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Abstract We study the boundary value problem with measures for (E1) —Au + g(|Vul|) =
0 in a bounded domain Q in R satisfying (E2) u = p on 9§ and prove that if g €
L(1, 00;t~N+D/Ngt) is nondecreasing (E1)-(E2) can be solved with any positive bounded
measure. When g(r) > r? with ¢ > 1 we prove that any positive function satisfying (E1)



admits a boundary trace which is an outer regular Borel measure, not necessarily bounded.
When g(r) =72 with 1 < ¢ < g. = % we prove the existence of a positive solution with a
general outer regular Borel measure v Zoo as boundary trace and characterize the boundary
isolated singularities of positive solutions. When ¢(r) = r? with ¢. < ¢ < 2 we prove that
a necessary condition for solvability is that p must be absolutely continuous with respect
to the Bessel capacity C2—q e We also characterize boundary removable sets for moderate
and sigma-moderate solutqions.
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1 Introduction

Let Q € RY be a bounded domain with C? boundary and g : Ry — Ry a nondecreasing
continuous function vanishing at 0. In this article we investigate several boundary data
questions associated to nonnegative solutions of the following equation

—Au+g(|[Vul) =0  inQ, (1.1)
and we emphasize on the particular case of
—Au+|Vu/?=0  in Q. (1.2)

where ¢ is a real number mainly in the range 1 < ¢ < 2. We investigate first the generalized
boundary value problem with measure associated to (1.1)

{ —Au+ g(|Vu|) = in Q

0
1.3
I on 02 (13)

u

where p is a measure on 0f2. By a solution we mean an integrable function u such that
g(|Vul) € LL(Q) where d = d(z) := dist (z, Q) satisfying

Xy

/Q (—ulA¢ + g(|Vul)C) de =

for all ¢ € X(Q) := {¢ € CL(Q) : Ap € L>°(Q)}, where n denotes the normal outward unit
vector to 0f). The integral subcriticality condition for g is the following

/ g(s)s_mf\f+1 ds < oo. (1.5)
1

When g¢(r) < r?, this condition is satisfied if 0 < g < g := % Our main existence result
is the following.

Theorem 1.1 Assume g satisfies (1.5). Then for any positive bounded Borel measure p on
0Q there exists a mazimal positive solution T, to problem (1.3). Furthermore the problem
is closed for weak convergence of boundary data.



Note that we do not know if problem (1.4) has a unique solution, except if g(r) = r?
with 0 < q < q. and p = by in which case we prove that uniqueness holds. A natural
way for studying (1.1) is to introduce the notion of boundary trace. When g(r) > r? with
q > 1 we prove in particular that the following result holds in which statement we denote
Ys={zreQ:d(x)=0}for § >0:

Theorem 1.2 Let u be any positive solution of (1.1). Then for any xo € I the following
dichotomy occurs:

(i) Either there exists an open neighborhood U of xg such that

/ 9(|Vul)d(z)dz < oo (1.6)
QNU

and there exists a positive Radon measure pgr on OQLNU such that u|25w converges to py
in the weak sense of measures when § — 0.

(i) Or for any open neighborhood U of xq there holds

[ s(vuhdta)de = o, (1.7)
QnuU
and
lim udS = oco. (1.8)
6—0 SsNU

The set S(u) of boundary points o with the property (ii) is closed and there exists a
unique Borel measure p on R(u) := 99\ S(u) such that ul,, converges to u in the weak
sense of measures on R(u). The couple (S(u),n) is the boundary trace of u, denoted by
trog(u). The trace framework has also the advantage of pointing out some of the main
questions which remain to be solved as it was done for the semilinear equation

—Au+h(u) =0 in Q. (1.9)

and the associated Dirichlet problem with measure

(1.10)

—Au+h(u)=0 inQ
U= p on 01,

where i : R — R is a continuous nondecreasing function vanishing at 0. Much is known
since the first paper of Gmira and Véron [16] and many developments are due to Marcus
and Véron [28]-[31] in particular when (1.9) is replaced by

—Au+u/T"u=0 inQ (1.11)

with ¢ > 1. We recall below some of the main aspects of the results dealing with (1.9)—(1.11),
this will play the role of the breadcrumbs trail for our study.

- Problem (1.10) can be solved (in a unique way) for any bounded measure y if h satisfies



/100(11(3) +h(=s))s~ P ds < oc. (1.12)

If h(u) = |u|* " u the condition (1.12) is verified if and only if 1 < ¢ < ¢s, the subcritical
N+1

range; qs = -7 is a critical exponent for (1.11).
- When 1 < ¢ < g5, boundary isolated singularities of nonnegative solutions of (1.11)
can be completely characterized i.e. if u € C(Q\ {0}) is a nonnegative solution of (1.11)
vanishing on 9§\ {0}, then either it solves the associated Dirichlet problem with © = cdg

for some ¢ > 0 (weak singularity), or
u(x) ~ d(z)|z|_% as x — 0. (strong singularity) (1.13)

- Always in the subcritical range it is proved that for any couple (S, ) where S C 9
is closed and p is a positive Radon measure on R = 92\ S there exists a unique positive
solution u of (1.11) with boundary trace (S, p) (in the sense defined in Theorem 1.2).

- When ¢ > g, i.e. the supercritical range, any solution v € C(Q\{0}) of (1.11) vanishing
on 0N\ {0} is identically 0, i.e. isolated boundary singularities are removable. This result due
to Gmira-Véron has been extended, either by probabilistic tools by Le Gall [18], [19], Dynkin
and Kuznetsov [12], [13], with the restriction ¢; < ¢ < 2, or by purely analytic methods
by Marcus and Véron [28], [29] in the whole range gs < ¢g. The key tool for describing the
problem is the Bessel capacity ngq, in dimension N — 1. We list some of the most striking

results. The associated Dirichlet problem can be solved with p € 9T (9Q) if and only if
p is absolutely continuous with respect to the C'z ,-capacity. If K C 92 is compact and
2,

u € C(Q\ K) is a solution of (1.11) vanishing on 99 \ K, then u is necessary zero if and
only if C’%’q, (K) = 0. The complete characterization of positive solutions of (1.11) has been
obtained by Mselati [27] when ¢ = 2, Dynkin [11] when ¢s; < ¢ < 2, and finally Marcus [26]
when ¢ < ¢; they proved in particular that any positive solution u is sigma-moderate, i.e.
that there exists an increasing sequence of positive measures j, € 9T (99Q) such that the
sequence of the solutions u = u,,,, of the associated Dirichlet problem with p = p,, converges
to u.

Concerning (1.2) we prove an existence result of solutions with a given trace belonging
to the class of general outer regular Borel measures (not necessarily locally bounded).

Theorem 1.3 Assumel < g < q. and S C 0N is closed and p is a positive Radon measure
on R := 00\ S, then there exists a positive solution u of (1.2) such that troq(u) = (S, p).

When 1 < ¢ < ¢. we prove a stronger result, using the characterization of singular
solutions with strong singularities (see Theorem 1.6 below). When ¢. < ¢ < 2 we prove that
Theorem 1.3 still holds with u = 0 if S = G where G’ C 9 is relatively open, G satisfies an
interior sphere condition. Surprisingly the condition & C 0 is necessary since there cannot
exists any large solution, i.e. a solution which blows-up everywhere on 0f).



In order to characterize isolated singularities of positive solutions of (1.2) we introduce
the following problem on the upper hemisphere S iv ~1 of the unit sphere in RN

2 3
Nw+<@§)w2HvMﬁ fg%G%fAQw:OingFl

(1.14)
w=0 on asf*l,

where V’ and A’ denote respectively the covariant gradient and the Laplace-Beltrami oper-
ator on SV=1. To any solution w of (1.14) we can associate a singular separable solution u
of (1.2) in RY := {z = (21,2, ...,2n) = (¢, 2n) : zx > 0} vanishing on ORY \ {0} written
in spherical coordinates (r, o) = (|z, 7a7)

us(x) = us(r, o) :rfii_gw(a) Vme@\{O}. (1.15)

Theorem 1.4 Problem (1.14) admits a positive solution if and only if 1 < q < q.. Further-
more this solution is unique and denoted by ws.

This singular solution plays a fundamental role for describing isolated singularities.

Theorem 1.5 Assume 1 < ¢ < q. and u € C2(Q)NC(Q\ {0}) is a nonnegative solution of
(1.2) which vanishes on O\ {0}. Then the following dichotomy occurs:

(i) Either there exists ¢ > 0 such that u = ues, solves (1.3) with g(r) =r?, u = cdp and
u(z) = Pz, 0)(1 + o(1)) asz — 0 (1.16)

where P is the Poisson kernel in Q.

(i) Or u = lim.— o0 Ues, and

li it u(z) () (1.17)
m a— = — ). .
S T

ﬁ:oesffl

We also give a sharp estimate from below for singular points of the trace

Theorem 1.6 Assume 1 < q < g. and u is a positive solution of (1.2) with boundary trace
(S(u), u). Then for any z € S(u) there holds

w(x) > Uoos, () := lim ues, () Vo € (. (1.18)

c— 00
The description of uees, is provided by us defined in (1.15), up to a translation and a rotation.

The critical exponent ¢, plays for (1.2) a role similar to that of ¢, plays for (1.11) which
is a consequence of the following theorem

Theorem 1.7 Assume q. < q < 2, then any nonnegative solution u € C*(Q) N C(Q\ {0})
of (1.2) vanishing on 0\ {0} s identically zero.



The supercritical case for equation (1.2) can be understood using the Bessel capacity
Cz2-q g dimension N — 1, however we can only deal with moderate and sigma-moderate
=L

solutions. Following Dynkin [11], [14] we define

Definition 1.8 A positive solution u of (1.2) is moderate if there exists a bounded Borel
measure pi € MT(IQ) such that u solves problem (1.3) with g(r) = r?. It is sigma-moderate if
there exists an increasing sequence of solutions {u,,, }, with boundary data {p,} € MT(9Q),
which converges to u when n — oo, locally uniformly in 2.

Notice that the boundary trace theorem implies that the sequence {u,} is increasing.
Equivalently we shall prove that a positive solution w is moderate if and only if it is integrable
in Q and |Vu| € LL(Q).

Theorem 1.9 Assume q. < q < 2 and K C 09 is compact and satisfies sz_qu, (K) = 0.

Then any positive moderate solution u € C*(Q) N C(Q\ K) of (1.2) vanishing on 0Q\ K is
identically zero.

As a corollary we prove that the above result remains true if u is a sigma-moderate
solution of (1.2). The counterpart of this result is the following necessary condition for
solving problem (1.3).

Theorem 1.10 Assume q. < g < 2 and u is a positive moderate solution of (1.2) with
boundary data p € MT(ON). Then p is absolutely continuous with respect to the Cz-q o
Pt
capacity.
For the sake of completeness we give, in Section 5, the results corresponding to the
two extreme cases, ¢ = 2 and ¢ = 1 for equation (1.2). If ¢ = 2 the Hopf-Cole change of

unknown u = Inv transforms (1.2) into a Poisson equation. When ¢ = 1, equation (1.2) is
homogeneous of order 1 and the equation inherits many properties of the Laplace equation.

We end this article with a result concerning the question of existence and removability
of solutions of
~Au+g(|Vu))=p  inQ (1.19)
where € is a bounded domain in RY and u a positive bounded Radon measure on 2. We
prove that if g is a locally Lipschitz nondecreasing function vanishing at 0 and such that

/ g(s)s_zhjfvjl1 ds < 0o (1.20)
1
then problem (1.19) admits a solution. In the power case

—Au+|Vulf=p inQ (1.21)

with 1 < g < 2, the critical exponent is ¢* = % We prove that a necessary condition
for solving (1.21) with a positive Radon measure y is that u vanishes on Borel subsets E
with Cy 4-capacity zero. The associated removability statement asserts that if K a compact
subset of Q such that C; o (K) = 0, any positive solution of

—Au+|Vul/?=0 inQ\K (1.22)

is bounded and can be extended as a solution to the whole €.



2 The Dirichlet problem and the boundary trace

Throughout this article €2 is a bounded domain in RY (N > 2) with a C? boundary 99 and ¢
will denote a positive constant, independent of the data, the value of which may change from
line to line. When needed the constant will be denoted by ¢; for some indices ¢ = 1,2, ...,
or some dependence will be made explicit such as ¢(a,b, ...) for some data a, b..For r > 0
and x € RY | we denote by B,.(x) the ball with radius r and center z. If x = 0 we write B,
instead of B, (0).

2.1 Boundary data bounded measures

We consider the following problem where u belongs to the set 9(9€2) of bounded Borel
measures on 0f)

{ —Au+g(|Vu[) =0  inQ @)

U= [ in 09).

We assume that g belongs to the class Gy which means that g : Ry — Ry is a locally
Lipschitz continuous nonnegative and nondecreasing function vanishing at 0. The integral
subcriticality condition is the following

/ g(s)sizNN+1 ds < oo. (2.2)
1

If g(r) = r? the integral subcriticality condition is satisfied if 0 < ¢ < ¢, := %

Definition 2.1 A function u € L'(Q2) such that g(|Vu|) € L}(Q) is a weak solution of (2.1)

if
ac
Lom

/ (—ulA¢ + g(|Vul)C) de = /
Q Iol
for all ¢ € X(Q) == {¢ € CLQ) : Ap € L=(Q)}.

(2.3)

If we denote respectively by G** and P the Green kernel and the Poisson kernel in ,
with corresponding operators G and P it is classical from linear theory that the above
definition is equivalent to

u =P - G2g(|Vul)]. (2.4)
We recall that M} () denote the Marcinkiewicz space (or weak L space) of exponent

p > 1 and weight h > 0 defined by
MFP(Q) = {v €L, (Q):3C>0s. t. /E|v|hdz < C’|E|,1;5,VE COE Borel} . (2.5)

where |E|, = [X,hdz. The smallest constant C' for which (2.5) holds is the Marcinkiewicz
quasi-norm of v denoted by ||v|| w2 (g and the following inequality will be much useful:

Hx :o(z)| > A}p < A7P Hv||§”w},:(9) YA > 0. (2.6)

The main result of this section is the following existence and stability result for problem
(2.1).



Theorem 2.2 Assume g € Gy satisfies (2.2), then for any pu € MT(9Q) there exists a maz-

N+1
imal solution @ = @, to problem (2.1). Furthermore u € M%(Q) and |Vu| € MdT+ Q).
Finally, if {un} is a sequence of positive bounded measures on 92 which converges to u in
the weak sense of measures and {u,, } is a sequence of solutions of (2.1) with boundary data
fn, then there exists a subsequence such that {uy,, } converges to a solution u, of (2.1) in

L) and {g(|Vuy, )} converges to g(|Vuyl) in Ly(2).
We recall the following estimates [8], [16], [39] and [40].

Proposition 2.3 For any a € [0,1], there exist a positive constant ¢1 depending on «, €
and N such that

HGQ[V]HU(Q) + HGQ[V]HM—“’—NJXQL(Q) < [l e o) (2.7)
do
"VGQ[V]H dzfiti1 5 sa Hyllmda (@) (2'8)
where
[Vllon o () = /Qdo‘(z)d|1/| Vv € Mgo (), (2.9)
P20l oy + BN,y ) + BT y g, S #llomon) - (2.10)
HVPQ[M]HM(%*V'—I(Q) < a lullan o) - (2.11)

for any v € LL.(Q) and any p € M(0N).

Since 90 is C?, there exists dp > 0 such that for any § € (0,dp] and 2 € € such
that d(z) < §, there exists a unique o(x) € 9Q such that |z — o(z)| = d(x). We set
o(x) = Proj,,(x). Furthermore, if n = n,, is the normal outward unit vector to 92 at
o(z), we have x = o(z) — d(z)ny(y). For 6 € (0,d0], we set

Qs ={z € Q:d(x) <0},

Qs ={zx € Q:d(z) > 6},

Y5 =005 = {x € Q:d(z) =6},
E:E():aﬂ

For any ¢ € (0, 8], the mapping x + (§(x),0(x)) defines a C! diffeomorphism from Qs to
(0,6) x . Therefore we can write z = o/(x) — d(2)n,(,) for every x € Q5. Any point = € Qj,
is represented by the couple (4,0) € [0,00] X ¥ with formula z = ¢ — én,. This system of
coordinates which will be made more precise in the boundary trace construction is called
flow coordinates.

Proof of Theorem 2.2. Step 1: Construction of approzimate solutions. Let {u,} be a
sequence of positive functions in C'*(9€2) such that {u,} converges to u in the weak sense of



measures and ||Mn||L1(aQ) < c ||,u||5m(39) for all n, where ¢ is a positive constant independent
of n. We next consider the following problem

(2.12)

{ —Av+g(|V(0 +P[ua])]) =0 in Q
v=20 on 0f).

It is easy to see that 0 and —P**[j,] are respectively supersolution and subsolution of (2.12).
By [25, Theorem 6.5] there exists a solution v, € W?P(Q) with 1 < p < co to problem
(2.12) satisfying —P[u,] < v, < 0. Thus the function u,, = v, + P*[u,] is a solution of

{ —Aup + g(|Vu,|) =0 in Q

Uy = U, on Jf). (2.13)

By the maximum principle, such solution is the unique solution of (2.13).

Step 2: We claim that {u,} and {|Vuy|} remain uniformly bounded respectively in M~ Q)
N+1
and M~ (§2). Let £ be the solution to

A =1 in Q
{ £E=0 on 012, (2.14)
then there exists a constant c¢3 > 0 such that
1 d
— < _% < c3 and d(z) <€ < cgd(z). (2.15)
c3 on c3

By multiplying the equation in (2.13) by ¢ and integrating on 2, we obtain
23
upd + g(|vun|)€dx = pn 7= dS,
Q Q oo On

e+ [ d@aVual)ds < e liloon (2.16)

where ¢4 is a positive constant independent of n. By Proposition 2.3 and by noticing that
U < P9py], we get

which implies

Q
Il s g < B al [ ) S €1 Mbinllr oy < cxca lillmomy - (2:17)

Set f, = —g(|Vuy,]|) then f, € LL(Q) and u, satisfies

0
/(*unAC = [nQ)dz = 7/ un—cds (2.18)
Q oo On
for any ¢ € X(Q). From (2.4) and Proposition 2.3, we derive that
”Vun”MdN;l(Q) sa (”anL(li(Q) + ||MHHL1(BQ)) ) (2.19)



which, along with (2.16), implies that

S s (220)
where c5 is a positive constant depending only on 2 and N. Thus the claim follows from
(2.17) and (2.20).

Step 3: Fxistence of a solution. By standard results on elliptic equations and measure theory
[9, Cor. IV 27], the sequences {u,} and {|Vu,|} are compact in L}, (). Therefore, there
exist a subsequence, still denoted by {u,}, and a function u such that {u,} converges to u

in Lj,(Q) and a.e. in Q.
(i) The sequence {u,} converges to u in L'(Q): let E C Q be a Borel subset, then

< |E|¥ < ~ . .
/Eundfﬂ < BIN Jlunll | o = cre2| EI™ | illon an) (2.21)

N—1 (
The compactness follows by Vitali’s theorem.

(ii) The sequence g(|Vuy,|) converges to g(|Vul|) in L}(€2): consider again a Borel set E C ,
A > 0 and write

/ d(@)g([Vun|)dz < / d(@)g(|Vun|)de + / d(2)g(| V) d.
E En{z:|Vuy(z)| <A} {z:|Vup (z)|>A}

First
/ d(@)g(|Vun|)dz < g(X)|Ela. (2.22)
En{z:|Vuy(z)|<A}
Then -
/ d(x)g(|Vuy|)de < f/ g(8)dwn(s)
En{z:|Vun(x)|>A} A

where wy,(s) = {z € Q : |Vuy(z)| > s}|a. Using the fact that ¢’ > 0 combined with (2.6)
and (2.20), we get

- / 9(8)don(s) = g\)wn(A) — g(B)wa(t) + / wn(s)g' (s)ds
A A

Ni1
< g(Nwn (V) — g(Ewn(®) + 5 el oo A s
N+1 N1

Nt1 _ Ngnooo
< (wnX) = e lallaffony A5 ) 9 = (wnl®) = 66 llyfion, ") o)

AR

N+
N

t
_ 2N+41
+C6%HMHW(39)//\9(S)S N ds.

Ni1
We have already used the fact that w,(A) < cg H;LHWN(BQ) A~"%", and since the condition

(2.2) holds, liminf; o ¢

_Nﬁlg(t) = 0. Letting t — oo we derive

EA ity 2N+1

N +1 N]¢1 o _
d($)9(|vun|)d$SCGTHMHm(m) A g(s)s™ N ds. (2.23)

/Eﬁ{m:|Vun(z)|>)\}

10



For € > 0 we fix A in order that the right-hand side of (2.23) be smaller than §. Thus, if

|E|q < T500FT, We obtain
/d(:z:)g(|Vun|)dx <e (2.24)
E
The convergence follows again by Vitali’s theorem. Next for any ¢ € X (), we have
¢
(—unAC + g(|Vu,|)Q)de = — | pp—==dS (2.25)
Q o On

By taking into account the fact that |¢| < ¢d in Q, we can pass to the limit in each term

in (2.25) and obtain (2.3); so w is a solution of (2.1). Clearly u € M%(Q) and |Vu| €
N41

M,~ () from (2.4) and Proposition 2.3.

Step 4: FExistence of a mazimal solution. We first notice that any solution u of (2.1) is

smaller than P}[y]. Then u < P?[u] in Q5 and by the maximum principle v < us which
satisfies

—Augs + g(|Vug|) =0 in Q
{ (IVus]) 5 (2.26)

us = Py in Xs.

As a consequence, 0 < § < &' = us < uy in Qf, and us | @, which is not zero if y is so,
since it is bounded from below by the already constructed solution u. We extend us, |Vus]

and g(|Vus|) by zero outside ﬁg and still denote them by the same expressions. Let E C 2
be a Borel set and put E5 = E N} then (2.21) becomes

[ e < B sl
Es

< ~ ||PQ
i gy S 2l Bl [l

|25 M(Zs)

(2.27)
1
< ac2er| BV [[plos) -

Set ds () = dist (,Qs) (= (d(z) — )+ if z € Qs, := 2\ Qf ), we have

/ ds(@)g([Vushio < ~ [ g(s)dn(s),
Esn{x:|Vus|>\} A
where ws(s) = [{z € Q: |[Vus(z)| > s}|q4,. Since HPQ[M]|25 T(5s) < o7 |lullon sy - (2-22) and
é
(2.23) become respectively
/ ds(z)g(|Vus|)dz < g(N)|Es|a;- (2.28)
Esn{z:|Vus(z)| <A}
and
N +1 N+1 e _2N+41
/ ()| Vusl)de < o™=l [ gle)s ds (220)
Esn{z:|Vus(z)|>A} A

11



Combining (2.28) and (2.29) and noting that |Es|s, < |E|4, we obtain that for any e > 0
there exists A > 0, independent of ¢ by (2.28), such that

/E ds(2)g(|Vus|)da < e. (2.30)

provided |E|q < CTTONES)
Finally, if ¢ € X(Q) we denote by (s the solution of

{ CAG = —AC in Q)
(2.31)
(s=0 in Xg.
Then 9
/ (—us AGs + g(|Vus])Co)dar = — ;‘5 Pjds (2.32)
; z, On

Clearly (5| < Cds and (sx,, — ¢ uniformly in © by standard elliptic estimates. Since the
s

right-hand side of (2.32) converges to — [, %du, it follows by Vitali’s theorem that @,
satisfies (2.3).

Step 5: Stability. Consider a sequence of positive bounded measures {p,} which converges
weakly to p. By estimates (2.17) and (2.20), u,, and g(|Vu,,|) are relatively compact in
Li,.(9) and respectively uniformly integrable in L'(2) and L}(£2). Up to a subsequence,
they converge a.e. respectively to u and ¢g(|Vul) for some function u. As in Step 3, u is a
solution of (2.1). O

A variant of the stability statement is the following result which will be very useful in the
analysis of the boundary trace. The proof is similar as Step 4 in the proof of Theorem 2.2.

Corollary 2.4 Let g in Gy satisfy (2.2). Assume {d,} is a sequence decreasing to 0 and
{pn} is a sequence of positive bounded measures on X5, = 895 which converges to u in the
weak sense of measures and let u,,, be solutions of (2.1) with boundary data p,. Then there
exists a subsequence {uy, } of solutions of (2.1) with boundary data p,, which converges to
a solution u, with boundary data p.

2.2 Boundary trace

The construction of the boundary trace of positive solutions of (1.1) is a combination of
tools developed in [28]-[30] with the help of a geometric construction from [3].

Definition 2.5 Let us € M(Xs) for all § € (0,d0) and p € M(X). We say that ps — p as
0 — 0 in the sense of weak convergence of measures if

1im/ o(o(x))dus = /qbdu Vo € Co(2). (2.33)

§—0

A function u € C(Q) possesses a measure boundary trace pu € M(X) if

6—0 J»

lim / (0(2))u(z)dS = /E ddu Vo€ Culx). (2.34)
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Similarly, if A is a relatively open subset of 3, we say that u possesses a trace p on A in the
sense of weak convergence of measures if € M(A) and (2.34) holds for every ¢ € C.(A).

We recall the following result [31, Cor 2.3], adapted here to (1.1),

Proposition 2.6 Assume g : Ry — Ry and let u € C?(2) be a positive solution of (1.1).
Suppose that for some z € 0S) there exists an open neighborhood U such that

/ 9(|Vul)d(z)dx < occ. (2.35)
UunQ

Then u € L*(KNQ) for every compact set K C U and there exists a positive Radon measure
v on XNU such that

lim ¢(o(z))u(r)dS = ¢dv Vo e C.(ENT). (2.36)
020 JxsnU =nU

Definition 2.7 Let u € C?(Q) be a positive solution of (1.1). A point z € 9Q is a reqular
boundary point of u if there exists an open neighborhood U of z such that (2.35) holds. The
set of regular points is denoted by R(u). Its complement S(u) = 0\ R(u) is called the
singular boundary set of u.

Clearly R(u) is relatively open and there exists a positive Radon measure p on R(u)
such that v admits p := p(u) as a measure boundary trace on R(u) and u(u) is uniquely
determined. The couple (S(u), p) is called the boundary trace of u and denoted by traq(u).

The main question is to determine the behaviour of u near S(u). The following result
is proved in [31, Lemma 2.8].

Proposition 2.8 Assume g: Ry — Ry and u € C?(2) be a positive solution of (1.1) with
the singular boundary set S(u). If z € S(u) is such that there exists an open neighborhood
U’ of z such that uw € LY(U' N Q), then for every neighborhood U of z there holds

lim u(x)dS = co. (2.37)
§—0 $sNU

Corollary 2.9 Let u € C*(2) is a positive solution of (1.2) with 3 < q < 2. Then (2.37)
holds for every z € S(u).

Proof. This is a direct consequence of Lemma 3.2 since g:—f > —1implies u € L(Q). O

We prove below that this result holds for any 1 < ¢ < 2.

Theorem 2.10 Assume g : Ry — Ry is continuous and satisfies

lim inf &:) >0 (2.38)

r—oo T

where 1 < q¢ < 2. If u € C?(Q) is a positive solution of (1.1), then (2.37) holds for every
z € S(u).

13



Proof. Up to rescaling we can assume that g(r) > r? — 7 for some 7 > 0. We recall some
results from [6] in the form exposed in [3, Sect 2]. There exist an open cover {3;}4_; of X,
an open set D of RV~1 and C? mappings 7} from D to ¥; with rank N — 1 such that for
each 0 € ¥; there exists a unique a € D with the property that ¢ = T;(a). The couples
{D, ijl} form a system of local charts of 3. If we set Q; = {x € Q5, : 0(z) € £} then for
any j = 1, ..., k the mapping

II; : (6,a) = x=Tj(a) —on

where n is the outward unit normal vector to X at Tj(a) = o(z) is a C? diffeomorphism
from (0,00) x D to ©;. The Laplacian obtains the following expressions in terms of this
system of flow coordinates provided the lines o; = ct are the vector fields of the principal
curvatures 5; on %

A=As+ A, (2.39)
where 52 5
As === — (N —-1)H— 2.4
5= o — (N = )H o (2.40)
with H = H(4,.) = ﬁ z]i_ll 1_'7“, being the mean curvature of X5 and

NZ Vol 0 (2.41)
Ao — 0o; \ Gii(1 — 0R; + Ki;02) 801 '

In this expression, g = (g ) is the metrlc tensor on ¥ and it is diagonal by the choice of
coordinates and |g| = TTY ' g;;(1 — . In particular
N-1 2
V¢ = % 2 2.42
vl ; Gii(1 — 0R; + K;i0?) T (242)
and
N—1 &
VEND = 7 = V&V, . 2.43
v ;gu<1—5m+mi52>+m EVon + s (243)

If z € S(u) we can assume that Uy := U N ¥ is smooth and contained in a single chart
;. Let ¢ be the first eigenfunction of A, in W, "*(Us;) normalized so that max, ¢ = 1and
o > 1 to be made precise later on. From —Asu — Ayu+ 3(|Vul? — 7) + 9(|Vu|) <0, we
obtain by multiplying by ¢* and integrating over Us;

2
——/ wrdS+(N—1) [ Lormas +a [ 6o Vouv,6ds
a2/, . 05 .
= o : (2.44)
“ g (Vult — )dS + = | ¢*g(|Vul)dS < 0.

Provided o > ¢’ — 1 we obtain by Hélder inequality

1

( |Vu|q¢°*d8)q ( |va¢|q’¢a—¢d8)q
Uz] UE

<[ wurer

q.JUs
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s (2.45)
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and

€l-a
/

q

du
Uy 09

€
q

oo Has| < Sl [ (vurnas A [ oas a0
U): U):

with € > 0. We derive, with € small enough,

2

d 1 1
—/ up®dS > | = — cge / [Vu|?¢*dS + —/ ¢*g(|Vul|)dS — (2.47)
dé? Us, 2 Us, 2 Jus

where cs = cs(q, H) and ¢ = ¢§(N, g, H). Integrating (2.47) twice yields to

1 %0 1
/ u(d,.)p%dS > | = — cge / [Vu|?¢*dS (T — 0)dT + —/ ¢*g(|Vul)dS — cf.
Us 2 5 JUs 2 Us

(2.48)
Since z € S(u), the right-hand side of (2.48) tends monotically to co as § — 0, which implies
that (2.37) holds. O

Remark. It is often usefull to consider the couple (S(u), ) defining the boundary trace of
u as an outer regular Borel measure v uniquely determined by

m =L A RS s (245)

for all Borel set E C 99, and we will denote traq(u) = v(u).

The integral blow-up estimate (2.37) without the growth estimate (2.38) provided (2.2)
holds.

Theorem 2.11 Assume g € Gy satisfies (2.2). If u € C%(Q) is a positive solution of (1.1),
then (2.37) holds for every z € S(u).

Proof. By translation we assume z = 0 € S(u) and (2.37) does not hold. We proceed by
contradiction, assuming that there exists an open neighborhood U of z such that

liminf/ udS < oo. (2.50)
§—0 $sNU

By Proposition 2.8, for any neighborhood U’ of z there holds

/ udzr = o0, (2.51)
anu’
which implies
limsup/ udS = oo. (2.52)
§—0 YsNU’

For n € N,, we take U’ = B1; there exists a sequence {0y, i} ren satisfying limy_, oo dp . = 0
such that '
lim udS = oo. (2.53)

k—oco Z5n,kmB

1
n
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Then, for any ¢ > 0, there exists k¢ := ky ¢ € N such that

ke >k = udS > ( (2.54)
Esn,kmB

1
and k,, ¢ — 0o when n — oco. In particular there exists m := m(¢,n) > 0 such that

/ inf{u, m}dS = ¢. (2.55)

nB

Sn,ke %

By the maximum principle u is bounded from below in an,k/z by the solution v := Vs, 1, of

e (2.56)

n,ky*

{ —Av+g(|Vu]) =0 in Qf

v = inf{u, m} in X

When n — oo, inf{u, m(¢,n)}dS converges in the weak sense of measures to £dy. By Corol-
lary 2.4 there exists a solution wugs, such that V5,1, — Utso when n — co and consequently
u > ugs, in Q. Even if ugs, may not be unique, this implies

hrninf/ uC(z)dS > lim/ ugs, C(x)dS =1 (2.57)
0—0 oS 0—0 by

for any nonnegative ¢ € C°°(R") such that ¢ = 1 in a neighborhood of 0. Since £ is arbitrary
we obtain

liminf/ uC(z)dS = oo (2.58)
6—0 S5

which contradicts (2.50). O

3 Boundary singularities

3.1 Boundary data unbounded measures

We recall that for any ¢ > 1, any solution u of (1.2) bounded from below satisfies [20, Th
Al] the following estimate: for any e > 0, there exists C. > 0 such that

sup |Vu(z)| < C.. (3.1)
d(z)>e

Later on Lions gave in [23, Th IV 1] a more precise estimate that we recall below.

Lemma 3.1 Assume q > 1 and u € C%(Q) is any solution of (1.2) in Q. Then
Vu(z)| < CL (N, q)(d(x))" 7T VzeQ (3.2)

Similarly, the following result is proved in [23].
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Lemma 3.2 Assume q > 1 and u € C%(Q) is a solution of (1.2) in Q. Then

lu(z)] < C';(f]\f,qq) ((d(x))?l_? — 503_%) + max{|u(z)| : z € X, } Vr € Q (3.3)
if g # 2, and
|u(z)| < C5(N) (Indg — Ind(x)) + max{|u(z)|: z € X, } Vo € Q (3.4)

if ¢ =2, for some C3(N,q),C3(N) > 0.

Proof. Put Ms, := max{|u(z)| : z € ¥5,} and let x € Q5,, * = o(x) — d(z)ny(,), and
rg = 0(x) — doNy(z). Then, using Lemma 3.1 and the fact that o(z) = o(z0),

lu(z)| < Ms, +/ | Lu(te + (1 — t)zo)| dt
0 ! 1 (3.5)
< Ms, + C1(N, ) / (td() + (1 — £)d0) 7T (8 — d(x))dt.

Thus we obtain (3.3) or (3.4) according to the value of g. O

If ¢ = 2 and w solves (1.2), v = e" is harmonic and positive while if ¢ > 2, any solution
remains bounded in 2. Although this last case is interesting in itself, we will consider only
the case 1 < ¢ < 2.

Lemma 3.3 Assume 1 < q¢<2,0¢€ 02 and u € C(Q\ {0}) N C?(Q) is a solution of (1.2)
in  which vanishes on 9Q\ {0}. Then

u(@) < Calg)lal 7= Ve e (3.6)
Proof. For € > 0, we set
0 ifr<e
Pe(r) = §§;+36L23—¥+ r— 3¢ ife<r<2e
r— % if r > 2¢

and let u. be the extension of P.(u) by zero outside €. There exists Ry such that Q C Bg,.
Since 0 < P/(r) < 1 and P. is convex, u € C*(RY) and it satisfies —Auc + |Vu|? < 0.
Furthermore u, vanishes in B}:%o' For R > Ry we set

Uen(@) = Cal) (2] =5 = (R—)71) Vo€ B\ B,
where Cy(q) = (¢ — 1)3%f (2—q)~", then —AU g+ VU, r|? > 0. Since u, vanishes on dBg

and is finite on 9B, it follows ue < U, g in Bg \ B.. Letting successively ¢ — 0 and R — oo
yields to (3.6). O

Using regularity we can improve this estimate
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Lemma 3.4 Under the assumptions of Lemma 3.3 there holds

\Vu(z)| < Cs(q, Q)|z|" 77 Vo e Q. (3.7)
and )
u(z) < Cs(q, Q)d(x)|z|” a1 Vo € Q. (3.8)
Proof. For ¢ > 0, we set
2—q 1
Ty[u)(x) = it u(lz) YreQf:= ZQ (3.9)

If x € Q, we set |z| = d and uq(y) = Tylu)(y) = d%u(dy). Then wug satisfies (1.2) in
Q% = 10, Since d < d* := diam(Q), the curvature of 90 is uniformly bounded and
therefore standard a priori estimates imply that there exists ¢ depending on the curvature
of Q% and max{|ua(y)| : 3 < |y| < 3} such that

3 5
|Vug(z)| <c  VzeQd TSl < (3.10)

By (3.6), ¢ is uniformly bounded. Therefore |Vu(dz)| < cd” 77 which implies (3.7).
Next, if z € Q is such that d(z) > &|z| then (3.8) follows from (3.6). If z € Q and
d(z) < ¢ ||, let P € 0\ {0} such that |z — P| = d(z). By (3.7), we obtain

1
u(z) < c(q, Q)d(m)/ [tz + (1 —¢)P|” 71 dt, (3.11)

0

which, combined with the following estimate

tr + (1= 1)P| > [a] = (1 = t)d(z) > = |z|

[

implies (3.8). O

In the next statement we obtain a local estimate of positive solutions which vanish only
on a part of the boundary.

Proposition 3.5 Assume 1 < q < 2. Then there exist 0 < r* < §g and C7 > 0 depending
on N, q and 2 such that for compact set K C 052, K # 02 and any positive solution
ue C(Q\ K)NC%Q) vanishing on 02\ K of (1.2), there holds

w(z) < Crd(x)(di (z))" 77 VYo eQ st dlz) <r*, (3.12)

where di (z) = dist (z, K).

Proof. The proof is based upon the construction of local barriers in spherical shells. We fix

x € Q such that d(x) < dy and o(z) := Projyn(x) € 00\ K. Set r = dx(z) and consider
3p <o/ < Ir, 7 <279 and w, = o(x) + ™n,. Since 0N is C?, there exists r* < 4o,

depending only on € such that dx (w,) > Zr provided d(z) < r*. For A, B > 0 we define

18



the functions s — 0(s) = A(r' — s)% — B and y — v(y) = 9(]y — wx|) respectively in [0, ")
and By (wg). Then

N -1

—0"(s) - 0'(s) + |0'(s)

2-q,, e (LN =00 —s) (294N
=A 1(r—s) - <— +( ) )

q— q—l_ S q—1

We choose A and 7 > 0 such that

q_% ~1+N+ (N;m/ < <(2q_q1)A) i (3.13)

so that inequality —Av + |Vo|? > 0 holds in B, (w;) \ Br(w;). We choose B so that
q—2

v(o(x)) = ov(r) =0, ie. B=A(r' —7)a=1. Since 7 < &y, Br(wy) C Q° therefore v > 0 on

00N By (wg) and v > w on QN IB,/(w,). By the maximum principle we obtain that u < v

in N B,/ (wy) and in particular u(z) < v(z) i.e.

u(z) < A ((w o —d(2) — (¢ — T)Z%?) < %(w 7 —d(x)) TTd(z). (3.14)

If we take in particular 7 = % and d(x) < 7, then A = A(N,q) and

u(z) < CQT/_fllTld(:c). (3.15)

where ¢g = co(NV, ). If we let 7' — Zr we derive (3.12). Next, if € € is such that d(z) <
do and d(z) > 1dx(x), we combine (3.12) with Harnack inequality [38], and a standard
connectedness argument we obtain that u(z) remains locally bounded in €2, and the bound
on a compact subset G of Q depends only on K, G, N and ¢. Since dg (z) > d(z) > 1dg(z)
it follows from Lemma 3.2 that (3.12) holds. Finally (3.12) holds for every = € Q satisfying
d(z) <r*. O

As a consequence we have existence of positive solutions of (1.2) in Q with a locally

unbounded boundary trace.

Corollary 3.6 Assume 1 < q < q.. Then for any compact set K C 0N, there exists a
positive solution u of (1.2) in Q such that trao(u) = (S(u), u(uw)) = (X,0).

Proof. For any 0 < ¢, we set K. = {z € 0Q : dig (z) < €} and let 1) be a sequence of smooth
functions defined on 99 such that 0 < 1. < 1, ¢ =1 on K, b = 0 on 90\ K (e < € so
that 9Q \ Ka. # (). Furthermore we assume that € < € < ¢y implies 1. < 1. For k € N*
let w = ug, be the solution of

—Au+|Vul|?=0 in Q
(3.16)

u = ki, in 9.

By the maximum principle (k,€) — uy ¢ is increasing. Combining Proposition 3.5 with the
same Harnack inequality argument as above we obtain that uy .(x) remains locally bounded
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in  and satisfies (3.12),_independent1y of k and e. By regularity it remains locally compact
in the C} _-topology of Q\ K. If we set too c = limy_sc0 Uk, then it is a solution of (1.2) in

) which satisfies

lm  Ueo () = 00 Vy e K,
r—yeK.

locally uniformly in K.. Furthermore, if y € K, is such that By(y) N 9Q C K. for some
6 > 0, then for any k large enough there exists 6, < 6 such that

_ 1.—1
/mxmmdsfk .

For any ¢ > 0, uge,. is bounded from below by u := U, By, (y)NOR which satisfies

—Au+|Vul|?=0 in Q

3.17
u=klx—— in 0N. ( )

By, (1)NoQ

When k — oo, Uk, By, (y) CONVerges to ugs, by Theorem 2.2 for the stability and Theorem 3.17
for the uniqueness. It follows that ue . > ugs,. Letting € — 0 and using the same local
regularity-compactness argument we obtain that ug = Uco,0 = liMe_0 Uso,e IS a positive
solution of (1.2) in  which vanishes on 092\ K and satisfies

UK > Ups, = lim ug(x)dS > ¢,
v 6—0 EsﬁBT(y)

for any 7 > 0. Since 7 and /¢ are arbitrary, (2.37) holds, which implies that y € S(uk).
Clearly p(ug) =0 on R(ug) = 02\ S(ugk) which ends the proof. O

In the supercritical case the above result cannot be always true since there exist re-
movable boundary compact sets (see Section 4). The following result is proved by an easy
adaptation of the ideas in the proof of Corollary 3.6.

Corollary 3.7 Assume q. < g <2 and let G C 02. We assume that the boundary 0,,G C
0N} satisfies the interior boundary sphere condition relative to 0S) in the sense that for any
y € 0,,G, there exists ¢, > 0 and a sphere such that B, N 0Q C G and y € B.,. If
S = G # 0N there exists a positive solution u of (1.2) with boundary trace (S,0).

Remark. It is worth noticing that the condition for the singular set to be different from all
the boundary is necessary as it is shown in a recent article by Alarcén-Garcia-Melidn and
Quass [2]. When ¢. < ¢ < 2 and © C 99 it is always possible to construct a positive solution
ue (€ > 0) of (1.2) with boundary trace (0¢,0), where ©, = {x € 0 : do(x) < €} and the
complement is relative to 0€2. Furthermore € — u, is decreasing. If © has an empty interior,
Proposition 3.5 does not apply. We conjecture that lim._ou. depends on some capacity
estimates on O.

The condition that a solution vanishes outside a compact boundary set K can be weak-
ened and replaced by a local integral estimate. The next result is fundamental for existence
a solution with a given general boundary trace.
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Proposition 3.8 Assume 1 < q¢ < 2, U C 09 is relatively open and p € MU) is a
positive bounded Radon measure. Then for any compact set © C ) there exists a constant
Cs = Cs(N,q,H,0, |[pllonr) > 0 such that any positive solution u of (1.2) in € with

boundary trace (S,p') where S is closed, U C 00\ S := R and p' is a positive Radon
measure on R such that p'|y = u, there holds

u(z) < Cs V€ 0. (3.18)

Proof. We follow the notations of Theorem 2.10. Since the result is local, without loss of
generality we can assume that U is smooth and contained in a single chart ¥;. Estimates
(2.44)-(2.48) are still valid under the form

/Uu(é,.)gb”‘dS/Uu(éo,.)gb”‘dS

do
>(1- cloe)/é /U|Vu|quo‘d8’(7' — §)dr — (60 — 5)/{%(50, )6ds — ¢l

(3.19)
where c19 = ¢10(q, H) and ¢jq = ¢jo(N, ¢, H). Since the second term in the right-hand side
of (3.19) is uniformly bounded by Lemma 3.1, it follows that we can let § — 0 and derive,

do
/u(50, JodS + (1 — cloe)/ / |Vu|?¢*rdSdr < /(badqu o < lellonery + o, (3.20)
U 0 U U

where ¢f, depends on the curvature H, N and ¢. This implies that there exist some ball
By(a), @ > 0 and a € U such that B, (a) N9 C U and

/ IVl td(@)dz < [l + o (3.21)
Bq(a)NQ2

Thus, if Bg(b) is some ball such that Bg(b) C Bs(a) N, we have
[, 7 < @0 =97 (Il + o) (322)
5

If in (3.19) we let § — 0 and then replace dy by 6 € (1, do] for 61 > 0 we obtain

au i

/U 6odp > /U (5. )67 dS = (8 =) | Fx(6. )05 i (3.23)

ui /11

where cfy = ci(N, ¢, H, [|pllon(rry)- By Lemma 3.1 the second term in the right-hand side
remains bounded by a constant depending on §;, H, N and q. Therefore fUz u(d,.)p*dS
remains bounded by a constant depending on the previous quantities and of || MH{m(U) and
consequently, assuming that d(x) > d; for all x € Bg(b) (i.e. d(b) — S > 1)

1

u = udr < c11 3.24)
55O = B0 S (
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where c11 depends on 61, H, N, q and ||:“||£m(U)- By Poincaré inequality

(/ uqd:c> <y </ |Vu|qdz> + |Bg(b)|%u3ﬂ(b). (3.25)
Bs(b) Bs(b)

Combining (3.22) and (3.24) we derive that Hu||W1,q(Bﬂ(b)) remains bounded by a quantity
depending only on 01, H, N and ¢ and HMHW(U). By the classical trace theorem in Sobolev

spaces, |lul| La(0Bs (b)) remains also uniformly bounded when the above quantities are so. By
the maximum principle

u(z) < PpBs®) [U|aBﬁ(b)]($) vV € Bg(b), (3.26)

where PB2(®) denotes the Poisson kernel in Bg(b). Therefore, u remains uniformly bounded
in By (b) by some constant c; which also depends on |[¢]lon ), N, ¢, €, b and 3, but not
on u. We end the proof by Harnack inequality and a standard connectedness argument as
it has already be used in Corollary 3.6. 0

The main result of this section is the following

Theorem 3.9 Assume 1 < q < q., K C 99Q is closed and 1 is a positive Radon measure
on R := 00N\ K. Then there exists a solution of (1.2) such that traq(u) = (K, u).

Proof. For € > ¢ > 0 we set ve o = kx? ;T X i and denote by we .k, the maximal
solution of

—Au+ |Vu|? =0 in Q
(3.27)

U= Ve in 9.

We recall that K. := {z € 00 : dx(x) < €}, so that v, is a positive bounded Radon
measure. For 0 < e < ¢ there exists y € R and v > 0 such that B, (y) C ?20. Since

is uniformly bounded, it follows from Proposition 3.8 that ue i, remains

HX??M ‘m(n)
locally bounded in ©, uniformly with respect to k, € and €. Furthermore (k, €, €') — uc e g
is increasing with respect to k. If te ¢/ 00, = iMoo Ue e,k p, it 18 a solution of (1.2) in Q.
By the same argument as the one used in the proof of Corollary 3.6, any point y € K is
such that ue e oo, > ugs, for any £ > 0. Using the maximum principle

(62 S €1, 6/1 S 6/2; kl S k?) - (uel,e/l,kl,,u S uez,e/z,kw,u) (328)

Since uUe,er 00, remains locally bounded in € independently of € and €', we can set ug, , =
lime 0 lime0 Ue e 00, then by the standard local regularity results ug,, is a positive so-
lution of (1.2) in Q. Furthermore ug,, > ugs,, for any y € K and £ > 0; thus the set of
boundary singular points of ux,, contains K. In order to prove that tran(uk,.c) = (K, 1)
consider a smooth relatively open set U C R. Using the same function ¢ as in Proposi-
tion 3.8, we obtain from (3.20)

do
/uK,oo(5O; Jo*dS + (1 — cloe)/ / IVug ool9p“TdSdr < /du + - (3.29)
U 0 U U
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Therefore U is a subset of the set of boundary regular points of ug ., which implies
troa(u) = (K, 1) by Proposition 2.6. O

Remark. 1If q. < q < 2, it is possible to solve (3.27) if p is a smooth function defined in R
and to let successively k — oo; € — 0 and ¢ — 0 using monotonicity as before. The limit
function u* is a solution of (1.2) in Q. If troq(u*) = (S*, u*), then $* C K and p*|gr = pu.
However interior points of K, if any, belong to S* (see Corollary 3.7).

3.2 Boundary Harnack inequality

We adapt below ideas from Bauman [5], Bidaut-Véron-Borghol-Véron [7] and Trudinger
[37]-[38] in order to prove a boundary Harnack inequality which is one of the main tools for
analyzing the behavior of positive solutions of (1.2) near an isolated boundary singularity.
We assume that € is a bounded C? domain with 0 € 9Q and &g has been defined for
constructing the flow coordinates.

Theorem 3.10 Assume 0 € 90, 1 < q < 2. Then there exist 0 < rg < dg and Cy > 0
depending on N, q and Q such that for any positive solution u € C(QU((02\{0})NBay,))N
C?(Q) of (1.2) vanishing on (02 \ {0}) N Ba,, there holds

u(y) u(x) _ Cou(y)
Cod(y) = d(x) =~ d(y)

(3.30)

for every x,y € Bz% N Q satisfying |g—| < |z <2yl

Since € is a bounded C? domain, it satisfies uniform sphere condition, i.e there exists
ro > 0 sufficiently small such that for any « € 92 the two balls B,,(z — ron,) and By (z +
ron,) are subsets of Q and Q° respectively. We can choose 0 < 7 < min{dg, 3r*} where 7*
is in Proposition 3.5.

We first recall the following chained property of the domain €2 [5].

Lemma 3.11 Assume that Q € 02, 0 < r < rg and h > 1 is an integer. There exists an
integer Ny depending only on ro such that for any points x and y in QN B%r (Q) verifying
min{d(z),d(y)} > r/2", there exists a connected chain of balls By, ..., B; with j < Noh such

that
r€B1,y€B;, BiNBi1#0for1<i<j—1

and 2B; C B2, (Q)NQ for 1 <i <. (3.31)

The next result is an internal Harnack inequality.

Lemma 3.12 Assume Q € (002 \ {0}) N B2y and 0 < r < |Q| /4. Let u € C(QU ((092\

{0}) N Ba,,)) N C?(Q) be a positive solution of (1.2) vanishing on (02 \ {0}) N Ba,,. Then
there exists a positive constant c12 > 1 depending on N, q, dg and ro such that

u(x) < cyu(y), (3.32)

for every z,y € Bs: (Q) N such that min{d(x),d(y)} > r/2" for some h € N.

3r
2
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Proof. We first notice that for any ¢ > 0, Ty[u] satisfies (1.2) in Q¢ where T} is defined in
(3.9). If we take in particular £ = |@Q|, we can assume |@Q| = 1 and the curvature of the
domain QI9! remains bounded. By Proposition 3.5

u(z) < C% Vo € By (Q)NQ (3.33)

where C} depends on N, ¢, §p. By Lemma 3.11 there exist an integer Ny depending on 7
and a connected chain of 7 < Nyh balls B; with respectively radii r; and centers x;, satisfying
(3.31). Hence due to [37, Corollary 10] and [38, Theorem 1.1] there exists a positive constant
i depending on N, g, §p and ry such that for every 1 < i < j,

supu < ¢}, igfu, (3.34)

B;
which yields to (3.32) with ¢1o = ¢/5°. =

Lemma 3.13 Assume the assumptions on Q and u of Lemma 3.12 are fulfilled. If P €
NN B(Q) and 0 < s < r, there exist two positive constants § and c13 depending on N, q
and ) such that

o — PI°

u(z) < e13 s M p(u) (3.35)

for every x € Bs(P) NQ, where My p(u) = max{u(z) : z € Bs(P) N Q}.

Proof. Notice that Bs(P) C Ba,(Q). Up to the transformation 7|q|, we may assume |Q| = 1
and that u is bounded in Ba,(Q) N as in (3.33). We fix € B4(P) and s’ € (Jx — P|, s).
Set

~ u
u = 7Ms,p(u)
then M, p(@) =1 and
— At + M2 (w) [Vil" =0 (3.36)

in Ba,-(Q) N Q. Tt follows from the assumption and Young’s inequality that
MIp (u) |Vl < ¢ [Val® + ey | Vil
where ]34, 5 depend on ¢q. By [38, Theorem 5.2] there exist 6 = 6(N,q,d0) > 0 and
c13 = c13(NV, ¢, 8p) such that
/

5
la(z) — a(z")| < e13 (Sg) Vz,2' € By (P)NQ,

which is equivalent to
$\°
lu(z) —u(2')] < c13 (;) M p(u) Vz,2' € Bo(P)NQ. (3.37)
Now by taking z = z and letting 2’ — P, we obtain

/

u(z) < e13 (%)6Ms,p(u). (3.38)
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Since (3.38) holds true for every s’ > |z — P|, (3.35) follows by rescaling,. O
Thanks to Lemma 3.12 and Lemma 3.13, we obtain the following result by proceeding
as in [7, Lemma 5] and [5].
Corollary 3.14 Assume Q € (0Q\ {0}) N B2y, and 0 < r < |Q|/8. Let u € C(QU ((092\
3
{0}) N Bay,)) N C?(Q) positive solution of (1.2) vanishing on (02 \ {0}) N Ba,,. Then there

exists a constant ci4 depending only on N, q, dg and ro such that

u(z) < ergu(Q — gnQ) Yz € B, (Q)N Q. (3.39)

Lemma 3.15 Assume Q € (90Q\ {0}) N B2y, and 0 < r < |Q| /8. Let u € C(Q U ((0Q \

{0}) N Ba,,)) N C2%(Q) positive solution of (1.2) vanishing on (0Q \ {0}) N Bay,. Then there
exist a € (0,1/2) and ¢15 > 0 depending on N, q, do and ro such that

1t  wP—tn,) t
— =< ——-—5 <ci15-
cisr ~ u(Q —5n,) r

for any P € B.(Q)NJQ and 0 <t < §r.

(3.40)

Proof. As above, we may assume |@| = 1, thus estimate (3.33) holds.

Step 1: Lower estimate. Let 0 <7 < §r < 7 be fixed. For b > 0 to be made precise later
on, we define in Br_- (P—4n,)N B:(P)

v(z) = V(s) = —e (3.41)

where s = |z — P+ n,|. Since —Av+|Vv|? = —=V” — Z=LV7 4+ [V/|?, this last expression
is nonpositive if and only if

u(i5) - "

Hence, if we choose b = N + 6 then (3.42) holds true, and thus
—Av+ V[T <0 (3.43)

in B (P—4n,)NBz(P). Since B, (P—ron, ) C €, it follows that d(z) > dist(z, By, (P —
ron,)) > r/32 forany x € Br- (P—%n,)NdBx(P), which, along with Lemma 3.12, implies

that

u(e) > 5" u(Q — 5ny) (3.44)
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where
ci5 = iz (1 +C7)
and ¢(N, ¢, ) is the constant in (3.12). Since v < 1 on Br- (P —4n,)NIB:(P),

T, )u(z) (3.45)

u(@) > 5" u(@ — $ng

on B, T(P — gn,) N 9Bz (P). Moreover d5'u(@ — tn,) < ¢y < 1, therefore 9(z) =
c’l5lu( — &n,, )v(z) is a subsolution of (1.2) in Br_x (P —3n,)N Bz (P). Consequently, by

setting w := u — v, we get

—Aw+dVw >0

in Br—- (P—3n,)NBz(P) and w > 0 on d(B:—- (P—5n,)N Bz (P)), where d = (dy, ..., dx)
and

di(z) = q/1 IV (tu+ (1 —8)0)| > 9;(tu+ (1 — t)8)dt V1 <i<N.

Since d; € LOO(B%(P — 5n,) N Bz (P)) for every i = 1,..., N, by applying the maximum
principle, we deduce that v > ¥ in B%(P — 5n,) N IB:z(P). Finally, set z; = P —n,
then 2, € By~ (P — §n,) N B-(P) and

_b 2
() > # <1 - (1 - TTT) ) > 5T (3.46)

_ular) ' (3.47)

u(@ — §n,)
Thus the left-hand side of (3.40) follows since 7 is arbitrary in (0, §7).

Step 2: Upper estimate. Let a € (0,1/2) be a parameter to be determined later on. We can
choose 1 so that, Bsa (P + 3arn,) C Q°. Let ¢1 be the first eigenfunction of the Laplace
operator —A in Bs \ B; with Dirichlet boundary condition and \; is the corresponding
eigenvalue. We normalize ¢1 by ¢1(x) =1 on {x : |z| = 2} and set

x—(P+arn,)
ar ’

Par () = ¢1 <

thus

_A¢ar = Al 2¢ar($) > 0

(ar)?

in B3.-(P + arn,) \ Bu.(P + arn,) and vanishes on the boundary of this domain. We
have —A¢q, > 0 > —Au in By (P 4 arn,) N Q. We can choose a small enough such that
Boor(P 4+ arn,) C B-(Q). Then by Corollary 3.14,

u(z) < epqu(Q — §nQ)
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for © € OBag (P 4+ arn,) N Q. Set qgm = c1qu(Q — §n,)@ar, then —Aq}m >0>—Auin
Baar(P + arn,) N Q and ¢ar dominates u on 8(Baer(P 4 arn,) N Q). By the maximum
principle, 4 < ¢gp in Bagr (P + arn,) N Q. In particular

|P—tn, — (P+arn,)|)
ar

uw(P —tn,) < cug ( ) u(Q — gnQ).

Since ¢ (x) < dtd(x) = /i(Jz| — 1) for every 1 < |z| < 2, we obtain the right-hand side of
(3.40). O
Proof of Theorem 3.10. Assume x € Bzr, N) and set r = |§—|.

3

Step 1: Tangential estimate: we suppose d(x) < §r. Let @ € 02\ {0} such that |Q| = |z|
and z € B,(Q). By Lemma 3.15,

iu(Q —50,) < u() uw(@—3n,)
Cis |z| ~ d(z) '

(3.48)

We can connect @ — gn,, with —2rn, by m; (depending only on N) connected balls B; =
B(x;, 1) with x; € Q and d(z;) > § for every 1 < i < m;. It follows from (3.34) that

¢y u(=2rn,) < u(Q - 5n,) < 5 u(=2mm,),

which, together with (3.48) leads to

u(—2rn,)
||

8 wu(—2rn,) _ u(x)

S 86117;“ C15 (349)

dytas o d(z)

Step 2: Internal estimate: d(x) > §r. We can connect —2rn, with 2 by my (depending only

on N) connected balls B = B(xj, §r) with zj € Q and d(z}) > §r for every 1 < i < my.

By applying again (3.34) and keeping in mind the estimate  |z| < d(z) < |z, we get

/mo _
?WZ u(—2rn,) < u(x) < 4¢i5? u(—2rn,) (3.50)
4cty || d(z) a ||

Step 3: End of proof. Take % < 5 < 2|x|, we can connect —2rn, with —sn, by ms
(depending only on N') connected balls B’ = B(x}, 5) with 2 € Q and d(z}) > r for every
1 <4 < mg. This fact, joint with (3.49) and (3.50), yields

1 u(—sn,) < u(x)

Co el 7~ d(z)

< Cgu(_|;|rl“) (3.51)

2
(3.51) we get (3.30) with Cy = C§. O

where C§ = C§(N, q,Q). Finally let y € Bz, N satisty lzl < ly| < 2|z|. By applying twice
3

A direct consequence of Theorem 3.10 is the following useful form of boundary Harnack
inequality.
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Corollary 3.16 Let u; € C(QU ((02\ {0}) N Ba,,)) NC3() (i = 1,2) be two nonnegative
solutions of (1.2) vanishing on (0Q\{0})N Ba,. Then there exists a constant C1o depending
on N, q and ) such that for any r < 2%

sup <u1(z) rx € QN (B, \ Br)
v (3.52)

< Cyoinf (Z;Eg 2 € QN (B, \B;)) .

3.3 Isolated singularities

Theorem 2.2 assert the existence of a solution to (2.1) for any positive Radon measure p if
g € Go satisfies (2.2), and the question of uniqueness of this problem is still an open question,
nevertheless when p = 9, with z € 9€), we have the following result

Theorem 3.17 Assumel < q < q., a € I and ¢ > 0. Then there exists a unique solution
U = Ues, tO

—Au+|Vul?=0 in Q
{ U = cd, on 00 (3.53)
Furthermore the mapping ¢ — ucs, is increasing.
Lemma 3.18 Under the assumption of Theorem 3.17, there holds
Vu(z)| < Cricle — 2™ vzeQ (3.54)

with C11 = C11(N, q, k) > 0 where & is the supremum of the curvature of 9.

Proof. Up to a translation we may assume z = 0. By the maximum principle 0 < u(x) <
cP®(x,0) in Q. For 0 < £ < 1, set v, = Ty[u] where T} is the scaling defined in (3.9), then
vy satisfies

(3.55)

—Avy + |V’U¢|q =0 in Qf
vy = E%'H_Ncéo on 90¢

where Qf = %Q and by the maximum principle
0 < ve(z) < La i TNep (3 0) Vo el
Since the curvature of 9Q remains bounded when 0 < ¢ < 1, there holds (see [21])

sup{|Vue(x)| : z € QN (B \ B1)}
< Oy sup{ve(x) 1z € QN (Bs )\ Bi1)}
< C’hﬁ% sup{u(fz) : x € Q' N (B3 \B%)}

2-9 79
< Cpela=t =N

(3.56)

where Cy; and C7; depend on N, ¢ and . Consequently

(Tl () < Cr (N, g, k)el TN Vr e 0F 0 (Ba\ By), V>0
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Set fx =y and |z| = 1, then

[Vu(y)| < Ci |ZJ|7N Yy € Q.

g
Lemma 3.19 N
G l=| ]
1 — =0. 3.57
We recall the following estimates for the Green fuction ([7], [16], [39] and [40])
G(w,y) < cigd(@) |z —y| ™" VryeQaty
and
GQ(za y) < CIGd(x)d(y) |SC - y|_N vxvy € Q,SC 7& Y.
where c¢16 = ¢16(N, Q). Hence, for a € (0, N + 1 — Ng), we obtain
a . j et
G w,y) < (er16d(@) o —y'™) " (cred(@)d() [z — ) (358)
= cigd(@)d(y)' = o —y*" Yoy Qaty,
which follows that
GQerNq] N ~N |, |1-Ng—
——— < —y|® 1% q 3.99
gy < colel™ [ o=yl Ty (3.59)
By the following identity (see [22, p. 124]),
=l Y dy = g el (3.60)
RN
where g = ci(IN, @), we obtain
Gl N+1-N
W S 0160/16 |SC| + a . (361)
Since N +1 — Ngq > 0, (3.57) follows. O
Proof of Theorem 3.17. Since u = cP[5y] — G*[|Vul|?],
u@) (3.62)

lim ———
|xl|glo P(z,0)

Let w and @ be two solutions to (3.53). For any € > 0, set u. = (1 + €)u then u. is a
supersolution. By step 3,

1' UE(Z'>

im

x—0 PQ (.’L‘, 0)
Therefore there exists § = d(e) such that ue > @ on Q N OBs. By the maximum principle,

ue > 4 in Q\ Bs. Letting e — 0 yields to w > @ in © and the uniqueness follows. The
monotonicity of ¢ +— ucs, comes from (3.62). O

=(1+¢)c

As a variant of the previous result we have its extension in some unbounded domains.
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Theorem 3.20 Assume 1 < q < q., and either Q@ = RY := {z = (2/,zn) : a2y > 0} or OQ
is compact with 0 € Q. Then there exists one and only one solution to problem (3.53).

Proof. The proof needs only minor modifications in order to take into account the decay of
the solutions at co. For R > 0 we set Qg = QN B and denote by u := ugo the unique
solution of

—Au+ |Vul"=0 in Qg
{ u = cdy on 0Qp. (3.63)
Then
uls,(x) < cP(2,0) V€ Qg (3.64)

Since R +— P%(.,0) is increasing, it follows from (3.62) that R ufgo is increasing too
with limit «* and there holds

u*(z) < cP%(x,0) Vo € Q. (3.65)

Estimate (3.54) is valid independently of R since the curvature of 9 is bounded (or zero
if Q= Rf ). By standard local regularity theory, Vué%o converges locally uniformly in Q\ B,
for any € > 0 when R — oo, and thus u* € C(2\ {0}) is a positive solution of (1.2) in
) which vanishes on 99\ {0}. It admits therefore a boundary trace traoq(u*). Estimate
(3.65) implies that S(u*) = 0 and p(u*) is a Dirac measure at 0, which is in fact cdy by
combining estimates (3.62) for Qg, (3.64) and (3.65). Uniqueness follows from the same
estimate. g

We next consider the equation (1.2) in RY. We denote by (r,0) € Ry x SV~ are the
spherical coordinates in RY and we recall the following representation

Syt = {(Sin¢0/,COS¢) o' e SN2 s e o, g)},

N -1

r

1
vy 4+ = A

r

Av = vy +

where A’ is the Laplace-Beltrami operator on SN ~1,
1 !
Vv =v.e+ -V
r

where V’ denotes the covariant derivative on SV ~! identified with the tangential derivative,

1

A'v = (sin )N —2 ((

1
. N—2 "
)+
where A” is the Laplace-Beltrami operator on SV ~2. Notice that the function ¢1(c) = cos ¢
is the first eigenfunction of —A’ in W&’Q(Siv_l), with corresponding eigenvalue \; = N — 1
and we choose 6 > 0 such that ¢;(c) := 0 cos ¢ has mass 1 on SY '
We look for a particular solution of

(3.66)

—Au+|Vul?=0 in RY
u=0 on ORY \ {0} = RV~1\ {0}
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under the separable form

Bulo) (r,0) € (0,00) x SY~1. (3.67)

u(r,o) =r~

2—

It follows from a straightforward computation that 5 = p

1 and w satisfies

Lw:=—-Nw+ ((2_¢1)2w2 + |V’w|2)§ — =G5 - Nw =0 in S

-1 —ilg-1~ (3.68)
w =0 on SN !

Multiplying (3.68) by ¢1 and integrating over Sﬁ_v_l, we get

9 _
[Nl—q<LN)]/ wpidx
q—l q—l 5571
9 _ o\ 2 3
—|—/ (—q) w? + |V'w|* | @rdz = 0.
N-1 —1
s q

Therefore if N —1 > Z—:'ll (q_ET — N) and in particular if ¢ > q., there exists no nontrivial
solution of (3.68).

In the next theorem we prove that if N —1 < % (q% — N), or equivalently g < %,
there exists a unique positive solution of (3.68).
Theorem 3.21 Assume 1 < q < q.. There exists a unique positive solution ws := w €

W2P(SY 1) to (3.68) for all p > 1. Furthermore ws € C=(SY ).

Proof. Step 1: Ezistence. We first claim that w := v,]? is a positive sub-solution of (3.68)
where v; (i = 1,2) will be determined later on. Indeed, we have

2-4q, 4 . . 5
L(w)=m [(N — 1)y — F(H - N)] 012 = my2(v2 — D) 7 [V |
2-q\> :

2 — 9 _ a D
ot B3t n) ()

_ 2—¢\? ,_ —1)y242 2
— 119727 [(q—) AT 4 o (e = 1) [V
+ 178l [V iy |
= 1L — 197> Ly + La.

Since ¢ < q., we can choose

(N+q—Nq)(2—q)
(N—=1)(g—1)

1<y <
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Since ¢1 < 1, we can choose 7; > 0 small enough in order that L; < 0. Next, by Young’s
inequality, for any 3 > 0, we have

2(g(y2—1)—v2+2) a—2

PTG <y T st [V
Since g > 1,
2 Z V=02 s (g 1 2
hence
cpti(vz—l)—wﬂ |V/<,01|q < 'ygcpgq_l)ww Jr%:'%Z |V/<P1|2-

Therefore, if we choose 3 such that

a(g—1)

ae=1) e 2-q\"
(172) 27 (2 —1)777 <3< 1) 7

then —71@1’2_2L2 + L3 < 0 and the claim follows.
Next, it is easy to see that @ = 74, with 74 > 0 large enough, is a supersolution of (3.68)

. =Nl : : -
and @ > w in S, . Therefore there exists a solution w € W2P(SY ™) to (3.68) such that
0<g§w§winSiV*1.

Step 2: Uniqueness. Suppose that wy and we are two positive different solutions of (3.68)
and by Hopf lemma V'w; (i = 1,2) does not vanish on Siv_l. Up to exchanging the role of
w1 and wp, We may assume maxgn-1 Wy > MaXgn -1 wp and

+ +

Ai=1inf{e > 1:cwy > wsy in Sivfl}> 1.

Set wy,x = Awi, then wi  is a positive supersolution to problem (3.68). Owing to the
definition of w; x, one of two following cases must occur.
Case 1: Either 3o € Sivfl such that w1 x(o9) = wa(og) > 0 and V'wi z(00) = V'wa(0y).

—N-1
Set wy 1= wix —we thenwy >0in S, *, w(og) =0, V'wx(00) = 0. Morevover,

9_
A + (H(win, Viorn) — H(ws, Vi) — ﬁ (qil - N)w > 0. (3.69)
where H(s,§) = ((%)2324— €)%, (s,€) € RxRYN. By the Mean Value theorem and (3.69),
OH _ - OH - 2—q( q
—A’ -— ! -— - (—-N > )
w,\—l—ag(s,E)Vw,\—i—[as(s,E) ql(ql )]w,\_o (3.70)

where 5 and &, are the functions with respect to o € Sivfl. Since wi x, w2 € Cl(SiV*l), we
deduce that 2 (3, ), ‘%—?(E, E)‘ € L>=(SY™"). So we may choose 75 > 0 large enough in
other that

0H _ - 2—q q
A/ —_— ! - —(—-N > 0.
wx + o€ (s,f)Vw,\-i-{% 1 (ql )]w,\_o
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By the maximum principle, wy cannot achieve a non-positive minimum in S iv ~!, which is a
contradiction.

Case 2: or wy y > wy N S_]i_v_1 and dog € 85_1,_\[_1 such that

5w1,A

on

(00) = %(oo)- (3.71)

Since w1 x(0p) = 0 and w; \ € C* (Sffl), there exists a relatively open subset U C Sivfl
such that og € OU and

1

1 qg—1 q a=1
maxwi y < 1 —rn | —— — N . 3.72
A Y (q—l ) 872)

We set wy 1= wq,x — ws as in case 1. It follows from (3.70) that

H, _ - 2 — H
—A’w>\+a—(§,£)8g,w,\2 O (R S Y —a—(E,G) W)
o0& ' g—1\¢g—1 ds
ol o NIV (3.73)
i B S VA q-
“ =1 g1 q(ql) “ia | @x >0

in U owing to (3.72). By Hopf lemma %(00) < 0, which contradicts (3.71). The regularity
comes from the fact that w? +|Vw|? > 0 in S ' a

When Rf is replaced by a general C? bounded domain €, the role of w, is crucial for
describing the boundary isolated singularities. In that case we assume that 0 € 99 and the
tangent plane to 9 at 0 is ORY ™' := {(2/,0) : 2/ € RV~!}, with normal inward unit vector
en. If u e C(RY \ {0}) is a solution of (3.66) then so is Ty[u] for any £ > 0. We say that u
is self-similar if Ty[u] = u for every £ > 0.

Proposition 3.22 Assume 1 < ¢ < q. and 0 € 0. Then

Clgrolo Uesy = Uoo,0 (3.74)
where oo is a positive solution of (1.2) in Q, continuous in Q\ {0} and vanishing on
o0\ {0}. Furthermore there holds

lim 2] 4 ts 0(2) = ws(0), (3.75)
Q5z—0

E=ocesy !

locally uniformly on Sivfl.

Proof. If w is the solution of a problem (3.53) in a domain © with boundary data cdq,
we denote it by uga. Let B and B’ be two open balls tangent to 9 at 0 and such that
B c Q c B*. Since PB(z,0) < P%(z,0) < PB"(x,0) it follows from Theorem 3.20 and
(3.62) that

ulf, < ud, <ulfy (3.76)

cdp *
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Because of uniqueness and whether © is B,  or B’, we have
Ty[uS,) = uSes,  VE>0, (3.77)

with ©°f = 1@ and 0 = 2= =—{ 4+ 1 — N. Notice also that ¢ u@(; is increasing. Since

u, () < Cylq)|z|sT = by (3.6), it follows that uc50 0 uoo,O' As in the previous constructions,

650 -
u, ¢ is a positive solution of (1.2) in ©, continuous in © \ {0} and vanishing on 90 \ {0}.
Step 1: © := RY. Then ©f = RY. Letting ¢ — oo in (3.77) yields to

N N
R RY

Teluog ol = usd o Ve > 0. (3.78)

N
Therefore uR o is self-similar and thus under the separable form (3.67). By Theorem 3.21,
RY z

Usg (@) = |z|3i—?ws(|x| ). (3.79)

Step 2: © := B or B'°. In accordance with our previous notations, we set B¢ = %B and
Bet = %B’C for any ¢ > 0 and we have,

T[uZ o) = ull o and TouZ ] = uZy (3.80)
and
uB <uBy <ult <uBY <uBy vo<e< <, (3.81)

N N N N
£ rct _ R _R oy .
When £ — 0 u 5 1 gOJO and uf;,O 1 UOJO where u ', and U, are positive solutions of

(1.2) in RY such that

N cl
B < <l <d ) <l Vo< (<1 (3.82)

00,0

¢ RY _RY
This combined with the monotonicity of uZ 0 and uZ 0 implies that u .y and U, vanish

on ORY \ {0} and are continuous in Rf \ {0}. Furthermore there also holds for ¢, ¢’ > 0,

ee! rcee’
Tyl o) = T Ti[ul o] = ul oy and Tpul o] = To T[ul )] = w2y (3.83)
Letting ¢ — 0 and using (3.80) and the above convergence, we obtain
N N N N
Qﬂiio =Ty [ng ] and uR o =Twvla, Ry ol (3.84)
RY RY
Again this implies that u,", and T} are separable solutions of (1.2) in RY vanishing on
_ N
ORY \ {0} and continuous in RY \ {0}. Therefore they coincide with ui*o
Step 3: End of the proof. From (3.76) and (3.80) there holds
B <Tul o <uly  vo<i<l. (3.85)
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Since the left-hand side and the right-hand side of (3.85) converge to the same function
N
u]iio(z), we obtain

. ,2-g g=2 x
lim 05w o (€2) = s () (3.86)

and this convergence holds in any compact subset of Q. If we fix |z| = 1, we derive (3.75).
g

Remark. Tt is possible to improve the convergence in (3.75) by straightening 92 near 0 (and
thus to replace U&,O by a function 11?010 defined in B, NRRY') and to obtain a convergence in

crsy .
Combining this result with Theorem 2.11 we derive

Corollary 3.23 Assume 1 < g < ¢, and 0 € IQ. If u is a positive solution of (1.2) with
boundary trace traa(u) = (S(u), u(u)) = ({0},0) then u > ul .

The next result asserts the existence of a maximal solution with boundary trace ({0}, 0).

Proposition 3.24 Assume 1 < q¢ < q. and 0 € 9. Then there exists a mazximal solution
U :=US ¢ of (1.2) with boundary trace traq(U) = (S(U), u(U)) = ({0},0). Furthermore

lim 2| TTUL () = ws(o), (3.87)
Q3z2z—0 ’
ﬁ =o€ 5571

locally uniformly on Siv_l.

N

Proof. Step 1: Existence. Since 1 < ¢ < qc < w7,

solution of (1.2) in RV \ {0},

US(SC) = AN1q|;L'|<qI:_§ with AN,q = <%)q <(2 — Q)((];]_l()];] - 1)(])) ot ) (388)

By Lemma 3.3 there exists C4(g) > 0 such that any positive solution u of (1.2) in © which

q—2 q—2
vanishes on 90\ {0} satisfies u(z) < Cy(g)|z|«=T in Q. Therefore, U*(x) = A*|z|+T with
A* := A*(N,q) > max{An,q, Cis(q)} is a supersolution of (1.2) in RY \ {0} and dominates
in © any solution u vanishing on 99\ {0}. For 0 < € < max{|z| : z € Q}, we denote by u,
the solution of

there exists a radial separable singular

—Auc+|Vul? =0 in Q\ B
ue =0 in 00\ B, (3.89)
U :A*eg%f in QNIB..

If € <€, uelpinp.y < Uelp s, therefore
u < ue <ue <U*(x) in Q. (3.90)

Letting € to zero, {u.} decreases and converges to some U&O which vanishes on 9\ {0}.
By the the regularity estimates already used in stability results, the convergence occurs
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in CL.(Q\{0}), UL, € C(Q\ {0}) is a positive solution of (1.2) and it belongs to
C?(Q); furthermore it has boundary trace ({0},0) and for any positive solution u satis-
fying traq(u) = ({0},0) there holds

2oSu<UL,<U (). (3.91)

Therefore Uo%,O is the maximal solution.
Step 2: @ =RY. Since

U, = U, . Ve>0, (3.92)
there holds
Te[ue] =us (3.93)
N
Letting e — 0 yields to Tg[UifO] = U . Therefore U o is self-similar and coincide with
Y
Uso-

Step 3: Q = B or B’°. We first notice that the maximal solution is an increasing function
of the domain. Since T;[u®] = u(%)[ where we denote by u® the solution of (3.89) in © \ B,

for any ¢,¢ > 0 and any domain © (with 0 € 90), we derive as in Proposition 3.22-Step 2,
using (3.93) and uniqueness,

¥ re rcl
Té[Uo]i,o] = Uo]i,o and TZ[UCED,O] = Uii,o (3.94)
and
UL < UB' <l R < usy <uBy” vo<i< z’,e” <1. (3.95)

As in Proposition 3.22, UZ') 1 U/ + < U + and UZ'y L U * > U "o where U +0 and

N

U o are positive solutions of (1.2) in RV wh1ch vanish on 8]RN \ {0} and endow the same
N

RY
scaling invariance under T;. Therefore they coincide with u. .

Step 8: End of the proof. It is similar to the one of Proposition 3.22. O

Combining Proposition 3.22 and Proposition 3.24 we can prove the final result
Theorem 3.25 Assume 1 < q < qc and 0 € 02 Then US ; = uf} ;.

Proof. We follow the method used in [16, Sec 4].

Step 1: Straightening the boundary. We represent O near 0 as the graph of a C? function
¢ defined in RV~1 N Br and such that ¢(0) = 0, V¢(0) = 0 and

INNBr={x=(2,xn): 2 € RN Bg,zy = ¢(2)}.

We introduce the new variable y = ®(z) with ¢ = 2/ and yy = ay — ¢(a’), with corre-
sponding spherical coordinates in RY, (r,0) = (|y|, ‘—Z‘) If u is a positive solution of (1.2)
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in Q vanishing on 9Q \ {0}, we set u(y) = u(z), then a technical computation shows that @
satisfies with n = %

P2y, (1= 20 (n,ex) + Vo[’ (n,en)?)

ity (N =1 =r(n,ex)A¢ — 2(V'(n,en), V'6) + 7 V9[* (V'(n,en), en))
+(V'den) (20, = Vo[ (n,en) —rag)

(Vi en) (20n,en) [0 = 26, ) = 2(V'iy, V') (n, e)

+ Vol (V/(V'i,en),en) — 2(V/(V'i,en), V'¢) + Al

+12 |Gyn + 1V — (¢n + 1V/¢)(Gn + 1V'G,en)|" = 0.

(3.96)

Using the transformation ¢t = Inr for ¢t < 0 and a(r,0) = rg%?v(t, o), we obtain finally that
v satisfies

(14 €1)ve + (N— % +€2) v+ (Ang+ez)v+ Al

+ (Vv &) + (V' &) + (V/(V'v,en), &) (3.97)

q
(50 +vn + V5 + (430 + vn + V'i,en) Tr| =0,

on (—oo,In R] x S¥ ™! := Qg and vanishes on (—oo,In R] x 9SY !, where

2—q q
=(=—)(—=2—-N).
wa= (2=1) (75 -)

Furthermore the ¢; are uniformly continuous functions of ¢ and o € S N=lforj =1,..,7,
C! for j = 1,5,6,7 and satisfy the following decay estimates

lej(t,.)] < Ce' for j=1,..,7 and |e;¢(t,.)| + |[V'ej| < cizet for j=1,5,6,7. (3.98)

Since v, vy and V'v are uniformly bounded and by standard regularity methods of elliptic
equations [16, Lemma 4.4], there exist a constant ¢j; > 0 and T' < In R such that

[lv(t, -)||C2,7(F) + [l (2, -)||CI,V(F) + [loee(t, ')Hco,v(F> <d7 (3.99)

for any v € (0,1) and t < T — 1. Consequently the set of functions {v(t,.)}+<o is relatively

compact in the CQ(SiV ~1) topology and there exist 7 and a subsequence {t,} tending to
—oo such that v(t,,.) — n when n — oo in CQ(W).

Step 2: End of the proof. Taking u = ugqo or u = U&O, with corresponding v, we already
know that v(¢,.) converges to ws, locally uniformly on S iv ~!. Thus w; is the unique element
in the limit set of {v(¢,.)}<o and limy_v(t,.) = w, in CQ(W). This implies in
particular

li u0(®) _ g 3.100
o e (100
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and uniqueness follows from the maximum principle. O

As a consequence we have a full characterization of positive solution with an isolated
boundary singularity

Corollary 3.26 Assume 1 < q < q., 0 € 9Q and u € C(Q\ {0}) N C?(Q) is a nonnegative

solution of (1.2) vanishing on O\ {0}. Then either there exists ¢ > 0 such that u = ucs,,

oru = uf}w = limc 00 Ues, -

4 The supercritical case

In this section we consider the case q. < ¢ < 2.

4.1 Removable isolated singularities

Theorem 4.1 Assume q. < ¢ < 2,0 € 0Q and u € C(Q\ {0}) N C%(Q) is a nonnegative
solution of (1.2) vanishing on 02\ {0}. Then u = 0.

Proof. Step 1: Integral estimates. We consider a sequence of functions ¢, € C*°(R¥) such
that Gu(2) = 0f |2] < 2, Cu() = 1if |a] > 2, 0< Gy < 1 and [Viu| < crgn, |AG] < ergn?
where ¢ is independent of n. As a test function we take £(, (where £ is the solution to
(2.14)) and we obtain

/ (IVul9¢n — uCnAE) do = /u (EAC, +2VEN(,)de =T+ I1. (4.1)
Q Q
Set Q, = QN {z: L <|z] <2}, then |Q,| < cjg(N)n~, thus

2-q 2-a49 q_ 1 __
IS 01804((])/ nq—1+2€dl_ S Cll/gnq,1+2 1-N — C/ll8nq,1 qc—1
Qn

since £(x) < czd(z). Notice that qul - qc—l_l <0.

2— 2— 1 1
11 < 01804(‘1)/ na=i P Ve|de < crona=i PN = ¢jgnaT T wT
Qp

Since the right-hand side of (4.1) remains uniformly bounded, it follows from monotone
convergence theorem that

[ (vulte + w e < . (4.2)
Q

More precisely, if ¢ > g., I + II goes to 0 as n — oo which implies
/ (|Vul?€ 4+ u)dx = 0.
Q

Next we assume g = q.. Since |Vu| € L% (Q), v := G?[|Vu|%] € L}(2). Furthermore,
u + v is positive and harmonic in 2. Its boundary trace is a Radon measure and since the
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boundary trace Tr(v) of v is zero, there exists ¢ > 0 such that Tr(u) = ¢dp. Equivalently, u
solves the problem

de =0 in

u = cdy in 09).

Furthermore, since u € L'(Q), u(z) < cP(z,.) in Q. Therefore, if ¢ = 0, so is u. Let us
assume that ¢ > 0.

Step 2: The flat case. Assume Q = By = B N Rf. We use the spherical coordinates
(r,0) € [0,00) x SN¥~1 as above. Put

{ —Au+ |Vu
(4.3)

7= [, Jous
+
then N1 N1
Upr + ——— Ty — ; u = |Vu|? (4.4)
r r
Set v(r) = rN=1%(r), then
1—
Vpr + Uy = N_1|Vu de (4.5)
and )
v (r) = rV (1) — erl/ |Vu|™ (s)ds. (4.6)
Since
1 1 1 rt
/ TN_l/ |Vu|?(s)ds = —/ rN|Vau|®(s)ds < oo (4.7)
0 T N 0

it follows that there exists lim,_,ov(r) = @ > 0. Let us assume that « > 0. From (4.5),
(r'*Nu), = [Vu|* >0

then .
rivaT(rl) = r%*NvT(rg) —|—/ [Vul%ds V0 <71y <ry. (4.8)

T2
This implies that v,(r) keeps a constant sign on (0,71) for some r; > 0. If v, < 0, then

= ((N—1 qc
U= (1= N)v+rv.)r N = |Vu| > ((T)CYT_N) V0 <71 < ro, (4.9)

for some 0 < ro < 71. It follows that [Vu|? ¢ LL(B;), which is a contradiction. Thus
vr > 0. By (4.6)

/ |Vu|? (s)ds < v,.(1).
0

Using again (4.6) it implies lim,_,ov,(r) = 0. Thus (4.9) applies and we get the same
contradiction. Therefore o = 0, equivalently

r—0

lim er/SNlu(r, o)¢1(o)dS = 0. (4.10)
+
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Set I':={o = (0’,¢) € SY ' :0< ¢ < I}, then

lim rN_l/u(r, 0)dS = 0. (4.11)
r

r—0
By Harnack inequality Theorem 3.10, and since ¢ < v

u(r, 7)
¢1(7)

vy lu(r, 1) < < cgou(r,o) V(r,0) € Y1 xT. (4.12)

Integrating over I' and using (4.11) it follows

: u(z)
lim |:c|Nm =0. (4.13)

By standard regularity methods, (4.12) can be improved in order to take into account that

u vanishes on ORY \ {0} and we get

tim oV 28 g i ) (4.14)
z—0 d(x) z—0 pRY (x, 0)

where PEY (z,0) is the Poisson kernel in RY with singularity at 0. Since PEY (.,0) is a super
solution and u = O(PRf (.,0)), the maximum principle implies u = 0.
Step 8: The general case. For £ > 0, we set
ve(x) = Te[u](z) = Y~ Tu(lz).
Then v, satisfies

—Avg 4 |[Vug|% =0 in Qf
(4.15)

v =0 on 90\ {0}

Furthermore, T;[P%] = P with P? := P?" and
u(x) < cPY(x,0) Vo€ Q= v(z) < P (z,0) Vze Q.

By standard a priori estimates [21], for any R > 0 there exists M (N, g, R) > 0 such that, if
I'r = Bagr \ Bg,
sup {|ve(z)| + [Vug(z)] : # € TR N QY
\Y% -V
1 sup {| ve() ve(y)|

|z —y|

(4.16)

: (@,y) € TN Qf} < M(N,q,R),

where v € (0,1) is independent of ¢ € (0, 1]. Notice that these uniform estimates, up to the
boundary, hold because the curvature of Q¢ remains uniformly bounded when ¢ € (0, 1].
By compactness, there exist a sequence {/,,} converging to 0 and function v € C*(RY \ {0})
such that

sup {|(v4n —v)(@)| + |V(ve, —v)(z)| : x € TN QZ"} —0
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Furthermore v satisfies

—Av+|Vo|? =0 in RY
(4.17)
v=20 on ORY \ {0}.
From step 2, v =0 and
sup {|ve, (z)| + [Vug, ()] : @ €T N QZ”} — 0;
therefore
lim ||V tu(z) =0 and lim |2V |Vu(z)| = 0. (4.18)
x—0 x—0
Integrating from OS2, we obtain
N
ili% Mu(m) =0. (4.19)
Equivalently u(z) = o(P*(x,0)) which implies u = 0 by the maximum principle. O
4.2 Removable singularities
The next statement, valid for a positive solution of
—Au=f in Q (4.20)

where f € L}, is easy to prove:

Proposition 4.2 Let ¢ > 1 and u be a positive solution of (1.2). The following assertions
are equivalent:

(i) u is moderate (Definition 1.8).
(ii) w € LY(), |Vu| € LL(Q).
(iii) The boundary trace of u is a positive bounded measure u on 9.

Let ¢ be the first eigenfunction of —A in WO1 2(Q) normalized so that supg, ¢ = 1 and A
be the corresponding eigenvalue. We start with the following simple result.

Lemma 4.3 Let Q be a bounded C* domain. Then for any ¢ > 1,0 < a < 1, v € [0,d9)
and u € C*(Q), there holds

/ (d(z) — 7)~°|u]tdz
y<d(z)<do

<O ((50 o / (60, 0)9dS + / (d(z) - wq—ﬂwqdz)
» y<d(z)<do

(4.21)
where C1a = Cra(a,q,Q). If 1 < ¢ < 2 and u is a solution of (1.2), we obtain, replacing d

by ¢,
/gplfq|u|qdz < Ci3 (1 +/<p|Vu|qdz> (4.22)
Q Q
where Cy3 = C13(q, ).
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Proof. Without loss of generality, we can assume that u is nonnegative. By the system of
flow coordinates introduced in section 2.1, for any x € §s,, we can write u(x) = u(J,0)
where § = d(x), 0 = o(x) and = o0 — dn,, thus

% % du
u(d,0) — u(dg,0) = —/ Vu(o — sny).nyds = —/ —(s,0)ds,
E) 5 0s
from which follows s
u(0,0) < u(dg,0) — / %(s, o)ds.
E) 0s

Thus, multiplying both sides by (6 — )~ and integrating on (v, dp),

do
/ (6 — ) *u(d,0)dd

(50 _ ,y)l—a do do
< ———u(do,0) +/ (06— 7)_a/ |Vu(s,o)|dsdd (4.23)
1—« ~ 5
_ (50 o ,y)lfa 1 do B Lw
= o b, + g [ =) Ve 0l s

Integrating on ¥ and using the fact that the mapping is a C*! diffeomorphism, we get the
claim when ¢ = 1. If ¢ > 1, we apply (4.23) to u? instead of u and obtain

do
/ (6 — ) -oud(5, 0)dd

(50 — 7)17& q /(SU 1— -1
<X T e _ 0,4
< 0, ) + o [ s ) Vs, o) s
(B =)' q /’50 _ o’ /’50 _ e\’
< X0 1 4 4 — ) Y )
<44 u(60’0)+1—a : (0 — )" *ulds : (0 =) |Vul?ds
(4.24)
Since the following implication is true
(A>0,B>0,M>0,A7<M?+ A" 'B) = (A< M+ B)
we obtain
50 7
(/ (6 — )~ *ud(d, J)d5>
! (4.25)

Q=

- <%>%uq(5mg)+ 13@ (/760(57)‘1“|Vu|‘1ds>

Inequality (4.21) follows as in the case ¢ = 1. We obtain (4.22) with v =0, = ¢ — 1 and
using the fact that cglld <@ < co1din Q with ¢a1 = co1(N). O
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Theorem 4.4 Assume q. < q < 2. Let K C 99 be compact such that C2—q o (K) = 0.

Then any positive moderate solution u € C*(Q)NC(Q\ K) of (1.2) such that |Vu| € LL(S)
which vanishes on OQ\ K is identically zero.

Proof. Let n € C%*(X) with value 1 in a neighborhood U, of K and such that 0 < n < 1,

consider ¢ = @(P?[1 —5])2¢. It is easy to check that ¢ is an admissible test function since
C(x) +|V¢(z)] = O(d?? t1(z)) in any neighborhood of {z € 9 : n(x) = 1}. Then

/|Vu|q4dx:/uACd:c
Q Q
= —/ Vu.V(dz.
Q

Next ) )
V¢ = (PO[1 —n))*" Vo — 24 (PO[1 — ])*? ~ o VP[1)],

thus

/|Vu|qu:I: = —/ (P21 — 1)) V. Vudz + 2q’/ (P21 — 7))27 ~ VP ). Vu pdx
Q Q Q

= /UV((PQ[l — )% V) dx + 2q’/ (P21 — )27 ~ VP[] Vu pdz.
Q Q
Therefore
/()\u + |Vu|?)¢dx
Q

= —2¢ / (P21 — 7])20 ~1uVp. VP n]dz + 2¢' / (P21 — 7)])24 ~ 1o Vu. VP [n)dz.
Q Q

(4.26)
Since 0 < PY[1 — 7] <1, |Vy| < ¢22 in Q and by Holder inequality,
3 &
[ @0 = v v s < e ([ orusas ) ([ veoliar)
Q Q Q
(4.27)

Using (4.22) and the fact that |Vu| € L%(Q), we obtain

1
7

q @ Q ’ ¢
< c23 (1 + ||VuHL3(Q)) </Qd|VP [n]|9 dz> ,
(4.28)

where ca3 = c23(V, ¢, ). Using again Holder inequality, we can estimate the second term
on the right-hand side of (4.26) as follows

/Q (P21 — 5))24 ~2u V. VP ] dx

1 1
7

/Q(IPQ[l — )2 eV VP ) dx < (/Q|Vu|q<pdz) ’ (/Q@WPQ[UH‘J’d:c) !

< en [Vl ([ ave?iilac )

(4.29)

=
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Combining (4.26), (4.28) and (4.29) we derive

=

q

09l 4 ) e < i (14 19l y0) ([P a) (430)

By [35, proposition 7 and Lemma 4],

/ dVE )| dr < coa |, 2, =calln]® e, (4.31)
) w7 () wa ()
which implies
1
q q a
[ 9ult 3w e < s (14 19l )l e (4.32)

where c25 = c25(IN, ¢, €2). Since Cz2—q ,(K) = 0, there exists a sequence of functions {n, } in
C?(X) such that for any n, 0 < n, < 1,7, = 1 on aneighborhood of K and ||1,,|| 2-4
w

7’

;=
)
0 and [|n| ;1 (s;) — 0 as n — oo. By letting n — oo in (4.32) with n replaced by n, and ¢

replaced by ¢, := p(P[1—n,])27, we deduce that / (IVu|? + Au) pda = 0 and the conclusion
Q
follows. O

4.3 Admissible measures

Theorem 4.5 Assume q. < q < 2 and let u be a positive moderate solution of (1.2) with
boundary data p € MY (0Q). Then u(K) = 0 for any Borel subset K C 9Q such that
Cz-q ,(K)=0.

— 4

Proof. Without loss of generality, we can assume that K is compact. We consider test
function 7 as in the proof of Theorem 4.4, put ¢ = (P[5])?? ¢ and get

/ (IVuli¢ — uAl) de = f/ o¢ du. (4.33)
Q

a0 On

By Hopf lemma and since n =1 on K,

o¢
_ > >
g dp > coep(K).

Since
—A¢ = X+ 4¢ (PPL — )% V. VP[] — 2¢/(2¢" — 1) (P21 — 17])%7 2| VP[] 2,

we get

caspt(K) < /Q (17l +uN)¢ + 4¢' (P[]~ uv . VP ) da. (4.34)
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Using again the estimates (4.28) and (4.31), we obtain as in Theorem 4.4

Qr1 2¢’'—1 Q / q . P
@1 VB Fpda| < ey (14 Vullyo)) Wil e - (039
Therefore
1
K)< [ (IVu]? + u))cd '(1qu)" v, 4.36
caop(K) < [ (Fult4 ur)Cde -+ cho (14 [Vullye)) Wil oo (430)

As in Theorem 4.4, since C2—q ,(K) = 0, there exists a sequence of functions {n, } in C?(%)

such that for any n, 0 < n, <1, n, = 1 on a neighborhood of K and ||n,| 2-4 “ () =0
wa (s

as n — 0. Thus [|na][11(s) — 0 and ¢, == (P2[1,])%27 ¢ — 0 a.e. in Q. Letting n — oo in

(4.36) with n and ¢ replaced by 7,, and ¢, respectively and using the dominated convergence
theorem, we deduce that u(K) = 0. O

5 The cases ¢ =1,2

For the sake of completeness we present some results concerning the two extreme cases g = 1,
q=2.

5.1 The case ¢ =2

If w is a solution of (1.2) with ¢ = 2, the standard Hopf-Cole change of unknown v = Inwv
shows that v is a positive harmonic function in €2. Therefore the boundary behavior of w is
completely described by the theory of positive harmonic functions. The following result is
a consequence of the Fatou and Riesz-Herglotz theorems.

Theorem 5.1 Let u be a bounded from below solution of
—Au+|Vu? =0 in Q. (5.1)
1- Then there exists ¢ € L#(@Q) such that for a.e. y € 0L,

Jlim u(2) = Ing(y). (5.2)

non-tangent.
2- There exists a positive Radon measure v on OS2 such that
u(z) = In (P[] (z)) Vr € Q. (5.3)
Remark. Formula (5.3) implies that u satisfies
u(z) < (1= N)lnd(x) + cor Vx € (5.4)

for some co7 depending on u. This implies in particular that u € L*(Q).

In the next result we describe the boundary trace of u.
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Proposition 5.2 Let the assumptions of Theorem 5.1 be satisfied and v is the boundary
trace of e*. Then u admits a boundary trace troq(u) = (S(u), p(w)). Furthermore

1- z € S(u) if and only if for every neighborhood U of z, there holds

lim o In (P9[v](x)) dS = oo. (5.5)

2- z € R(u) if and only if there exists a neighborhood U of z, such that

Q
025D, /wh“ (PHp)() dS < oo, (5.6)

for some 5, > 0.

Proof. This is a direct consequence of the Hopf-Cole transformation and of Proposition 2.8
and Theorem 2.10. O

Corollary 5.3 Under the assumptions of Theorem 5.1, if v € L*(09), then Vu € L3(9),
thus S(u) = 0.

Proof. If v € L?(09Q), then Vv € L3() (see e.g. [35]). Since u is bounded from below
by some ¢ >, v > e and

/d|Vu|2 dx < e_zc/d|Vv|2 dx < oo.
Q Q
The conclusion follows from Proposition 2.6. U

5.2 The case ¢ =1

In this paragraph we consider the equation
—Au+|Vu|=0 in Q. (5.7)

Although there is no linearity, the results are of linear type and the properties of
bounded from below solutions of (5.7) similar to the ones of positive harmonic func-
tions. Since the nonlinearity ¢(|Vu|) = |Vu| satisfies the subcriticality assumption
(2.2), for any bounded Borel measure p on 0f2 there exists a weak solution to the
corresponding problem (2.1). The following extension of Theorem 3.17 holds

Proposition 5.4 For any z € 02, there exists a unique weak solution uw = us, to

{ —Au+|Vu| =0 in Q (5.8)

u=79a, on 9f).
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Proof. The proof is in some sense close to the one of Theorem 3.17 and starts with
a pointwise estimate of the gradient of u. This estimate is obtained by a different
change of scale different to the one of Lemma 3.18. With no loss of generality, we
can asume z = 0. For £ € (0, 1], we set wy(z) = N~ u(fz). Then wy satisfies

_ _ ol L
Awy + £|Vwy| =0 in Q ’ EQ (5.9)
wy =0, on 00",
By the maximum principle
0 < we(z) < V1P (02,0). (5.10)

Again the curvature of 99 remains bounded as well as the coefficient of |Vawy|.
Therefore an estimate similar to (3.56) applies under the following form
sup{|Vwe(z)| : 2 € Q¢ N (B \B%)}
< chgsup{wy(z) : 2 € QN (B3 \ B1)}
3

5.11
< hetN L sup{u(lr) : x € QN (B3 \ B%)} (5.11)
< €29
Choosing fx = y with |z| = 1 we derive
Vu(y)] < exlyl'™  vyeq. (5.12)

The remaining of the proof is similar to the one of Theorem 3.17, with the use of
Lemma 3.19 which holds with ¢ = 1. U

The main result concerning the case ¢ = 1 is the following

Theorem 5.5 Assume wu is a positive solution of (5.7) in ), then there exists a
bounded positive Borel measure p such that u is a weak solution of the corresponding
problem (2.1).

Proof. This is a direct consequence of the proof of Theorem 2.11. If S(u) # @ and
z in S(u) there holds
U > Ugs, Ve > 0.

Because of uniqueness and homogeneity, ugs, = fus,. Letting ¢ — oo yields to a
contradiction. 0

A Appendix: Removabibility in a domain

In the section we assume that € is a bounded open domain in RY with a C? bound-
ary.
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A.1 General nonlinearity

This appendix is devoted to the following equation

{ —Au+g(|Vu|) =v in Q

Al
u=20 in 0N (A1)

where ¢ is a continuous nondecreasing function vanishing at 0 and v is a Radon
measure. By a solution we mean a function u € L'(Q) such that g(|Vul|) € L(Q)
satisfying

| (~us g9y de = [ car (A.2)
for all ¢ € X(Q). The integral subcriticality condition on ¢ is the following
o0 2N—1
/ g(s)s” N-1ds < 00 (A.3)
1

Theorem A.1 Assume g € Gy satisfies (A.3). Then for any positive bounded Borel
measure v in ) there exists a mazimal solution w, of (A.1). Furthermore, if {v,} is
a sequence of positive bounded measures in ) which converges to a bounded measure
v in the weak sense of measures in Q and {u,, } is a sequence of of solutions of (A.1)
with v = vy, then there exists a subsequence {vy, } such that {u,, } converges to a

solution u, of (A.1) in L'(Q) and {9(IVuy, |)} converges to g(|Vu,|) in LY(9).

Proof. Since the proof follows the ideas of the one of Theorem 2.2, we just indicate
the main modifications.

(i) Considering a sequence of functions v, € C§°(£2) converging to v, the approximate
solutions are solutions of

—Aw + g(|V(w 4+ G[1,])]) = 0 in Q (A4)
w=0 on 0f). ’
(ii) The convergence is performed using
Q Q Q
1G]l 1 ) + [IG [V]HMm(Q) +[|VG [V]HMW(Q) < vl (AD)
in Proposition 2.3.
(iii) For the construction of the maximal solution we consider us solution of
—Aus + g(|Vus|) = v in
) | (A.6)
us = G*[v] in ;.

Then consequently, 0 < 6 < ¢/ = u; < uy in Q and us | @,. Using similar
arguments as in the proof of Theorem 2.2 we deduce that u, is the maximal solution
of (A.1). O
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A.2 Power nonlinearity

We consider the following equation

—Au+ |Vu|! =v (A7)
where 1 < ¢ < 2. The study on the above equation also leads to a critical value
T = % In the subcritical case 1 < ¢ < ¢, if v is a bounded Radon measure,
then the problem

—Au+ |Vu|? =v in
{ u =0 on 0f2

admits a unique solution u € L'(Q) such that |Vu|? € L1(2) (see [4] for solvability
of a much more general class of equation). In the contrary, in the supercritical case,
an internal singular set can be removable provided that its Bessel capacity is null.
More precisely,

Theorem A.2 Assume ¢* < q < 2 and K C Q is compact. If Cy 4(K) = 0 then
any positive solution u € C*(Q\ K) of

—Au+ |Vu|?=0 (A.8)

in Q\ K remains bounded and can be extended as a solution of the same equation

i €.

Proof. Let n € C(£2) such that 0 < n < 1, n = 1 in a neighborhood of K. Put
¢ =1 —n and take ¢ for test function, then

—q’/Cq’—1Vu.Vndﬂ: _/ @ds+/CqI|Vu|qd$ =0.
Q 396n Q

1
< </Cq/\Vu]qu>q (/yvmq’m)q .
0 0
0 a 7
/Cq/|Vu|qd:U g/ —udS—i—q/ </ Cq/|Vu|qd:c> ’ </ |V77|q/dx> ! ,
Q a0 On Q Q

which implies

Since

|-

/CqIIVu.Vndx
Q

Therefore

/Cq/|Vu|qu < 027/ 8—udS +628/ IVn|? dx. (A.9)
Q o On Q

where ¢; = ¢;(q) with i = 27,28. Since C o (K) = 0, there exists a sequence {7, } C
C2°(Q) such that 0 <n, <1, n, =1 in a neighborhood of K and annHLQ'(Q) -0
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as n — oo. Then the inequality (A.9) remains valid with 7 replaced by 7, and ¢
replaced by (, =1 — n,. Thus, since ¢, — 1 a.e. in ), we get

/|Vu|qu < 027/ %dS.
Q a0 0n

Hence, from the hypothesis, we deduce that |[Vu| € LI(Q).
Next let n € C§°(2) and n,, as above, then

/(1 — ) Vn.Vudz — /nVnn.Vudx + / (1 = np)n|Vu|ldx = 0.
Q Q Q

Since |Vu| € L9(Q), we can let n — oo and obtain by monotone and dominated
convergence

/ (Vn.Vu+ n|Vul?) dz = 0.
Q
Regularity results imply that u € C?(Q). O

Theorem A.3 Assume ¢* < ¢ < 2 and v € MT(Q). Let u € L'(Q) with |Vu| €
L) is a solution of (A.7) in Q. Then v(E) = 0 on Borel subsets E C § such that
CLq/(E) =0.

Proof. Since v is outer regular, it is sufficient to prove the result when E is compact.
Let 7, be a sequence as in the previous theorem, then

/(Vu.Vnn + 1| Vu|?)dx = /nndu > v(E). (A.10)
Q Q

But the left-hand side of (A.10) is dominated by

1 1
< / \Vnnrq’dm>“ < / nnrw\qu>q 4 / | Vulid,
(9] Q Q

which goes to 0 when n — oo, both by the definition of the €' y-capacity and the
fact that 7, — 0 a.e. as n — oo and is bounded by 1. Thus v(E) = 0. O
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