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Abstract

In order to reduce vibrations or sound levels in industrial vibroacoustic

problems, the low-cost and efficient way consists in introducing visco- and

poro-elastic materials either on the structure or on cavity walls. Depending

on the frequency range of interest, several numerical approaches can be used

to estimate the behavior of the coupled problem. In the context of low fre-

quency applications related to acoustic cavities with surrounding vibrating

structures, the finite elements method (FEM) is one of the most efficient

techniques. Nevertheless, industrial problems lead to large FE models which

are time-consuming in updating or optimization processes. A classical way

to reduce calculation time is the Component Mode Synthesis method (CMS),

whose classical formulation is not always efficient to predict dynamical behav-

ior of structures including visco-elastic and/or poro-elastic patches. Then,

to ensure an efficient prediction, the fluid and structural bases used for the

model reduction need to be updated as a result of changes in a paramet-

ric optimization procedure. For complex models, this leads to prohibitive

numerical costs in the optimization phase or for management and propaga-

tion of uncertainties in the stochastic vibroacoustic problem. In this paper,



the formulation of an alternative CMS method is proposed and compared to

classical (u,p) CMS method: the Ritz basis is completed with static residu-

als associated to visco-elastic and poro-elastic behaviors. This basis is also

enriched by the static response of residual forces due to structural modifi-

cations, resulting in a so-called robust basis, also adapted to Monte Carlo

simulations for uncertainties propagation using reduced models.

Key words: component mode synthesis, vibroacoustics, uncertainties,

viscoelastic damping, poro-elastic damping

List of symbols

u structural displacement

v velocity on a surface

n normal vector of fluid domain

p pressure

Vs structural domain

Vf fluid domain

Su surface of fluid-structure coupling

Sa acoustic absorbing surface

∂V f
s structural surface on which external force is imposed

fs external force imposed on structure

c speed of sound in fluid

ρf fluid density

Za acoustic impedance

ω angular frequency

f frequency
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U structural displacement vector, physical coordinates

qs structural displacement vector, general coordinates

U random vector corresponding to U

P pressure vector, physical coordinates

qf pressure vector, general coordinates

P random vector corresponding to P

M mass matrix

M̄ reduced mass matrix

M random matrix corresponding to M

K stiffness matrix

K̄ reduced stiffness matrix

K random matrix corresponding to K

Af absorbing matrix

Āf reduced absorbing matrix

A random matrix corresponding to Af

Fs external force vector

C coupling matrix

Y physical coordinates vector

θ random variable

G shear modulus of viscoelastic material

Ts, Tf reduction bases of structure and fluid domains

T temperature

ℜ{.} real part

E{.} first statistical moment
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1. Introduction

In transports industry, reduction of vibration and acoustic levels using in-

dustrial vibroacoustic numerical models leads to large and costly problems.

Solving dissipative systems in presence of uncertain parameters is still a chal-

lenge. The techniques which are classically used in the low frequency range

are the finite/infinite elements or boundary elements methods [1], their fre-

quency limits being directly related to the size of the elements compared to

the wavelength and to the computer limits. When the frequency range of

interest is becoming too high for these approaches, some specific methods

are available, often based on wave approaches or power/energy flow analy-

ses [2]. In this paper we will mainly focus on a specific problem, which is

the vibroacoustic analysis of damped closed systems, exhibiting an acoustic

cavity surrounded by a vibrating structure. For this kind of problem, the

finite element method is clearly the most appropriate technique to deal with

industrial geometries, even if it is limited to the low frequency range, which

is the domain of interest in this work.

Vibroacoustic conservative problem

Because of the proximity of the problem topology with structural dy-

namics, the concept of modal analysis has been naturally extended to vi-

broacoustics. In the low-frequency range, this is of particular interest in the

context of engineering design, since some trends can help the designer to

make decisions using a fully conservative model, which is easy to implement

numerically. Modeling damping terms is clearly the hardest thing during

the whole process, so using conservative models avoid a difficult step, which
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can be acceptable only at early design stage, in particular in applications

where noise and vibrations are among the design criteria. In this context,

using vibroacoustic normal modes can be interesting in a engineering point

of view.

In a numerical point of view, even this non-dissipative case still induces

difficulties, in particular because the finite elements method (FEM) based

on the classical displacement-pressure (u,p) formulation leads to a coupled

problem which is large and not symmetric [3], and the very efficient eigen-

value solvers dedicated to symmetric problems, which have been developed

for years, can not be applied. Of course, more general solvers can be used,

but an alternative way is to transform the initial problem in a symmetric

one, using symmetrization techniques [4, 5]. These techniques can be either

based only on mathematical considerations (by transforming unsymmetric

matrices into symmetric ones), or on physical considerations, by choosing,

instead or added to pressure p, another variable in the fluid domain. Among

the available descriptions, it has been shown [3] that using the displacement

potential leads to a well-posed problem in the static case. Some other for-

mulations leading to symmetric system are for example field displacement,

which is complicated by its irrotationality constraint [6]; velocity potential,

whose topology is not classic [7, 8] (the double sized state-space has to be

used for eigenvalue problem); or combination of two variables, pressure and

displacement potential for example [9, 3], which doubles the number of DOFs.
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Vibroacoustic damped problem

In order to practically reduce sound level, the low-cost and efficient way

consists in introducing visco- and poro-elastic materials, most of the time

after the initial design of the structure. The case of viscoelastic damped

structure coupled with compressible fluid is considered here and the finite

elements (FE) model of visco-elastic structures which is used in this paper

is available in literature [10, 11]. Resonances dominated by fluid cavity are

controlled by poro-elastic materials. The two classical ways of using such

materials in FE models is either to consider the acoustic impedance of the

material (the material being modeled by a boundary condition on fluid do-

main) or to consider the modeling of porous media using for example the

Biot-Allard theory [12, 13, 14] whose FE models need a discretization of the

poro-elastic domain. For both approaches, the frequency dependence of ma-

terial parameters is undoubtedly a key point for efficient representation of

physical phenomenon, even if it induces difficulties for the resolution of the

problem. This resolution is also affected by the size and the topology of the

FE models. For frequency responses evaluations, direct resolution of these

models are time-consuming and dynamic reduction method [15] is most of

the time necessary, in particular when one is interested in the optimization

of the choice of absorbing materials (material characteristics, positioning,

uncertainties management...). Normal modes of coupled system could be

used, but the topology of the system and the high number of DOFs induce

numerical difficulties for finding eigenmodes of the coupled system. There-

fore, decoupling of domains (fluid and structure) is often considered, normal

modes of in vacuo structure and rigid walls cavity are classically used for
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modal reduction. Unfortunately, it has been shown [16] that these reduction

strategies have bad convergence properties that can be physically explained

by the velocity discontinuity at the fluid-structure interface, which have been

replaced by rigid walls. Even if an infinite number of modes would be used,

the exact solution in terms of velocity could not be achieved.

In literature [3], it has been proposed to use the displacement potential as

unknown variable in the fluid domain and its decoupled modal basis was en-

riched by static response of cavity induced by the deformation of structure.

This is an efficient approach but difficult to use when an acoustic absorb-

ing material is introduced and modeled using normal impedance boundary

condition. Recently [17], an equivalent method has been proposed, using

pressure as unknown variable, leading to the same difficulty. Identically, the

use of pseudo-static corrections for both decoupled modal bases has been in-

vestigated [18]: this technique uses static corrections of Ritz basis for elastic

structures and has a limitation due to singularity of fluid matrix and can be

difficult to adapt to the component synthesis approach.

The first point which is addressed in this paper is related to the improvement

of CMS techniques for vibroacoustics: the classic decoupled bases are used

first, and then the fluid basis is enriched by cavity residuals vectors associ-

ated to specific boundary conditions on the coupling interface, in order to

improve convergence.

Stochastic vibroacoustic damped problem

When dealing with absorbing material for vibroacoustics, uncertainties

are of first importance for engineering applications, since corresponding ma-

terials are most of the time based on polymers or composites which have
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complex mechanical behavior (anisotropy, visco elasticity, frequency and tem-

perature dependance...) and most of the time exhibit uncertain behavior, due

to material and manufacturing dispersions or environmental conditions. Ba-

sically, two approaches can be used to deal with uncertainties in the context

of FEM, the parametric approach (stochastic FEM) and the non-parametric

approach.

The non-parametric approach has been proposed some years ago [19]. In

this approach, which is adapted to complex industrial cases with many un-

certainties, the idea is that the whole set of uncertainties (including material,

manufacturing, environmental, models uncertainties) can be represented by

a single dispersion parameter (or a reduced set of parameters). Some mathe-

matical tools have been developed to build a set of random matrices that are

used in a Monte Carlo simulation to estimate the variability of the response.

The method, which was first developed for positive definite matrices, has

been recently extended to vibroacoustics [20]. This approach is well adapted

to uncertainties propagation, but it does not allow one to estimate the im-

pact of a given physical parameter to the global dispersion, which is of first

importance in design phase or optimization processes.

The parametric approach [21] is used in this paper. It requires the para-

metric description of random variables, and some stochastic bases are used

to project the uncertain response of the system. The calculation cost can

be very large, since many iterations are required, depending on the strat-

egy chosen. In any cases, model reduction can help to reduce calculation

cost, providing that the reduced model can represent the behavior of the full

model. The classical model reduction strategies which have been discussed

8



above must be updated as soon as one parameter varies. In this paper, a spe-

cific effort is made to define a so-called robust basis, which does not require

updating after parametric changes, in order to use it efficiently in inverse

problems (e.g. in the case of optimization) or during the direct random anal-

ysis problem (uncertainties propagation).

The construction of the bases associated to uncertainties propagation is based

on parametric approach. Fluctuation of random variables around their nomi-

nal values is considered as modifications according to nominal model and this

set of modifications induces a set of residual forces which act on the nominal

model. Robust basis is established by enriching the Ritz basis of nominal

model with dynamic vectors (corresponding to a deterministic frequency) or

static responses of nominal model due to modification forces. This strategy

allows one to obtain a final reduced problem with a small size that can be

efficiently used in iterative procedures.

2. Formulation of vibroacoustic problem

2.1. Coupled formulation

The internal vibroacoustic problem which is considered in this paper is

presented in figure 1. Let Vf be the fluid domain, Vs the structural domain, Su

the fluid-structure coupling interface and Sa the acoustic absorbing surface

characterized by acoustic impedance Za(ω). The equations describing the

permanent harmonic response at frequency ω of fluid domain in terms of
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Figure 1: Description of vibroacoustic problem

pressure variable are [3, 9, 22]:























∆p +
ω2

c2
p = 0, (a)

∂p

∂n
= ρfω

2un on Su ∪ Sa, (b)

vn =
p

Za(ω)
on Sa. (c)

(1)

In order to be well-posed in the static case (ω = 0), the following constraint

is introduced [17]:
∫

Vf

pdV = −ρf c
2

∫

Su∪Sa

undS, (2)

which leads to the static solution ps:

ps = −
ρfc

2

Vf

∫

Su∪Sa

undS. (3)
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In the dynamic case (ω 6= 0), any solution of (1) always satisfies the constraint

(2).

A weak variational formulation of vibroacoustic problem is:

for all admissible (δu, δp), find (u, p) such that:










































0 = ks(u, δu)− ω2ms(u, δu)−
∫

Su
pnδudS

−
∫

∂V
f
s
fsδudS,

0 =
∫

Vf
∇p∇δpdV − ω2

c2

∫

Vf
pδpdV

−ω2ρf
∫

Su
unδpdS + jω

ρf
Za(ω)

∫

Sa
pδpdS,

0 =
∫

Vf
pdV + ρfc

2
∫

Su∪Sa
undS.

(4)

ks and ms are structural stiffness and mass operators, ∂V f
s is the structural

surface on which the external force is imposed.

The FE discretization of (4) can be written as:

KsU − ω2MsU − CP = Fs, (5)

KfP − ω2MfP +
jω

Za(ω)
AfP − ρfω

2CTU = 0, (6)

where Ks, Ms are structural stiffness and mass matrices, Kf et Mf are re-

spectively matrices corresponding to the discretization of kinematic energy

and compressibility matrix of fluid (named ”stiffness” and ”mass” matrices

of fluid in the following). Kf ∈ RNf×Nf is symmetric positive semi-definite of

rank Nf − 1, Mf ∈ RNf×Nf is symmetric definite positive; C is the coupling

matrix; Af is the absorbing acoustic matrix, symmetric and depending on

the geometry of Sa; Fs is the external force vector.
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Combining (5) and (6) allows one to obtain the classic unsymmetric system:









Ks −C

0 Kf



 − ω2





Ms 0

ρfC
T Mf





+
jω

Za(ω)





0 0

0 Af















U

P







=







Fs

0







. (7)

This can be written in a compact form:

[K − ω2M +
jω

Za(ω)
A]Y = F, (8)

where:

K =





Ks −C

0 Kf



 ; M =





Ms 0

ρfC
T Mf



 ; A =





0 0

0 Af





Y =







U

P







; F =







Fs

0







.

(9)

2.2. Acoustic modes

Acoustic modes are solutions of the eigenvalue problem using rigid cavity

boundary conditions:



























∆p +
ω2

c2
p = 0, (a)

∂p

∂n
= 0 on rigid walls, (b)

∫

Vf

pdV = 0. (c)

(10)

The associated weak variational formulation is:

∫

Vf

∇p∇δpdV −
ω2

c2

∫

Vf

pδpdV = 0. (11)
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Then, the discretization corresponding to equation (11) is:

(

Kf − ω2Mf

)

P = 0. (12)

It is easy to see that (ω = 0; p = const) is a trivial solution of (10ab), but it

does not satisfy the constraint (10c). On the opposite, (10c) is automatically

verified by all the solutions (ω 6= 0) of (10ab).

3. Model reduction of deterministic vibroacoustic problem

3.1. Classical reduction using decoupled basis

One can project now (7) on the decoupled basis Ts and Tf containing in

vacuo structural modes and rigid wall cavity modes:

U =
ns
∑

β=1

Uβq
s
β = Tsq

s, P =

nf
∑

α=1

Pαq
f
α = Tfq

f , (13)

where qsβ are the modal coordinates. One obtains the reduced system:









K̄s −C̄

0 K̄f



− ω2





M̄s 0

ρf C̄
T M̄f





+
jω

Za(ω)





0 0

0 Āf















qs

qf







=







F̄s

0







, (14)

where:

K̄s = T T
s KsTs, M̄s = T T

s MsTs,

C̄ = T T
s CTf , K̄f = T T

f KfTf ,

M̄f = T T
f MfTf , Āf = T T

f AfTf ,

F̄s = T T
s Fs.

(15)

The fluid basis Tf is defined using rigid wall instead of coupling interface,

inducing that the velocity continuity is not satisfied on the coupling interface.
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Therefore the response can not converge exactly (in terms of velocity) to the

accurate solution even if many modes are introduced [16]. To improve the

convergence, Tf is enriched by static response ps defined by (3). ps is constant

in space at each given ω, so it can be written ps = q
f
0p0, where p0 is the static

cavity mode [17] corresponding to ω = 0:

p =
n

∑

α=1

pαq
f
α + ps =

n
∑

α=0

pαq
f
α, (16)

or, in a discretized form:

P =

n
∑

α=0

Pαq
f
α. (17)

In the case without absorbing area Sa, the system (14) can be transformed

to a reduced symmetric system by using decomposition (16). If the cavity

modes pα have been ”mass”-normalized, variational equations (4) with p

defined by (16), using test function δp = pα, α = 0, ..., n leads to:

ks(u, δu)− ω2ms(u, δu)− q
f
0p0

∫

Su

nδudS

−
n

∑

α=1

∫

Su

qfαpαnδudS =

∫

∂V
f
s

fsδudS, (18)

q
f
0 = −ρfp0

∫

Su

undS, (19)

(

ω2
α − ω2

)

qfα − ω2ρf

∫

Su

unpαdS = 0, ∀α ∈ N ∗. (20)

The elimination of variable q
f
0 leads to:

ks(u, δu)− ω2ms(u, δu) + ρfp
2
0

∫

Su

undS

∫

Su

nδudS

−
n

∑

α=1

∫

Su

qfαpαnδudS =

∫

Sf

fsδudS, (21)
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(

ω2
α − ω2

)

qfα − ω2ρf

∫

Su

unpαdS = 0, ∀α ∈ N ∗, (22)

or, after discretization:

(Ks +Kc)U − ω2Ms − ω2

n
∑

α=1

1

ω2
α

CPαq
f
α

−ω2

n
∑

α=1

ρf

ω2
α

CPαP
T
α C

TU = Fs, (23)

(

1

ρf
−

ω2

ρfω2
α

)

qfα −
ω2

ω2
α

P T
α C

TU = 0, ∀α ∈ N ∗, (24)

where Kc is obtained by the discretization of p20
∫

Su
undS

∫

Su
nδudS. Using

the fluid basis Tf containing normal modes Pα, the combination of the two

equations below leads to the following symmetric system:









Ks +Kc 0

0 diag
(

1
ρf

)



 (25)

−ω2





Ms +Mc CTfdiag
(

1
ω2
α

)

sym diag
(

1
ρfω

2
α

)















U

qf







=







Fs

0







,

in which the matrix Mc =

n
∑

α=1

ρf

ω2
α

CPαP
T
α C

T is symmetric. The reduced

symmetric system is expressed in hybrid coordinates (physic: U , modal:

qf).

To complete the reduction on modal basis, U is now projected on the solutions

of the following eigenvalue problem [3, 17]:

(Ks +Kc)Uβ = ω2
β (Ms +Mc)Uβ, (26)

where Uβ is a structural mode of the structure including added mass and
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stiffness effects of fluid, associated to Kc and Mc. The projection of U is:

U =
m
∑

β=1

Uβq
s
β = Tsq

s. (27)

This gives the reduced model expressed with generalized coordinates:









diag(ω2
β) 0

0 diag
(

1
ρf

)



 (28)

−ω2





I C̄diag
(

1
ω2
α

)

sym diag
(

1
ρfω

2
α

)















qs

qf







=







T T
s Fs

0







.

It should be emphasized that the above equations have been obtained with-

out acoustic absorbing area Sa. When Sa, characterized by Za, is present,

the variables in equations leading to (21) and (22) are linearly dependent

(because of the Af terms), therefore that transformation leads to a complex

reduced system which is not easy to implement. An alternative way to obtain

a reduced model in such a situation is presented in the next section.

3.2. A CMS method using decoupled basis enriched by residual response vec-

tors

In this section, a simple and efficient modal synthesis method is pro-

posed, based on the enrichment of decoupled fluid basis by selected resid-

ual vectors which are responses of fluid cavity caused by interface operators

(fluid-structure coupling surface and absorbing area).

Equation (6) can be rewritten as:

(

Kf − ω2Mf

)

P = ω2ρfC
TU −

jω

Za(ω)
AfP = Ffs + Ffa, (29)
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in which Ffs and Ffa denote external forces caused by structure and by

absorbing surface:

Ffs = ω2ρfC
TU (a),

Ffa = − jω

Za(ω)
AfP (b).

(30)

These forces are linked to the unknowns of the problem. The objective

consists in determining their responses to enrich fluid basis defined by (17).

Structural basis is still Ts containing the normal modes of in vacuo structure.

Ffs and Ffa can be evaluated using modal projection of displacement and

pressure in their expressions:

Ffs ≈ ω2ρfC
TTsq

s (a),

Ffa ≈ − jω

Za(ω)
AfTfq

f (b).
(31)

In structural dynamics, static responses are classically used to determine

residual vectors. In presence of fluid, the singularity of Kf can induce

numerical difficulties, however one can modify it by adding an extra term

αcMf which is proportional to fluid mass matrix. To well represent the

behavior of system, αc should be within the frequency band of interest:

αc = ω2
c ; ωc ∈ [ωmin ωmax]. Residual vectors are introduced by:

∆Tfs = (Kf − ω2
cMf )

−1
CTTs,

∆Tfa = (Kf − ω2
cMf )

−1
AfTf .

(32)

Thus enriched fluid basis is now:

Tfe = [Tf ∆Tfs ∆Tfa]. (33)

A singular values decomposition (SVD) of Tfe can be realized to guarantee

good conditioning by selecting the largest directions of the space, resulting
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in a reduction of vector numbers [23].

Reduced system is the same one as (14) with Tf replaced by Tfe. It should

be noted that to count static response of higher structural modes (which

are dropped out of Tf) Tf contains now also static mode P0. Efficiency and

performance of this reduced model can be compared to the reduced problem

(14) which uses the classical decoupled bases.

3.3. Model reduction of structure with viscoelastic damping

Now, consider the case in which the structure includes damped viscoelas-

tic patches. In this case, stiffness Ks can be separated into two parts, one

being purely elastic, constant, and the other one being viscoelastic, frequency

and temperature dependent:

Ks(ω) = Kse +G(ω, T )Ksv. (34)

Thus, the FE model of the structure with viscoelastic damping can be written

as

[Kse +G(ω, T )Ksv − ω2Ms]U = Fs, (35)

where G(ω, T ) is the shear modulus of viscoelastic material, mainly depend-

ing on frequency ω and temperature T , and possibly to other environmental

factors. The figure 2 shows a nomogram in reduced frequency of viscoelastic

material 3M ISD112 allowing the synthetic representation of frequency and

temperature evolution of the shear modulus G(ω, T ). The reduced frequency

is defined by: ωr = αTω in which αT is function of temperature T . More

details about visco-elastic aspects can be found in references [10, 11].
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Figure 2: Nomogram in reduced frequency of material 3M ISD112TM and associated

reduced frequency αT

In the model reduction strategy, it is better to use a basis which is

not frequency dependent. To achieve this, one can for example use nor-

mal pseudo-modes [24] or multi-model [25]. In this study, one considers the

multi-model approach. Let [ωmin ; ωmax] be the frequency range of interest

and ωc ∈ [ωmin ; ωmax] be a specific value of frequency, then the complex

stiffness is Ks(ωc) = Kse +G(ωc, T )Ksv. The basis Ts0 containing the modes

of associate conservative problem can be calculated easily:

[ℜ{Ks(ωc)} − ω2Ms]U = 0, (36)

where ℜ{.} stands for real part. This basis is then enriched by the static

response ∆Ts0 of system (36) to viscoelastic force defined as follow:

∆Ts0 = [ℜ{Ks(ωc)}]
−1

KsvTs0, (37)

which defines the enriched basis Ts = [Ts0 ∆Ts0]. If the basis Ts is not efficient

enough to insure the convergence, in particular if the frequency range is very
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large, several values of ωc can be used to build the basis Ts0. The reduced

model is:

{K̄se +G(ω, T )K̄sv − ω2M̄s}q
s = F̄s. (38)

Note that with this basis, the reduced matrix K̄s and M̄s are not diagonal.

3.4. Extension of Craig-Bampton dynamic substructuring

The classical Craig-Bampton basis of a subdomain k is written for a

structural subdomain or a fluid one:

T (k)
s =





I 0

−(Ks
II)

−1Ks
IF Ψs



 for structure, (39)

and

T
(k)
f =





I 0

−(Kf
II)

−1K
f
IF Ψf



 for fluid. (40)

I index is related to internal DOFs, while F index is associated to fixed DOFs.

Ψs contains normal modes of structural subdomain fixed on interface, Ψf

contains normal modes of fluid subdomain with boundary condition P = 0

on interface.

If the structure includes viscoelastic damping patches, matrices Ks
II and Ks

IF

will be replaced by Ks
II(ω = ωc) and Ks

IF (ω = ωc) like proposed in litterature

[11]. Associate basis is thus Ψs = [Ψs0 ∆Ψs0] in which Ψs0 contains solutions

of the following equation:

{

ℜ (Ks
II(ωc))− ω2Ms

II

}

U = 0, (41)

and ∆Ψs0 is determined by

∆Ts0(ωc) = [ℜ (Ks
II(ωc))]

−1
Ksv

IITs0(ωj). (42)
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According to section 3.2, for a fluid subdomain which has coupling surfaces

S
(k)
u with structure and absorbing surface S

(k)
a , basis Ψf is now replaced by

enriched basis Ψfe = [Ψf ∆Ψfs ∆Ψfa] where ∆Ψfs and ∆Ψfa are:

∆Ψfs =
(

K
f
II − ω2

cM
f
II

)

−1

CT
II

∑

Ts,

∆Ψfa =
(

K
f
II − ω2

cM
f
II

)

−1

A
f
IIΨf ,

(43)

in which
∑

Ts symbolizes the set of all substructural bases coupled with the

considered fluid sub-domain.

3.5. Simulations

X

YZ

Figure 3: FE model of cavity coupled with plate treated by viscoelastic patches and three

rigid walls treated by poroelastic patches

An acoustic cavity (fig. 3) of size a×b×c = 0.654×0.527×0.6 m3 is cou-

pled with a flexible plate which is treated by viscoelastic patches 3M ISD112
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(Figure 2) at T = 25oC, the other walls are rigid. On three perpendicular

rigid walls, poro-elastic patches are sticked, they are characterized by acous-

tic impedance Za(ω) given in figure 4. A harmonic point force located in

(x = 0.191m; y = 0.198m) is exciting the plate, and the frequency range of

interest is [0; 300]Hz.
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Re(Z
a
)

Im(Z
a
)

Figure 4: Acoustic impedance of absorbing material Za(ω)

The characteristics of the plate are:

- base plate:

a× b = 0.654× 0.527 m2,

E1 = 7× 1010Pa; ν1 = 0.33,

h1 = 3× 10−3 m;

- viscoelastic layer: h2 = 2.54× 10−5 m;

22



- constrained layer: E3 = 2.5×109Pa; ν3 = 0.33; h3 = 5×10−4 m.

The plate is meshed using 24×24 ANSYS SHELL63 elements (thin plate).

For the fluid domain, 24 × 24 × 12 FLUID30 elements are used. This mesh

guarantees 6 elements per wavelength in the frequency range of interest (up

to 300 Hz).

Two indicators are used to present the results, the acoustic power Pi and

the mean of quadratic velocity V̄ 2
n :

Pi =

∫

Vf

(

1

4ρf
pp∗ +

1

4ρfω2
∇p∇p∗

)

dV , (44)

V̄ 2
n =

1

|S|

∫

S

v2ndS, (45)

where p∗ stands for the conjugate of p.

Two cases are considered. Case 1 corresponds to cavity with viscoelastic

plate and case 2 corresponds to cavity with viscoelastic plate and poro-elastic

patches (surface Sa).

In order to build the normal modes of multi-model method, one value

ωc = 150 × 2π (in the middle of band) is used. Basis Ts contains 41 modes:

20 normal modes of Ts0 (criterion 2×fmax), 20 modes of ∆Ts0 and one vector

corresponding to static residual response to force Fs. Basis Tf has 30 modes

contained in the frequency band [0; 3×fmax] while ∆Tfs contains 36 vectors

and ∆Tfa contains 29 ones. So enriched basis Tfe has 66 modes for case 1

and 95 for case 2 (with or without Sa). The figure 5 shows the limitation

of classic decoupled bases even if they have been enriched by ps: errors are
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large, even when the number of modes in Tf is increased to 100 and the static

mode is included in the basis. In the whole paper, results are presented in

dB using a reference level of 10−12S.I., and the reference solution is obtained

by solving the full FE model with the direct method.

Figures 6 and 7 illustrate the efficiency of the proposed basis in which

decoupled fluid basis is enriched using residual vectors with or without ab-

sorbing area Sa: the error levels are much lower than with the classical

uncoupled bases.

4. Robust dynamic reduction method

4.1. Formulation

In this section, the investigations are only related to the parametric ap-

proach of uncertainties. In the following, fonts with double lines will be

used for random variables (i.e. M will be used to describe the random vari-

able associated to M). The FE deterministic model has been defined above

(equations 5-7) and it can be written in compact form (8):

[K − ω2M +
jω

Za

A]Y = F, (46)

where Y T = [UT P T ] is the deterministic response vector. In order to val-

idate the method, we consider that uncertain parameters are only those of

characteristics of acoustic absorbing material and viscoelastic elements, so

there is no uncertainty in matrices Kf , Mf , C and Af .
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Figure 5: Indicators of classical uncoupled basis, cavity without Sa. (a): sound power

level, (b): mean of quadratic velocity
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Figure 6: Indicators of proposed method, cavity without Sa. (a): sound power level, (b):

mean of quadratic velocity
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Figure 7: Indicators of proposed method, cavity with Sa. (a): sound power level, (b):

mean of quadratic velocity
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Let θ be a random variable (vector or scalar), the stochastic FE model func-

tion of θ is:
[

Ks − ω2
Ms

]

U+ CP = Fs, (47)
[

Kf − ω2Mf +
jω

Za

Af

]

P+ ρfω
2CT

U = 0. (48)

Or, in compact form:

[K− ω2
M +

jω

Za

A]Y = F. (49)

By setting H = [K− ω2
M+ jω

Za
A] one has:

θ 7−→ Y = f(θ) = H
−1F. (50)

The random variable θ can be represented as:

θ = θ0 +∆θ, (51)

where θ0 is the nominal value of θ and ∆θ is the fluctuation around θ0. If θ

is Gaussian one can map:

θ = θ0 (1 + δθξ) , (52)

where δθ represents the dispersion level, and ξ is a central Gaussian variable.

Thereby a random matrix, for example Ks, function of θ can be expressed

as:

Ks(θ) = Ks +∆Ks(θ), (53)

in which Ks = Ks(θ0) is its nominal value, ∆Ks(θ) is considered as a random

modification around Ks. Consequently, equations (47) and (48), for a set of

28



parameters described by variables θ, can be written as:

[

Ks +∆Ks(θ)− ω2(Ms +∆Ms(θ))
]

U(θ)

+CP(θ) = Fs, (54)
[

Kf − ω2Mf +
jω

Za +∆Za(θ)
Af

]

P(θ)

+ρfω
2CT

U(θ) = 0, (55)

where ∆Ks(θ) = ∆Kse(θ) + ∆ [G(θ)Ksv(θ)] for viscoelastic damping. The

term corresponding to acoustic absorbing material can be rewritten as:

1

Za +∆Za(θ)
Af =

1

Za

Af + a(θ)Af , (56)

in which a(θ) is a random scalar - also function of Za and ∆Za(θ). Equa-

tions (54)-(56) show that the random model has random perturbation terms

around deterministic model.

Using the robust reduction bases Ts and Tfe leads to robust reduced model

of (49):

[K̄− ω2
M̄ +

jω

Za

Ā]Ȳ = F̄. (57)

Problem now resides in the construction of robust bases Ts and Tfe. Dur-

ing Monte Carlo simulation, for any one sample of θ, solving new eigenvalue

problems and calculating residual vectors are theoretically required to find

them, as indicated by equations (32), (36) and (37), which is time expensive.

In order to avoid this kind of reactualization, an alternative approximate

method is the robust basis [23, 26], based on the deterministic model whose

reduction basis are Ts = [Ts0 ∆Ts0] and Tfe = [Tf ∆Tfs ∆Tfa]. These deter-

ministic bases will be enriched by the response vectors of deterministic model

to the forces corresponding to random modifications. For the structure, the
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static responses to these forces are considered [23, 11] (respectively mass,

elastic and viscoelastic stiffness):


















∆T
Ms

s1 = [ℜ(Ks(ωc))]
−1∆Ms(θ)Ts0,

∆T
Kse

s1 = [ℜ(Ks(ωc))]
−1∆Kse(θ)Ts0,

∆T
Ksv

s1 = [ℜ(Ks(ωc))]
−1∆Ksv(θ)Ts0.

(58)

The deterministic basis Ts is then enriched by the mean structural modifica-

tion random vectors ∆Ts1:

∆Ts1 = E
(

[∆T
Ms

s1 ∆T
Kse

s1 ∆T
Ksv

s1 ]
)

, (59)

where E(.) is the first statistical moment. The robust basis Ts is thus:

Ts = [Ts ∆Ts1]. (60)

For the fluid domain, the random force due to structural one is represented

by the term ∆Ts1: its residual response is approached as follows:

∆Tfs =
(

Kf − ω2
cMf

)

−1
CT∆Ts1. (61)

The randommodifications forces associated to absorbing area is [jωa(θ)AfP(θ)]

which is approximated by [jωa(θ)AfTfq
f(θ)]. Because a(θ) is a scalar, the

residual response of this force is always estimated by the term ∆Tfa of the

deterministic basis Tfe.

Finally the robust fluid basis can be established:

Tfe = [Tfe ∆Tfs]. (62)

One can then orthogonalize the basis and find the dominant directions of the

subspaces Ts and Tfe by using singular values decompositions [23]. This is of

particular interest if a large number of vectors has to be added to the initial

basis.
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4.2. Simulations

A simplified exhaust line composed by two aluminum tubes, and sup-

ported at ends is considered (figure 8). The geometric characteristics of the

tube with small diameter are: radius R1 = 0.1m, length L1 = 0.4m. Those

of large diameter are: R2 = 0.25m, L2 = 1m. Two ends are closed by rigid

walls on which poro-elastic elements are sticked. The tube of large diameter

is treated by viscoelastic patches at its extremities on the circumference, like

shown in figure 8. Other geometries and material characteristics are given in

section 3.5. The frequency band of interest [100; 350]Hz is divided into 800

points, and a single value in the middle of the band ωc = ωj = 225×2π is used

when required. A point force is exciting the system in the diameter direction.

Figure 8: Simplified exhaust line treated by viscoelastic and poro-elastic elements (modeled

with ANSYS)

Full FE model has 12899 DOFs (5784 structural DOFs and 7115 fluid

DOFs), corresponding to at least 6 elements per wavelength at 350 Hz.
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Craig-Bampton method cuts the line in two parts: main part (tube with

large diameter and connecting plate) and secondary one (tube with small di-

ameter). Structural nominal basis Ts of main part contains 194 modes (144

static modes which correspond to 144 junction DOFs and 50 normal modes)

enriched by 51 modes residual modes associated to viscoelastic forces. The

one of secondary part contains 153 modes (144 static modes and 9 normal

modes). For the fluid domain, the enriched basis contains 51 acoustic modes

and 119 enriched modes in which 106 of ∆Tfs and 13 of ∆Tfa . Thus, the final

deterministic reduced model has 373 DOFs including 203 structural DOFs

and 170 fluid DOFs. This corresponds to a reduction ratio of 97%. The

acoustic impedance Za(ω) = ZR(ω) + jZI(ω) has been obtained by fitting

the experimental curves:

ZR(ω) = ZR
1 + ZR

2 f + ZR
3 f

2 + ZR
4 f

3; ω = 2πf,

ZI(ω) =
ZI

1

f
+ ZI

2 + Z3f + ZI
4f

2 + ZI
5f

3.
(63)

The nominal values of coefficients (using international system units with f

in hertz) are: ZR
1 = 788; ZR

2 = −1.32; ZR
3 = 1.31 × 10−3; ZR

4 = −4, 01 ×

10−7; ZI
1 = −694 × 103; ZI

2 = −2640; ZI
3 = 5.49; ZI

4 = −4.44 × 10−3;

ZI
5 = 1, 24 × 10−6. All coefficients are considered as random variables of

normal distribution with dispersion coefficient of 2% (case 1) and 4% (case

2), respectively corresponding to about 6% and 10% of dispersion on ZR and

ZI . For the structural part, the chosen random variables are temperature T ,

thicknesses h1, h2 and h3 of the viscoelastic treatment:

• h1: Gamma distribution, h1 = 3 × 10−3m, σh1
= 0.01h1 (case 1),

σh1 = 0.02h1 (case 2);
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• h2: Gamma distribution, h2 = 2.54 × 10−5m, σh2
= 0.05h2 (case 1),

σh2 = 0.1h2 (case 2);

• h3: Gamma distribution, h3 = 5 × 10−4m, σh3
= 0.05h3 (case 1),

σh3 = 0.1h3 (case 2);

• T: Normal distribution, T = (273 + 20)K, σT = 0.01T (case 1) and

σT = 0.02T (case 2).

This paper being oriented on damping devices design, only uncertainties

related to poro- and visco-elastic materials are considered. Nevertheless any

parameter uncertainty that can be addressed through the element or material

parameters of the FE model can be considered. The uncertainties that can

not be considered with the proposed approach are those related to mesh

changes (i.e. change of cavity size or plate width and length) and modeling

uncertainties (i.e. errors in the model itself). As far as the poroelastic layer is

concerned, it is clear that the uncertainty distribution on fitting parameters

are not easy to use in a practical application, since they are not directly

linked to physical properties. An extension of this work could be to consider

non-parametric uncertainties for the porous layer, coupled to a parametric

description of physical variables for other parameters.

Figures 9-10 show the extreme statistics of sound power level Pi and mean

of quadratic normal velocity of structure V̄ 2
n with 1000 Monte Carlo simu-

lation (MCS) samples, the solid lines correspond to extreme statistics and

mean values, the dashed ones correspond to nominal model. Case 1 is related

to low dispersion and case 2 corresponds to medium dispersion. In term of

calculation time, the proposed method requires 1280 seconds for the con-
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Figure 9: Acoustic indexes spectrums. Uncertainty levels: case 1. 1000 samples. Solid

line = mean value; Dashed line = nominal value; Grey area = min-max bounds

34



100 150 200 250 300 350

20

25

30

35

40

45

50

55

60

65

frequency (Hz)

so
un

d 
po

w
er

 le
ve

l (
dB

)

(a)

100 150 200 250 300 350

35

40

45

50

55

60

65

70

75

frequency (Hz)

m
ea

n 
of

 V
n2  (

dB
)

(b)

Figure 10: Acoustic indexes spectrums. Uncertainty levels: case 2. 1000 samples. Solid

line = mean value; Dashed line = nominal value; Grey area = min-max bounds
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struction of nominal projection bases, and then each sample consumes 600

secs (processor Pentium IV 3.2GHz, RAM 1Gb). For N=1000 samples, this

represents a CPU reduction ratio of 99, 5% when using the direct CMS on

the full model. In order to validate the statistics given by the reduced model,

the full stochastic FE model should be solved without reduction, which obvi-

ously requires weeks of calculations, so a complete validation of the statistics

given by the reduced model is not easy to perform. An evaluation on a lim-

ited frequency band is nevertheless proposed as reference using 1000 samples

requiring each 65 direct calculations between 281.2 and 301.5 Hz. The fig-

ure 11 exhibits the results of this validation by comparing the statistics of

full stochastic approach and proposed robust CMS method. One can clearly

observe that, on this limited frequency range, the proposed method can effi-

ciently estimate minimum, maximum and mean values of the indicators: the

results are very close to those obtained by the full stochastic method. One

can expect the same efficiency on the whole frequency range of interest.

5. Concluding remarks

In this study, a component modes synthesis method for damped vibroa-

coustic problems which is efficient and easy to implement has been proposed,

in order to predict the structural modifications induced by the viscoelastic

and poro-elastic materials used as design solution for vibration and noise

reduction. The convergence is greatly improved and the efficiency of the pro-

posed Ritz bases is compared to performances of classical uncoupled bases

using in vacuo structural modes and undamped rigid wall cavity modes,

which are commonly used to perform a modal reduction. On the other hand,
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 Figure 11: Comparison of acoustic indexes spectrums: mean value and min-max bounds.

Uncertainty levels: case 1. 1000 samples. Legends: full stochastic model; * proposed

robust CMS.
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robust bases have been constructed to solve the problem of uncertainties

propagation. Furthermore, it is shown that the proposed robust bases re-

sult in significant time reduction compared to direct resolution with the full

model.

This robust basis is easily extended to Craig-Bampton CMS method and

can greatly reduce the required time on substructured acoustic models. This

facilitates the inclusion of these models into large scales automated optimiza-

tion schemes for robust design.

The poro-elastic material was modeled by an absorbing surface characterized

by its acoustic impedance Za(ω) depending on frequency. In order to well

understand the coupling phenomena between structure and acoustic domain

and also to represent all effects, the next step will be to explicitly model the

poro-elastic media and build appropriate reduction bases.
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