid independently of R since the curvature of ∂Ω R is bounded (or zero if Ω = R N + )
. By standard local regularity theory, ∇u R cδ0 converges locally uniformly in Ω \ B ǫ for any ǫ > 0 when R → ∞, and thus u * ∈ C(Ω \ {0}) is a positive solution of (1.2) in Ω which vanishes on ∂Ω \ {0}. It admits therefore a boundary trace tr ∂Ω (u * ). Estimate (3.54) implies that S(u * ) = ∅ and µ(u * ) is a Dirac measure at 0, which is in fact cδ 0 by combining estimates (3.51) for Ω R , (3.53) and (3.54). Uniqueness follows from the same estimate.

We next consider the equation (1.2) in R N + . We denote by (r, σ) ∈ R + × S N -1 are the spherical coordinates in R N and we recall the following representation

S N -1 + = (sin φσ ′ , cos φ) : σ ′ ∈ S N -2 , φ ∈ [0, π 2 ) , ∆v = v rr + N -1 r v r + 1 r 2 ∆ ′ v where ∆ ′ is the Laplace-Beltrami operator on S N -1 , ∇v = v r e + 1 r ∇ ′ v
where ∇ ′ denotes the covariant derivative on S N -1 identified with the tangential derivative,

∆ ′ v = 1 (sin φ) N -2 (sin φ) N -2 v φ φ + 1 (sin φ) 2 ∆ ′′ v
where ∆ ′′ is the Laplace-Beltrami operator on S N -2 . Notice that the function ϕ

1 (σ) = cos φ is the first eigenfunction of -∆ ′ in W 1,2 0 (S N -1 +
), with corresponding eigenvalue λ 1 = N -1 and we choose θ > 0 such that φ1 (σ) := θ cos φ has mass 1 on S N -1 + . We look for a particular solution of

-∆u + |∇u| q = 0 in R N + u = 0 on ∂R N + \ {0} = R N -1 \ {0} (3.55)
under the separable form

u(r, σ) = r -β ω(σ) (r, σ) ∈ (0, ∞) × S N -1 + . (3.56)
It follows from a straightforward computation that β = 2-q q-1 and ω satisfies   

Lω := -∆ ′ ω + ( 2-q q-1 ) 2 ω 2 + |∇ ′ ω| 2 q 2 -2-q q-1 ( q q-1 -N )ω = 0 in S N -1 + ω = 0 on ∂S N -1 + (3.57)
Multiplying (3.57) by ϕ 1 and integrating over S N -1

+

, we get

N -1 - 2 -q q -1 q q -1 -N S N -1 + ωϕ 1 dx + S N -1 + 2 -q q -1 2 ω 2 + |∇ ′ ω| 2 q 2 ϕ 1 dx = 0. Therefore if N -1 ≥ 2-q
q-1 q q-1 -N and in particular if q ≥ q c , there exists no nontrivial solution of (3.57).

In the next theorem we prove that if N -1 < 2-q q-1 q q-1 -N , or equivalently q < N +1 N , there exists a unique positive solution of (3.57).

Theorem 3.21 Assume 1 < q < q c . There exists a unique positive solution ω s := ω ∈ W 2,p (S N -1

+ ) to (3.57) for all p > 1. Furthermore ω s ∈ C ∞ (S N -1 + ).
Proof. Step 1: Existence. We first claim that ω := γ 1 ϕ γ2

1 is a positive sub-solution of (3.57) where γ i (i = 1, 2) will be determined later on. Indeed, we have

L(ω) ≤ γ 1 ϕ γ2 1 (N -1)γ 2 - 2 -q q -1 q q -1 -N + 2 2 -q q -1 q γ q-1 1 ϕ (q-1)γ2 1 -γ 1 ϕ γ2-2 1 2 -q q -1 q γ q-1 1 ϕ (q-1)γ2+2 1 + γ 2 (γ 2 -1) |∇ ′ ϕ 1 | 2 + γ q 1 γ q 2 ϕ q(γ2-1) 1 |∇ ′ ϕ 1 | q =: γ 1 ϕ γ2 1 L 1 -γ 1 ϕ γ2-2 1 L 2 + L 3 .
Since q < q c , we can choose

1 < γ 2 < (N + q -N q)(2 -q) (N -1)(q -1) 2 .
Since ϕ 1 ≤ 1, we can choose γ 1 > 0 small enough in order that L 1 < 0 and -γ 1 ϕ γ2-2

1 L 2 + L 3 < 0. Thus the claim follows.
Next, it is easy to see that ω = γ 4 , with γ 4 > 0 large enough, is a supersolution of (3.57) and ω > ω in S N -1 +

. Therefore there exists a solution ω ∈ W 2,p (S N -1

+ ) to (3.57) such that 0 < ω ≤ ω ≤ ω in S N -1 + .
Step 2: Uniqueness. Suppose that ω 1 and ω 2 are two positive different solutions of (3.57) and by Hopf lemma ∇ ′ ω i (i = 1, 2) does not vanish on S N -1 + . Up to exchanging the role of ω 1 and ω 2 , we may assume max S N -1

+ ω 2 ≥ max S N -1 + ω 1 and λ := inf{c > 1 : cω 1 > ω 2 in S N -1 + } > 1.
Set ω 1,λ := λω 1 , then ω 1,λ is a positive supersolution to problem (3.57). Owing to the definition of ω 1,λ , one of two following cases must occur.

Case 1: Either ∃σ 0 ∈ S N -1 + such that ω 1,λ (σ 0 ) = ω 2 (σ 0 ) > 0 and ∇ ′ ω 1,λ (σ 0 ) = ∇ ′ ω 2 (σ 0 ). Set ω λ := ω 1,λ -ω 2 then ω λ ≥ 0 in S N -1 + , ω(σ 0 ) = 0, ∇ ′ ω λ (σ 0 ) = 0. Morevover, -∆ ′ ω λ + (H(ω 1,λ , ∇ ′ ω 1,λ ) -H(ω 2 , ∇ ′ ω 2 )) - 2 -q q -1 q q -1 -N ω λ ≥ 0. (3.58) where H(s, ξ) = (( 2-q q-1 ) 2 s 2 + |ξ| 2 ) q 2 , (s, ξ) ∈ R× R N .
By the Mean Value theorem and (3.58), we may choose γ 5 > 0 large enough such that

-∆ ′ ω λ + ∂H ∂ξ (s, ξ)∇ ′ ω λ + γ 5 - 2 -q q -1 q q -1 -N ω λ ≥ 0
where s and ξ i are the functions with respect to σ ∈ S N -1

+

. By the maximum principle, ω λ cannot achieve a non-positive minimum in S N -1

+ , which is a contradiction. 29 Case 2: or ω 1,λ > ω 2 in S N -1 + and ∃σ 0 ∈ ∂S N -1 + such that ∂ω 1,λ ∂n (σ 0 ) = ∂ω 2 ∂n (σ 0 ). (3.59) 
Since ω 1,λ (σ 0 ) = 0 and ω 1,λ ∈ C 1 (S N -1

+

), there exists a relatively open subset U ⊂ S N -1

+ such that σ 0 ∈ ∂U and max U w 1,λ < q -1 q-1 q -1 2 -q q q -1 -N 1 q-1 .
(3.60)

We set ω λ := ω 1,λω 2 as in case 1. It follows that

-∆ ′ ω λ + ∂H ∂ξ (s, ξ)∂ σi ω λ > 2 -q q -1 q q -1 -N -q 2 -q q -1 q-1 ω q-1 1,λ ω λ > 0 (3.61)
in U owing to (3.60). By Hopf lemma ∂ω λ ∂n (σ 0 ) < 0, which contradicts (3.59). The regularity comes from the fact that

ω 2 + |∇ω| 2 > 0 in S N -1 + . When R N
+ is replaced by a general C 2 bounded domain Ω, the role of ω s is crucial for describing the boundary isolated singularities. In that case we assume that 0 ∈ ∂Ω and the tangent plane to ∂Ω at 0 is ∂R N -1

+ := {(x ′ , 0) : x ′ ∈ R N -1 }, with normal inward unit vector e N . If u ∈ C(R N + \ {0}) is a solution of (3.55) then so is T ℓ [u] for any ℓ > 0. We say that u is self-similar if T ℓ [u] = u for every ℓ > 0.
Proposition 3.22 Assume 1 < q < q c and 0 ∈ ∂Ω. Then

lim c→∞ u cδ0 = u ∞,0 (3.62) 
where u ∞,0 is a positive solution of (1.2) in Ω, continuous in Ω \ {0} and vanishing on ∂Ω \ {0}. Furthermore there holds

lim Ω ∋ x → 0 x |x| = σ ∈ S N -1 + |x| 2-q q-1 u ∞,0 (x) = ω s (σ), (3.63) 
locally uniformly on S N -1

+ .
Proof. If u is the solution of a problem (3.42) in a domain Θ with boundary data cδ z , we denote it by u Θ cδz . Let B and B ′ be two open balls tangent to ∂Ω at 0 and such that B ⊂ Ω ⊂ B ′c . Since P B (x, 0) ≤ P Ω (x, 0) ≤ P B ′c (x, 0) it follows from Theorem 3.20 and

(3.51) that u B cδ0 ≤ u Ω cδ0 ≤ u B ′c cδ0 . (3.64) 
Because of uniqueness and whether Θ is B, Ω or B ′c , we have

T ℓ [u Θ cδ0 ] = u Θ ℓ cℓ θ δ0 ∀ℓ > 0, (3.65) with Θ ℓ = 1 ℓ Θ and θ := 2-q q-1 + 1 -N . Notice also that c → u Θ cδ0 is increasing. Since u Θ cδ0 (x) ≤ C 4 (q)|x| q-2
q-1 by (3.6), it follows that u Θ cδ0 ↑ u Θ ∞,0 . As in the previous constructions, u Θ ∞,0 is a positive solution of (1.2) in Θ, continuous in Θ \ {0} and vanishing on ∂Θ \ {0}.

Step 1:

Θ := R N + . Then Θ ℓ = R N . Letting c → ∞ in (3.65) yields to T ℓ [u R N + ∞,0 ] = u R N + ∞,0 ∀ℓ > 0. (3.66) Therefore u R N +
∞,0 is self-similar and thus under the separable form (3.56). By Theorem 3.21,

u R N + ∞,0 (x) = |x| q-2 q-1 ω s ( x |x|
).

(3.67)

Step 2: Θ := B or B ′c . In accordance with our previous notations, we set B ℓ = 1 ℓ B and B ′c ℓ = 1 ℓ B ′c for any ℓ > 0 and we have,

T ℓ [u B ∞,0 ] = u B ℓ ∞,0 and T ℓ [u B ′c ∞,0 ] = u B ′c ℓ ∞,0 (3.68) 
and

u B ℓ ′ ∞,0 ≤ u B ℓ ∞,0 ≤ u R N + ∞,0 ≤ u B ′c ℓ ∞,0 ≤ u B ′c ℓ ′′ ∞,0 ∀ 0 < ℓ ≤ ℓ ′ , ℓ ′′ ≤ 1. (3.69) When ℓ → 0 u B ℓ ∞,0 ↑ u R N + ∞,0 and u B ′c ℓ ∞,0 ↓ u R N + ∞,0 where u R N + ∞,0 and u R N + ∞,0 are positive solutions of (1.2) in R N + such that u B ℓ ∞,0 ≤ u R N + ∞,0 ≤ u R N + ∞,0 ≤ u R N + ∞,0 ≤ u B ′c ℓ ∞,0 ∀ 0 < ℓ ≤ 1. (3.70) 
This combined with the monotonicity of u B ℓ ∞,0 and u B ′c ℓ ∞,0 implies that u

R N + ∞,0 and u R N + ∞,0 vanish on ∂R N
+ \ {0} and are continuous in R N + \ {0}. Furthermore there also holds for ℓ, ℓ ′ > 0,

T ℓ ′ ℓ [u B ∞,0 ] = T ℓ ′ [T ℓ [u B ∞,0 ]] = u B ℓℓ ′ ∞,0 and T ℓ ′ ℓ [u B ′c ∞,0 ] = T ℓ ′ [T ℓ [u B ′c ∞,0 ]] = u B ′c ℓℓ ′ ∞,0 . (3.71) 
Letting ℓ → 0 and using (3.68) and the above convergence, we obtain u

R N + ∞,0 = T ℓ ′ [u R N + ∞,0 ] and u R N + ∞,0 = T ℓ ′ [u R N + ∞,0 ]. (3.72) 
Again this implies that u

R N + ∞,0 and u R N + ∞,0 are separable solutions of (1.2) in R N + vanishing on ∂R N + \ {0} and continuous in R N + \ {0}. Therefore they coincide with u R N + ∞,0 .
Step 3: End of the proof. From (3.64) and (3.68) there holds

u B ℓ ∞,0 ≤ T ℓ [u Ω ∞,0 ] ≤ u B ′c ℓ ∞,0 ∀ 0 < ℓ ≤ 1. (3.73)
Since the left-hand side and the right-hand side of (3.73) converge to the same function

u R N + ∞,0 (x), we obtain lim ℓ→0 ℓ 2-q q-1 u Ω ∞,0 (ℓx) = |x| q-2 q-1 ω s ( x |x| ) (3.74)
and this convergence holds in any compact subset of Ω. If we fix |x| = 1, we derive (3.63).

Remark. It is possible to improve the convergence in (3.63) by straightening ∂Ω near 0 (and thus to replace u Ω ∞,0 by a function ũΩ ∞,0 defined in B ǫ ∩ R N + ) and to obtain a convergence in

C 1 (S N -1 + ).
Combining this result with Theorem 2.11 we derive Corollary 3.23 Assume 1 < q < q c and 0 ∈ ∂Ω. If u is a positive solution of (1.2) with boundary trace tr

∂Ω (u) = (S(u), µ(u)) = ({0}, 0) then u ≥ u Ω ∞,0 .
The next result asserts the existence of a maximal solution with boundary trace ({0}, 0). Proposition 3.24 Assume 1 < q < q c and 0 ∈ ∂Ω. Then there exists a maximal solution

U := U Ω ∞,0 of (1.2) with boundary trace tr ∂Ω (U ) = (S(U ), µ(U )) = ({0}, 0). Furthermore lim Ω ∋ x → 0 x |x| = σ ∈ S N -1 + |x| 2-q q-1 U Ω ∞,0 (x) = ω s (σ), (3.75) 
locally uniformly on S N -1

+ . Proof.
Step 1: Existence. Since 1 < q < q c < N N -1 , there exists a radial separable singular solution of (1.2) in R N \ {0},

U S (x) = Λ N,q |x| q-2 q-1 with Λ N,q = q -1 2 -q q ′ (2 -q)(N -(N -1)q) (q -1) 2 1 q-1 . (3.76) 
By Lemma 3.3 there exists C 4 (q) > 0 such that any positive solution u of (1.2) in Ω which vanishes on ∂Ω \ {0} satisfies u(x) ≤ C 4 (q)|x| q-2 q-1 in Ω. Therefore, U * (x) = Λ * |x| q-2 q-1 with Λ * := Λ * (N, q) ≥ max{Λ N,q , C 4 (q)} is a supersolution of (1.2) in R N \ {0} and dominates in Ω any solution u vanishing on ∂Ω \ {0}. For 0 < ǫ < max{|z| : z ∈ Ω}, we denote by u ǫ the solution of

   -∆u ǫ + |∇u ǫ | q = 0 in Ω \ B ǫ u ǫ = 0 on ∂Ω \ B ǫ u ǫ = Λ * ǫ q-2 q-1 on Ω ∩ ∂B ǫ . (3.77) If ǫ ′ < ǫ, u ǫ ′ | ∂(Ω\Bǫ ) ≤ u ǫ | ∂(Ω\Bǫ ) , therefore u ≤ u ǫ ′ ≤ u ǫ ≤ U * (x) in Ω. (3.78) 
Letting ǫ to zero, {u ǫ } decreases and converges to some U Ω ∞,0 which vanishes on ∂Ω \ {0}. By the the regularity estimates already used in stability results, the convergence occurs in

C 1 loc (Ω \ {0}), U Ω ∞,0 ∈ C(Ω \ {0}
) is a positive solution of (1.2) and it belongs to C 2 (Ω); furthermore it has boundary trace ({0}, 0) and for any positive solution u satisfying tr ∂Ω (u) = ({0}, 0) there holds

u Ω ∞,0 ≤ u ≤ U Ω ∞,0 ≤ U * (x). (3.79) Therefore U Ω ∞,0 is the maximal solution. Step 2: Ω = R N + . Since T ℓ [U * ]| |x|=ǫ = U * | |x|=ǫ ∀ ℓ > 0, (3.80) 
there holds

T ℓ [u ǫ ] = u ǫ ℓ (3.81) Letting ǫ → 0 yields to T ℓ [U R N + ∞,0 ] = U R N + ∞,0 . Therefore U R N +
∞,0 is self-similar and coincide with u

R N + ∞,0 .
Step 3: Ω = B or B ′c . We first notice that the maximal solution is an increasing function of the domain. Since

T ℓ [u Θ ǫ ] = u Θ ℓ ǫ ℓ
where we denote by u Θ ǫ the solution of (3.77) in Θ \ B ǫ for any ℓ, ǫ > 0 and any domain Θ (with 0 ∈ ∂Θ), we derive as in Proposition 3.22-Step 2, using (3.81) and uniqueness,

T ℓ [U B ∞,0 ] = U B ℓ ∞,0 and T ℓ [U B ′c ∞,0 ] = U B ′c ℓ ∞,0 (3.82) 
and

U B ℓ ′ ∞,0 ≤ U B ℓ ∞,0 ≤ u R N + ∞,0 ≤ U B ′c ℓ ∞,0 ≤ U B ′c ℓ ′′ ∞,0 ∀ 0 < ℓ ≤ ℓ ′ , ℓ ′′ ≤ 1. (3.83) As in Proposition 3.22, U B ℓ ∞,0 ↑ U R N + ∞,0 ≤ U R N + ∞,0 and U B ′c ℓ ∞,0 ↓ U R N + ∞,0 ≥ U R N + ∞,0 where U R N + ∞,0 and U R N + ∞,0 are positive solutions of (1.2) in R N which vanish on ∂R N
+ \ {0} and endow the same scaling invariance under T ℓ . Therefore they coincide with u

R N + ∞,0 .
Step 3: End of the proof. It is similar to the one of Proposition 3.22.

Combining Proposition 3.22 and Proposition 3.24 we can prove the final result Theorem 3.25 Assume 1 < q < q c and 0 ∈ ∂Ω. Then U Ω ∞,0 = u Ω ∞,0 . Proof. We follow the method used in [START_REF] Gmira | Boundary singularities of solutions of some nonlinear elliptic equations[END_REF]Sec 4].

Step 1: Straightening the boundary. We represent ∂Ω near 0 as the graph of a C 2 function φ defined in R N -1 ∩ B R and such that φ(0) = 0, ∇φ(0) = 0 and

∂Ω ∩ B R = {x = (x ′ , x N ) : x ′ ∈ R N -1 ∩ B R , x N = φ(x ′ )}.
We introduce the new variable y = Φ(x) with y ′ = x ′ and y N = x Nφ(x ′ ), with corresponding spherical coordinates in R N , (r, σ) = (|y|, y |y| ). If u is a positive solution of (1.2) in Ω vanishing on ∂Ω \ {0}, we set ũ(y) = u(x), then a technical computation shows that ũ satisfies with n = y |y|

r 2 ũrr 1 -2φ r n, e N + |∇φ| 2 n, e N 2 +rũ r N -1 -r n, e N ∆φ -2 ∇ ′ n, e N , ∇ ′ φ + r |∇φ| 2 ∇ ′ n, e N , e N + ∇ ′ ũ, e N 2φ r -|∇φ| 2 n, e N -r∆φ +r ∇ ′ ũr , e N 2 n, e N |∇φ| 2 -2φ r -2 ∇ ′ ũr , ∇ ′ φ n, e N + |∇φ| 2 ∇ ′ ∇ ′ ũ, e N , e N -2 r ∇ ′ ∇ ′ ũ, e N , ∇ ′ φ + ∆ ′ ũ +r 2 ũr n + 1 r ∇ ′ ũ -(φ r n + 1 r ∇ ′ φ) ũr n + 1 r ∇ ′ ũ, e N q = 0. (3.84)
Using the transformation t = ln r for t ≤ 0 and ũ(r, σ) = r q-2 q-1 v(t, σ), we obtain finally that v satisfies

(1 + ǫ 1 ) v tt + N -2 q-1 + ǫ 2 v t + (λ N,q + ǫ 3 ) v + ∆ ′ v + ∇ ′ v, -→ ǫ 4 + ∇ ′ v t , - → ǫ 5 + ∇ ′ ∇ ′ v, e N , -→ ǫ 6 -( q-2 q-1 v + v t )n + ∇ ′ ṽ + ( q-2 q-1 v + v t )n + ∇ ′ ṽ, e N -→ ǫ 7 q = 0, (3.85) on (-∞, ln R] × S N -1 + := Q R and vanishes on (-∞, ln R] × ∂S N -1 +
, where

λ N,q = 2 -q q -1 q q -1 -N .
Furthermore the ǫ j are uniformly continuous functions of t and σ ∈ S N -1 for j = 1, ..., 7, 

C 1 for j = 1,
+ ) + v t (t, .) C 1,γ (S N -1 + ) + v tt (t, .) C 0,γ (S N -1 + ) ≤ c ′ 17 (3.87)
for any γ ∈ (0, 1) and t ≤ T -1. Consequently the set of functions {v(t, .)} t≤0 is relatively compact in the C 2 (S N -1

+

) topology and there exist η and a subsequence {t n } tending to -∞ such that v(t n , .) → η when n → ∞ in C 2 (S N -1

+

).

Step 2: End of the proof. Taking u = u Ω ∞,0 or u = U Ω ∞,0 , with corresponding v, we already know that v(t, .) converges to ω s , locally uniformly on S N -1 + . Thus ω s is the unique element in the limit set of {v(t, .)} t≤0 and lim t→-∞ v(t, .) = ω s in C 2 (S N -1

+

). This implies in particular

lim x→0 u Ω ∞,0 (x) U Ω ∞,0 (x) = 1 (3.88)
and uniqueness follows from the maximum principle.

As a consequence we have a full characterization of positive solution with an isolated boundary singularity Corollary 3.26 Assume 1 < q < q c , 0 ∈ ∂Ω and u ∈ C(Ω \ {0}) ∩ C 2 (Ω) is a nonnegative solution of (1.2) vanishing on ∂Ω \ {0}. Then either there exists c ≥ 0 such that u = u cδ0 , or u = u Ω ∞,0 = lim c→∞ u cδ0 .

Removable isolated singularities

Theorem 4.1 Assume q c ≤ q < 2, 0 ∈ ∂Ω and u ∈ C(Ω \ {0}) ∩ C 2 (Ω) is a nonnegative solution of (1.2) vanishing on ∂Ω \ {0}. Then u ≡ 0.

Proof.

Step 1: Integral estimates. We consider a sequence of functions Set Ω n = Ω ∩ {x :

ζ n ∈ C ∞ (R N ) such that ζ n (x) = 0 if |x| ≤ 1 n , ζ n (x) = 1 if |x| ≥ 2 n , 0 ≤ ζ n ≤
1 n < |x| ≤ 2 n }, then |Ω n | ≤ c ′ 18 (N )n -N , thus I ≤ c 18 C 4 (q) Ωn n 2-q q-1 +2 ξdx ≤ c ′′ 18 n 2-q q-1 +2-1-N = c ′′ 18 n 1 q-1 -1 qc-1 since ξ(x) ≤ c 3 d(x). Notice that 1 q-1 -1 qc-1 ≤ 0. II ≤ c 18 C 4 (q) Ωn n 2-q q-1 +1 |∇ξ|dx ≤ c 19 n 2-q q-1 +1-N = c 19 n 1 q-1 -1 qc-1 .
Since the right-hand side of (4.1) remains uniformly bounded, it follows from monotone convergence theorem that

Ω (|∇u| q ξ + u) dx < ∞. (4.2) 
More precisely, if q > q c , I + II goes to 0 as n → ∞ which implies Ω (|∇u| q ξ + u) dx = 0.

Next we assume q = q c . Since |∇u| ∈ L qc d (Ω), v := G Ω [|∇u| qc ] ∈ L 1 (Ω). Furthermore, u + v is positive and harmonic in Ω. Its boundary trace is a Radon measure and since the boundary trace T r(v) of v is zero, there exists c ≥ 0 such that T r(u) = cδ 0 . Equivalently, u solves the problem -∆u

+ |∇u| qc = 0 in Ω u = cδ 0 in ∂Ω. (4.3) 
Furthermore, since u ∈ L 1 (Ω), u(x) ≤ cP (x, .) in Ω. Therefore, if c = 0, so is u. Let us assume that c > 0.

Step 2: The flat case. 

Assume Ω = B + 1 := B 1 ∩ R N + . We use the spherical coordinates (r, σ) ∈ [0, ∞) × S N -1 as above. Put f = S N -1 + f φ1 dS then u rr + N -1 r u r - N -1 r 2 u = |∇u| qc (4.4) Set v(r) = r N -1 u(r), then v rr + 1 -N r v r = r N -1 |∇u| qc . ( 4 
By standard regularity methods, (4.9) can be improved in order to take into account that u vanishes on ∂R N + \ {0} and we get lim

x→0 |x| N u(x) d(x) = 0 ⇐⇒ lim x→0 u(x) P R N + (x, 0) = 0, (4.10) 
where P R N + (x, 0) is the Poisson kernel in R N + with singularity at 0. Since P R N + (., 0) is a super solution and u = o(P R N + (., 0)), the maximum principle implies u = 0.

Step 3: The general case. For ℓ > 0, we set

v ℓ (x) = T ℓ [u](x) = ℓ N -1 u(ℓx). Then v ℓ satisfies -∆v ℓ + |∇v ℓ | qc = 0 in Ω ℓ v ℓ = 0 on ∂Ω ℓ \ {0} (4.11) Furthermore, T ℓ [P Ω ] = P Ω ℓ with P Ω := P Ω 1 and u(x) ≤ cP Ω (x, 0) ∀x ∈ Ω =⇒ v ℓ (x) ≤ cP Ω ℓ (x, 0) ∀x ∈ Ω ℓ .
By standard a priori estimates [START_REF] Libermann | Boundary regularity for solutions of degenerate elliptic equations[END_REF], for any R > 0 there exists

M (N, q, R) > 0 such that, if Γ R = B 2R \ B R , sup |v ℓ (x)| + |∇v ℓ (x)| : x ∈ Γ R ∩ Ω ℓ + sup |∇v ℓ (x) -∇v ℓ (y)| |x -y| γ : (x, y) ∈ Γ R ∩ Ω ℓ ≤ M (N, q, R), (4.12) 
where γ ∈ (0, 1) is independent of ℓ ∈ (0, 1]. Notice that these uniform estimates, up to the boundary, hold because the curvature of ∂Ω ℓ remains uniformly bounded when ℓ ∈ (0, 1]. By compactness, there exist a sequence {ℓ n } converging to 0 and function Equivalently u(x) = o(P Ω (x, 0)) which implies u = 0 by the maximum principle.

v ∈ C 1 (R N + \ {0}) such that sup |(v ℓn -v)(x)| + |∇(v ℓn -v)(x)| : x ∈ Γ R ∩ Ω ℓn → 0 Furthermore v satisfies -∆v + |∇v| qc = 0 in R N + v = 0 on ∂R N + \ {0}.

Removable singularities

The next statement, valid for a positive solution of

-∆u = f in Ω (4.16) 
where f ∈ L 1 d , is easy to prove: Proposition 4.2 Let q > 1 and u be a positive solution of (1.2). The following assertions are equivalent: (i) u is moderate (Definition 1.8).

(ii) u ∈ L 1 (Ω), |∇u| ∈ L q d (Ω). (iii) The boundary trace of u is a positive bounded measure µ on ∂Ω.

Let ϕ be the first eigenfunction of -∆ in W 1,2 0 (Ω) normalized so that sup Ω ϕ = 1 and λ be the corresponding eigenvalue. We start with the following simple result. where C 12 = C 12 (α, q, Ω). If 1 < q < 2 and u is a solution of (1.2), we obtain, replacing d by ϕ, Ω ϕ 1-q |u| q dx ≤ C 13 1 + Ω ϕ|∇u| q dx (4.18)

Lemma 4.3 Let Ω be a bounded C 2 domain. Then for any q ≥ 1, 0 ≤ α < 1, γ ∈ [0, δ * ) and u ∈ C 1 (Ω), there holds γ<d(x)<δ * (d(x) -γ) -α |u| q dx ≤ C 12 (δ * -γ) -α Σ |u(δ * , σ)| q dS + γ<d(x)<δ * (d(x) -γ) q-α |∇u| q dx (4.
where C 13 = C 13 (q, Ω).

Proof. Without loss of generality, we can assume that u is nonnegative. By the system of flow coordinates introduced in section 2.1, for any x ∈ Ω δ * , we can write u(x) = u(δ, σ) where δ = d(x), σ = σ(x) and x = σδn σ , thus

u(δ, σ) -u(δ * , σ) = - δ * δ ∇u(σ -sn σ ).n σ ds = - δ * δ ∂u ∂s (s, σ)ds, from which it follows u(δ, σ) ≤ u(δ * , σ) - δ * δ ∂u ∂s (s, σ)ds.
Thus, multiplying both sides by (δγ) -α and integrating on (γ, δ * ),

δ * γ (δ -γ) -α u(δ, σ)dδ ≤ (δ * -γ) 1-α 1 -α u(δ * , σ) + δ * γ (δ -γ) -α δ * δ |∇u(s, σ)| ds dδ = (δ * -γ) 1-α 1 -α u(δ * , σ) + 1 1 -α δ * γ (s -γ) 1-α |∇u(s, σ)| ds. (4.19)
Integrating on Σ and using the fact that the mapping is a C 1 diffeomorphism, we get the claim when q = 1. If q > 1, we apply (4.19) to u q instead of u and obtain

δ * γ (δ -γ) -α u q (δ, σ)dδ ≤ (δ * -γ) 1-α 1 -α u q (δ * , σ) + q 1 -α δ * γ (s -γ) 1-α u q-1 |∇u(s, σ)| ds ≤ (δ * -γ) 1-α 1 -α u q (δ * , σ) + q 1 -α δ * γ (δ -γ) -α u q ds 1 q ′ δ * γ (δ -γ) q-α |∇u| q ds 1 q . (4.20) Since the following implication is true (A ≥ 0, B ≥ 0, M ≥ 0, A q ≤ M q + A q-1 B) =⇒ (A ≤ M + B) we obtain δ * γ (δ -γ) -α u q (δ, σ)dδ 1 q ≤ (δ * -γ) 1-α 1 -α 1 q u q (δ * , σ) + q 1 -α δ * γ (δ -γ) q-α |∇u| q ds 1 q . ( 4.21) 
Inequality (4.17) follows as in the case q = 1. We obtain (4.18) with γ = 0, α = q -1 and using the fact that c Theorem 4.4 Assume q c ≤ q < 2. Let K ⊂ ∂Ω be compact such that C 2-q q ,q ′ (K) = 0. Then any positive moderate solution u ∈

C 2 (Ω) ∩ C(Ω \ K) of (1.2) such that |∇u| ∈ L q d (Ω) which vanishes on ∂Ω \ K is identically zero. Proof. Let η ∈ C 2 (Σ) with value 1 in a neighborhood U η of K and such that 0 ≤ η ≤ 1, consider ζ = ϕ(P Ω [1 -η]) 2q ′ . It is easy to check that ζ is an admissible test function since ζ(x) + |∇ζ(x)| = O(d 2q ′ +1 (x)) in any neighborhood of {x ∈ ∂Ω : η(x) = 1}. Then Ω |∇u| q ζdx = Ω u∆ζdx = - Ω ∇u.∇ζdx. Next ∇ζ = (P Ω [1 -η]) 2q ′ ∇ϕ -2q ′ (P Ω [1 -η]) 2q ′ -1 ϕ∇P Ω [η],
thus 

Ω |∇u| q ζdx = - Ω (P Ω [1 -η]) 2q ′ ∇ϕ.∇udx + 2q ′ Ω (P Ω [1 -η]) 2q ′ -1 ∇P Ω [η].∇u ϕdx = Ω u∇((P Ω [1 -η]) 2q ′ ∇ϕ) dx + 2q ′ Ω (P Ω [1 -η]) 2q ′ -1 ∇P Ω [η].∇u ϕdx. Therefore Ω (λu + |∇u| q )ζdx = -2q ′ Ω (P Ω [1 -η]) 2q ′ -1 u∇ϕ.∇P Ω [η]dx + 2q ′ Ω (P Ω [1 -η]) 2q ′ -1 ϕ∇u.∇P Ω [η]dx.
(P Ω [1 -η]) 2q ′ -1 u ∇ϕ.∇P Ω [η] dx ≤ c 22 Ω ϕ 1-q u q dx 1 q Ω ϕ|∇P Ω [η]| q ′ dx 1 q ′ . ( 4 
.23) Using (4.18) and the fact that |∇u| ∈ L q d (Ω), we obtain

Ω (P Ω [1 -η]) 2q ′ -1 u ∇ϕ.∇P Ω [η] dx ≤ c 23 1 + ∇u q L q d (Ω) 1 q Ω d|∇P Ω [η]| q ′ dx 1 q ′ , (4.24 
) where c 23 = c 23 (N, q, Ω). Using again Hölder inequality, we can estimate the second term on the right-hand side of (4.22) as follows 

Ω (P Ω [1 -η]) 2q ′ -1 ϕ∇u.∇P Ω [η] dx ≤ Ω |∇u| q ϕdx 1 q Ω ϕ|∇P Ω [η]| q ′ dx 1 q ′ ≤ c 21 ∇u q L q d (Ω) Ω d|∇P Ω [η]| q ′ dx 1 q ′ . ( 4 
(|∇u| q + λu) ζdx ≤ c ′ 23 1 + ∇u q L q d (Ω) 1 q Ω d|∇P Ω [η]| q ′ dx 1 q ′ . ( 4.26) 
By [START_REF] Stein | Singular integrals and differentiability properties of functions[END_REF]proposition 7' and Lemma 4'],

Ω d|∇P Ω [η]| q ′ dx ≤ c 24 η q ′ W 1-2 q ′ ,q ′ (Σ) = c 24 η q ′ W 2-q q ,q ′ (Σ) , (4.27) 
which implies

Ω (|∇u| q + λu) ζdx ≤ c 25 1 + ∇u q L q d (Ω) 1 q η W 2-q q ,q ′ (Σ) (4.28) 
where c 25 = c 25 (N, q, Ω). Since C 2-q q ,q ′ (K) = 0, there exists a sequence of functions {η n } in C 2 (Σ) such that for any n, 0 ≤ η n ≤ 1, η n ≡ 1 on a neighborhood of K and η n W 2-q q ,q ′ (Σ) 

Admissible measures

Theorem 4.5 Assume q c ≤ q < 2 and let u be a positive moderate solution of (1.2) with boundary data µ ∈ M + (∂Ω). Then µ(K) = 0 for any Borel subset K ⊂ ∂Ω such that C 2-q q ,q ′ (K) = 0.

Proof. Without loss of generality, we can assume that K is compact. We consider test function η as in the proof of Theorem 4. .∇ϕ dx ≤ c ′ 26 1 + ∇u q L q d (Ω)

1 q η W 2-q q ,q ′ (Σ)
.

(4.31) Therefore c 26 µ(K) ≤ Ω (|∇u| q + uλ)ζdx + c ′ 26 1 + ∇u q L q d (Ω)

1 q η W 2-q q ,q ′ (Σ)
.

(4.32)

As in Theorem 4.4, since C 2-q q ,q ′ (K) = 0, there exists a sequence of functions {η n } in C 2 (Σ) such that for any n, 0 ≤ η n ≤ 1, η n ≡ 1 on a neighborhood of K and η n W 2-q q ,q ′ (Σ)

→ 0

as n → 0. Thus η n L 1 (Σ) → 0 and ζ n := (P Ω [η n ]) 2q ′ ϕ → 0 a.e. in Ω. Letting n → ∞ in (4.32) with η and ζ replaced by η n and ζ n respectively and using the dominated convergence theorem, we deduce that µ(K) = 0.

5 The cases q = 1, 2

For the sake of completeness we present some results concerning the two extreme cases q = 1, q = 2.

The case q = 2

If u is a solution of (1.2) with q = 2, the standard Hopf-Cole change of unknown u = ln v shows that v is a positive harmonic function in Ω. Therefore the boundary behavior of u is completely described by the theory of positive harmonic functions. The following result is a consequence of the Fatou and Riesz-Herglotz theorems. for some c 27 depending on u. This implies in particular that u ∈ L 1 (Ω).

In the next result we describe the boundary trace of u. for some δ z > 0.

Proof. This is a direct consequence of the Hopf-Cole transformation and of Proposition 2.8 and Theorem 2.10. The conclusion follows from Proposition 2.6.

The case q = 1

In this paragraph we consider the equation -∆u + |∇u| = 0 in Ω.

(5.7)

Although there is no linearity, the results are of linear type and the properties of bounded from below solutions of (5.7) similar to the ones of positive harmonic functions. Since the nonlinearity g(|∇u|) = |∇u| satisfies the subcriticality assumption (2.2), for any bounded Borel measure µ on ∂Ω there exists a weak solution to the corresponding problem (2.1). The following extension of Theorem 3.17 holds (5.12)

The remaining of the proof is similar to the one of Theorem 3.17, with the use of Lemma 3.19 which holds with q = 1.

The main result concerning the case q = 1 is the following Theorem 5.5 Assume u is a positive solution of (5.7) in Ω, then there exists a bounded positive Borel measure µ such that u is a weak solution of the corresponding problem (2.1).

Proof. This is a direct consequence of the proof of Theorem 2.11. If S(u) = ∅ and z in S(u) there holds u ≥ u ℓδz ∀ℓ > 0.

Because of uniqueness and homogeneity, u ℓδz = ℓu δz . Letting ℓ → ∞ yields to a contradiction.

A Appendix: Removabibility in a domain

In the section we assume that Ω is a bounded open domain in R N with a C 2 boundary.

A.1 General nonlinearity

This appendix is devoted to the following equation

-∆u + g(|∇u|) = ν in Ω u = 0 on ∂Ω (A.1)
admits a unique solution u ∈ L 1 (Ω) such that |∇u| q ∈ L 1 (Ω) (see [START_REF] Barles | Uniqueness for unbounded solutions to stationary viscous Hamilton-Jacobi equations[END_REF] for solvability of a much more general class of equation). In the contrary, in the supercritical case, an internal singular set can be removable provided that its Bessel capacity is null. More precisely, Theorem A.2 Assume q * ≤ q < 2 and K ⊂ Ω is compact. If C 1,q ′ (K) = 0 then any positive solution u ∈ C 2 (Ω \ K) of -∆u + |∇u| q = 0 (A.8)

in Ω \ K remains bounded and can be extended as a solution of the same equation in Ω.

Proof. Let η ∈ C ∞ c (Ω) such that 0 ≤ η ≤ 1, η = 1 in a neighborhood of K. Put ζ = 1η and take ζ q ′ for test function, then

-q ′ Ω ζ q ′ -1 ∇u.∇ηdx - ∂Ω ∂u ∂n dS + Ω ζ q ′ |∇u| q dx = 0.
Since where c i = c i (q) with i = 30, 31. Since C 1,q ′ (K) = 0, there exists a sequence {η n } ⊂ C ∞ c (Ω) such that 0 ≤ η n ≤ 1, η n = 1 in a neighborhood of K and ∇η n L q ′ (Ω) → 0 as n → ∞. Then the inequality (A.9) remains valid with η replaced by η Hence, from the hypothesis, we deduce that |∇u| ∈ L q (Ω).

Ω ζ q ′ -1 ∇u.∇ηdx ≤ Ω ζ q ′ |∇u| q dx 1 q Ω |∇η| q ′ dx 1 q ′ . Therefore Ω ζ q ′ |∇u| q dx ≤ ∂Ω ∂u ∂n dS + q ′ Ω ζ q ′ |∇u| q dx 1 q Ω |∇η| q ′ dx
Next let η ∈ C ∞ 0 (Ω) and η n as above, then

Ω (1 -η n )∇η.∇udx - Ω η∇η n .∇udx + Ω (1 -η n )η|∇u| q dx = 0.
Since |∇u| ∈ L q (Ω), we can let n → ∞ and obtain by monotone and dominated convergence Ω (∇η.∇u + η|∇u| q ) dx = 0.

Regularity results imply that u ∈ C 2 (Ω).

1 d

 1 (Ω) where d = d(x) := dist (x, ∂Ω) satisfying Ω (-u∆ζ + g(|∇u|)ζ) dx = -

  .10) By (3.6), c is uniformly bounded. Therefore |∇u(dz)| ≤ cd -1 q-1 which implies (3.7). Finally, (3.8) follows from (3.6) and (3.7).

  1 4 d K (x) it follows from Lemma 3.2 that (3.11) holds. Finally (3.11) holds for every x ∈ Ω satisfying d(x) ≤ r * .

If in ( 3 . 18 ) 10 ( 3

 318103 we let δ → 0 and then replace δ * by δ ∈ (δ 1 , δ * ] for δ 1 > 0 we obtain U φ α dµ ≥ U u(δ, .)φ α dS -(δ *δ) U ∂u ∂δ (δ, .)φ α dSc ′′′

  1 and |∇ζ n | ≤ c 18 n, |∆ζ n | ≤ c 18 n 2 where c 18 is independent of n. As a test function we take ξζ n (where ξ is the solution to (2.14)) and we obtain Ω (|∇u| q ξζ nuζ n ∆ξ) dx = Ω u (ξ∆ζ n + 2∇ξ.∇ζ n ) dx = I + II. (4.1)

r N - 1 S N - 1 +

 11 .5) and v r (r) = r N -1 v r (1)r N -1 qc (s)ds < ∞ (4.7)it follows that there exists lim r→0 v(r) = α ≥ 0. By arguing by contradiction, we deduce that α = 0. Hence lim r→0 u(r, σ) φ1 (σ)dS = 0. (4.8) By Harnack inequality Theorem 3.10, we obtain lim x→0 |x| N u(x) d(x) = 0.

(4. 13 )

 13 From step 2, v = 0 and sup |v ℓn (x)| + |∇v ℓn (x)| : x ∈ Γ R ∩ Ω ℓn → 0; therefore lim x→0 |x| N -1 u(x) = 0 and lim x→0 |x| N |∇u(x)| = 0. (4.14) Integrating from ∂Ω, we obtain lim x→0 |x| N d(x) u(x) = 0. (4.15)

17

 17 

  )

-1 21 d

 21 ≤ ϕ ≤ c 21 d in Ω with c 21 = c 21 (N ).

(4. 22 )

 22 Since 0 ≤ P Ω [1η] ≤ 1, |∇ϕ| ≤ c 22 in Ω and by Hölder inequality, Ω

→

  0 and η n L 1 (Σ) → 0 as n → ∞. By letting n → ∞ in (4.28) with η replaced by η n and ζ replaced by ζ n := ϕ(P[1-η n ]) 2q ′ , we deduce that Ω (|∇u| q + λu) ϕdx = 0 and the conclusion follows.

4 Ω

 4 4, put ζ = (P Ω [η]) 2q ′ ϕ and get Ω (|∇u| q ζ -u∆ζ) dx =and since η ≡ 1 on K, -∂Ω ∂ζ ∂n dµ ≥ c 26 µ(K).Since-∆ζ = λζ + 4q ′ (P Ω [1η]) 2q ′ -1 ∇ϕ.∇P Ω [η] -2q ′ (2q ′ -1)(P Ω [1η]) 2q ′ -2 ϕ|∇P Ω [η]| 2 ,we getc 26 µ(K) ≤ Ω (|∇u| q + uλ)ζ + 4q ′ (P Ω [η]) 2q ′ -1 u∇ϕ.∇P Ω [η] dx. (4.30) 40 Using again the estimates (4.24) and (4.27), we obtain as in Theorem 4.(P Ω [1η]) 2q ′ -1 u ∇P Ω [η]

Theorem 5 . 1 . 1 ) 1 - 2 -

 51112 Let u be a bounded from below solution of -∆u + |∇u| 2 = 0 in Ω. (5Then there exists φ ∈ L 1 + (∂Ω) such that for a.e. y ∈ ∂Ω, lim x → y non-tangent. u(x) = ln φ(y).(5.2) There exists a positive Radon measure ν on ∂Ω such thatu(x) = ln P Ω [ν](x) ∀x ∈ Ω.(5.3)Remark. Formula (5.3) implies that u satisfies u(x) ≤ (1 -N ) ln d(x) + c 27 ∀x ∈ Ω (5.4)

Proposition 5 . 2

 52 Let the assumptions of Theorem 5.1 be satisfied and ν is the boundary trace of e u . Then u admits a boundary trace tr ∂Ω (u) = (S(u), µ(u)). Furthermore 1-z ∈ S(u) if and only if for every neighborhood U of z, there holdslim δ→0 Σ δ ∩U ln P Ω [ν](x) dS = ∞.(5.5)2-z ∈ R(u) ifand only if there exists a neighborhood U of z, such that sup 0<δ≤δz Σ δ ∩U ln P Ω [ν](x) dS < ∞, (5.6)

Corollary 5 . 3

 53 Under the assumptions of Theorem5.1, if ν ∈ L 2 (∂Ω), then ∇u ∈ L 2 d (Ω), thus S(u) = ∅. Proof. If ν ∈ L 2 (∂Ω), then ∇v ∈ L 2 d (Ω) (see e.g.[START_REF] Stein | Singular integrals and differentiability properties of functions[END_REF]). Since u is bounded from below by some constant c, v ≥ e c andΩ d |∇u| 2 dx ≤ e -2c Ω d |∇v| 2 dx < ∞.

Proposition 5 . 4

 54 For any z ∈ ∂Ω, there exists a unique weak solution u = u δz to-∆u + |∇u| = 0 in Ω u = δ z on ∂Ω. (5.8)Proof. The proof is in some sense close to the one of Theorem 3.17 and starts with a pointwise estimate of the gradient of u. This estimate is obtained by a different change of scale different to the one of Lemma 3.18. With no loss of generality, we can asume z = 0. For ℓ ∈ (0, 1], we set w ℓ (x) = ℓ N -1 u(ℓx). Then w ℓ satisfies-∆w ℓ + ℓ|∇w ℓ | = 0 in Ω ℓ := 1 ℓ Ω w ℓ = δ z on ∂Ω ℓ .(5.9)By the maximum principle 0 ≤ w ℓ (x) ≤ ℓ N -1 P Ω ℓ (ℓx, 0).(5.10)Again the curvature of ∂Ω ℓ remains bounded as well as the coefficient of |∇w ℓ |. Therefore an estimate similar to (3.45) applies under the following formsup{|∇w ℓ (x)| : x ∈ Ω ℓ ∩ (B 2 \ B 1 2 )} ≤ c ′ 28 sup{w ℓ (x) : x ∈ Ω ℓ ∩ (B 3 \ B 1 3 )} ≤ c ′ 28 ℓ N -1 sup{u(ℓx) : x ∈ Ω ℓ ∩ (B 3 \ B 1 3 )} ≤ c 29(5.11) Choosing ℓx = y with |x| = 1 we derive |∇u(y)| ≤ c 29 |y| 1-N ∀y ∈ Ω.

ζ q ′ |∇u| q dx ≤ c 30 ∂Ω ∂u ∂n dS + c 31 Ω

 3031 |∇η| q ′ dx.(A.9)

  n and ζ replaced by ζ n = 1-η n . Thus, since ζ n → 1 a.e. in Ω, we get Ω |∇u| q dx ≤ c 30 ∂Ω ∂u ∂n dS.

  .17)Proof. We follow the notations of Theorem 2.10. Since the result is local, without loss of generality we can assume that U is smooth and contained in a single chart Σ j . Estimates (2.44)-(2.48) are still valid under the form

	U

  5, 6, 7 and satisfy the following decay estimates |ǫ j (t, .)| ≤ Ce t for j = 1, ..., 7 and |ǫ j t (t, .)| + |∇ ′ ǫ j | ≤ c 17 e t for j = 1, 5, 6, 7. (3.86) Since v, v t and ∇ ′ v are uniformly bounded and by standard regularity methods of elliptic equations [16, Lemma 4.4], there exist a constant c ′ 17 > 0 and T < ln R such that v(t, .) C 2,γ (S N -1

The supercritical caseIn this section we consider the case q c ≤ q < 2.

where g is a continuous nondecreasing function vanishing at 0 and ν is a Radon measure. By a solution we mean a function u ∈ L 1 (Ω) such that g(|∇u|) ∈ L 1 (Ω) satisfying

for all ζ ∈ X(Ω). The integral subcriticality condition on g is the following

Then for any positive bounded Borel measure ν in Ω there exists a maximal solution u ν of (A.1). Furthermore, if {ν n } is a sequence of positive bounded measures in Ω which converges to a bounded measure ν in the weak sense of measures in Ω and {u νn } is a sequence of of solutions of (A.1) with ν = ν n , then there exists a subsequence {ν n k } such that {u νn k } converges to a solution u ν of (A.1) in L 1 (Ω) and {g(|∇u

Proof. Since the proof follows the ideas of the one of Theorem 2.2, we just indicate the main modifications.

(i) Considering a sequence of functions ν n ∈ C ∞ 0 (Ω) converging to ν, the approximate solutions are solutions of

The convergence is performed using

in Proposition 2.3.

(iii) For the construction of the maximal solution we consider u δ solution of

Then consequently, 0 < δ < δ ′ =⇒ u δ ≤ u δ ′ in Ω ′ δ ′ and u δ ↓ u ν . Using similar arguments as in the proof of Theorem 2.2 we deduce that u ν is the maximal solution of (A.1).

A.2 Power nonlinearity

We consider the following equation

where 1 < q < 2. The study on the above equation also leads to a critical value q * = N N -1 . In the subcritical case 1 < q < q * , if ν is a bounded Radon measure, then the problem

Proof. Since ν is outer regular, it is sufficient to prove the result when E is compact. Let η n be a sequence as in the previous theorem, then

But the left-hand side of (A.10) is dominated by

+ Ω η n |∇u| q dx, which goes to 0 when n → ∞, both by the definition of the C 1,q ′ -capacity and the fact that η n → 0 a.e. as n → ∞ and is bounded by 1. Thus ν(E) = 0.