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Stability Analysis of Networked Control Systems
Using a Switched Linear Systems Approach

M.C.F. Donkers, Student Member, IEEE, W.P.M.H. Heemels Senior Member, IEEE,
N. van de Wouw Member, IEEE, and L. Hetel

Abstract—In this paper, we study the stability of Networked
Control Systems (NCSs) that are subject to time-varying trans-
mission intervals, time-varying transmission delays and commu-
nication constraints. Communication constraints impose that, per
transmission, only one node can access the network and send its
information. The order in which nodes send their information is
orchestrated by a network protocol, such as, the Round-Robin
(RR) and the Try-Once-Discard (TOD) protocol. In this paper,
we generalise the mentioned protocols to novel classes of so-
called ‘periodic’ and ‘quadratic’ protocols. By focussing on linear
plants and controllers, we present a modelling framework for
NCSs based on discrete-time switched linear uncertain systems.
This framework allows the controller to be given in discrete
time as well as in continuous time. To analyse stability of
such systems for a range of possible transmission intervals and
delays, with a possible nonzero lower bound, we propose a new
procedure to obtain a convex overapproximation in the form of
a polytopic system with norm-bounded additive uncertainty. We
show that this approximation can be made arbitrarily tight in an
appropriate sense. Based on this overapproximation, we derive
stability results in terms of Linear Matrix Inequalities (LMIs).
We illustrate our stability analysis on the benchmark example
of a batch reactor and show how this leads to tradeoffs between
different protocols, allowable ranges of transmission intervals and
delays. In addition, we show that the exploitation of the linearity
of the system and controller leads to a significant reduction in
conservatism with respect to existing approaches in the literature.

Index Terms—Communication Constraints, Networked Con-
trol Systems, Switched Systems, Stability, Time-Varying Systems,
Uncertain Systems

I. INTRODUCTION

NETWORKED Control Systems (NCSs) are systems in
which control loops are closed over a real-time commu-

nication network. The fact that controllers, sensors, and ac-
tuators are not connected through point-to-point connections,
but through a multipurpose network offers advantages, such
as increased system flexibility, ease of installation and main-
tenance, and decreased wiring and cost. However, networking
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TABLE I: References that study two networked induced im-
perfections simultaneously.

& (iv) (v)

(i) [31]
(ii) [32], [33]
(iii) [34], [35] [36]–[40]

the control system also introduces new challenges, caused
by the packet-based data exchange between different parts
of the network. Therefore, control algorithms are needed that
can handle the communication imperfections and constraints
caused by the packet-based communication. The control com-
munity is widely aware of this fact, as is evidenced by the
broad attention NCSs have received recently, see, e.g., the
overview papers [1]–[4].

In general, network-induced communication imperfections
and constraints can be categorised into five types:

(i) Quantisation errors in the transmitted signals, due to the
finite word length of the transmitted packets.

(ii) Packet dropouts, due to unreliable transmissions.
(iii) Variable sampling/transmission intervals.
(iv) Variable transmission delays.
(v) Communication constraints, i.e., not all sensor and actu-

ator signals can be transmitted at the same time.

It is generally known that any of these phenomena can degrade
closed-loop performance or, even worse, can harm closed-loop
stability of the control system. It is therefore important to know
how these effects influence the stability properties.

Systematic approaches to analyse stability of NCSs subject
to only one of these network-induced imperfections are well
developed. For instance, the effects of quantisation are studied
in [5]–[9], of packet dropouts in [10]–[12], of time-varying
transmission intervals and delays in [13]–[17], and [18]–[24],
respectively, and of communication constraints in [25]–[28].
However, since in NCSs typically all the aforementioned
limitations and constraints are present simultaneously, it is
relevant to study the consequences of all these phenomena in a
common framework. Unfortunately, fewer results are available
that study combinations of these imperfections. References
that simultaneously consider two types of network-induced
imperfections are given in Table I. Furthermore, [29] considers
imperfections of type (i), (iii), (v) and [30] studies type (ii),
(iii) and (iv) simultaneously. In this paper, we will focus on
the stability of NCSs with time-varying transmission intervals
and delays and the presence of communication constraints,
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i.e., type (iii), (iv) and (v) phenomena.
Stability of NCSs subject to communication constraints,

time-varying transmission intervals and transmission delays
has already been considered in [41], [42]. The communication
constraints impose that, per transmission, only one node can
access the network and send its information and, hence, a
protocol is needed to orchestrate when a certain communica-
tion node is given access to the network. Given a protocol,
such as the Round-Robin (RR) and the Try-Once-Discard
(TOD) protocol, the mentioned papers provide criteria for
computing the so-called Maximum Allowable Transmission
Interval (MATI) and the Maximum Allowable Delay (MAD).
Stability is guaranteed as long as the actual transmission
intervals and delays are always smaller than the MATI and
MAD, respectively. The difference between the work in [41]
and [42], is that in the latter a delay compensation scheme
is proposed. This delay compensation requires time stamping
of the messages and sending future control signals in larger
packets, which is not needed in the more basic emulation
based approach, as in [41] and the earlier work without
transmission delays in [29], [36]–[40], [43]. Furthermore, the
results in [42] have the drawback that they are not applicable
to the commonly used Round-Robin protocol, while [41] is.

The work presented in [41], [42] both apply to general
nonlinear plants and controllers and are based on a continuous-
time modelling paradigm related to hybrid systems as in [44].
However, neither [41], nor [42] include the possibility that the
controller is formulated in discrete time. The case of discrete-
time controllers has been considered in [25], where, however, a
fixed transmission interval and no delay are assumed. Another
feature of [41], [42] is that, in these works, zero lower bounds
on the transmission intervals hk and delays τk are considered
(i.e., hk ∈ (0, hMATI], τk ∈ [0, τMAD]). The ability to handle
discrete-time controllers and nonzero lower bounds on the
transmission intervals and delays is highly relevant from a
practical point of view, because controllers are typically imple-
mented in a digital and, thus, discrete-time form. Furthermore,
finite communication bandwidth always introduce nonzero
lower bounds on the transmission intervals and transmission
delays. This motivates the need for studying these situations
as well, preferably in a nonconservative manner. Although
the work presented in [41], [42] is very general and can
accommodate for many nonlinear NCSs, their results cannot
reduce conservatism when a certain structure is present in the
NCS, such as linearity of the controller and plant.

In this paper, we focus on linear plants and linear controllers
and study the stability of the corresponding NCS in the pres-
ence of communication constraints, time-varying transmission
intervals and time-varying delays, where the latter two possibly
have a nonzero lower bound. Moreover, we allow for both a
continuous-time as well as a discrete-time controller, which
requires a different modelling paradigm than in [41], [42], and
in the work without transmission delays, [36]–[40]. In partic-
ular, we provide techniques for assessing stability of the NCS
with time-varying transmission intervals hk ∈ [h, h] and time-
varying transmission delays τk ∈ [τ , τ ] for two well-known
protocols, namely, the Round-Robin (RR) protocol and the
Try-Once-Discard (TOD) protocol, and their generalisations.

These generalisations consist of the classes of ‘periodic’ and
‘quadratic’ protocols, which are formally introduced here. In
contrast with [41], [42], we apply a discrete-time modelling
framework that leads to a switched linear system model with
exponential uncertainty. To properly handle this exponential
uncertainty, we provide a polytopic overapproximation for
this system. This overapproximation is obtained using a novel
procedure that combines ideas from gridding [14], [15] and
norm bounding [16]–[18]. Unlike other methodologies for
obtaining a convex overapproximation, see, e.g., [14]–[20]
and the overview paper [45], we provide a proof that the
newly proposed procedure can be made arbitrarily tight in
an appropriate sense. Using this overapproximated system,
we can assess stability using newly developed conditions
based on Linear Matrix Inequalities (LMIs). We will show
the effectiveness of the presented approach on the benchmark
example of a batch reactor as used in [25], [36]–[39], [41],
[43], as well. Moreover, we will show that the linearity of
plant and controller can indeed be exploited, which leads to
a significant reduction of conservatism with respect to the
existing approaches.

The remainder of this paper is organised as follows. After
introducing the necessary notational conventions, we introduce
the model of the NCS in Section II and propose a method to
write it as a discrete-time switched linear uncertain system.
We also state a precise problem formulation. Subsequently,
in Section III, we provide a procedure to overapproximate
the NCS model by a polytopic system with norm-bounded
uncertainty. In Section IV, we provide conditions for stability
of the NCS in terms of LMIs and reflect in Section V on the
conservatism this approach introduces. Finally, we illustrate
the stability results using a numerical benchmark example
in Section VI and draw conclusions in Section VII. The
appendix contains the proofs of the more technical lemmas
and theorems.

A. Nomenclature

The following notational conventions will be used.
diag(A1, . . . , An) denotes a block-diagonal matrix with the
entries A1, . . . , An on the diagonal and A> ∈ Rm×n denotes
the transposed of matrix A ∈ Rn×m. For a vector x ∈ Rn,
we denote by xi the i-th component and ‖x‖ :=

√
x>x its

Euclidean norm. We denote by ‖A‖ :=
√
λmax(A>A) its

the spectral norm, which is the square-root of the maximum
eigenvalue of the matrix A>A. For brevity, we sometimes
write symmetric matrices of the form

[
A B

B> C

]
, as

[
A B
? C

]
.

Finally, by lims↓t and lims↑t, we denote the limit as s
approaches t from above and below, respectively, and the
convex hull and interior of a set A are denoted by coA and
intA, respectively.

II. NCS MODEL AND PROBLEM STATEMENT

In this section, we present the model describing the Net-
worked Control Systems (NCSs), subject to communication
constraints, time-varying transmission intervals and delays.
Let us consider the linear time-invariant (LTI) continuous-time
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Fig. 1: Illustration of a typical evolution of y and ŷ.

plant given by{
d
dtx

p(t) = Apxp(t) +Bpû(t)

y(t) = Cpxp(t),
(1)

where xp ∈ Rnp denotes the state of the plant, û ∈ Rnu
the most recently received control variable, y ∈ Rny the
(measured) output of the plant and t ∈ R+ the time. The
controller, also an LTI system, is assumed to be given in either
continuous time by{

d
dtx

c(t) = Acxc(t) +Bcŷ(t)

u(t) = Ccxc(t) +Dcŷ(t),
(2a)

or in discrete time by{
xck+1 = Acxck +Bcŷk

u(tk) = Ccxck +Dcŷ(tk).
(2b)

In these descriptions, xc ∈ Rnc denotes the state of the
controller, ŷ ∈ Rny the most recently received output of
the plant and u ∈ Rnu denotes the controller output. At
transmission instant tk, k ∈ N, (parts of) the outputs of
the plant y(tk) and controller u(tk) are sampled and are
transmitted over the network. We assume that they arrive at
instant rk, called the arrival instant. The situation described
above is illustrated in Fig. 1. In the case we have a discrete-
time controller (2b), the states of the controller xck+1 are
updated using ŷk := limt↓rk ŷ(t), i.e., as in [25], directly after
ŷ is updated. Note that in this case, the update of xck+1 in (2b)
has to be performed in the time interval (rk, tk+1].

Let us now explain in more detail the functioning of the
network and define these ‘most recently received’ ŷ and û
exactly, see also [25], [36]–[41]. The plant is equipped with
sensors and actuators that are grouped into N nodes. At
each transmission instant tk, k ∈ N, one node, denoted by
σk ∈ {1, . . . , N}, obtains access to the network and transmits
its corresponding values. These transmitted values are received
and implemented on the controller or the plant at arrival instant
rk. As in [41], a transmission only occurs after the previous
transmission has arrived, i.e., tk+1 > rk > tk, for all k ∈ N.
In other words, we consider the sampling interval to be lower
bounded and the delays to be smaller than the transmission
interval. After each transmission and reception, the values in
ŷ and û are updated with the newly received values, while the
other values in ŷ and û remain the same, as no additional
information is received. This leads to the constrained data
exchange expressed as{

ŷ(t) = Γyσky(tk) + (I − Γyσk)ŷ(tk)

û(t) = Γuσku(tk) + (I − Γuσk)û(tk)
(3)

for all t ∈ (rk, rk+1], where Γσk := diag(Γyσk ,Γ
u
σk

) is a
diagonal matrix, given by

Γi = diag(γi,1, . . . , γi,ny+nu). (4)

when σk = i. In (4), the elements γi,j , with i ∈ {1, . . . , N}
and j ∈ {1, . . . , ny}, are equal to one, if plant output yj is
in node i, elements γi,j+ny , with i ∈ {1, . . . , N} and j ∈
{1, . . . , nu}, are equal to one, if controller output uj is in
node i, and are zero elsewhere.

The value of σk ∈ {1, . . . , N} in (3) indicates which node is
given access to the network at transmission instant tk, k ∈ N.
Indeed, (3) reflects that the values in û and ŷ corresponding
to node σk are updated just after rk, with the corresponding
transmitted values at time tk, while the others remain the same.
A scheduling protocol determines the sequence (σ0, σ1, . . .)
and particular protocols will be made explicit later.

The transmission instants tk, as well as the arrival instants
rk, k ∈ N are not necessarily distributed equidistantly in time.
Hence, both the transmission intervals hk := tk+1 − tk and
the transmission delays τk := rk−tk are varying in time, as is
also illustrated in Fig. 1. We assume that the variations in the
transmission interval and delays are bounded and are contained
in the sets [h, h] and [τ , τ ], respectively, with h > h > 0 and
τ > τ > 0. Since we assumed that each transmission delay
τk is smaller than the corresponding transmission interval hk,
we have that (hk, τk) ∈ Θ, for all k ∈ N, where

Θ :=
{

(h, τ) ∈ R2 | h ∈ [h, h], τ ∈ [τ ,min{h, τ})
}
. (5)

Remark II.1 In the above reasoning, we implicitly assumed
that packet loss does not occur, similar to, e.g., [25], [37], [39],
[40]. However, we could accommodate for packet dropouts by
modelling them as prolongations of the transmission interval,
as done in [38], [41]. This means that if we assume that there
is a bound δ ∈ N on the maximum number of successive
dropouts, and we have stability of the NCS for (hk, τk) ∈ Θ,
for all k ∈ N, in the case without dropouts, then the NCS with
dropouts is still guaranteed to be stable for (hk, τk) ∈ Θ′, for
all k ∈ N, where

Θ′ :=
{

(h, τ) ∈ R2 | h ∈ [h, h
′
], τ ∈ [τ ,min{h, τ})

}
(6)

in which h
′

:= h
δ+1 .

A. The NCS as a discrete-time switched uncertain system

To analyse stability of the NCS described above, we trans-
form it into a discrete-time model. In this framework, we need
a discrete-time equivalent of (1) and also of (2a) in case a
continuous-time controller is used. To arrive at this description,
let us first define the network-induced error as{

ey(t) := ŷ(t)− y(t)

eu(t) := û(t)− u(t).
(7)

The discrete-time switched uncertain system can now be
obtained by describing the evolution of the states between tk
and tk+1 = tk+hk. In order to do so, we define xpk := xp(tk),
uk := u(tk), ûk := limt↓rk û(t) and euk := eu(tk). Since û,
as in (3), is a piecewise constant left-continuous signal, i.e.,
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x̄k+1 =

[
Ahk + EhkBDC EhkBD − Ehk−τkBΓσk

C(I −Ahk − EhkBDC) I −D−1Γσk + C(Ehk−τkBΓσk − EhkBD)

]
︸ ︷︷ ︸

=:Ãσk,hk,τk

x̄k (12)

lims↑t û(s) = û(t), we can write ûk−1 = limt↓rk−1
û(t) =

û(rk) = û(tk). This allows us to write the exact discretisation
of (1) as follows:

xpk+1 = eA
phkxpk +

∫ hk

0

eA
p(hk−s)Bpû(tk + s)ds

= eA
phkxpk +

∫ τk

0

eA
p(hk−s)dsBpûk−1

+

∫ hk

τk

eA
p(hk−s)dsBpûk. (8)

As (3) and (7) yield ûk−1 = uk+euk and ûk−1− ûk = Γuσke
u
k ,

(8) can be rewritten as

xpk+1 = eA
phkxpk +

∫ hk

hk−τk
eA

psdsBpûk−1

+

∫ hk−τk

0

eA
psdsBpûk

= eA
phkxpk +

∫ hk

0

eA
psdsBpûk−1

+

∫ hk−τk

0

eA
psdsBp(ûk − ûk−1)

= eA
phkxpk +

∫ hk

0

eA
psdsBp(uk + euk)

−
∫ hk−τk

0

eA
psdsBpΓuσke

u
k . (9)

A discretised equivalent of (2a) is obtained in a similar fashion
by defining xck := xc(tk), yk := y(tk), eyk := ey(tk), ŷk :=
limt↓rk ŷ(t), and observing ŷk−1 = ŷ(tk), and is given by

xck+1 = eA
chkxck +

∫ hk

0

eA
csdsBc(yk + eyk)

−
∫ hk−τk

0

eA
csdsBcΓyσke

y
k.

(10)

We now present three different models, each describing a
particular NCS. The first and the second model cover the
situation where both the plant and the controller outputs are
transmitted over the network, differing by the fact that the
controller is given by (2a) and (2b), respectively. In the third
model, it is assumed that the controller is given by (2a) and that
only the plant outputs y are transmitted over the network and u
are sent continuously via an ideal nonnetworked connection.
We include this particular case, because it is often used in
examples in NCS literature (see, e.g., the benchmark example
in [25], [36]–[39], [41]) and it allows us to compare our
methodology to the existing ones.

1) The NCS model with controller (2a): For an NCS having
controller (2a), the complete NCS model is obtained by
combining (3), (7), (9), and (10) and defining

x̄k :=
[
xp>k xc>k ey>k eu>k

]>
. (11)

This results in the discrete-time model (12), as shown on the
top of this page, in which Ãσk,hk,τk ∈ Rn×n, with n = np +
nc + ny + nu, and

Ahk := diag(eA
phk , eA

chk), B :=

[
0 Bp

Bc 0

]
, (13a)

C := diag(Cp, Cc), D :=

[
I 0
Dc I

]
, (13b)

Eρ := diag(

∫ ρ

0

eA
psds,

∫ ρ

0

eA
csds), ρ ∈ R. (13c)

2) The NCS model with controller (2b): For an NCS having
controller (2b), the complete NCS model is obtained by
combining (2b), (3), (7), and (9), also resulting in (12), in
which now

Ahk := diag(eA
phk , Ac), B :=

[
0 Bp

Bc 0

]
, (14a)

C := diag(Cp, Cc), D :=

[
I 0
Dc I

]
, (14b)

Eρ := diag(

∫ ρ

0

eA
psds, I), ρ ∈ R. (14c)

3) The NCS model if only y is transmitted over the network:
In this case we assume that only the outputs of the plant are
transmitted over the network and the controller communicates
its values continuously and without delay. We therefore have
that u(t) = û(t), for all t ∈ R+, which allows us to combine
(1) and (2a), yielding[

ẋp(t)
ẋc(t)

]
=

[
Ap BpCc

0 Ac

] [
xp(t)
xc(t)

]
+

[
BpDc

Bc

]
ŷ(t). (15)

Since ŷ is still updated according to (3), we can describe the
evolution of the states between tk and tk+1 = tk + hk in a
similar fashion as in (9). In this case, (11) reduces to

x̄k :=
[
xp>k xc>k ey>k

]>
, (16)

resulting in (12), in which

Ahk := e

[
Ap BpCc

0 Ac

]
hk , B :=

[
BpDc

Bc

]
, (17a)

C :=
[
Cp 0

]
, D := I, (17b)

Eρ :=

∫ ρ

0

e

[
Ap BpCc

0 Ac

]
s
ds, ρ ∈ R. (17c)
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B. Protocols as a Switching Function

Based on the previous modelling steps, the NCS is formu-
lated as a discrete-time switched uncertain system (12). In this
framework, protocols are considered as the switching function
determining σk. We consider two commonly used protocols,
see [36]–[41], [43], namely the Try-Once-Discard (TOD) and
the Round-Robin (RR) protocol and generalise these into two
novel classes of protocols, named ‘quadratic’ and ‘periodic’
protocols.

1) Quadratic Protocols: A quadratic protocol is a protocol,
for which the switching function can be written as

σk = arg min
i=1,...,N

x̄>k Pix̄k, (18)

where Pi, i ∈ {1, . . . , N}, are certain given matrices. In case
two nodes have the same maximal values, one of them can
be chosen arbitrarily. In fact, the well-known TOD protocol,
sometimes also called Maximum Error First (MEF) protocol,
belongs to this class of protocols. In this protocol, the node
that has the largest network-induced error, i.e., the difference
between the most recently transmitted values and its current
values of the signals corresponding to the node, is granted
access to the network. We can arrive at the TOD protocol by
adopting the following structure in the Pi matrices:

Pi = P̄ − diag(0,Γi), (19)

in which Γi, i ∈ {1, . . . , N}, is given by (4). Furthermore, if
we define ẽik := Γiek, where ek := [ey>k , eu>k ]>, (18) becomes

σk = arg min
{
−e>k Γ1ek, . . . ,−e>k ΓNek

}
= arg max

{
‖ẽ1
k‖, . . . , ‖ẽNk ‖

}
, (20)

which is the TOD protocol.
2) Periodic Protocols: Another class of protocols that is

considered in this paper is the class of so-called periodic
protocols. A periodic protocol is a protocol that satisfies for
some Ñ ∈ N

σk+Ñ = σk (21)

for all k ∈ N. Ñ is then called the period of the protocol.
Actually, the well-known RR protocol belongs to this class
and is defined by

{σ1, . . . , σN} = {1, . . . , N}, (22)

and period Ñ = N , i.e., during each period of the protocol
every node has access to the network exactly once.

The above modelling approach now provides a description
of the NCS system in the form of a discrete-time switched
linear uncertain system given by (12) and one of the protocols,
characterised by (18) or (21). The system switches between
N linear uncertain systems and the switching is due to
the fact that only one node accesses the network at each
transmission instant. The uncertainty is caused by the fact
that the transmission intervals and the transmission delays
(hk, τk) ∈ Θ are varying over time.

C. Stability of the NCS

The problem studied in this paper is to determine the
stability of the continuous-time NCS, given by (1), (2a) or
(2b), (3), and (7), with protocols satisfying (18) or (21)
given the bounds [h, h] and [τ , τ ], or to find bounds that
guarantee stability. Let us now formally define stability for
this continuous-time NCS.

Definition II.2 The continuous-time NCS given by (1), (2a)
or (2b), (3), and (7), with protocols satisfying (18) or (21),
having states x̄(t) :=

[
xp>(t) xc>(t) ey>(t) eu>(t)

]> ∈
Rn, is said to be Uniformly Globally Exponentially Stable
(UGES) if there exist c̃ > 0 and λ̃ > 0, such that for any
initial condition x̄(0), any sequence of transmission inter-
vals (h0, h1, . . .), and any sequence of transmission delays
(τ0, τ1, . . .), with (hk, τk) ∈ Θ, for all k ∈ N, it holds that

‖x̄(t)‖ 6 c̃‖x̄(0)‖e−λ̃t, ∀ t ∈ R+. (23)

Stability of the continuous-time NCS can be analysed by
assessing stability of the discrete-time uncertain switched
linear system (12) with switching functions satisfying (18) or
(21), as we will show. Let us now formally define stability of
this discrete-time system.

Definition II.3 System (12) with switching sequences satisfy-
ing (18) or (21) is said to be Uniformly Globally Exponentially
Stable (UGES) if there exist c > 0 and 0 6 λ < 1,
such that for any initial condition x̄0 ∈ Rn, any sequence
of transmission intervals (h0, h1, . . .), and any sequence of
transmission delays (τ0, τ1, . . .), with (hk, τk) ∈ Θ, for all
k ∈ N, it holds that

‖x̄k‖ 6 c‖x̄0‖λk, ∀ k ∈ N. (24)

Since the discrete-time switched uncertain linear system
(12) with switching sequences satisfying (18) or (21) is
formulated in discrete time, we can only assess stability at
the transmission instants. However, states of the plant (1) and
controller (2a) actually evolve in continuous time. In the next
lemma, we state that UGES of the discrete-time NCS model
implies UGES of the continuous-time NCS.

Lemma II.4 Assume the discrete-time system (12) with
switching sequences satisfying (18) or (21) is UGES, then the
continuous-time NCS given by (1), (2a) or (2b), (3), and (7),
with protocols satisfying (18) or (21) is also UGES.

Proof: The proof is given in the Appendix.
This lemma states that it suffices to consider the discrete-

time model (12) with switching sequences satisfying (18) or
(21) to assess UGES of the continuous-time NCS system.

III. OBTAINING A CONVEX OVERAPPROXIMATION

In the previous section, we obtained an NCS model in the
form of a switched uncertain system. However, the form as in
(12) is not really convenient to develop efficient techniques for
stability analysis due to the nonlinear dependence of Ãσk,hk,τk
on the uncertain parameters hk and τk. Therefore, we will
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provide a procedure that overapproximates system (12) by a
polytopic system with a norm-bounded additive uncertainty of
the form

x̄k+1 =
( L∑
l=1

αlkĀσk,l + B̄∆kC̄σk
)
x̄k, (25)

where Āσ,l ∈ Rn×n, B̄ ∈ Rn×m, C̄σ ∈ Rm×n, for σ ∈
{1, . . . , N} and l ∈ {1, . . . , L}, with L the number of vertices
of the polytope. Furthermore, αk = [α1

k . . . α
L
k ]> ∈ A,

k ∈ N, denotes an unknown time-varying vector with

A =
{
α ∈ RL

∣∣ L∑
l=1

αl = 1, αl > 0, l ∈ {1, . . . , L}
}

(26)

and ∆k ∈ ∆, k ∈ N, where ∆ is a norm-bounded set of
matrices in Rm×m that describes the additive uncertainty. This
additive uncertainty can have some specific structure, as we
will see below. The model (25) should be an overapproxima-
tion of (12) in the sense that for all σ ∈ {1, . . . , N}, it holds
that{

Ãσ,h,τ | (h, τ) ∈ Θ
}

⊆
{ L∑
l=1

αlĀσ,l + B̄∆C̄σ |α ∈ A,∆ ∈∆
}
. (27)

In this paper, we use the gridding idea of [14], [15] to obtain,
for a fixed σ, Āσ,l by evaluating Ãσ,h,τ of (12) at a collection
of selected pairs of transmission intervals and transmission
delays (h̃l, τ̃l) ∈ Θ, l ∈ {1, . . . , L}. Hence, we take Āσ,l :=
Ãσ,h̃l,τ̃l in (25), with l ∈ {1, . . . , L}. However, contrary to
[14], [15], we choose to allow for convex combinations of the
vertices, whereas in [14], [15] the system switches between the
vertices only. Moreover, we construct a norm-bounded additive
uncertainty ∆ ∈ ∆ to capture the remaining approximation
error, as done in, e.g., [16]–[18]. By comparing Ãσ,h,τ with the
convex combinations of the vertices instead of with the vertices
alone, we obtain smaller bounds on the additive uncertainty
than in [14]–[16], [18].

By specifying (h̃l, τ̃l), l ∈ {1, . . . , L}, and thereby deter-
mining Āσ,l, it only remains to show how to choose B̄∆C̄σ in
(25) and ∆ in order to satisfy (27). This additive uncertainty
is used to capture the approximation error between the original
system (12) and the polytopic system

x̄k+1 =

L∑
l=1

αlkĀσk,lx̄k. (28)

In order for (27) to hold, for each triple (σ, h, τ), with σ ∈
{1, . . . , N} and (h, τ) ∈ Θ, there should exist some α ∈ A
and ∆ ∈∆, such that

Ãσ,h,τ −
L∑
l=1

αlĀσ,l = B̄∆C̄σ. (29)

Hence, we should determine the worst-case distance between
the real system (12) and the polytopic system (28), leading to
an upper bound on the approximation error. To obtain such
an upper bound, we partition Θ into M triangles S1, . . . ,SM ,
see Fig. 2, and we compare Ãσ,h,τ , for (h, τ) ∈ Sm, with

Fig. 2: The partitioning of Θ into triangles Sm.

{
∑3
j=1 α̃

jĀσ,lmj |
∑3
j=1 α̃

j = 1, α̃j > 0, j ∈ {1, 2, 3}},
where (h̃lmj , τ̃lmj ), j = {1, 2, 3}, denote the vertices (with
vertex index lmj ∈ {1, . . . , L}, j ∈ {1, 2, 3} and m ∈
{1, . . . ,M}) of triangle Sm. This allows us to construct the
right-hand side of (29) by computing the worst-case distance.
Note that it is always possible to partition Θ into triangles,
as Θ is a convex polytope. We will, however, also provide a
systematic procedure to obtain a suitable partitioning.

A specific feature of the overapproximation presented in this
paper is that, contrary to [14]–[20], it can be made arbitrarily
tight, i.e., besides that (27) holds, it also holds that{ L∑

l=1

αlĀσ,l + B̄∆C̄σ |α ∈ A,∆ ∈∆
}

⊆ co
{
Ãσ,h,τ | (h, τ) ∈ Θ

}
+ {∆̄ | ‖∆̄‖ 6 ε}, (30)

for each σ ∈ {1, . . . , N}, in which ε > 0 can be chosen
arbitrarily small. This can be achieved by increasing the
number of pairs (h̃l, τ̃l) ∈ Θ, l ∈ {1, . . . , L}, in a well-
distributed fashion. The fact that (30) can be ensured to hold
for an arbitrarily small ε > 0 is important, as it allows us to
show that the existence of a Lyapunov function of a particular
type for (12) is equivalent to the existence of a Lyapunov
function of the same type for (25). Since we will indeed show
that (30) can be guaranteed for any choice of ε > 0, we can let
the introduced conservatism in the overapproximation vanish.
We will formalise this result in Section V.

We now formalise the procedure to obtain a convex overap-
proximation as outlined above. The procedure results in a tight
overapproximation, by adding pairs (h̃l, τ̃l) ∈ Θ until ε 6 εu
is achieved for an user-specified threshold εu > 0, such that
(30) holds with ε 6 εu.

Procedure III.1
Step 1 Choose a desired εu > 0. Furthermore, select distinct

pairs (h̃l, τ̃l) ∈ Θ, l ∈ {1, . . . , L}, such that co G = Θ,
where G = ∪Ll=1{(h̃l, τ̃l)}. Now partition Θ into M
triangles Sm, m ∈ {1, . . . ,M}, such that, for each
Sm ∈ H, where H = {S1, . . . ,SM}, it holds that

Sm = co{(h̃lm1 , τ̃lm1 ), (h̃lm2 , τ̃lm2 ), (h̃lm3 , τ̃lm3 )}, (31)

where lmj ∈ {1, . . . , L}, j ∈ {1, 2, 3}. Hence,
(h̃lmj , τ̃lmj ) ∈ G, j ∈ {1, 2, 3} are the vertices of the
triangle Sm. Moreover, for all m, p ∈ {1, . . . ,M} and
p 6= m, intSp ∩ intSm = ∅, ∪Mm=1Sm = Θ, and
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intSm 6= ∅, i.e., the triangles form a (nonoverlapping)
partitioning of Θ and have nonempty interiors.

Step 2 Define
Āσ,l := Ãσ,h̃l,τ̃l (32)

for all σ ∈ {1, . . . , N} and (h̃l, τ̃l) ∈ G, l ∈
{1, . . . , L}.

Step 3 To bound the approximation error, first construct the
matrix Λ̄, that, depending on the NCS model defined
in Section II-A, is given by

Λ̄ =


diag(Ap, Ac), if (12) is as in Section II-A1,

diag(Ap, 0), if (12) is as in Section II-A2,[
Ap BpCc

0 Ac

]
, if (12) is as in Section II-A3.

(33)
Decompose the matrix Λ̄ into its real Jordan form [46],
i.e., Λ̄ := TΛT−1, where T is an invertible matrix and

Λ = diag(Λ1, . . . ,ΛK) (34)

with Λi ∈ Rni×ni , i ∈ {1, . . . ,K}, the i-th real
Jordan block of Λ̄.

Step 4 Compute for each real Jordan block Λi, i ∈
{1, . . . ,K}, the worst-case approximation error of all
triangles Sm ∈ H, m ∈ {1, . . . ,M}, i.e.,

δAi = max
m∈{1,...,M}

max∑3
j=1α̃

j=1,α̃j>0
δ̃Ai,m,α̃, (35a)

δEhi = max
m∈{1,...,M}

max∑3
j=1α̃

j=1,α̃j>0
δ̃Ehi,m,α̃, (35b)

δ
Eh−τ
i = max

m∈{1,...,M}
max∑3

j=1α̃
j=1,α̃j>0

δ̃
Eh−τ
i,m,α̃ , (35c)

in which α̃ = [α̃1 α̃2 α̃3]> and

δ̃Ai,m,α̃ =
∥∥∥eΛi

∑3
j=1 α̃

j h̃lm
j −

3∑
j=1

α̃je
Λih̃lm

j

∥∥∥, (36a)

δ̃Ehi,m,α̃ =
∥∥∥ 3∑
j=1

α̃j
∫ ∑3

j=1 α̃
j h̃lm

j

h̃lm
j

eΛisds
∥∥∥, (36b)

δ̃
Eh−τ
i,m,α̃ =

∥∥∥ 3∑
j=1

α̃j
∫ ∑3

j=1 α̃
j(h̃lm

j
−τ̃lm

j
)

h̃lm
j
−τ̃lm

j

eΛisds
∥∥∥. (36c)

For a detailed explanation of the origin of the approx-
imation error bounds, see the proof of Theorem III.2.

Step 5 Define

C̄σ :=

 T−1 0
T−1BDC T−1BD

0 −T−1BΓσ

 (37)

and

B̄ :=

[
T T T
−CT −CT −CT

]
· diag(δA1 I1, . . . , δ

A
KIK ,

δEh1 I1, . . . , δ
Eh
K IK , δ

Eh−τ
1 I1, . . . , δ

Eh−τ
K IK)

(38)

with Ii the identity matrix of size ni, complying with
the i-th real Jordan Block, and compute

ε = ‖B̄‖ max
σ∈{1,...,N}

{‖C̄σ‖}. (39)

Step 6 In case that ε > εu, meaning that the user-specified
tightness of the overapproximation in the sense of (30)
is not achieved we add a pair (h̃L+1, τ̃L+1) ∈ Θ to
G. In order to determine the specific pair to be added,
compute the point (h, τ) ∈ Sm, where the maximum
approximation error is achieved by solving

(m?, α̃?) ∈ arg max
m∈{1,...,M},∑3
j=1

α̃j=1,α̃j>0

δ̃j
?

i?,m,α̃ (40)

in which

(i?, j?) ∈ arg max
i∈{1,...,K},

j∈{A,Eh,Eh−τ}

{δji }, (41)

and add this new pair (h̃L+1, τ̃L+1) =∑3
j=1 α̃

?j(h̃lj
m?
, τ̃lj

m?
) to the set G, i.e., update

G according to

G := G ∪ {(h̃L+1, τ̃L+1)}, (42)

and redefine L := L + 1. Furthermore, subdivide the
corresponding triangle Sm? into smaller triangles and
replace Sm? by the smaller triangles in the set H, i.e.,

H :=
(
H\Sm?

)
∪ co{(h̃L+1, τ̃L+1), (h̃lm1 , τ̃lm1 ), (h̃lm2 , τ̃lm2 )}
∪ co{(h̃L+1, τ̃L+1), (h̃lm1 , τ̃lm1 ), (h̃lm3 , τ̃lm3 )}
∪ co{(h̃L+1, τ̃L+1), (h̃lm2 , τ̃lm2 ), (h̃lm3 , τ̃lm3 )}, (43)

redefine1 M := M+2, and repeat the procedure from
Step 2.

Step 7 In case ε 6 εu, the user-specified tightness of the over-
approximation is achieved and the resulting additive
uncertainty set ∆ ⊆ R3(np+nc)×3(np+nc) is given by

∆ =
{

diag(∆1, . . . ,∆3K) | ∆i+jL ∈ Rni×ni ,
‖∆i+jL‖ 6 1, i ∈ {1, . . . ,K}, j ∈ {0, 1, 2}

}
.

(44)

Theorem III.2 Consider the NCS given by (12) where
(hk, τk) ∈ Θ, k ∈ N, with Θ as in (5). If system (25) is
obtained by following Procedure III.1 for some user-specified
εu > 0, then (27) holds and thus (25) is an overapproximation
of (12). Furthermore, the overapproximation is ε-tight, in the
sense that (30) holds, with ε given by (39) and ε 6 εu.

Proof: The proof is given in the Appendix.

Remark III.3 In the special case that h = h or that τ = τ ,
Procedure III.1 has to be modified slightly. This is because
we proposed to form triangles Sm, m ∈ {1, . . . ,M} having
the property that intSm 6= ∅, which is not possible when
h = h or τ = τ . Instead, in this case, we partition Θ

1In case one of the smaller triangles satisfies
int co{(h̃L+1, τ̃L+1), (h̃lmi , τ̃l

m
i
), (h̃lmj , τ̃l

m
j
)} = ∅ for some

i, j ∈ {1, 2, 3}, meaning that (h̃L+1, τ̃L+1) lies on one of the edges
of Sm? , then this triangle is not added to the set H, and the number of
triangles in the partitioning increases according M :=M + 1.
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into M line-segments S1, . . . ,SM , such that, for each Sm,
m ∈ {1, . . . ,M}, it holds that

Sm = co{(h̃lm1 , τ̃lm1 ), (h̃lm2 , τ̃lm2 )}, (45)

where (h̃lmj , τ̃lmj ), j ∈ {1, 2}, now denote the vertices of the
line segment Sm. All other properties of Sm, m ∈ {1, . . . ,M}
still hold and the remainder of the procedure can be applied
mutatis mutandis.

UGES of the NCS system given by (1), (2a) or (2b), (3), and
(7), with protocols satisfying (18) or (21), with (hk, τk) ∈ Θ,
k ∈ N, can now be guaranteed by proving UGES of (25),
with switching sequences satisfying (18) or (21), αk ∈ A, and
∆k ∈ ∆, k ∈ N, using the result of Lemma II.4 and the fact
that (25) is a (tight) overapproximation of (12).

IV. STABILITY OF SWITCHED SYSTEMS WITH
PARAMETRIC UNCERTAINTY

In the previous sections, we discussed the NCS model
and introduced a way to overapproximate it by a switched
polytopic system with norm-bounded uncertainty. Given this
switched uncertain system, we can analyse whether a switch-
ing sequence, as induced by a protocol, renders the switched
system UGES.

We will start with so-called quadratic protocols that in-
clude the well-known TOD protocol as a particular case.
The analysis is based on extensions of the ideas in [47],
in which only switched linear systems without any form of
uncertainty are considered. Hence, generalisations are needed
to include switched polytopic systems with norm-bounded
uncertainties as in (25). After the stability analysis for the
quadratic protocols and the TOD protocol as a special case,
we will also show how we can analyse stability for periodic
protocols, having the RR protocol as a special case.

For proving stability of system (25), with switching se-
quences satisfying (18) or (21), we will employ the so-called
full block S-procedure [48], which is applied in the following
lemma.

Lemma IV.1 Let P̄ be given and consider the set ∆ as in
(44). Then, it holds that[

I
Ā+ B̄∆C̄

]>
P̄

[
I

Ā+ B̄∆C̄

]
≺ 0. (46)

for all ∆ ∈∆, if[
I 0
Ā B̄

]>
P̄

[
I 0
Ā B̄

]
+

[
0 I
C̄ 0

]>[−R 0
0 R

] [
0 I
C̄ 0

]
≺ 0,

(47)
where

R ∈ R =
{

diag(r1I1, . . . , rKIK , rK+1I1, . . . ,

r2KIK , r2K+1I1, . . . , r3KIK)

∈ R3(np+nc)×3(np+nc) | ri > 0
}
, (48)

where Ii is an identity matrix of size ni.

Proof: It follows directly from the full-block S-procedure
[48] and the block-diagonal structure of (44).

By choosing a suitable P̄ , (46) can lead to a sufficient
condition for stability of (25).

A. Quadratic Protocols

In this section, we assume that the switching function is
given by (18). To analyse the stability of (25) having this
switching function, we introduce the non-quadratic Lyapunov
function

V (x̄k) = min
i=1,...,N

x̄>k Pix̄k = min
ν∈N

x̄>k

N∑
i=1

νiPix̄k, (49)

where

N :=
{
ν ∈ RN

∣∣ N∑
i=1

νi = 1, νi > 0, i ∈ {1, . . . , N}
}
. (50)

Furthermore, we introduce the class M of so-called Metzler
matrices Π = {πji} given by

M :={
Π ∈ RN×N

∣∣ N∑
j=1

πji = 1, πji > 0, i, j ∈ {1, . . . , N}
}
. (51)

The main result of this section is presented in the following
theorem.

Theorem IV.2 Assume that there exist a matrix Π = {πji} ∈
M, positive definite matrices Pi, and matrices Ri,l ∈ R, i ∈
{1, . . . , N} and l ∈ {1, . . . , L}, satisfying

Pi 0 Ā>i,l
∑N
j=1 πjiPj C̄>i Ri,l

? Ri,l B̄>
∑N
j=1 πjiPj 0

? ?
∑N
j=1 πjiPj 0

? ? ? Ri,l

 � 0, (52)

for all i ∈ {1, . . . , N} and l ∈ {1, . . . , L}. Then, the switching
law (18) renders the system (25) UGES. Consequently, the
NCS given by (1), (2a) or (2b), (3), and (7) is also UGES if
the switching law (18) is employed as the protocol.

Proof: The proof is given in the Appendix.

Remark IV.3 The results of Theorem IV.2 can be exploited
in two ways: (i) For the design of a stabilising protocol.
Then the conditions in (52) are not LMIs, but Bilinear Matrix
Inequalities (BMIs) due to the presence of the product of
πji and Pj . Although literature on solving BMIs is available,
see, e.g., [49]–[51], solving BMIs is considered to be of a
high numerical complexity. (ii) Stability analysis for a given
protocol. In the situation that the matrices Pi, i ∈ {1, . . . , N},
are completely given for a particular quadratic protocol, the
conditions (52) are LMIs in Π ∈ M and Ri,l ∈ R, for all
i ∈ {1, . . . , N} and l ∈ {1, . . . , L}.

B. The TOD Protocol

In Section II-B, we showed that by suitable choice of Pi, i ∈
{1, . . . , N}, as in (19), the TOD protocol is a specific quadratic
protocol. We can therefore use the result of Theorem IV.2 to
determine the allowable range of transmission intervals and
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transmission delays of the NCS using the TOD protocol. This
result is formalised in the following corollary, in which

M :=
{

diag(0,

N∑
j=1

πjiΓj) ∈ Rn×n
∣∣ N∑
j=1

πji = 1,

πji > 0, i, j ∈ {1, . . . , N}
}
. (53)

Corollary IV.4 Assume that there exist matrices Π̄i ∈M, i ∈
{1, . . . , N}, a matrix P , matrices Ri,l ∈ R, i ∈ {1, . . . , N}
and l ∈ {1, . . . , L}, satisfying
P − diag(0,Γi) 0 Ā>i,l(P −Πi) C̄>i Ri,l

? Ri,l B̄>(P −Πi) 0
? ? P −Πi 0
? ? ? Ri,l

� 0, (54)

for all i ∈ {1, . . . , N} and l ∈ {1, . . . , L}, with Γi, as in (4).
Then, the system (25) with (20) is UGES. Consequently, the
NCS, given by (1), (2a) or (2b), (3), and (7), with the TOD
protocol (20) is also UGES.

Proof: The proof follows directly from Theorem IV.2 and
the fact that Pi is structured as in (19). Therefore, it holds that∑N
j=1 πjiPj = P − diag(0,

∑N
j=1 πjiΓj) =: P − Πi.

C. Periodic protocols and the RR Protocol

We will now analyse another class of communication pro-
tocols, namely the periodic protocols, with the RR protocol
as a special case. Hence, we need to analyse stability of the
system (25) with a switching sequence induced by (21) or
(22). This system is essentially a Ñ -periodic uncertain system.
For this system, we introduce positive definite matrices Pi,
i ∈ {1, . . . , N}, and a time-dependent periodic Lyapunov
function given by

Vk(x̄k) = x̄>k Pkx̄k, and Vk+Ñ (x̄k+Ñ ) = Vk(x̄k). (55)

We can now present the main result of this section.

Theorem IV.5 Assume that there exist positive definite ma-
trices Pi, i ∈ {1, . . . , Ñ}, and matrices Ri,l ∈ R, i ∈
{1, . . . , N} and l ∈ {1, . . . , L}, satisfying

Pi 0 Ā>σi,lPi+1 C̄>σiRi,l
? Ri,l B̄>Pi+1 0
? ? Pi+1 0
? ? ? Ri,l

 � 0, (56)

where PÑ+1 := P1, for all i ∈ {1, . . . , Ñ} and l ∈
{1, . . . , L}. Then, the system (25) with (22) is UGES and
consequently, the NCS as given by (1), (2a) or (2b), (3), and
(7) with a periodic protocol (21) is UGES.

Proof: The proof follows the same lines of reasoning as
the proof of Theorem IV.2.

V. NONCONSERVATIVENESS OF THE OVERAPPROXIMATION

Given the results of the previous sections, it is now natural
to ask if and how conservative the presented methodology is.
The answer is given by the following result, showing that if
the original system (12) (without any overapproximation), with
protocol (18) or (21), is UGES in the sense that a Lyapunov
function of a particular type exists, given by (49) or (55),
respectively, the presented procedure based on the overap-
proximation will guarantee stability and will find a respective
Lyapunov function, given that the overapproximation of (12) is
sufficiently tight, i.e., (30) holds for a sufficiently small ε > 0.
Therefore, making a convex overapproximation, according to
Procedure III.1, introduces no conservatism in the stability
analysis as presented in the previous section.

In the following theorem, we will show the result for the
NCS model (12) with protocol (18). A similar result holds for
the NCS model (12) with protocol (21).

Theorem V.1 Suppose system (12), with protocol (18), has
a Lyapunov function of the form (49), i.e., there exist a
matrix Π = {πji} ∈ M and positive definite matrices Pi,
i ∈ {1, . . . , N}, such that

Ã>i,h,τ

N∑
j=1

πjiPjÃi,h,τ − Pi � −γI, (57)

for all i ∈ {1, . . . , N} and (h, τ) ∈ Θ, and some γ > 0.
Then, there exists an ε0, such that for any ε-tight overapprox-
imation satisfying (30), with 0 < ε 6 ε0, the conditions of
Theorem IV.2 hold.

Proof: The proof is given in the Appendix.
This result states that the convex overapproximation does

not introduce conservatism when analysing UGES using
mode-dependent quadratic Lyapunov functions.

VI. ILLUSTRATIVE EXAMPLE

In this section, we illustrate the presented theory using a
well-known benchmark example in the NCS literature, see,
e.g., [25], [37]–[39], [41], consisting of a model of a batch
reactor. The linearised batch reactor is given by (1), with

[
Ap Bp

Cp

]
=


1.380 −0.208 6.715 −5.676 0 0
−0.581 −4.290 0 0.675 5.679 0
1.067 4.273 −6.654 5.893 1.136 −3.146
0.048 4.273 1.343 −2.104 1.136 0

1 0 1 −1
0 1 0 0

.
(58)

The continuous-time controller considered in [25], [37]–[39],
[41] is given by (2a), with[

Ac Bc

Cc Dc

]
=

 0 0 0 1
0 0 1 0
−2 0 0 −2
0 8 5 0

. (59)

First, we will analyse the continuous-time NCS as also used
in [37]–[39], [41]. As done in these references, we consider
the TOD and RR protocol and assume that the controller is
directly connected to the actuator, i.e., only the two outputs
are transmitted via the network. Since communication delays
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are only considered in [41], and gives in absence of delays
(i.e., τ = τ = 0) the same results as in [37], we compare
our results with [41]. This will show that our results provide
significantly less conservative bounds on the uncertain trans-
mission intervals and transmission delays than earlier results
in the literature. Secondly, we illustrate that our framework
can equally well deal with discrete-time controllers, a larger
number of nodes than used in previous examples in the
literature, and a nonzero lower bound on the transmission
interval.

A. Continuous-Time Controller
In order to assess the bounds on the allowable transmission

intervals and delays, we first define our NCS model as in
Section II-A3. This model appropriately describes the situation
as discussed in this example, where only the plant outputs y
are transmitted over the network and u are sent continuously
via a nonnetworked connection. Then, we derive the uncertain
polytopic system (25) that overapproximates the NCS model
(12), using Procedure III.1. As in [41], we try to obtain
combinations of h and τ for which the NCS is stable, and
we assume that τ = 0, and we take h = 10−3. We cannot
make h too small, because, by doing so, Ãσk,hk,τk , as in
(12), approaches the identity matrix and LMI solvers run into
numerical problems, as the system becomes close to unstable.
Note that [37]–[39], [41] also use nonzero lower bound on
the transmission intervals to prevent Zeno behaviour, although,
this lower bound can be taken arbitrarily small. Using Proce-
dure III.1, we obtain a convex overapproximation, in which we
choose εu = 3 as decreasing εu does not change the results
in this example. Using the obtained overapproximation, we
can check for which combinations of h and τ , the LMIs in
Corollary IV.4 and Theorem IV.5 are feasible. This results for
each τ in the maximum achievable h (or vice versa) for which
the LMIs in Corollary IV.4 and Theorem IV.5 are satisfied.
This results in tradeoff curves, as shown in Fig. 3. These
tradeoff curves can be used to impose or select a suitable
network with a certain communication delay and a certain
allowable transmission interval.

Moreover, in Fig 3, also the tradeoff curves as obtained in
[41] are given. We conclude that our proposed methodology
is less conservative than the one in [41]. More interestingly,
in case there is no delay, i.e., τ = τ = 0, the maximum
allowable transmission interval h obtained in [37], which
provide the least conservative results known in literature so
far, was h = 0.0108, while we obtain h = 0.0665. In [39], h
was estimated (using simulations) to be approximately 0.08
for the TOD protocol. Furthermore, for the RR protocol,
[37] provides the bound h = 0.009 in the delay-free case,
while we obtain h = 0.0645. Also in [39], for a constant
transmission interval, i.e. h = h, the bound 0.0657 was
obtained for the RR protocol. The case where the transmission
interval is constant, provides an upper bound on the true
maximum allowable transmission interval (MATI). We can
therefore conclude that for this example, our methodology
reduces conservatism significantly in comparison to existing
methodologies and even approximates known estimates of the
true MATI closely.
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Fig. 3: Tradeoff curves between allowable transmission inter-
vals and transmission delays for two different protocols.
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Fig. 4: Tradeoff curves between allowable transmission inter-
vals and transmission delays.

B. Discrete-Time Controller

Next, we compute h, h, τ , and τ for the NCS with a
discrete-time controller as in (2b). Contrary to the example
presented above, and all examples considered in [37]–[39],
[41], we now designate a node to each single sensor and
actuator, resulting in an NCS with four nodes. By doing so,
we try to point out that our methodology is also suitable to
study more complex problems. In this example, the controller
is given by an exact discretisation of the continuous-time
controller (2a) with matrices (59) using a zero-order hold
and assuming a nominal transmission interval hnom = 0.01
and a bounded variation hvar around this nominal transmission
interval. We assume that τ = 0 and h 6= 0, i.e., transmissions
can be infinitely fast, but do not occur infinitely often. In this
example, we select h = hnom−hvar and h = hnom +hvar, where
2hvar > 0 determines the range of allowable transmission
intervals and we only consider the RR protocol.

After obtaining a convex overapproximation using Proce-
dure III.1, in which we have taken εu = 0.02, and assessing
stability using the results of Theorem IV.5, we can now plot
for each τ , the largest range, determined by h = hnom − hvar
and h = hnom + hvar, for which UGES is guaranteed. In this
example, we take hnom = 0.01, which results in the tradeoff
curve as shown in Fig. 4.

VII. CONCLUSIONS

In this paper, we studied the stability of Networked Control
Systems (NCSs) that are subject to communication constraints,
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time-varying transmission intervals and time-varying delays.
We analysed the stability of the NCS when the communication
sequence is determined by one of the protocols in the newly
introduced classes of quadratic protocols or periodic proto-
cols, having the well-known Try-Once-Discard (TOD) and the
Round-Robin (RR) as special cases. This analysis was based
on a discrete-time switched linear uncertain system to model
the NCS. A new and efficient convex overapproximation
was proposed that allows us to analyse stability using a
finite number of linear matrix inequalities. We presented an
automated procedure to obtain the overapproximation and we
formally showed that the convex overapproximation can be
made arbitrarily tight and does not introduce conservatism.
On a benchmark example, we illustrated the advantages and
the effectiveness of the developed theory. In particular, we
showed that stability can be guaranteed for a much larger
maximum allowable transmission interval and maximum al-
lowable transmission delay, when compared to the existing
results in the literature. In addition, our results can be applied
for stability analysis of NCS with discrete-time controllers
and nonzero lower bounds on the transmission intervals and
delays, which could not be analysed before even though they
are highly relevant for practical implementations of networked
controllers.

Future work focusses on studying the case where delays are
not restricted to be smaller than the transmission interval, on
the inclusion of quantisation effects of the sensor and actuator
signals on the closed-loop stability and performance, and on
co-design methods of the controller and the protocol.

APPENDIX
PROOFS OF THEOREMS AND LEMMAS

Proof of Lemma II.4: In Theorem 4 of [52], it was
shown that a sampled-data system is UGES if and only if its
corresponding discretised model is UGES and the intersample
behaviour is so-called linearly uniformly globally bounded
over T (LUGBT), where T is the sampling interval. This
means, roughly speaking, that the intersample behaviour can
be bounded by a linear function of the state of the system
at the transmission instants. Since the discrete-time system is
UGES by assumption, it only remains to show LUGBT. To
do so, let us introduce an additional variable t̃ := t − tk, for
all t ∈ (tk, tk+1]. Solving the differential equation (1) on the
interval t̃ ∈ (0, τk] yields

xp(tk + t̃) = eA
p t̃xp(tk) +

∫ t̃
0
eA

p(t̃−s)dsBpû(tk) (60)

and on the interval t̃ ∈ (τk, hk]

xp(tk + t̃) = eA
p t̃xp(tk) +

∫ τk
0
eA

p(t̃−s)dsBpû(tk)

+
∫ t̃
τk
eA

p(t̃−s)dsBp limt↓rk û(t). (61)

Or equivalently, when expressed in states at the sample in-
stants, for t̃ ∈ (0, τk],

xp(tk + t̃) = eA
p t̃xpk +

∫ t̃
0
eA

psdsBp(DcCpxpk
+ Ccxck +Dceyk + euk) (62)

and for t̃ ∈ (τk, hk],

xp(tk + t̃) = eA
p t̃xpk +

∫ t̃
0
eA

psdsBp(DcCpxpk + Ccxck

+ euk +Dceyk)−
∫ t̃−τk

0
eA

psdsBpΓuσke
u
k . (63)

Using (62) and (63), we can bound the intersample behaviour
on the interval t̃ ∈ (0, hk] by

‖xp(tk + t̃)‖ 6 ‖eA
p t̃‖‖xpk‖+ ‖

∫ t̃
0
eA

psdsBp‖(‖Cc‖‖xck‖
+ ‖DcCp‖‖xpk‖+ ‖Dc‖‖eyk‖+ ‖euk‖)

+ ‖
∫ t̃−τk

0
eA

psdsBpΓuσk‖‖e
u
k‖,
(64)

Similar inequalities can be derived that bound the intersample
behaviour for the state evolution xc(t) of (2a) and for the
network-induced error given by (7). Therefore, by using the
bounds on hk and τk, the continuous-time NCS (1), (2a) or
(2b), (3), and (7) is LUGBT. Consequently, Theorem 4 of [52]
implies that the continuous-time NCS is UGES.

Proof of Theorem III.2: The proof is based on showing
that Procedure III.1 yields that system (25) is an overapprox-
imation of (12) in the sense that (27) holds, and that this
overapproximation is tight in the sense that (30) holds for
a ε > 0, satisfying ε 6 εu for some εu.

In order for (27) to hold, considering a fixed σ ∈
{1, . . . , N}, we should have that for all (h, τ) ∈ Θ, there
exist an α ∈ A and a ∆ ∈∆, such that (29) holds, i.e.,

Ãσ,h,τ =

L∑
l=1

αlĀσ,l + B̄∆C̄σ. (65)

Therefore, given L distinct pairs (h̃l, τ̃l) ∈ Θ, l ∈ {1, . . . , L},
and Āσ,l as in (32), we can write the approximation error
between Ãσ,h,τ of (12) and

∑L
l=1 α

lĀσ,l of (28) as

Ãσ,h,τ −
L∑
l=1

αlĀσ,l =

T> −(CT )>

T> −(CT )>

T> −(CT )>

>
︸ ︷︷ ︸

=:B̃

∆̃α,h,τ

 T−1 0
T−1BDC T−1BD

0 −T−1BΓσ


︸ ︷︷ ︸

=:C̄σ

, (66)

where

∆̃α,h,τ = diag(T−1(Ah −
∑L
l=1 α

lAh̃l)T,

T−1(Eh −
∑L
l=1 α

lEh̃l)T,

T−1(Eh−τ −
∑L
l=1 α

lEh̃l−τ̃l)T ), (67)

in which Ah, Eh, Eh−τ are defined as in Section II-A1, II-A2
or II-A3. Using the real Jordan form of (33), we can observe
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that

T−1(Ah −
∑L
l=1 α

lAh̃l)T = eΛh −
∑L
l=1 α

leΛh̃l ,

(68a)

T−1(Eh −
∑L
l=1 α

lEh̃l)T =
∑L
l=1 α

l
∫ h
h̃l
eΛsds,

(68b)

T−1(Eh−τ −
∑L
l=1 α

lEh̃l−τ̃l)T =
∑L
l=1 α

l
∫ h−τ
h̃l−τ̃l e

Λsds

(68c)

hold for all α ∈ A if Ah, Eh, and Eh−τ are defined as in
Section II-A1 and II-A3. Since Eh and Eh−τ , when defined
as in Section II-A2, contain identity matrices in the lower-
right part, the left-hand side of (68b) and (68c) contain zero
blocks. Therefore, in case of Eh and Eh−τ being defined as in
Section II-A2, equality in (68b) and (68c) do not automatically
hold and we have to impose additional requirements on α ∈
A to ensure that the appropriate Jordan blocks of the right-
hand side of (68b) and (68c) also equal zero. These additional
requirements are that

L∑
l=1

αlh̃l = h, and
L∑
l=1

αl(h̃l − τ̃l) = h− τ, (69)

since substituting (69) into (68) indeed results in zero-blocks
at the appropriate places in the left-hand side of (68). Now,
combining (67) and (68) yields

∆̃α,h,τ =

L∑
l=1

αl diag(eΛh − eΛh̃l ,

∫ h

h̃l

eΛsds,

∫ h−τ

h̃l−τ̃l
eΛsds),

(70)

provided that (69) holds.
As an intermediate step in the proof, we aim at finding a set

∆̃ of matrices, such that for all (h, τ) ∈ Θ there is an α ∈ A
such that ∆̃α,h,τ ∈ ∆̃. Since Θ = ∪Mm=1Sm, we wil perform
the construction of ∆̃ per triangle Sm, m ∈ {1 . . . ,M}, and
combine them later. Hence, for each m ∈ {1, . . . ,M}, we
now aim at constructing ∆̃m such that for all (h, τ) ∈ Sm,
m ∈ {1, . . . ,M}, there is an α ∈ A such that ∆̃α,h,τ ∈ ∆̃m.
In particular, for (h, τ) ∈ Sm, m ∈ {1, . . . ,M}, with Sm
as in (31), take ᾱl

m
j = α̃j , j = {1, 2, 3}, and ᾱi = 0, i /∈

{lm1 , lm2 , lm3 }, where
∑3
j=1 α̃

j(h̃mj , τ̃
m
j ) = (h, τ),

∑3
j=1 α̃

j =

1, and α̃j > 0, j ∈ {1, 2, 3}. Let us now bound the norm
of (70) for triangle Sm, m ∈ {1, . . . ,M}, and per Jordan
block Λi, i ∈ {1, . . . ,K} using this particular choice ᾱ for α.
Hence, for all (h, τ) ∈ Sm, ∆̃ᾱ,h,τ ∈ ∆̃m with

∆̃m :={
diag(∆̃A

1 , . . . , ∆̃
A
K , ∆̃

Eh
1 , . . . , ∆̃Eh

K , ∆̃
Eh−τ
1 , . . . , ∆̃

Eh−τ
K )

∣∣∣
‖∆̃A

i ‖ 6 max∑3
j=1

α̃j=1,

α̃j>0

δ̃Ai,m,α̃, ‖∆̃
Eh
i ‖ 6 max∑3

j=1
α̃j=1,

α̃j>0

δ̃Ehi,m,α̃,

‖∆̃Eh−τ
i ‖ 6 max∑3

j=1
α̃j=1,

α̃j>0

δ̃
Eh−τ
i,m,α̃ , i ∈ {1, . . . ,K}

}
, (71)

for m ∈ {1, . . . ,M} in which δ̃Ai,m,α̃, δ̃Ehi,m,α̃, and δ̃
Eh−τ
i,m,α̃ are

given by (36). This upper bound on the approximation errors

allows us to write{
Ãσ,h,τ | (h, τ) ∈ Sm

}
⊆{ 3∑

j=1

α̃jĀσ,lmj + B̃∆̃mC̄σ

∣∣∣ 3∑
j=1

α̃j = 1, α̃j > 0,

j ∈ {1, 2, 3}, ∆̃m∈ ∆̃m

}
. (72)

To obtain ∆ independent of m, as in (44), let us now
introduce the scaling matrix

U := diag(δA1 I1, . . . , δ
A
KIK , δ

Eh
1 I1, . . . , δ

Eh
K IK ,

δ
Eh−τ
1 I1, . . . , δ

Eh−τ
K IK) (73)

in which Ii is an identity matrix of size ni, complying with
the size of the ∆̃i and observe that ∆̃m ⊆ U∆, with ∆ as in
(44). Now due to (35) and (38), B̄ = B̃ · U , and this allows
us to rewrite (72) as{

Ãσ,h,τ | (h, τ) ∈ Sm
}

⊆
{ 3∑
j=1

α̃jĀσ,lmj + B̄∆C̄σ

∣∣∣ 3∑
j=1

α̃j = 1, α̃j > 0,

j ∈ {1, 2, 3},∆ ∈∆
}

⊆

{
L∑
l=1

αlĀσ,l + B̄∆C̄σ

∣∣∣ α ∈ A,∆ ∈∆

}
, (74)

with A as in (26) and ∆ as in (44), which is . By taking
the convex hull over all m ∈ {1, . . . ,M} in the left-hand-side
and observing that the right-hand-side is independent of m,
we obtain (27).

To show that (30) holds for ε as in (39), we consider a fixed
σ ∈ {1, . . . , N} and show that for all α ∈ A and ∆ ∈ ∆,
there exist a pair (h, τ) ∈ Θ and a ∆̄, satisfying ‖∆̄‖ 6 ε,
such that

L∑
l=1

αlĀσ,l + B̄∆C̄σ

∈ co
{
Ãσ,h,τ | (h, τ) ∈ Θ}+ {∆̄ | ‖∆̄‖ 6 ε

}
. (75)

Since by definition it holds that
∑L
l=1 α

lĀσ,l =∑L
l=1 α

lĀσ,h̃l,τ̃l ∈ co{Āσ,h,τ | (h, τ) ∈ Θ}, this inclusion is
satisfied if ∥∥B̄∆C̄σ

∥∥ 6 ε, (76)

which holds for ε 6 εu as in (39), due to the fact that
Procedure III.1 terminates not until ε 6 εu.

Proof of Theorem IV.2: The proof is based on showing
that V as in (49) is a Lyapunov function for the switched
uncertain system (25) with switching law (18). Note that
V (x̄k) = x̄>k Pix̄k, with i = σk, due to (18). Now, we obtain
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using (49) and (25) that

V (x̄k+1)

= min
ν∈N

x̄>k+1

∑N
j=1 νjPj x̄k+1

= min
ν∈N

x̄>k (
∑L
l1=1 α

l1
k Āσk,l1 + B̄∆kC̄σk)>∑N

j=1 νjPj(
∑L
l2=1 α

l2
k Āσk,l2 + B̄∆kC̄σk)x̄k

6 x̄>k (
∑L
l1=1 α

l1
k Āi,l1 + B̄∆kC̄i)

>∑N
j=1 πjiPj(

∑L
l2=1 α

l2
k Āi,l2 + B̄∆kC̄i)x̄k. (77)

To obtain UGES, it is sufficient to require that the Lyapunov
function is strictly decreasing in the sense that (due to (77))

(
∑L
l1=1 α

l1
k Āi,l1 + B̄∆C̄i)

>∑N
j=1 πjiPj

(
∑L
l2=1 α

l2
k Āi,l2 + B̄∆C̄i)− Pi ≺ 0. (78)

for all α ∈ A, ∆ ∈ ∆̄, and i ∈ {1, . . . , N}. Here, we used
that ∆ ⊆ ∆̄, as stated in Lemma IV.1. By taking a Schur
complement, realising that

∑N
j=1 πjiPj � 0, and using that

αk ∈ A, we obtain that (78) is equivalent to stating that

L∑
l=1

αlk

[
Pi (Āi,l + B̄∆C̄i)

>∑N
j=1 πjiPj∑N

j=1 πjiPj(Āi,l + B̄∆C̄i)
∑N
j=1 πjiPj

]
︸ ︷︷ ︸

Gi,l

(79)
is positive definite for all α ∈ A, ∆ ∈ ∆̄, and i ∈ {1, . . . , N}.
A necessary and sufficient condition for positive definiteness
of (79), for all αk ∈ A, is that Gi,l � 0 for all i ∈ {1, . . . , N}
and l ∈ {1, . . . , L}. Using again a Schur complement, we can
rewrite the condition Gi,l � 0 as follows:

Pi − (Āi,l + B̄∆C̄i)
>

N∑
j=1

πjiPj(Āi,l + B̄∆C̄i) � 0, (80)

or equivalently,[
I

Āi,l + B̄∆C̄i

]>[−Pi 0

0
∑N
j=1 πjiPj

] [
I

Āi,l + B̄∆C̄i

]
≺ 0,

(81)
for all ∆ ∈ ∆̄, i ∈ {1, . . . , N} and l ∈ {1, . . . , L}. As (81)
has the form of (46) of Lemma IV.1, it is therefore implied
by (47). Applying a Schur complement yields (52) for all i ∈
{1, . . . , N} and all l ∈ {1, . . . , L}. Since (52) holds by the
hypothesis of the theorem, we can conclude that V is strictly
decreasing in spite of the presence of the uncertainty. Standard
Lyapunov-based stability arguments now prove that (25) with
(18) is UGES. Using that (25) is an overapproximation of (12)
as proven in Theorem III.2 and subsequently, using the result
of Lemma II.4, it follows that the NCS system given by (1),
(2a) or (2b), (3), and (7) is UGES.

Proof of Theorem V.1: Since (57) holds for all pairs
(h, τ) ∈ Θ and, therefore, for all (h̃l, τ̃l) ∈ Θ, l ∈ {1, . . . , L},
we have that[

Ā>i,l
∑N
j=1 πjiPjĀi,l − Pi + γI 0

0 0

]
� 0, (82)

for all i ∈ {1, . . . , N} and l ∈ {1, . . . , L}. Note that (82) holds
irrespective of the choice of (h̃l, τ̃l) ∈ Θ, l ∈ {1, . . . , L}.
Now suppose that we would establish that there exist matrices
Ri,l ∈ R, i ∈ {1, . . . , N} and l ∈ {1, . . . , L}, such that

N∑
j=1

πji

[
C̄>i Ri,lC̄i − γI Ā>i,lPjB̄

B̄>PjĀi,l B̄>PjB̄ −Ri,l

]
≺ 0, (83)

for all i ∈ {1, . . . , N} and l ∈ {1, . . . , L}. Then, combining
this expression with (82) yields, after taking a Schur comple-
ment, the conditions of Theorem IV.2. Hence, if the fact that
(30) holds for a sufficiently small ε, implies that (83) holds
for some Ri,l ∈ R, we completed the proof.

Therefore, it remains to show that there exists an ε0, such
that for any 0 < ε 6 ε0, (83) is satisfied for some Ri,l ∈ R.
Note that (83) holds if

C̄>i Ri,lC̄i + Ā>i,lPjB̄
(
Ri,l − B̄>PjB̄

)−1
B̄>PjĀi,l ≺ γI,

(84)
and B̄>PjB̄ ≺ Ri,l, for some Ri,l ∈ R, and for all i, j ∈
{1, . . . , N} and l ∈ {1, . . . , L}. By choosing Ri,l = rI , for
all i ∈ {1, . . . , N} and l ∈ {1, . . . , L} with r > 0, we can
observe that (84) is implied by

‖PjĀi,l‖2‖B̄‖2

r−λmin(B̄>PjB̄)
< γ − r‖C̄i‖2, (85)

where λmin(B̄>PjB̄) denotes the minimum eigenvalue of
B̄>PjB̄. Since it holds that λmin(B̄>PjB̄) 6 ‖B̄‖2‖Pj‖, (85)
is implied by

‖PjĀi,l‖2‖B̄‖2 < (γ − r‖C̄i‖2)(r − ‖B̄‖2‖Pj‖), (86)

Furthermore, B̄>PjB̄ ≺ Ri,l is implied by ‖B̄‖2‖Pj‖ < r, for
some r > 0 and all i, j ∈ {1, . . . , N} and l ∈ {1, . . . , L}. Now
choosing r = γ

2‖C̄i‖2
, multiplying the left-hand and the right-

hand side of (86) by ‖C̄i‖2, and realising that ‖B̄‖‖C̄i‖ 6 ε
yields that (86), and thereby (84), is satisfied if

ε2‖PjĀi,l‖2 < 1
4γ

2 − 1
2γε

2‖Pj‖, (87)

and that B̄>PjB̄ ≺ Ri,l is satisfied if ε2‖Pj‖ < 1
2γ, which

can be satisfied by choosing ε sufficiently small.
Therefore, if (49) is a Lyapunov function for system (12),

with protocol (20), then there exists an ε0 > 0, such that
for any overapproximation satisfying (30) with 0 < ε 6 ε0,
the conditions of Theorem IV.2 hold, which completes the
proof.
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