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In order to reduce vibrations or sound levels in industrial vibroacoustic problems, the low-cost and efficient way consists in introducing visco-and poro-elastic materials either on the structure or on cavity walls. Depending on the frequency range of interest, several numerical approaches can be used to estimate the behavior of the coupled problem. In the context of low frequency applications related to acoustic cavities with surrounding vibrating structures, the finite elements method (FEM) is one of the most efficient techniques. Nevertheless, industrial problems lead to large FE models which are time-consuming in updating or optimization processes. A classical way to reduce calculation time is the Component Mode Synthesis method (CMS), whose classical formulation is not always efficient to predict dynamical behavior of structures including visco-elastic and/or poro-elastic patches. Then, to ensure an efficient prediction, the fluid and structural bases used for the model reduction need to be updated as a result of changes in a parametric optimization procedure. For complex models, this leads to prohibitive numerical costs in the optimization phase or for management and propagation of uncertainties in the stochastic vibroacoustic problem. In this paper, the formulation of an alternative CMS method is proposed and compared to classical (u,p) CMS method: the Ritz basis is completed with static residuals associated to visco-elastic and poro-elastic behaviors. This basis is also enriched by the static response of residual forces due to structural modifications, resulting in a so-called robust basis, also adapted to Monte Carlo simulations for uncertainties propagation using reduced models.

In transports industry, reduction of vibration and acoustic levels using industrial vibroacoustic numerical models leads to large and costly problems.

Solving dissipative systems in presence of uncertain parameters is still a challenge. The techniques which are classically used in the low frequency range are the finite/infinite elements or boundary elements methods [START_REF] Atalla | Review of numerical solutions for low-frequency structural-acoustic problems[END_REF], their frequency limits being directly related to the size of the elements compared to the wavelength and to the computer limits. When the frequency range of interest is becoming too high for these approaches, some specific methods are available, often based on wave approaches or power/energy flow analyses [START_REF] Desmet | Mid-frequency vibro-acoustic modelling: challenges and potential solutions[END_REF]. In this paper we will mainly focus on a specific problem, which is the vibroacoustic analysis of damped closed systems, exhibiting an acoustic cavity surrounded by a vibrating structure. For this kind of problem, the finite element method is clearly the most appropriate technique to deal with industrial geometries, even if it is limited to the low frequency range, which is the domain of interest in this work.

Vibroacoustic conservative problem

Because of the proximity of the problem topology with structural dynamics, the concept of modal analysis has been naturally extended to vibroacoustics. In the low-frequency range, this is of particular interest in the context of engineering design, since some trends can help the designer to make decisions using a fully conservative model, which is easy to implement numerically. Modeling damping terms is clearly the hardest thing during the whole process, so using conservative models avoid a difficult step, which can be acceptable only at early design stage, in particular in applications where noise and vibrations are among the design criteria. In this context, using vibroacoustic normal modes can be interesting in a engineering point of view.

In a numerical point of view, even this non-dissipative case still induces difficulties, in particular because the finite elements method (FEM) based on the classical displacement-pressure (u,p) formulation leads to a coupled problem which is large and not symmetric [START_REF] -P. Morand | Interactions fluide-structure[END_REF], and the very efficient eigenvalue solvers dedicated to symmetric problems, which have been developed

for years, can not be applied. Of course, more general solvers can be used, but an alternative way is to transform the initial problem in a symmetric one, using symmetrization techniques [START_REF] Irons | Role of part-inversion in fluid-structure problems with mixed variables[END_REF][START_REF] Felippa | Symmetrization of the contained compressible-fluid vibration eigenproblem[END_REF]. These techniques can be either based only on mathematical considerations (by transforming unsymmetric matrices into symmetric ones), or on physical considerations, by choosing, instead or added to pressure p, another variable in the fluid domain. Among the available descriptions, it has been shown [START_REF] -P. Morand | Interactions fluide-structure[END_REF] that using the displacement potential leads to a well-posed problem in the static case. Some other formulations leading to symmetric system are for example field displacement, which is complicated by its irrotationality constraint [START_REF] Hamdi | A displacement method for the analysis of vibrations of coupled fluide-structure systems[END_REF]; velocity potential, whose topology is not classic [START_REF] Everstine | A symmetric potential formulation for fluid-structure interactions[END_REF][START_REF] Olson | Analysis of fluid-structure. a direct symmetric coupled formulation based on the fluid velocity potential[END_REF] (the double sized state-space has to be used for eigenvalue problem); or combination of two variables, pressure and displacement potential for example [START_REF] Lesueur | Rayonnement acoustique des structures, vibroacoustique, interactions fluide-structures[END_REF][START_REF] -P. Morand | Interactions fluide-structure[END_REF], which doubles the number of DOFs.

Vibroacoustic damped problem

In order to practically reduce sound level, the low-cost and efficient way consists in introducing visco-and poro-elastic materials, most of the time after the initial design of the structure. The case of viscoelastic damped structure coupled with compressible fluid is considered here and the finite elements (FE) model of visco-elastic structures which is used in this paper is available in literature [START_REF] Khatua | Bending and vibration of multilayer sandwich beams and plates[END_REF][START_REF] De Lima | Modélisation et optimisation robuste de l'amortissement viscoélastique de systèmes mécaniques[END_REF]. Resonances dominated by fluid cavity are controlled by poro-elastic materials. The two classical ways of using such materials in FE models is either to consider the acoustic impedance of the material (the material being modeled by a boundary condition on fluid domain) or to consider the modeling of porous media using for example the Biot-Allard theory [START_REF] Allard | Propagation of sound in porous media; Modelling sound absorbing materials[END_REF][START_REF] Kang | Finite elements modelling of isotropic elastic porous materials coupled with acoustical finite elements[END_REF][START_REF] Atalla | A mixed displacement pressure formulation for poroelastic materials[END_REF] whose FE models need a discretization of the poro-elastic domain. For both approaches, the frequency dependence of material parameters is undoubtedly a key point for efficient representation of physical phenomenon, even if it induces difficulties for the resolution of the problem. This resolution is also affected by the size and the topology of the FE models. For frequency responses evaluations, direct resolution of these models are time-consuming and dynamic reduction method [START_REF] Craig | Substructure methods in vibration[END_REF] is most of the time necessary, in particular when one is interested in the optimization of the choice of absorbing materials (material characteristics, positioning, uncertainties management...). Normal modes of coupled system could be used, but the topology of the system and the high number of DOFs induce numerical difficulties for finding eigenmodes of the coupled system. Therefore, decoupling of domains (fluid and structure) is often considered, normal modes of in vacuo structure and rigid walls cavity are classically used for modal reduction. Unfortunately, it has been shown [START_REF] Boily | The vibroacoustic reponse of a cylindrical shell structure with viscoelastic and poroelastic materials[END_REF] that these reduction strategies have bad convergence properties that can be physically explained by the velocity discontinuity at the fluid-structure interface, which have been replaced by rigid walls. Even if an infinite number of modes would be used, the exact solution in terms of velocity could not be achieved.

In literature [START_REF] -P. Morand | Interactions fluide-structure[END_REF], it has been proposed to use the displacement potential as unknown variable in the fluid domain and its decoupled modal basis was enriched by static response of cavity induced by the deformation of structure.

This is an efficient approach but difficult to use when an acoustic absorbing material is introduced and modeled using normal impedance boundary condition. Recently [START_REF] Ohayon | Linear vibrations of structures coupled with an internal fluid[END_REF], an equivalent method has been proposed, using pressure as unknown variable, leading to the same difficulty. Identically, the use of pseudo-static corrections for both decoupled modal bases has been investigated [START_REF] Tournour | Pseudostatic corrections for the forced vibroacoustic response of a structure-cavity system[END_REF]: this technique uses static corrections of Ritz basis for elastic structures and has a limitation due to singularity of fluid matrix and can be difficult to adapt to the component synthesis approach.

The first point which is addressed in this paper is related to the improvement of CMS techniques for vibroacoustics: the classic decoupled bases are used first, and then the fluid basis is enriched by cavity residuals vectors associated to specific boundary conditions on the coupling interface, in order to improve convergence.

Stochastic vibroacoustic damped problem

When dealing with absorbing material for vibroacoustics, uncertainties are of first importance for engineering applications, since corresponding materials are most of the time based on polymers or composites which have complex mechanical behavior (anisotropy, visco elasticity, frequency and temperature dependance...) and most of the time exhibit uncertain behavior, due to material and manufacturing dispersions or environmental conditions. Basically, two approaches can be used to deal with uncertainties in the context of FEM, the parametric approach (stochastic FEM) and the non-parametric approach.

The non-parametric approach has been proposed some years ago [START_REF] Soize | A nonparametric model of random uncertainties for reduced matrix models in structural dynamics[END_REF]. In this approach, which is adapted to complex industrial cases with many uncertainties, the idea is that the whole set of uncertainties (including material, manufacturing, environmental, models uncertainties) can be represented by a single dispersion parameter (or a reduced set of parameters). Some mathematical tools have been developed to build a set of random matrices that are used in a Monte Carlo simulation to estimate the variability of the response.

The method, which was first developed for positive definite matrices, has been recently extended to vibroacoustics [START_REF] Fernandez | Fuzzy structure theory modeling of sound-insulation layers in complex vibroacoustic uncertain systems: Theory and experimental validation[END_REF]. This approach is well adapted to uncertainties propagation, but it does not allow one to estimate the impact of a given physical parameter to the global dispersion, which is of first importance in design phase or optimization processes. allows one to obtain a final reduced problem with a small size that can be efficiently used in iterative procedures.

Formulation of vibroacoustic problem

Coupled formulation

The internal vibroacoustic problem which is considered in this paper is presented in figure 1. Let V f be the fluid domain, V s the structural domain, S u the fluid-structure coupling interface and S a the acoustic absorbing surface characterized by acoustic impedance Z a (ω). The equations describing the permanent harmonic response at frequency ω of fluid domain in terms of pressure variable are [START_REF] -P. Morand | Interactions fluide-structure[END_REF][START_REF] Lesueur | Rayonnement acoustique des structures, vibroacoustique, interactions fluide-structures[END_REF][START_REF] Ohayon | Structural acoustics and vibration[END_REF]:

           ∆p + ω 2 c 2 p = 0, (a) ∂p ∂n = ρ f ω 2 u n on S u ∪ S a , (b) v n = p Z a (ω) on S a . (c) (1) 
In order to be well-posed in the static case (ω = 0), the following constraint is introduced [START_REF] Ohayon | Linear vibrations of structures coupled with an internal fluid[END_REF]:

V f pdV = -ρ f c 2 Su∪Sa u n dS, (2) 
which leads to the static solution p s :

p s = - ρ f c 2 V f Su∪Sa u n dS. (3) 
In the dynamic case (ω = 0), any solution of (1) always satisfies the constraint [START_REF] Desmet | Mid-frequency vibro-acoustic modelling: challenges and potential solutions[END_REF].

A weak variational formulation of vibroacoustic problem is:

for all admissible (δu, δp), find (u, p) such that:

                     0 = k s (u, δu) -ω 2 m s (u, δu) -Su pnδudS -∂V f s f s δudS, 0 = V f ∇p∇δpdV -ω 2 c 2 V f pδpdV -ω 2 ρ f Su u n δpdS + jω ρ f Za(ω) Sa pδpdS, 0 = V f pdV + ρ f c 2 Su∪Sa u n dS. (4) 
k s and m s are structural stiffness and mass operators, ∂V f s is the structural surface on which the external force is imposed.

The FE discretization of (4) can be written as:

K s U -ω 2 M s U -CP = F s , (5) 
K f P -ω 2 M f P + jω Z a (ω) A f P -ρ f ω 2 C T U = 0, (6) 
where K s , M s are structural stiffness and mass matrices, K f et M f are respectively matrices corresponding to the discretization of kinematic energy and compressibility matrix of fluid (named "stiffness" and "mass" matrices of fluid in the following).

K f ∈ R N f ×N f is symmetric positive semi-definite of rank N f -1, M f ∈ R N f ×N f is symmetric definite positive; C is the coupling matrix;
A f is the absorbing acoustic matrix, symmetric and depending on the geometry of S a ; F s is the external force vector.

Combining ( 5) and ( 6) allows one to obtain the classic unsymmetric system:

    K s -C 0 K f   -ω 2   M s 0 ρ f C T M f   + jω Z a (ω)   0 0 0 A f        U P    =    F s 0    . ( 7 
)
This can be written in a compact form:

[K -ω 2 M + jω Z a (ω) A]Y = F, (8) 
where:

K =   K s -C 0 K f   ; M =   M s 0 ρ f C T M f   ; A =   0 0 0 A f   Y =    U P    ; F =    F s 0    . (9) 

Acoustic modes

Acoustic modes are solutions of the eigenvalue problem using rigid cavity boundary conditions:

             ∆p + ω 2 c 2 p = 0, (a) ∂p ∂n = 0 on rigid walls, (b) V f pdV = 0. (c) (10) 
The associated weak variational formulation is:

V f ∇p∇δpdV - ω 2 c 2 V f pδpdV = 0. ( 11 
)
Then, the discretization corresponding to equation ( 11) is:

K f -ω 2 M f P = 0. ( 12 
)
It is easy to see that (ω = 0; p = const) is a trivial solution of (10ab), but it does not satisfy the constraint (10c). On the opposite, (10c) is automatically verified by all the solutions (ω = 0) of (10ab).

Model reduction of deterministic vibroacoustic problem

Classical reduction using decoupled basis

One can project now [START_REF] Everstine | A symmetric potential formulation for fluid-structure interactions[END_REF] on the decoupled basis T s and T f containing in vacuo structural modes and rigid wall cavity modes:

U = ns β=1 U β q s β = T s q s , P = n f α=1 P α q f α = T f q f , (13) 
where q s β are the modal coordinates. One obtains the reduced system:

    Ks - C 0 Kf   -ω 2   Ms 0 ρ f CT Mf   + jω Z a (ω)   0 0 0 Āf        q s q f    =    Fs 0    , (14) 
where:

Ks = T T s K s T s , Ms = T T s M s T s , C = T T s CT f , Kf = T T f K f T f , Mf = T T f M f T f , Āf = T T f A f T f , Fs = T T s F s . (15) 
The fluid basis T f is defined using rigid wall instead of coupling interface, inducing that the velocity continuity is not satisfied on the coupling interface.

Therefore the response can not converge exactly (in terms of velocity) to the accurate solution even if many modes are introduced [START_REF] Boily | The vibroacoustic reponse of a cylindrical shell structure with viscoelastic and poroelastic materials[END_REF]. To improve the convergence, T f is enriched by static response p s defined by (3). p s is constant in space at each given ω, so it can be written p s = q f 0 p 0 , where p 0 is the static cavity mode [START_REF] Ohayon | Linear vibrations of structures coupled with an internal fluid[END_REF] corresponding to ω = 0:

p = n α=1 p α q f α + p s = n α=0 p α q f α , (16) 
or, in a discretized form:

P = n α=0 P α q f α . (17) 
In the case without absorbing area S a , the system ( 14) can be transformed to a reduced symmetric system by using decomposition [START_REF] Boily | The vibroacoustic reponse of a cylindrical shell structure with viscoelastic and poroelastic materials[END_REF]. If the cavity modes p α have been "mass"-normalized, variational equations ( 4) with p defined by ( 16), using test function δp = p α , α = 0, ..., n leads to:

k s (u, δu) -ω 2 m s (u, δu) -q f 0 p 0 Su nδudS - n α=1 Su q f α p α nδudS = ∂V f s f s δudS, ( 18 
)
q f 0 = -ρ f p 0 Su u n dS, (19) 
ω 2 α -ω 2 q f α -ω 2 ρ f Su u n p α dS = 0, ∀α ∈ N * . (20) 
The elimination of variable q f 0 leads to:

k s (u, δu) -ω 2 m s (u, δu) + ρ f p 2 0 Su u n dS Su nδudS - n α=1 Su q f α p α nδudS = S f f s δudS, (21) ω 2 α -ω 2 q f α -ω 2 ρ f Su u n p α dS = 0, ∀α ∈ N * , (22) 
or, after discretization:

(K s + K c ) U -ω 2 M s -ω 2 n α=1 1 ω 2 α CP α q f α -ω 2 n α=1 ρ f ω 2 α CP α P T α C T U = F s , (23) 
1 ρ f - ω 2 ρ f ω 2 α q f α - ω 2 ω 2 α P T α C T U = 0, ∀α ∈ N * , (24) 
where K c is obtained by the discretization of p 2 0 Su u n dS Su nδudS. Using the fluid basis T f containing normal modes P α , the combination of the two equations below leads to the following symmetric system:

    K s + K c 0 0 diag 1 ρ f   (25) 
-ω 2   M s + M c CT f diag 1 ω 2 α sym diag 1 ρ f ω 2 α        U q f    =    F s 0    , in which the matrix M c = n α=1 ρ f ω 2 α CP α P T α C
T is symmetric. The reduced symmetric system is expressed in hybrid coordinates (physic: U, modal:

q f ).
To complete the reduction on modal basis, U is now projected on the solutions of the following eigenvalue problem [START_REF] -P. Morand | Interactions fluide-structure[END_REF][START_REF] Ohayon | Linear vibrations of structures coupled with an internal fluid[END_REF]:

(K s + K c ) U β = ω 2 β (M s + M c ) U β , (26) 
where U β is a structural mode of the structure including added mass and stiffness effects of fluid, associated to K c and M c . The projection of U is:

U = m β=1 U β q s β = T s q s . ( 27 
)
This gives the reduced model expressed with generalized coordinates:

    diag(ω 2 β ) 0 0 diag 1 ρ f   (28) -ω 2   I Cdiag 1 ω 2 α sym diag 1 ρ f ω 2 α        q s q f    =    T T s F s 0    .
It should be emphasized that the above equations have been obtained without acoustic absorbing area S a . When S a , characterized by Z a , is present, the variables in equations leading to (21) and ( 22) are linearly dependent (because of the A f terms), therefore that transformation leads to a complex reduced system which is not easy to implement. An alternative way to obtain a reduced model in such a situation is presented in the next section.

A CMS method using decoupled basis enriched by residual response vectors

In this section, a simple and efficient modal synthesis method is proposed, based on the enrichment of decoupled fluid basis by selected residual vectors which are responses of fluid cavity caused by interface operators (fluid-structure coupling surface and absorbing area).

Equation ( 6) can be rewritten as:

K f -ω 2 M f P = ω 2 ρ f C T U - jω Z a (ω) A f P = F f s + F f a , (29) 
in which F f s and F f a denote external forces caused by structure and by absorbing surface:

F f s = ω 2 ρ f C T U (a)
,

F f a = -jω Za(ω) A f P (b). ( 30 
)
These forces are linked to the unknowns of the problem. The objective consists in determining their responses to enrich fluid basis defined by [START_REF] Ohayon | Linear vibrations of structures coupled with an internal fluid[END_REF].

Structural basis is still T s containing the normal modes of in vacuo structure.

F f s and F f a can be evaluated using modal projection of displacement and pressure in their expressions:

F f s ≈ ω 2 ρ f C T T s q s (a), F f a ≈ -jω Za(ω) A f T f q f (b). (31) 
In structural dynamics, static responses are classically used to determine residual vectors. In presence of fluid, the singularity of K f can induce numerical difficulties, however one can modify it by adding an extra term α c M f which is proportional to fluid mass matrix. To well represent the behavior of system, α c should be within the frequency band of interest:

α c = ω 2 c ; ω c ∈ [ω min ω max ].
Residual vectors are introduced by:

∆T f s = (K f -ω 2 c M f ) -1 C T T s , ∆T f a = (K f -ω 2 c M f ) -1 A f T f . (32) 
Thus enriched fluid basis is now:

T f e = [T f ∆T f s ∆T f a ]. (33) 
A singular values decomposition (SVD) of T f e can be realized to guarantee good conditioning by selecting the largest directions of the space, resulting in a reduction of vector numbers [START_REF] Masson | Component mode synthesis (cms) based on an enriched ritz approach for efficient structural optimization[END_REF].

Reduced system is the same one as ( 14) with T f replaced by T f e . It should be noted that to count static response of higher structural modes (which are dropped out of T f ) T f contains now also static mode P 0 . Efficiency and performance of this reduced model can be compared to the reduced problem [START_REF] Atalla | A mixed displacement pressure formulation for poroelastic materials[END_REF] which uses the classical decoupled bases.

Model reduction of structure with viscoelastic damping

Now, consider the case in which the structure includes damped viscoelastic patches. In this case, stiffness K s can be separated into two parts, one being purely elastic, constant, and the other one being viscoelastic, frequency and temperature dependent:

K s (ω) = K se + G(ω, T )K sv . (34) 
Thus, the FE model of the structure with viscoelastic damping can be written as

[K se + G(ω, T )K sv -ω 2 M s ]U = F s , (35) 
where G(ω, T ) is the shear modulus of viscoelastic material, mainly depending on frequency ω and temperature T , and possibly to other environmental factors. The figure 2 shows a nomogram in reduced frequency of viscoelastic material 3M ISD112 allowing the synthetic representation of frequency and temperature evolution of the shear modulus G(ω, T ). The reduced frequency is defined by: ω r = α T ω in which α T is function of temperature T . More details about visco-elastic aspects can be found in references [START_REF] Khatua | Bending and vibration of multilayer sandwich beams and plates[END_REF][START_REF] De Lima | Modélisation et optimisation robuste de l'amortissement viscoélastique de systèmes mécaniques[END_REF]. In the model reduction strategy, it is better to use a basis which is not frequency dependent. To achieve this, one can for example use normal pseudo-modes [START_REF] Plouin | Pseudo-modal representation of large models with vicoelastic behavior[END_REF] or multi-model [START_REF] Balmès | Model reduction for system with frequency dependent damping properties[END_REF]. In this study, one considers the multi-model approach. Let [ω min ; ω max ] be the frequency range of interest and ω c ∈ [ω min ; ω max ] be a specific value of frequency, then the complex stiffness is K s (ω c ) = K se + G(ω c , T )K sv . The basis T s0 containing the modes of associate conservative problem can be calculated easily:

[ℜ{K s (ω c )} -ω 2 M s ]U = 0, (36) 
where ℜ{.} stands for real part. This basis is then enriched by the static response ∆T s0 of system (36) to viscoelastic force defined as follow:

∆T s0 = [ℜ{K s (ω c )}] -1 K sv T s0 , (37) 
which defines the enriched basis T s = [T s0 ∆T s0 ]. If the basis T s is not efficient enough to insure the convergence, in particular if the frequency range is very large, several values of ω c can be used to build the basis T s0 . The reduced model is:

{ Kse + G(ω, T ) Ksv -ω 2 Ms }q s = Fs . (38) 
Note that with this basis, the reduced matrix Ks and Ms are not diagonal.

Extension of Craig-Bampton dynamic substructuring

The classical Craig-Bampton basis of a subdomain k is written for a structural subdomain or a fluid one:

T (k) s =   I 0 -(K s II ) -1 K s IF Ψ s   for structure, ( 39 
)
and

T (k) f =   I 0 -(K f II ) -1 K f IF Ψ f   for fluid. ( 40 
)
I index is related to internal DOFs, while F index is associated to fixed DOFs.

Ψ s contains normal modes of structural subdomain fixed on interface, Ψ f contains normal modes of fluid subdomain with boundary condition P = 0 on interface.

If the structure includes viscoelastic damping patches, matrices K s II and K s IF will be replaced by K s II (ω = ω c ) and K s IF (ω = ω c ) like proposed in litterature [START_REF] De Lima | Modélisation et optimisation robuste de l'amortissement viscoélastique de systèmes mécaniques[END_REF]. Associate basis is thus Ψ s = [Ψ s0 ∆Ψ s0 ] in which Ψ s0 contains solutions of the following equation:

ℜ (K s II (ω c )) -ω 2 M s II U = 0, ( 41 
)
and ∆Ψ s0 is determined by

∆T s0 (ω c ) = [ℜ (K s II (ω c ))] -1 K sv II T s0 (ω j ). ( 42 
)
According to section 3.2, for a fluid subdomain which has coupling surfaces

S (k)
u with structure and absorbing surface S (k) a , basis Ψ f is now replaced by enriched basis Ψ f e = [Ψ f ∆Ψ f s ∆Ψ f a ] where ∆Ψ f s and ∆Ψ f a are:

∆Ψ f s = K f II -ω 2 c M f II -1 C T II T s , ∆Ψ f a = K f II -ω 2 c M f II -1 A f II Ψ f , (43) 
in which T s symbolizes the set of all substructural bases coupled with the considered fluid sub-domain. -constrained layer: E 3 = 2.5×10 9 P a; ν 3 = 0.33; h 3 = 5×10 -4 m.

Simulations

The plate is meshed using 24×24 ANSYS SHELL63 elements (thin plate).

For the fluid domain, 24 × 24 × 12 FLUID30 elements are used. This mesh guarantees 6 elements per wavelength in the frequency range of interest (up to 300 Hz).

Two indicators are used to present the results, the acoustic power P i and the mean of quadratic velocity V 2 n :

P i = V f 1 4ρ f pp * + 1 4ρ f ω 2 ∇p∇p * dV , ( 44 
) V 2 n = 1 |S| S v 2 n dS, (45) 
where p * stands for the conjugate of p.

Two cases are considered. Case 1 corresponds to cavity with viscoelastic plate and case 2 corresponds to cavity with viscoelastic plate and poro-elastic patches (surface S a ).

In order to build the normal modes of multi-model method, one value ω c = 150 × 2π (in the middle of band) is used. Basis T s contains 41 modes: 20 normal modes of T s0 (criterion 2 ×f max ), 20 modes of ∆T s0 and one vector corresponding to static residual response to force F s . Basis T f has 30 modes contained in the frequency band [0; 3 × f max ] while ∆T f s contains 36 vectors and ∆T f a contains 29 ones. So enriched basis T f e has 66 modes for case 1 and 95 for case 2 (with or without S a ). The figure 5 shows the limitation of classic decoupled bases even if they have been enriched by p s : errors are large, even when the number of modes in T f is increased to 100 and the static mode is included in the basis. In the whole paper, results are presented in dB using a reference level of 10 -12 S.I., and the reference solution is obtained by solving the full FE model with the direct method.

Figures 6 and7 illustrate the efficiency of the proposed basis in which decoupled fluid basis is enriched using residual vectors with or without absorbing area S a : the error levels are much lower than with the classical uncoupled bases.

Robust dynamic reduction method

Formulation

In this section, the investigations are only related to the parametric approach of uncertainties. In the following, fonts with double lines will be used for random variables (i.e. M will be used to describe the random variable associated to M). The FE deterministic model has been defined above (equations 5-7) and it can be written in compact form (8):

[K -ω 2 M + jω Z a A]Y = F, (46) 
where Y T = [U T P T ] is the deterministic response vector. In order to validate the method, we consider that uncertain parameters are only those of characteristics of acoustic absorbing material and viscoelastic elements, so there is no uncertainty in matrices K f , M f , C and A f . Let θ be a random variable (vector or scalar), the stochastic FE model function of θ is:

K s -ω 2 M s U + CP = F s , (47) 
K f -ω 2 M f + jω Z a A f P + ρ f ω 2 C T U = 0. ( 48 
)
Or, in compact form:

[K -ω 2 M + jω Z a A]Y = F. (49) 
By setting H = [Kω 2 M + jω Za A] one has:

θ -→ Y = f (θ) = H -1 F. ( 50 
)
The random variable θ can be represented as:

θ = θ 0 + ∆θ, (51) 
where θ 0 is the nominal value of θ and ∆θ is the fluctuation around θ 0 . If θ is Gaussian one can map:

θ = θ 0 (1 + δ θ ξ) , (52) 
where δ θ represents the dispersion level, and ξ is a central Gaussian variable.

Thereby a random matrix, for example K s , function of θ can be expressed as:

K s (θ) = K s + ∆K s (θ), (53) 
in which K s = K s (θ 0 ) is its nominal value, ∆K s (θ) is considered as a random modification around K s . Consequently, equations (47) and (48), for a set of parameters described by variables θ, can be written as:

K s + ∆K s (θ) -ω 2 (M s + ∆M s (θ)) U(θ) +CP(θ) = F s , (54) 
K f -ω 2 M f + jω Z a + ∆Z a (θ) A f P(θ) +ρ f ω 2 C T U(θ) = 0, (55) 
where ∆K s (θ) = ∆K se (θ) + ∆ [G(θ)K sv (θ)] for viscoelastic damping. The term corresponding to acoustic absorbing material can be rewritten as:

1 Z a + ∆Z a (θ) A f = 1 Z a A f + a(θ)A f , (56) 
in which a(θ) is a random scalar -also function of Z a and ∆Z a (θ). Equations (54)-( 56) show that the random model has random perturbation terms around deterministic model.

Using the robust reduction bases T s and T f e leads to robust reduced model of (49):

[ K -ω 2 M + jω Z a Ā] Ȳ = F. ( 57 
)
Problem now resides in the construction of robust bases T s and T f e . During Monte Carlo simulation, for any one sample of θ, solving new eigenvalue problems and calculating residual vectors are theoretically required to find them, as indicated by equations (32), ( 36) and (37), which is time expensive.

In order to avoid this kind of reactualization, an alternative approximate method is the robust basis [START_REF] Masson | Component mode synthesis (cms) based on an enriched ritz approach for efficient structural optimization[END_REF][START_REF] Guedri | Reduction of the stochastic finite element models using a robust dynamic condensation method[END_REF], based on the deterministic model whose reduction basis are T s = [T s0 ∆T s0 ] and T f e = [T f ∆T f s ∆T f a ]. These deterministic bases will be enriched by the response vectors of deterministic model to the forces corresponding to random modifications. For the structure, the static responses to these forces are considered [START_REF] Masson | Component mode synthesis (cms) based on an enriched ritz approach for efficient structural optimization[END_REF][START_REF] De Lima | Modélisation et optimisation robuste de l'amortissement viscoélastique de systèmes mécaniques[END_REF] (respectively mass, elastic and viscoelastic stiffness):

         ∆T Ms s1 = [ℜ(K s (ω c ))] -1 ∆M s (θ)T s0 , ∆T Kse s1 = [ℜ(K s (ω c ))] -1 ∆K se (θ)T s0 , ∆T Ksv s1 = [ℜ(K s (ω c ))] -1 ∆K sv (θ)T s0 . (58) 
The deterministic basis T s is then enriched by the mean structural modification random vectors ∆T s1 :

∆T s1 = E [∆T Ms s1 ∆T Kse s1 ∆T Ksv s1 ] , (59) 
where E(.) is the first statistical moment. The robust basis T s is thus:

T s = [T s ∆T s1 ]. (60) 
For the fluid domain, the random force due to structural one is represented by the term ∆T s1 : its residual response is approached as follows:

∆T f s = K f -ω 2 c M f -1 C T ∆T s1 . (61) 
The random modifications forces associated to absorbing area is [jωa(θ)A f P(θ)]

which is approximated by [jωa(θ)A f T f q f (θ)]. Because a(θ) is a scalar, the residual response of this force is always estimated by the term ∆T f a of the deterministic basis T f e .

Finally the robust fluid basis can be established:

T f e = [T f e ∆T f s ]. (62) 
One can then orthogonalize the basis and find the dominant directions of the subspaces T s and T f e by using singular values decompositions [START_REF] Masson | Component mode synthesis (cms) based on an enriched ritz approach for efficient structural optimization[END_REF]. This is of particular interest if a large number of vectors has to be added to the initial basis.

Simulations

A simplified exhaust line composed by two aluminum tubes, and supported at ends is considered (figure 8). The geometric characteristics of the tube with small diameter are: radius R 1 = 0.1m, length L 1 = 0. • h 2 : Gamma distribution, h 2 = 2.54 × 10 -5 m, σ h 2 = 0.05h 2 (case 1), σ h 2 = 0.1h 2 (case 2);

• h 3 : Gamma distribution, h 3 = 5 × 10 -4 m, σ h 3 = 0.05h 3 (case 1), secs (processor Pentium IV 3.2GHz, RAM 1Gb). For N=1000 samples, this represents a CPU reduction ratio of 99, 5% when using the direct CMS on the full model. In order to validate the statistics given by the reduced model, the full stochastic FE model should be solved without reduction, which obviously requires weeks of calculations, so a complete validation of the statistics given by the reduced model is not easy to perform. An evaluation on a limited frequency band is nevertheless proposed as reference using 1000 samples requiring each 65 direct calculations between 281.2 and 301.5 Hz. The figure 11 exhibits the results of this validation by comparing the statistics of full stochastic approach and proposed robust CMS method. One can clearly observe that, on this limited frequency range, the proposed method can efficiently estimate minimum, maximum and mean values of the indicators: the results are very close to those obtained by the full stochastic method. One can expect the same efficiency on the whole frequency range of interest.

σ h 3 = 0.1h 3 (case 2 

Concluding remarks

In this study, a component modes synthesis method for damped vibroacoustic problems which is efficient and easy to implement has been proposed, in order to predict the structural modifications induced by the viscoelastic and poro-elastic materials used as design solution for vibration and noise reduction. The convergence is greatly improved and the efficiency of the proposed Ritz bases is compared to performances of classical uncoupled bases using in vacuo structural modes and undamped rigid wall cavity modes, which are commonly used to perform a modal reduction. On the other hand, 36 robust bases have been constructed to solve the problem of uncertainties propagation. Furthermore, it is shown that the proposed robust bases result in significant time reduction compared to direct resolution with the full model. This robust basis is easily extended to Craig-Bampton CMS method and can greatly reduce the required time on substructured acoustic models. This facilitates the inclusion of these models into large scales automated optimization schemes for robust design.

The poro-elastic material was modeled by an absorbing surface characterized by its acoustic impedance Z a (ω) depending on frequency. In order to well understand the coupling phenomena between structure and acoustic domain and also to represent all effects, the next step will be to explicitly model the poro-elastic media and build appropriate reduction bases.

  The parametric approach [21] is used in this paper. It requires the parametric description of random variables, and some stochastic bases are used to project the uncertain response of the system. The calculation cost can be very large, since many iterations are required, depending on the strategy chosen. In any cases, model reduction can help to reduce calculation cost, providing that the reduced model can represent the behavior of the full model. The classical model reduction strategies which have been discussed above must be updated as soon as one parameter varies. In this paper, a specific effort is made to define a so-called robust basis, which does not require updating after parametric changes, in order to use it efficiently in inverse problems (e.g. in the case of optimization) or during the direct random analysis problem (uncertainties propagation). The construction of the bases associated to uncertainties propagation is based on parametric approach. Fluctuation of random variables around their nominal values is considered as modifications according to nominal model and this set of modifications induces a set of residual forces which act on the nominal model. Robust basis is established by enriching the Ritz basis of nominal model with dynamic vectors (corresponding to a deterministic frequency) or static responses of nominal model due to modification forces. This strategy
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 1 Figure 1: Description of vibroacoustic problem
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 2 Figure 2: Nomogram in reduced frequency of material 3M ISD112 T M and associated reduced frequency α T
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 34 Figure 3: FE model of cavity coupled with plate treated by viscoelastic patches and three rigid walls treated by poroelastic patches

Figure 5 :

 5 Figure 5: Indicators of classical uncoupled basis, cavity without S a . (a): sound power level, (b): mean of quadratic velocity

Figure 6 :

 6 Figure 6: Indicators of proposed method, cavity without S a . (a): sound power level, (b): mean of quadratic velocity

Figure 7 :

 7 Figure 7: Indicators of proposed method, cavity with S a . (a): sound power level, (b): mean of quadratic velocity

  4m. Those of large diameter are: R 2 = 0.25m, L 2 = 1m. Two ends are closed by rigid walls on which poro-elastic elements are sticked. The tube of large diameter is treated by viscoelastic patches at its extremities on the circumference, like shown in figure 8. Other geometries and material characteristics are given in section 3.5. The frequency band of interest [100; 350]Hz is divided into 800 points, and a single value in the middle of the band ω c = ω j = 225×2π is used when required. A point force is exciting the system in the diameter direction.

Figure 8 :

 8 Figure 8: Simplified exhaust line treated by viscoelastic and poro-elastic elements (modeled with ANSYS)

Figures 9 -

 9  show the extreme statistics of sound power level P i and mean of quadratic normal velocity of structure V 2 n with 1000 Monte Carlo simulation (MCS) samples, the solid lines correspond to extreme statistics and mean values, the dashed ones correspond to nominal model. Case 1 is related to low dispersion and case 2 corresponds to medium dispersion. In term of calculation time, the proposed method requires 1280 seconds for the con-

Figure 9 :

 9 Figure 9: Acoustic indexes spectrums. Uncertainty levels: case 1. 1000 samples. Solid line = mean value; Dashed line = nominal value; Grey area = min-max bounds

Figure 10 :

 10 Figure 10: Acoustic indexes spectrums. Uncertainty levels: case 2. 1000 samples. Solid line = mean value; Dashed line = nominal value; Grey area = min-max bounds

Craig-Bampton method cuts the line in two parts: main part (tube with large diameter and connecting plate) and secondary one (tube with small di- 

The nominal values of coefficients (using international system units with f in hertz) are: Z R 1 = 788; Z R 2 = -1.32; Z R 3 = 1.31 × 10 -3 ; Z R 4 = -4, 01 × 10 -7 ; Z I 1 = -694 × 10 3 ; Z I 2 = -2640; Z I 3 = 5.49; Z I 4 = -4.44 × 10 -3 ; Z I 5 = 1, 24 × 10 -6 . All coefficients are considered as random variables of normal distribution with dispersion coefficient of 2% (case 1) and 4% (case 2), respectively corresponding to about 6% and 10% of dispersion on Z R and Z I . For the structural part, the chosen random variables are temperature T , thicknesses h 1 , h 2 and h 3 of the viscoelastic treatment: