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Current correlations in the interacting Cooper-pair beam-splitter

J. Rech, D. Chevallier, T. Jonckheere, and T. Martin
Centre de Physique Théorique, CNRS UMR 7332,

Aix-Marseille Université, Case 907, 13288 Marseille, France

(Dated: November 13, 2018)

We propose an approach allowing the computation of currents and their correlations in interacting
multi-terminal mesoscopic systems involving quantum dots coupled to normal and/or superconduct-
ing leads. The formalism relies on the expression of branching currents and noise crossed correlations
in terms of one- and two-particle Green’s functions for the dots electrons, which are then evaluated
self-consistently within a conserving approximation. We then apply this to the Cooper-pair beam-
splitter setup recently proposed1,2, which we model as a double quantum dot with weak interactions,
connected to a superconducting lead and two normal ones. Our method not only enables us to take
into account a local repulsive interaction on the dots, but also to study its competition with the
direct tunneling between dots. Our results suggest that even a weak Coulomb repulsion tends to
favor positive current cross-correlations in the antisymmetric regime (where the dots have opposite
energies with respect to the superconducting chemical potential).

PACS numbers: 73.23.-b, 73.63.Kv 74.45.+c, 72.70.+m 71.10.-w

I. INTRODUCTION

With the development of nanofabrication techniques,
more experiments in mesoscopic physics draw inspiration
from quantum optics. Among them, there is a particular
interest in generating entangled electronic states. Beyond
the exploration of non-local quantum effects through the
test of Bell’s inequalities in a solid-state device, there
are potential applications in quantum teleportation and
information processing, where such sources of entangled
pairs could be integrated with existing technology and
infrastructure.

Because of the spin singlet character of Cooper pairs,
superconductors constitute a natural source of spin-
entangled Einstein-Podolsky-Rosen (EPR) pairs. The
difficulty then lies in spatially separating the constituents
of these pairs coherently. The commonly proposed setup
to accomplish such a task is composed of a superconduc-
tor connected to a fork made out of two normal metal
leads3–6. The mechanism for such a Cooper-pair beam
splitter then relies on crossed Andreev reflexion (CAR),
a process in which the two electrons of a Cooper pair are
sent into different normal electrodes6–8 (as opposed to
the conventional direct Andreev reflexion which is local).

Previous attempts on metallic structures revealed the
difficulty of distinguishing CAR form other contributions
as there are various parasitic processes9–11. Several theo-
retical works have suggested different directions in order
to provide preferential enhancement of CAR, from simple
spin and energy filtering to the effect of strong electron
interactions, susceptible to favor single-particle over pair
tunneling12–16.

An important step in the observation of Cooper pair
splitting came from recent experimental works in tun-
able double quantum dot devices based on carbon nan-
otubes2 and InAs nanowires1. These systems showed
great promise as they not only display local Coulomb
repulsion on the dots, but also allow for the exploration

of different energy configurations of the dots, two prop-
erties that should promote CAR over other processes.

Nevertheless, further efforts are needed both experi-
mentally and theoretically. Future works should focus on
time-resolved correlation measurements of the currents
in the normal leads, particularly relevant to characterize
non-local effects. However, to this date, they remain to
be measured experimentally, and still represent an impor-
tant challenge for theory, as there are only few examples
of interacting mesoscopic devices driven out-of equilib-
rium, where current correlations have been obtained17–21,
none of which involving hybrid systems.

In this work, we propose a general approach for com-
puting currents and current-current correlations in an
interacting multi-terminal mesoscopic device involving
quantum dots coupled to multiple normal and supercon-
ducting leads. While it is known23 that these quantities
can be expressed in terms of the single and two-particle
Green’s functions of the dots electrons, here we show that
those Green’s functions can be computed self-consistently
through a Φ-derivable approximation, thereby ensuring
that all conservation laws are respected. The method re-
lies on a perturbation theory as formulated by Kadanoff
and Baym22, extended to the usual Keldysh contour to
allow for a non-equilibrium situation, and will be referred
to as the Kadanoff-Baym-Keldysh (KBK) approach.

When applying this KBK formalism to the double-dot
Cooper-pair beam splitter setup, we show that even weak
interactions have an important effect on both current and
cross-correlations in the CAR-dominated regime, and
that there exists a competition between Coulomb inter-
action and direct inter-dot tunneling.

The outline of the paper is as follows. In section II, we
discuss the general model for a set of quantum dots con-
nected to multiple leads, and derive the corresponding
expression for currents and current-current correlations.
We then show in section III how the KBK approach al-
lows us to compute the single- and two-particle Green’s
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function. In section IV, we apply this formalism to the
case of the Cooper-pair beam-splitter. We conclude in
section V.

II. MODEL

Our starting point is a set of quantum dots (labeled
α), with energies ǫα, tunnel-coupled to multiple leads (la-
beled j) with tunneling amplitudes tαj . The leads have
identical chemical potentials µj = µ and are character-
ized by their voltage bias Vj and superconducting order
parameter ∆j (normal leads correspond to ∆j = 0). The
Hamiltonian for such a system is of the form

H =
∑

α

Hα +
∑

j

Hj +
∑

j,α

Hjα. (1)

In terms of Nambu spinors d̂†α = (d†α↑ dα↓), the dots
Hamiltonians read

Hα = ǫαd̂
†
ασzd̂α+

∑

β 6=α

(

tαβ

2
d̂†ασz d̂β + h.c.

)

+Uαnα↑nα↓,

(2)
where we also introduced the inter-dot tunneling ampli-
tude tαβ and the local Coulomb repulsion Uα.
Similarly, the leads Hamiltonians are given by

Hj =
∑

k

Ψ̂†
jk (ξkσz +∆jσx) Ψ̂jk (3)

where ξk = k2

2m
−µ and we used the Nambu spinors Ψ̂†

jk =

(Ψ†
jk↑ Ψj−k↓). Here and throughout the remainder of the

text, we work with physical dimensions corresponding to
~ = 1.
We chose to transfer the voltage dependence onto the

tunneling term using the Peierls substitution: Tjα(t) =
tjασze

iσzVjt. The tunneling Hamiltonian is thus given by

Hjα =
∑

k

(

Ψ̂†
jkTjα(t)d̂α + h.c.

)

. (4)

Since the total Hamiltonian is quadratic in the leads
electrons operators, we can integrate out these degrees
of freedom. The effect of the leads is then captured by a
tunneling self-energy Σ̌T (t1, t2) =

∑

j Σ̌j(t1, t2),

Σ̌j,µ1µ2
(t1, t2) =

[

T̃ †
jα1

(t1) g̃j(t1, t2) T̃jα2
(t2)

]η1η2

σ1σ2

, (5)

which depends on the tunneling amplitude written in
Nambu-Keldysh space T̃jα(t) = τz ⊗ Tjα(t) as well as
the standard non-interacting Green’s function for lead
electrons, given in Nambu-Keldysh space by

g̃
η1η2

j,σ1σ2
(t1, t2) = −i

∑

k

〈TKΨ̂jkσ1
(tη1

1 )Ψ̂†
jkσ2

(tη2

2 )〉. (6)

For convenience, we also introduced the more compact
notation µi ≡ {σi, αi, ηi}, condensing the Nambu-dot-
Keldysh components into a single index.

This averaging over the leads degrees of freedom allows
us to express the relevant physical quantities in terms of
the tunneling self-energy as well as the dots electrons
single- and two-particle Green’s functions. These are de-
fined in Nambu-dot-Keldysh (NDK) space respectively
as

Ǧµ1µ2
(t1, t2) = −i〈TK d̂α1σ1

(tη1

1 )d̂†α2σ2
(tη2

2 )〉, (7)

and

Ǩµ1µ2µ3µ4
(t1, t2, t3, t4) =

− 〈TK d̂α1σ1
(tη1

1 )d̂α2σ2
(tη2

2 )d̂†α3σ3
(tη3

3 )d̂†α4σ4
(tη4

4 )〉, (8)

where TK corresponds to the time-ordering operator
along the Keldysh contour.
In particular, the average current from the dot α into

the lead j is readily obtained using standard methods23

as a function of the single-particle Green’s function Ǧ

〈Ijα(t)〉 =
e

2
TrNDK

[

(τz ⊗ Iα ⊗ σz)

×

∫

dt′
(

Ǧ(t, t′)Σ̌j(t
′, t)− Σ̌j(t, t

′)Ǧ(t′, t)
)

]

,

(9)

where the matrix Iα is defined in dot space, with ele-
ments [Iα]α1α2

= δαα1
δαα2

, and TrNDK corresponds to
the trace in the full Nambu-dot-Keldysh space.
Similarly the current correlations can be expressed in

terms of the two-particle Green’s function Ǩ as

〈Iηiα(t)I
η′

jβ(t
′)〉 = e2

∑

σσ′

σσσ
z σσ′σ′

z

∫

dt1dt2
∑

µ1µ2

×
[

Σ̌i,νµ1
(t, t1)Σ̌j,ν′µ2

(t′, t2)Ǩµ1µ2νν′(t1, t2, t, t
′)

− Σ̌i,νµ1
(t, t1)Σ̌j,µ2ν′(t2, t

′)Ǩµ1ν′νµ2
(t1, t

′, t, t2)

− Σ̌i,µ1ν(t1, t)Σ̌j,ν′µ2
(t′, t2)Ǩνµ2µ1ν′(t, t2, t1, t

′)

+ Σ̌i,µ1ν(t1, t)Σ̌j,µ2ν′(t2, t
′)Ǩνν′µ1µ2

(t, t′, t1, t2)
]

, (10)

with the labels ν ≡ {σ, α, η} and ν′ ≡ {σ′, β, η′}.

III. KADANOFF-BAYM-KELDYSH

FORMALISM

In order to proceed further, we need to evaluate the
fully interacting dots electrons Green’s functions Ǧ and
Ǩ. This is achieved through a perturbative expansion
in the Coulomb interaction Uα, within a so-called Φ-
derivable approximation22. Such a conserving approxi-
mation relies on the truncation of the Luttinger-Ward24

functional Φ
[

Ǧ
]

. The latter is a function of the fully

interacting single-particle Green’s function Ǧ, and cor-
responds to the sum of all closed-loop two-particle ir-
reducible diagrams. Unfortunately, there is no simple
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FIG. 1: Diagrammatic representation of (a) the contri-
butions to the Luttinger-Ward functional, (b) the Bethe-
Salpeter equation in the horizontal particle-hole channel, and
(c) the two-particle Green’s function in terms of the single-
particle one and the vertex function. The full lines correspond
to full single-particle Green’s functions for the dot electrons,
the disks represent bare vertices. The large circles and squares
correspond to the irreducible and full vertices respectively,
while the shaded block stands for the two-particle Green’s
function Ǩ defined in the text.

closed form of the Luttinger-Ward functional, which is
usually represented in a more convenient diagrammatic
form (see Fig. 1a).
The first striking feature of the Luttinger-Ward func-

tional is that it serves as a generating functional for
the interacting self-energy. Indeed, taking the func-
tional derivative of Φ

[

Ǧ
]

with respect to the one-particle

Green’s function Ǧ leads to

Σ̌C,µ1µ2
(t1, t2) =

δΦ
[

Ǧ
]

δǦµ2µ1
(t2, t1)

. (11)

Note that the resulting expression for the self-energy is
itself a function of the full propagator, so that Ǧ has to
be derived self-consistently. This is achieved by solving
the Dyson equation

Ǧ(t1, t2) =Ǧ0(t1, t2) +

∫

dt3dt4Ǧ
0(t1, t3)

×
[

Σ̌C(t3, t4) + Σ̌T (t3, t4)
]

Ǧ(t4, t2), (12)

where Ǧ0 is the dots electrons Green’s function in absence
of both interactions and tunneling to the leads.
Further differentiating the Luttinger-Ward functional

gives access to more involved many-body objects. In par-
ticular, one can derive an expression for the irreducible
vertex from a second order functional differentiation. In
the horizontal particle-hole27 channel, it reads

Λ̌µ1µ2µ3µ4
(t1, t2, t3, t4) = −

δ2Φ
[

Ǧ
]

δǦµ2µ1
(t2, t1)δǦµ3µ4

(t3, t4)
.

(13)

This in turn allows us to write the full vertex function Γ̌
by self-consistently solving the Bethe-Salpeter equation
in the corresponding irreducibility channel (see Fig. 1b)

Γ̌µ1µ2µ3µ4
(t1, t2, t3, t4) = Λ̌µ1µ2µ3µ4

(t1, t2, t3, t4)

+

∫

dt5 . . . dt8
∑

µ5...µ8

Λ̌µ1µ2µ5µ6
(t1, t2, t5, t6)Ǧµ5µ7

(t5, t7)Ǧµ8µ6
(t8, t6)Γ̌µ7µ8µ3µ4

(t7, t8, t3, t4).

(14)

The two-particle dots electrons Green’s function Ǩ is then readily obtained from

Ǩµ1µ2µ3µ4
(t1, t2, t3, t4) = Ǧµ1µ4

(t1, t4)Ǧµ2µ3
(t2, t3)− Ǧµ1µ3

(t1, t3)Ǧµ2µ4
(t2, t4)

+
∑

µ5...µ8

∫

dt5 . . . dt8Ǧµ1µ5
(t1, t5)Ǧµ2µ8

(t2, t8)Γ̌µ5µ6µ7µ8
(t5, t6, t7, t8)Ǧµ7µ3

(t7, t3)Ǧµ6µ4
(t6, t4).

(15)

It follows that from a given truncation of Φ
[

Ǧ
]

, one can
determine both the full single- and two-particle Green’s
function, respectively via the derivative of the Luttinger-
Ward functional and the self-consistent solution of the
Dyson equation, then through the second derivative of
Φ
[

Ǧ
]

, after solving the Bethe-Salpeter equation. Note
that although both Dyson and Bethe-Salpeter equations
have to be solved self-consistently, the proposed scheme is

only one-particle self-consistent since the Luttinger-Ward
functional is a function of Ǧ only.
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(a) (b)

FIG. 2: Cooper-pair beam-splitter setup: (a) representation
of the experimental device where a nanowire/nanotube is cou-
pled to normal and superconducting leads, and (b) schematic
representation of the double-dot model considered in the text
(with the corresponding notations).

IV. APPLICATION TO THE COOPER-PAIR

BEAM-SPLITTER

Let us now illustrate this procedure on the particu-
lar example of the double-dot Cooper-pair beam splitter,
whose setup is recalled in Fig. 2.

A. Derivation of the self-energy and vertex

function

Our system now consists of a superconducting lead at
potential VS = 0, coupled to two quantum dots (labeled
1 and 2), which are each connected to a different normal
electrode (at potential VL and VR respectively). We will
be interested in the branching currents IL1 and IR2 as
well as their cross-correlations. Here IL1 corresponds to
the current between dot 1 and the left normal lead, while
IR2 flows between dot 2 and the right normal lead.
In what follows we focus on the first term in the di-

agrammatic expansion of the Luttinger-Ward functional

so that our conserving approximation amounts to writing

Φ
[

Ǧ
]

=
i

2

∫

dt
∑

σ,σ′

η,α

τηηz Uασ
σσ
z σσ′σ′

z Ǧ
ηη
αα
σσ′

(t, t)Ǧηη
αα
σ̄σ̄′

(t, t),

(16)

where σ̄ = −σ.

Following the procedure outlined in the previous sec-
tion, we first obtain the interacting self-energy, which in
frequency space writes

Σ̌C,µ1µ2
(ω) = iUα1

δα1α2
τη1η2

z σσ1σ1

z σσ2σ2

z

∫

dΩ

2π
Ǧµ1µ2

(Ω).

(17)
One readily sees from this expression that at this level
of approximation the interacting self-energy in Fourier
space is frequency independent, and can thus be viewed
as a renormalization of the dots energies. However,
this constant still needs to be evaluated self-consistently,
through the Dyson equation (12), as it depends on the
full single-particle Green’s function Ǧ.
The irreducible vertex is further obtained following

Eq. (13), and takes the following simple frequency in-
dependent form in Fourier space

Λ̄µ1µ2µ3µ4
=iτη1η2

z δη1η3
δη1η4

Uα1
δα1α2

δα1α3
δα1α4

× σσ1σ1

z σσ3σ3

z δσ1σ̄4
δσ2σ̄3

, (18)

where we used the energy conservation to introduce
Λ̌(ω1, ω2, ω3, ω4) = 2πδ (ω1 − ω2 − ω3 + ω4) Λ̄. The re-
sult of Eq. (18) is nothing but the bare interaction ver-
tex where one recognizes the properties of locality in time
(all ti and ηi are equal) and space (all αi are equal), as
well as the spin conservation (the sum of incoming and
outgoing spin projections is zero).

Substituting this expression for the irreducible vertex back into the Bethe-Salpeter equation (14) and moving to
Fourier space, one notices that the frequency-dependent full vertex function depends on a single frequency argument,
so that by further introducing Γ̌(ω1, ω2, ω3, ω4) = 2πδ (ω1 − ω2 − ω3 + ω4) Γ̄ (ω2 − ω1), we are left with

Γ̄µ1µ2µ3µ4
(ω2 − ω1) = Λ̄µ1µ2µ3µ4

+

∫

dΩ

2π

∑

µ5...µ8

Λ̄µ1µ2µ5µ6
Ǧµ5µ7

(Ω)Ǧµ8µ6
(Ω + ω2 − ω1)Γ̄µ7µ8µ3µ4

(ω2 − ω1) . (19)

In order to extract an explicit expression for the full
vertex, one needs to invert Eq. (19), which cannot be
straightforwardly achieved since we are dealing with 4th

order tensors. To circumvent this issue, we propose
to construct a matrix representation of the full and
irreducible vertices in an enlarged NDK⊗NDK space,
by combining two by two the four labels of these ten-
sor elements.28 Indeed, the matrix representation of the
single-particle Green’s function relies on identifying a sin-
gle coordinate in NDK space ni (running from 1 through

8) out of the values of the Nambu, dot and Keldysh com-
ponents {σi, αi, ηi}. In the same spirit, we construct en-
larged 82 × 82 matrices to represent the full and irre-
ducible vertices, in which the coordinates are obtained
from a linear combination of the ni according to

Ǧ
η1η2

α1α2

σ1σ2

=
[

Ǧ
]

n1n2

⇒ Γ̄η1η2η3η4

α1α2α3α4

σ1σ2σ3σ4

= Γ̄n1n2n3n4
=

[

Γ̄
]

N1N2

(20)
with N1 = 8(n1 − 1) + n2 and N2 = 8(n3 − 1) + n4. The
resulting 64× 64 matrices, which we hereby denote with
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FIG. 3: Currents IL1 and IR2 (in units of I0 = e∆/~) as a function of VL, for different values of the interaction U =
0, 0.05, 0.1, 0.15∆, and the parameters (in units of ∆) β = 100, ǫ1 = 0.5, ǫ2 = −0.5, VR = −0.7 and tL1 = tS1 = tS2 = tR2 = 0.2.
The upper panels correspond to td = 0, while the lower panels are computed for td = 0.2∆.

brackets, ultimately lead to the following explicit form
for the full-vertex function

[

Γ̄(ω2 − ω1)
]

=
[

Λ̄
] {

[1]− [Π(ω2 − ω1)]×
[

Λ̄
]}−1

,

(21)

where we introduced the generalized polarization bubble
[Π] as

[Π(ω)] =

∫

dΩ

2π

[

Ǧ(Ω)⊗ ǦT (Ω + ω)
]

, (22)

and ǦT is the transpose of the matrix Ǧ in NDK space.

B. Numerical results

We computed numerically the currents and crossed
correlations as a function of the left lead voltage VL (with
fixed VR), for different values of the interaction param-
eter U1 = U2 = U . We focused on the most favorable
regime for CAR, i.e. when the dots energies are chosen
antisymmetric with respect to the superconductor chemi-
cal potential, and considered the situations of a negligible
and a strong direct tunneling.
We first solve self-consistently the Dyson equation in

order to compute the single-particle Green’s function Ǧ
and derive the currents IL1 and IR2 from Eq. (9), which
we present in Fig. 3. In absence of direct tunneling, the

two currents are almost identical, while for a finite td,
the current difference is significant, due to the opening
of a new conduction channel between the normal leads.
As a function of U , one readily sees that the amplitude

of all currents gets reduced, already for small values of the
interaction strength. This reduction does not equally af-
fect the whole range of voltages. In particular the region
of high voltages, where the current is dominated by elec-
tron co-tunneling is only marginally modified. However,
the current reduction in the presence of interactions is
sizable in the low-voltage CAR-dominated regime. More-
over, the effects are qualitatively similar whether a direct
tunneling is present or not. These are purely static single-
particle effects, and can be understood as a detuning of
the resonances in the dots density of states,23 a direct
consequence of the constant interacting self-energy. Note
that while the latter is frequency-independent, it does
depend on VL (through self-consistency), explaining why
different regions of the curves are not equally affected.

The most interesting and non-trivial results come from
the calculation of the current cross-correlations as both
one- and two-particle effects are present in this case. In
what follows, we focus on the zero-frequency current-
current correlation Siα,jβ(0) defined as

Siα,jβ(0) =

∫

dt
(

〈I−iα(t)I
+

jβ(0)〉 − 〈Iiα(t)〉〈Ijβ(0)〉
)

.

(23)

Substituting the expressions (9) for the branching currents and (10) for the current-current correlators, and using
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Eq. (15) to replace the two-particle Green’s function in terms of the full vertex, the zero-frequency correlations become

Siα,jβ(0) = e2
∑

σσ′

σσσ
z σσ′σ′

z

∑

µ1µ2

{
∫

dω

2π

[

Σ̌i,νµ1
Σ̌j,ν′µ2

Ǧµ1ν′Ǧµ2ν − Σ̌i,νµ1
Σ̌j,µ2ν′Ǧµ1µ2

Ǧν′ν

−Σ̌i,µ1νΣ̌j,ν′µ2
Ǧνν′Ǧµ2µ1

+ Σ̌i,µ1νΣ̌j,µ2ν′Ǧνµ2
Ǧν′µ1

]

(ω)

+

∫

dω1

2π

dω2

2π

∑

µ5,µ6,µ7,µ8

Γ̄µ5µ6µ7µ8
(ω2 − ω1)

[(

Σ̌i,νµ1
Ǧµ1µ5

Ǧµ7ν

)

(ω1)
(

Σ̌j,ν′µ2
Ǧµ2µ8

Ǧµ6ν′

)

(ω2)

−
(

Σ̌i,νµ1
Ǧµ1µ5

Ǧµ7ν

)

(ω1)
(

Σ̌j,µ2ν′Ǧν′µ8
Ǧµ6µ2

)

(ω2)−
(

Σ̌i,µ1νǦνµ5
Ǧµ7µ1

)

(ω1)
(

Σ̌j,ν′µ2
Ǧµ2µ8

Ǧµ6ν′

)

(ω2)

+
(

Σ̌i,µ1νǦνµ5
Ǧµ7µ1

)

(ω1)
(

Σ̌j,µ2ν′Ǧν′µ8
Ǧµ6µ2

)

(ω2)
]

}

. (24)

Using the matrix representation introduced above, the
cross-correlations can be recast in a much more manage-
able form as

SL1,R2(0) = e2
∫

dω

2π
TrNDK

[

Ξ̌−
L1
ǦΞ̌+

R2
Ǧ
]

(ω)

+ e2
∫

dω1

2π

dω2

2π
TrNDK2

{

[

Γ̄(ω2 − ω1)
]

×
[

(

ǦΞ̌−
L1
Ǧ
)

(ω1)⊗
(

ǦΞ̌+

R2
Ǧ
)T

(ω2)
]}

, (25)

where we introduced the trace TrNDK2 over our enlarged
NDK⊗NDK matrices and defined the compact notations

Ξ̌η
iα(ω) =

(

παηΣ̌i(ω)− Σ̌i(ω)παη

)

(26)

πα± =
1

2
(1± τz)⊗ Iα ⊗ σz. (27)

The first term on the r.h.s of Eq. (25) is similar to
the expression obtained in the absence of interactions,23

only here it involves the full dots electrons single-particle
Green’s function. The second term however corresponds
to truly two-particle effects.
In Fig. 4, we show the results obtained for the zero-

frequency current-current correlations in the absence
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FIG. 4: Zero-frequency current cross-correlations (in units of
S0 = e2∆/~) as a function of VL, for U = 0, 0.05, 0.1, 0.15∆,
and the same parameters as in Fig. 3, in the absence of direct
tunneling.

of direct tunneling. Like in the non-interacting case,
one can typically isolate two relevant regimes of volt-
ages. At low voltage (VL < ǫ1), transport is domi-
nated by CAR processes and we observe positive cross-
correlations, which are approximately constant. Increas-
ing the interaction parameter leads to strongly enhanced
correlations in this region. This enhancement cannot be
solely attributed to the renormalization of Ǧ due to in-
teractions. We could check that the vertex-dependent
term in Eq. (25) contributes substantially to the final re-
sult, therefore suggesting that interaction-induced two-
particle effects are particularly important in the Cooper-
pair beam-splitter setup.

In the region of high voltage (VL > ǫ1), we came across
a somewhat counter-intuitive result. In this regime,
CAR is greatly unfavored and one expects electron co-
tunneling to be the dominant process, as confirmed by
the current plots of Fig. 3 where IL1 and IR2 are opposite
in this region therefore signaling the transfer of electrons
from the left to the right normal lead. One would thus
expect to observe negative correlations, as was the case
in the absence of interactions. However, paying close at-
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FIG. 5: Zero-frequency current cross-correlations (in units of
S0 = e2∆/~) as a function of VL, for U = 0, 0.05, 0.1, 0.15∆,
and the same parameters as in Fig. 3, in the presence of direct
tunneling, td = 0.2∆.
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tention to the high-voltage region (see the magnified area
of Fig. 4), we see that the effect of interactions, although
weak, is sufficient to flip the overall sign, resulting in
slightly positive correlations.
When a direct tunneling is allowed between dots, there

is still an important enhancement of positive correlations
at low voltage, even for weak interaction strength (see
Fig. 5). Also, in contrast with the constant behavior ob-
served for td = 0, a more pronounced feature develops
around VL ≃ −ǫ1. This is reminiscent of what was ob-
served in the non-interacting case, and can be attributed
to density of states effects23. For voltages VL > ǫ1, inter-
actions have a weaker effect, and tend to reduce the am-
plitude of cross-correlations, without causing any change
of sign.
Comparing the results of Figs. 4 and 5, it becomes clear

that while a finite td tends to shift the correlations to-
wards negative values, a finite U have the opposite effect
of shifting them towards positive ones, thus revealing the
competition between interactions and direct tunneling.

V. CONCLUSION AND OUTLOOK

In conclusion, we presented a conserving approach
to study currents and their correlations in interacting
out-of-equilibrium mesoscopic systems. This Kadanoff-
Baym-Keldysh formalism amounts to computing the
single- and two-particle dots electrons Green’s functions

from a given truncation of the Luttinger-Ward func-
tional. These are then used to express the branch-
ing currents (in the same spirit as the Meir-Wingreen
formula25) as well as their correlations, therefore extend-
ing the Fisher-Lee/Landauer-Büttiker formula26 for the
noise to the case of an interacting system. Applying this
formalism to the double-dot Cooper-pair beam splitter
setup, we could study the effect of Coulomb interaction
on the currents and cross-correlations, showing that even
weak interactions have an important effect in the CAR-
dominated regime, in particular favoring positive cross-
correlations in the antisymmetric case. Our results also
exhibit the competition between local Coulomb interac-
tion and direct inter-dot tunneling, which affect the cur-
rent correlations in an opposite manner.

The present work can be extended in various ways.
For example, the formalism can also treat a non-local
Coulomb interaction between dots. This would yield new
terms in Φ

[

Ǧ
]

, and therefore in the self-energy and ir-
reducible vertex, which can be easily accounted for. But
the most natural extension consists in including a second
set of diagrams into the Luttinger-Ward functional (see
Fig. 1a). In particular, this second order contribution
would lead to a newly acquired frequency dependence
of the interacting self-energy and irreducible vertex, and
thus to new features associated with these retardation ef-
fects. However, this would also make the Bethe-Salpeter
equation no longer invertible analytically, therefore re-
quiring a self-consistent numerical solution.
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