
HAL Id: hal-00622915
https://hal.science/hal-00622915v2

Submitted on 16 Sep 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Node-Disjoint Multipath Spanners and their
Relationship with Fault-Tolerant Spanners

Cyril Gavoille, Quentin Godfroy, Laurent Viennot

To cite this version:
Cyril Gavoille, Quentin Godfroy, Laurent Viennot. Node-Disjoint Multipath Spanners and their Re-
lationship with Fault-Tolerant Spanners. 2011. �hal-00622915v2�

https://hal.science/hal-00622915v2
https://hal.archives-ouvertes.fr

Node-Disjoint Multipath Spanners and their
Relationship with Fault-Tolerant Spanners

Cyril Gavoille∗ Quentin Godfroy† Laurent Viennot‡

Abstract

Motivated by multipath routing, we introduce a multi-connected variant of spanners. For that
purpose we introduce the p-multipath cost between two nodes u and v as the minimum weight of a
collection of p internally vertex-disjoint paths between u and v. Given a weighted graph G, a subgraph
H is a p-multipath s-spanner if for all u, v, the p-multipath cost between u and v in H is at most s
times the p-multipath cost in G. The s factor is called the stretch.

Building upon recent results on fault-tolerant spanners, we show how to build p-multipath spanners
of constant stretch and of Õ(n1+1/k) edges1, for fixed parameters p and k, n being the number of nodes
of the graph. Such spanners can be constructed by a distributed algorithm running in O(k) rounds.

Additionally, we give an improved construction for the case p = k = 2. Our spanner H has O(n3/2)
edges and the p-multipath cost in H between any two node is at most twice the corresponding one in
G plus O(W), W being the maximum edge weight.

Keywords: distributed graph algorithm, spanner, multipath routing

1 Introduction

It is well-known [ADD+93] that, for each integer k > 1, every n-vertex weighted graph G has a subgraph
H, called spanner, with O(n1+1/k) edges and such that for all pairs u, v of vertices of G, dH(u, v) 6 (2k−
1) · dG(u, v). Here dG(u, v) denotes the distance between u and v in G, i.e., the length of a minimum cost
path joining u to v. In other words, there is a trade-off between the size of H and its stretch, defined here by
the factor 2k−1. Such trade-off has been extensively used in several contexts. For instance, this can be the
first step for the design of a Distance Oracle, a compact data structure supporting approximate distance
query while using sub-quadratic space [TZ05, BGSU08, BK06]. It is also a key ingredient for several
distributed algorithms to quickly compute a sparse skeleton of a connected graph, namely a connected
spanning subgraph with only O(n) edges. This can be done by choosing k = O(log n). The target
distributed algorithm can then be run on the remaining skeleton [BE10]. The skeleton construction can
be done in O(k) rounds, whereas computing a spanning tree requires diameter rounds in general. We refer
the reader to [Pet07] for an overview on graph spanner constructions.

However, it is also proved in [TZ05] that if G is directed, then it may have no sub-digraph H having
o(n2) edges and constant stretch, the stretch being defined analogously by the maximum ratio between the
one-way distance from u to v in H and the one-way distance from u to v in G. Nevertheless, a size/stretch
trade-off exists for the round-trip distance, defined as the sum of a minimum cost of a dipath from u to
v, and a minimum cost dipath from v to u (see [CW00, RTZ08]). Similar trade-offs exist if we consider
the p-edge-disjoint multipath distance (in undirected graphs) for each p > 1, that is the minimum sum of
p edge-disjoint paths joining u and v, see [GGV10].
∗LaBRI, University of Bordeaux, France, gavoille@labri.fr. Supported by the European project “EULER”, the ANR

project “ALADDIN”, and the équipe-projet INRIA “CÉPAGE”. Member of the “Insitut Universitaire de France”.
†LaBRI, Université Bordeaux-I, quentin@godfroy.eu. Supported by the european project “EULER”, the ANR project

“ALADDIN”, and the équipe-projet INRIA “CÉPAGE”.
‡INRIA LIAFA, University Paris Diderot, France, Laurent.Viennot@inria.fr. Supported by the European project “EU-

LER”, the ANR project “ALADDIN”, and the équipe-projet INRIA “GANG”.
1Tilde-O notation is similar to Big-O up to poly-logarithmic factors in n.

1

1.1 Trade-offs for non-increasing graph metric

More generally, we are interested in size/stretch trade-offs for graphs (or digraphs) for some non-increasing
graph metric. A non-increasing graph metric δ associates with each pair of vertices u, v some non-negative
cost that can only decrease when adding edges. In other words, δG(u, v) 6 δH(u, v) for all vertices u, v
and spanning subgraphs H of G. Moreover, if δH(u, v) 6 α · δG(u, v) + β, then we say that H is an
(α, β)-spanner and that its stretch (w.r.t. the graph metric δ) is at most (α, β). We simply say that H is
an α-spanner if β = 0. The size of a spanner is the number of its edges.

In the previous discussion we saw that every graph or digraph has a spanner H of size o(n2) and with
bounded stretch for graph metrics δ such as round-trip, p-edge-disjoint multipath, and the usual graph
distance. However, it does not hold for one-way distance. A fundamental task is to determine which graph
metrics δ support such size/stretch trade-off. We observe that the three former graph metrics cited above
have the triangle inequality property, whereas the one-way metric does not.

This paper deals with the construction of spanners for the vertex-disjoint multipath metric. A p-
multipath between u and v is a subgraph composed of the union of p pairwise internally vertex-disjoint
paths joining u and v. The cost of a p-multipath between u and v is the sum of the weight of the edges it
contains. Given an undirected positively weighted graph G, define δpG(u, v) as the minimum cost of a p-
multipath between u and v if it exists, and∞ otherwise. A p-multipath s-spanner is a spanner H of G with
stretch at most s w.r.t. the graph metric δp. In other words, for all vertices u, v of G, δpH(u, v) 6 s·δpG(u, v),
or δpH(u, v) 6 α ·δpG(u, v)+β if s = (α, β). It generalizes classical spanners as dG(u, v) = δpG(u, v) for p = 1.

1.2 Motivations

Our interest in the node-disjoint multipath graph metric stems from the need for multipath routing in
networks. Using multiple paths between a pair of nodes is an obvious way to aggregate bandwidth.
Additionally, a classical approach to quickly overcome link failures consists in pre-computing fail-over paths
which are disjoint from primary paths [KKKM07, PSA05, NCD01]. Multipath routing can be used for
traffic load balancing and for minimizing delays. It has been extensively studied in ad hoc networks for load
balancing, fault-tolerance, higher aggregate bandwidth, diversity coding, minimizing energy consumption
(see [MTG03] for a quick overview). Considering only a subset of links is a practical concern in link state
routing in ad hoc networks [JV09]. This raises the problem of computing spanners for the multipath graph
metric, a first step towards constructing compact multipath routing schemes.

1.3 Our contributions

Our main contribution is to show that sparse p-multipath spanners of constant stretch do exist for each
p > 1. Moreover, they can be constructed locally in a constant number of rounds. More precisely, we show
that:

1. Every weighted graph with n vertices has a p-multipath kp · O(1 + p/k)
2k−1-spanner of size Õ(p2 ·

n1+1/k), where k and p are integral parameters > 1. Moreover, such a multipath spanner can be
constructed distributively in O(k) rounds.

2. For p = k = 2, we improve this construction whose stretch is 18. Our algorithm provides a 2-
multipath (2, O(W))-spanner of size O(n3/2) where W is the largest edge weight of the input graph.

Distributed algorithms are given in the classical LOCAL model of computations (cf. [Pel00]), a.k.a. the
free model [Lin92]. In this model nodes operate in synchronous discrete rounds (nodes are also assumed to
wake up simultaneously). At each round, a node can send and/or receive messages of unbounded capacity
to/from its neighbors and can perform any amount of local computations. Hence, each round costs one
time unit. Also, nodes have unique identifiers that can be used for breaking symmetry. As long as we are
concerned with running time (number of rounds) and not with the cost of communication, synchronous
and asynchronous message passing models are equivalent.

1.4 Overview

Multipath spanners have some flavors of fault-tolerant spanners, notion introduced in [CLPR10] for general
graphs. A subgraph H is an r-fault tolerant s-spanner of G if for any set F of at most r > 0 faulty vertices,
and for any pair u, v of vertices outside F , dH\F (u, v) 6 s · dG\F (u, v).

2

At first glance, r-fault tolerant spanners seem related to (r + 1)-multipath spanners. (Note that both
notions coincide to usual spanners if r = 0.) This is motivated by the fact that, if for an edge uv of G
that is not in H, and if, for each set F of r vertices, u and v are connected in H \ F , then by Menger’s
Theorem H must contain some p-multipath between u and v. If the connectivity condition fulfills, there
is no guarantee however on the cost of the p-multipath in H compared to the optimal one in G. Actually,
as presented on Fig. 1, there are 1-fault tolerant s-spanners that are 2-multipath but with arbitrarily large
stretch.

s
u v

1

s/n

Figure 1: A weighted graph G composed of a cycle of n+ 1 vertices plus n− 1 extra edges, and a spanner
H = G \ {uv}. Edge uv has weight 1, non-cycle edges have weight s, and cycle edges weight s/n so that
dH(u, v) = s. Removing any vertex z /∈ {u, v} implies dG\{z}(u, v) = 1 and dH\{z}(u, v) = 2s(1 − 1/n).
For other pairs of vertices x, y, dH\{z}(x, y)/dG\{z}(x, y) < 2s. Thus, H is a 1-fault tolerant 2s-spanner.
However δ2H(u, v)/δ2G(u, v) > sn/s. Thus, H is a 2-multipath spanner with stretch at least n.

Nevertheless, a relationship can be established between p-mutlipath spanners and some r-fault tolerant
spanners. In fact, we prove in Section 2.4 that every r-fault tolerant s-spanner that is b-hop is a (r + 1)-
multipath spanner with stretch bounded by a function of b, r and s. Informally, a b-hop spanner H must
replace every edge uv of G not in H by a path simultaneously of low cost and composed of at most b edges.
We observe that many classical spanner constructions (including the greedy one) do not provide bounded-
hop spanners, although such spanners exist as proved in Section 2.1. Some variant presented in [CLPR10]
of the Thorup-Zwick constructions [TZ05] are also bounded-hop (Section 2.2). Combining these specific
spanners with the generic construction of fault tolerant spanners of [DK11], we show in Section 2.3 how
to obtained a LOCAL distributed algorithm for computing a p-mutlipath spanner of bounded stretch.
A maybe surprising fact is that the number of rounds is independent of p and n. We stress that the
distributed algorithm that we obtain has significantly better running time than the original one presented
in [DK11] that was Ω(p3 log n).

For instance for p = 2, our construction can produce a 2-multipath 18-spanner with O(n3/2 log3/2 n)
edges. For this particular case we improve the general construction in Section 3 with a completely different
approach providing a low multiplicative stretch, namely 2, at the cost of an additive term depending of
the largest edge weight.

We note that the graph metric δp does not respect the triangle inequality for p > 1. For p = 2, a cycle
from u to w and a cycle from w to v does not imply the existence of a cycle from u to v. The lack of
this property introduces many complications for our second result. Basically, there are Ω(n2) pairs u, v of
vertices, each one possibly defining a minimum cycle Cu,v of cost δ2G(u, v). If we want to create a spanner
H with o(n2) edges, we cannot keep Cu,v for all pairs u, v. Selecting some vertex w as pivot for going
from u to v is usually a solution of save edges (in particular at least one between u and v). One pivot can
indeed serve for many other pairs. However, without the triangle inequality, Cu,w and Cw,v do not give
any cost guarantee on δ2H(u, v).

2 Main Construction

In this section, we prove the following result:

Theorem 1 Let G be a weighted graph with n vertices, and p, k be integral parameters > 1. Then, G
has a p-multipath kp ·O(1 + p/k)

2k−1-spanner of size O(kp2−1/kn1+1/k log2−1/k n) that can be constructed
w.h.p. by a randomized distributed algorithm in O(k) rounds.

Theorem 1 is proved by combining several constructions presented now.

3

2.1 Spanners with few hops

An s-spanner H of a weighted graph G is b-hop if for every edge uv of G, there is a path in H between
u and v composed of at most b edges and of cost at most s · ω(uv) (where ω(uv) denotes the cost of edge
uv). An s-hop spanner is simply an s-hop s-spanner.

If G is unweighted (or the edge-cost weights are uniform), the concepts of s-hop spanner and s-spanner
coincide. However, not all s-spanners are s-hop. In particular, the (2k − 1)-spanners produced by the
greedy2 algorithm [ADD+93] are not.

For instance, consider a weighted cycle of n + 1 vertices and any stretch s such that 1 < s < n. All
edges of the cycle have unit weight, but one, say the edge uv, which has weight ω(uv) = n/s. Note that
dG(u, v) = ω(uv) > 1. The greedy algorithm adds the n unit cost edges but the edge uv to H because
dH(u, v) = n 6 s · ω(uv) (recall that uv is added only if dH(u, v) > s · dG(u, v)). Therefore, H is an
s-spanner but it is only an n-hop spanner.

However, we have:

Proposition 1 For each integer k > 1, every weighted graph with n vertices has a (2k − 1)-hop spanner
with less than n1+1/k edges.

Proof. Consider a weighted graph G with edge-cost function ω. We construct the willing spanner H of
G thanks to the following algorithm which can be seen as the dual of the classical greedy algorithm, till a
variant of Kruskal’s algorithm:

(1) Initialize H with V (H) := V (G) and E(H) := ∅;
(2) Visit all the edges of G in non-decreasing order of their weights, and add the edge uv to H only if

every path between u and v in H has more than 2k − 1 edges.

Consider an edge uv of G. If uv is not in H then there must exist a path P in H from u to v such
that P has at most 2k− 1 edges. We have dH(u, v) 6 ω(P). Let e be an edge of P with maximum weight.
We can bound ω(P) 6 (2k − 1) · ω(e). Since e has been considered before the edge uv, ω(e) 6 ω(uv). It
follows that ω(P) 6 (2k − 1) · ω(uv), and thus dH(u, v) 6 (2k − 1) · ω(uv). Obviously, if uv belongs to H,
dH(u, v) = ω(uv) 6 (2k − 1) · ω(uv) as well. Therefore, H is (2k − 1)-hop.

The fact that H is sparse comes from the fact that there is no cycle of length 6 2k in H: whenever an
edge is added to H, any path linking its endpoints has more than 2k − 1 edges, i.e., at least 2k.

We observe that H is simple even if G is not. It has been proved in [AHL02] that every simple n-vertex
m-edge graph where every cycle is of length at least 2k + 1 (i.e., of girth at least 2k + 1), must verify the
Moore bound:

n > 1 + d

k−1∑
i=0

(d− 1)i > (d− 1)k

where d = 2m/n is the average degree of the graph. This implies that m < 1
2 (n1+1/k + n) < n1+1/k.

Therefore, H is a (2k − 1)-hop spanner with at most n1+1/k edges. �

2.2 Distributed bounded hop spanners

There are distributed constructions that provide s-hop spanners, at the cost of a small (poly-logarithmic
in n) increase of the size of the spanner compared to Proposition 1.

If we restrict our attention to deterministic algorithms, [DGPV08] provides for unweighted graphs a
(2k − 1)-hop spanner of size O(kn1+1/k). It runs in 3k − 2 rounds without any prior knowledge on the
graph, and optimally in k rounds if n is available at each vertex.

Proposition 2 There is a distributed randomized algorithm that, for every weighted graph G with n ver-
tices, computes w.h.p. a (2k − 1)-hop spanner of O(kn1+1/k log1−1/k n) edges in O(k) rounds.

Proof. The algorithm is a distributed version of the spanner algorithm used in [CLPR10], which is based
on the sampling technique of [TZ05]. We make the observation that this algorithm can run in O(k) rounds.
Let us briefly recall the construction of [CLPR10, p. 3415].

2For each edge uv in non-decreasing order of their weights, add it to the spanner if dH(u, v) > s · dG(u, v).

4

To each vertex w of G is associated a tree rooted at w spanning the cluster of w, a particular subset
of vertices denoted by C(w). The construction of C(w) is a refinement over the one given in [TZ05].
The main difference is that the clusters’ depth is no more than k edges. The spanner is composed of the
union of all such cluster spanning trees. The total number of edges is O(kn1+1/k log1−1/k n). It is proved
in [CLPR10] that for every edge uv of G, there is a cluster C(w) containing u and v. The path of the tree
from w to one of the end-point has at most k − 1 edges and cost 6 (k − 1) · ω(uv), and the path from w
to the other end-point has at most k edges and cost 6 k · ω(uv). This is therefore a (2k− 1)-hop spanner.

The random sampling of [TZ05] can be done without any round of communications, each vertex
randomly select a level independently of the other vertices. Once the sampling is performed, the clusters
and the trees can be constructed in O(k) rounds as their the depth is at most k. �

2.3 Fault tolerant spanners

The algorithm of [DK11] for constructing fault tolerant spanners is randomized and generic. It takes
as inputs a weighted graph G with n vertices, a parameter r > 0, and any algorithm A computing an
s-spanner of m(ν) edges for any ν-vertex subgraph of G. With high probability, it constructs for G an
r-fault tolerant s-spanner of size O(r3 ·m(2n/r) · log n). It works as follows:
Set H := ∅, and repeat independently O(r3 log n) times:

(1) Compute a set S of vertices built by selecting each vertex with probability 1− 1/(r + 1);
(2) H := H ∪A(G \ S).

Then, they show that for every fault set F ⊂ V (G) of size at most r, and every edge uv, there exists
with high probability a set S as computed in Step (1) for which u, v /∈ S and F ⊆ S. As a consequence,
routine A(G \ S) provides a path between u and v in G \ S (and thus also in G \F) of cost 6 s ·ω(uv). If
uv lies on a shortest path of G \ F , then this cost is 6 s · dG\F (u, v). From their construction, we have:

Proposition 3 If A is a distributed algorithm constructing an s-hop spanner in t rounds, then algo-
rithm [DK11] provides a randomized distributed algorithm that in t rounds constructs w.h.p. an s-hop
r-fault tolerant spanner of size O(r3 ·m(2n/r) · log n).

Proof. The resulting spanner H is s-hop since either the edge uv of G is also in H, or a path between u
and v approximating ω(uv) exists in some s-hop spanner given by algorithm A. This path has no more
than s edges and cost 6 s · ω(uv).

Observe that the algorithm [DK11] consists of running in parallel q = O(r3 log n) times independent
runs of algorithm A on different subgraphs of G, each one using t rounds. Round i of all these q runs can
be done into a single round of communication, so that the total number of rounds is bounded by t, not by
q.

More precisely, each vertex first selects a q-bit vector, each bit set with probability 1 − 1/(r + 1), its
jth bit indicating whether it participates to the jth run of A. Then, q instances of algorithm A are run in
parallel simultaneously by all the vertices, and whenever the algorithms perform their ith communication
round, a single message concatenating the q messages is sent. Upon reception, a vertex expands the q
messages and run the jth instance of algorithm A only if the jth bit of its vector is set.

The number of rounds is no more than t. �

2.4 From fault tolerant to multipath spanner

Theorem 2 Let H be a s-hop (p − 1)-fault tolerant spanner of a weighted graph G. Then, H is also a
p-multipath ϕ(s, p)-spanner of G where ϕ(s, p) = sp ·O(1 + p/s)

s and ϕ(3, p) = 9p.

To prove Theorem 2, we need the following intermediate result, assuming that H and G satisfy the
statement of Theorem 2.

Lemma 1 Let uv be an edge of G of weight ω(uv) that is not in H. Then, H contains a p-multipath
connecting u to v of cost at most ϕ(s, p) · ω(uv) where ϕ(s, p) = sp ·O(1 + p/s)

s and ϕ(3, p) = 9p.

5

Proof. From Menger’s Theorem, the number of pairwise vertex-disjoint paths between two non-adjacent
vertices x and y equals the minimum number of vertices whose removal disconnects x and y.

By definition of H, H \ F contains a path PF of at most s edges between u and v for each set F of at
most p− 1 vertices (excluding u and v). This is because u and v are always connected in G \ F , precisely
by a single edge path of cost ω(uv). Consider PH the subgraph of H composed of the union of all such PF

paths (so from u to v in H \ F – see Fig. 2 for an example with p = 2 and s = 5).
Vertices u and v are non-adjacent in PH . Thus by Menger’s Theorem, PH has to contain a p-multipath

between u and v. Ideally, we would like to show that this multipath has low cost. Unfortunately, Menger’s
Theorem cannot help us in this task.

Let κs(u, v) be the minimum number of vertices in PH whose deletion destroys all paths of at most s
edges between u and v, and let µs(u, v) denote the maximum number of internally vertex-disjoint paths of
at most s edges between u and v. Obviously, κs(u, v) > µs(u, v), and equality holds by Menger’s Theorem
if s = n− 1. Equality does not hold in general as presented in Fig. 2. However, equality holds if s is the
minimum number of edges of a path between u and v, and for s = 2, 3, 4 (cf. [LNLP78]).

vu

Figure 2: A subgraph PH constructed by adding paths between u and v with at most s = 5 edges and
with p = 2. Removing any vertex leaves a path of at most 5 edges, so κ5(u, v) > 1. However, there
aren’t two vertex-disjoint paths from u to v of at most 5 edges, so κ5(u, v) > µ5(u, v). Observe that
µ6(u, v) = κ5(u, v) = 2.

Since not every path of at most s edges between u and v is destroyed after removing p− 1 vertices in
PH , we have that κs(u, v) > p. Let us bound the total number of edges in a p-multipath Q of minimum
size between u and v in PH . Let r be the least number such that µr(u, v) > p subject to κs(u, v) > p. The
total number of edges in Q is therefore no more than pr.

By construction of PH , each edge of PH comes from a path in H \ F of cost ω(PF) 6 s · dG\F (u, v) 6
s · ω(uv). In particular, each edge of Q has weight at most s · ω(uv). Therefore, the cost of Q is ω(Q) 6
prs · ω(uv).

It has been proved in [PT93] that r can be upper bounded by a function r(s, p) <
(
p+s−2
s−2

)
+
(
p+s−3
s−2

)
=

O(1 + p/s)
s for integers s, p, and r(3, p) = 3 since as seen earlier κ3(u, v) = µ3(u, v). It follows that H

contains a p-multipath Q between u and v of cost ω(Q) 6 sp ·O(1 + p/s)
s · ω(uv) as claimed. �

Proof of Theorem 2. Let x, y be any two vertices of a graph G with edge-cost function ω. We want to
show δpH(x, y) 6 ϕ(s, p) · δpG(x, y). If δpG(x, y) = ∞, then we are done. So, assume that δpG(x, y) = ω(PG)
for some minimum cost p-multipath PG between x and y in G. Note that ω(PG) =

∑
uv∈E(PG) ω(uv).

We construct a subgraph PH between x and y in H by adding: (1) all the edges of PG that are in H;
and (2) for each edge uv of PG that is not in H, the p-multipath Quv connecting u and v in H as defined
by Lemma 1.

The cost of PH is therefore:

ω(PH) =
∑

uv∈E(PH)

ω(uv) =

 ∑
uv∈E(PG)∩E(H)

ω(uv)

+

 ∑
uv∈E(PG)\E(H)

ω(Quv)

 .

By Lemma 1, ω(Quv) 6 ϕ(s, p) · ω(uv). It follows that:

ω(PH) 6 ϕ(s, p) ·
∑

uv∈E(PG)

ω(uv) = ϕ(s, p) · ω(PG) = ϕ(s, p) · δpG(x, y)

as ϕ(s, p) > 1 and by definition of PG.
Clearly, all edges of PH are in H. Let us show now that PH contains a p-multipath between x and y.

We first assume x and y are non-adjacent in PH . By Menger’s Theorem applied between x and y in PH ,
if the removal of every set of at most p − 1 vertices in PH does not disconnect x and y, then PH has to
contain a p-multipath between x and y.

6

Let S be any set of less than p−1 faults in G. Since PG is a p-multipath, PG contains at least one path
between x and y avoiding S. Let’s call this path Q. For each edge uv of Q not in H, Quv is a p-multipath,
so it contains one path avoiding S. Note that Quv may intersect Qwz for different edges uv and wz of Q.
If it is the case then there is a path in Quv ∪Qwz from u to z (avoiding v and w), assuming that u, v, w, z
are encountered in this order when traversing Q. Overall there must be a path connecting x to y and
avoiding S in the subgraph (Q ∩H) ∪

⋃
uv∈Q\H Quv. By Menger’s Theorem, PH contains a p-multipath

between x and y.
If x and y are adjacent in PH , then we can subdivide the edge xy into the edges xz and zy by adding

a new vertex z. Denote by P ′H this new subgraph. Clearly, if P ′H contains a p-multipath between x and
y, then PH too: a path using vertex z in P ′H necessarily uses the edges xz and zy. Now, P ′H contains a
p-multipath by Menger’s Theorem applied on P ′H between x and y that are non-adjacent.

We have therefore constructed a p-multipath between x and y in H of cost at most
ω(PH) 6 ϕ(s, p) · δpG(x, y). It follows that δpH(x, y) 6 ϕ(s, p) · δpG(x, y) as claimed. �

Theorem 1 is proved by applying Theorem 2 to the construction of Proposition 3, which is based on
the distributed construction of s-hop spanners given by Proposition 2. Observe that the number of edges
of the spanner is bounded by O(kp3 ·m(2n/p) · log n) = O(kp2−1/kn1+1/k log2−1/k n).

3 Bi-path Spanners

In this section we concentrate our attention on the case p = 2, i.e., 2-multipath spanners or bi-path spanners
for short. Observe that for p = k = 2 the stretch is ϕ(3, 2) = 18 using our first construction (cf. Theorems 1
and 2). We provide in this section the following improvement on the stretch and on the number of edges.

Theorem 3 Every weighted graph with n vertices and maximum edge-weight W has a 2-multipath
(2, O(W))-spanner of size O(n3/2) that can be constructed in O(n4) time.

While the construction shown earlier was essentially working on edges, the approach taken here is more
global. Moreover, this construction essentially yields an additive stretch whereas the previous one is only
multiplicative. Note that a 2-multipath between two nodes u and v corresponds to an elementary cycle.
We will thus focus on cycles in this section.

An algorithm is presented in Section 3.1. Its running time and the size of the spanner are analyzed in
Section 3.2, and the stretch in Section 3.3.

3.1 Construction

Classical spanner algorithms combines the use of trees, balls, and clusters. These standard structures are
not suitable to the graph metric δ2 since, for instance, two nodes belonging to a ball centered in a single
vertex can be in two different bi-components3 and therefore be at an infinite cost from each other. We will
adapt theses standard notions to structures centered on edges rather than vertices.

Consider a weighted graph G and with an edge uv that is not a cut-edge4. Let us denote by G[uv] the
bi-component of G containing uv, and by δ2H(uv,w) the minimum cost of a cycle in subgraph H passing
through the edge uv and vertex w, if it exists and ∞ otherwise.

We define a 2-path spanning tree of root uv as a minimal subgraph T of G such that every vertex w
of G[uv] belongs to a cycle of T containing uv. Such definition is motivated by the following important
property (see Property 1 in Section 3.3): for all vertices a, b in G[uv]\{u, v}, δ2G(a, b) 6 δ2T (uv, a)+δ2T (uv, b).
This can be seen as a triangle inequality like property.

If δ2T (uv,w) = δ2G(uv,w) for every vertex w of G[uv], T is called a shortest 2-path spanning tree. An
important point, proved in Lemma 2 in Section 3.2, is that such T always exists and contains O(ν) edges,
ν being the number of vertices of G[uv].

In the following we denote by B2
G(uv, r) =

{
w : δ2G(uv,w) 6 r

}
and BG(u, r) = {w : dG(u,w) 6 r} the

2-ball (resp. 1-ball) of G centered at edge uv (at vertex u) and of radius r. We denote by NG(u) the set
of neighbors of u in G. We denote by BFS(u, r) any shortest path spanning tree of root u and of depth r
(not counting the edge weights). Finally, we denote by SPST2

G(uv) any shortest 2-path spanning tree of
root uv in G[uv].

3A short for 2-vertex-connected components.
4A cut-edge is an edge that does not belong to a cycle.

7

x y x y
x2 y1

x1 y2

Figure 3: Process by which X is transformed into X ′.

The spanner H is constructed with Algorithm 1 from any weighted graph G having n vertices and
maximum edge weight W . Essentially, the main loop of the algorithm selects an edge uv from the current
graph lying at the center of a dense bi-component, adds the spanner H shortest 2-path spanning tree
rooted at uv, and then destroys the neigborhood of uv.

F := G, H := (∅,∅);
while ∃uv ∈ E(G), |B2

G(uv, 4W) ∩ (NG(u) ∪NG(v))| >
√
n do

H := H ∪ SPST2
F (uv) ∪ BFSG(u, 2) ∪ BFSG(v, 2);

G := G \ (B2
G(uv, 4W) ∩ (NG(u) ∪NG(v)))

H := H ∪G
Algorithm 1: Construction of H.

3.2 Size analysis

The proof of the spanner’s size is done in two steps, thanks to the two next lemmas.
First, Lemma 2 shows that the while loop does not add too much edges: a shortest 2-path spanning

tree with linear size always exists. It is built upon the algorithm of Suurballe-Tarjan [ST84] for finding
shortest pairs of edge-disjoint paths in weighted digraphs.

Lemma 2 For every weighted graph G and for every non cut-edge uv of G, there is a shortest 2-path
spanning tree of root uv having O(ν) edges where ν is the number of vertices of G[uv]. It can be computed
in time O(n2) where n is the number of vertices of G.

Proof. In the following, we call X = G[uv]. SPST2
X(uv) will therefore be equal to SPST2

G(uv).
Let ν = |V (X)| and µ = |E(X)|.
We first show that we can reduce our problem to finding a one-to-all pair of edge-disjoint paths in a

directed graph. In other words, let P be a procedure which yields a 2-(edge-disjoint)-tree rooted in a single
vertex w in a directed graph X ′. We show we can derive P ′ which yields SPST2

X(uv) from P.
First, remark that the problem of finding SPST2

X(uv) is equivalent to finding the same structure but
rooted in a single vertex w where the edge uv is replaced by uw,wv, and the weights of each edge uw and
wv being equal to half of ω(uv).

We construct X ′ as follows: each undirected edge is replaced by two edges going in opposite direction
and of same weight. Then each vertex a is replaced by two vertices a1 and a2 where every incoming edge
arrives at a1 and every leaving edge leaves from a2. An edge going from a1 to a2 is finally added. Fig. 3
shows what happens to edges of X.

Note that ν′ = |V (X ′)| = 2 · (ν + 1) and µ′ = |E(X ′)| = 2 · (µ+ 1) + ν + 1.
The procedure P ′ proceeds as follows:

1. uv is replaced by uw,wv.

2. X ′ is constructed.

3. P is called on X ′, with the root vertex being w2.

4. Every edge of type x2 → y1 present in the result of P causes the addition of the edge xy to the result
of P ′.

8

Two edge-disjoint paths in X ′ are vertex-disjoint in X. Indeed, as they cannot both use an edge of the
type x1 → x2 they cannot share x1 or x2 (except at the extremities) because the only way to leave (resp.
arrive) from x1 (resp. to x2) is to use the edge x1 → x2. So if we have two edge-disjoint paths in X ′ going
from w2 to some x1, the reduction back to X will yield two disjoint paths from w to x, and then from the
edge uv to x.

The procedure P was devised by Suurballe-Tarjan in [ST84]. While not directly constructing the 2-
(directed-edge-disjoint)-tree rooted in a single vertex w it can be extracted from their algorithm. Roughly
speaking, the construction results of two shortest-path spanning trees computed with Dijkstra’s algorithm.
The 2 paths (from the source to every vertex v) are reconstructed via a specific procedure. This latter can
be analyzed so that the number of edges used in the 2-(directed-edge-disjoint)-tree is at most 2(ν′ − 1):
the structure Suurballe-Tarjan constructed is such that all vertices, but the source, have two parents.

Therefore the number of edges yielded by procedure P ′ is at most 4 · ν, which is O(ν). �

Secondly, Lemma 3 shows that the graph G remaining after the while loop has only O(n3/2) edges. For
that, G is transformed as an unweighted graph (edge weights are set to one) and we apply Lemma 3 with
k = 2. The result we present is actually more general and interesting in its own right. Indeed, it gives an
alternative proof of the well-known fact that graphs with no cycles of length 6 2k have O(n1+1/k) edges
since B2

G(uv, 2k) = ∅ in that case.

Lemma 3 Let G be an unweighted graph with n vertices, and k > 1 be an integer. If for every edge uv of
G, |B2

G(uv, 2k) ∩NG(u)| 6 n1/k, then G has at most 2 · n1+1/k edges.

Proof. Consider Algorithm 2 applied to graph G. When the procedure terminates, all the vertices and
edges of the graph have been removed. In the following, we count the number of edges removed by each
step of the while loop, which in turn allows us to bound the number of total edges of G.

for i := k − 1 to 0 do
while ∃u, |BG(u, i)| > ni/k do

G := G \BG(u, i)

Algorithm 2: Remove 1-balls.

Let Xi denote the set of vertices u whose 1-ball BG(u, i) is removed during iteration i of the for loop.
Let m(u) be the number of edges erased when removing BG(u, i). Note that as

∑
i

∑
u∈Xi

|BG(u, i)| = n

(the procedure removed all the vertices), and that
∑

i |Xi| · ni/k 6 n because each 1-ball is larger than
ni/k.

At each step, we argue that

m(u) 6 (n1/k + 1) · |BG(u, i)|+ |NG(u, i+ 1)|

where NG(u, i+ 1) is the set of vertices at exactly i+ 1 hops from u.
To this effect, let’s consider a shortest path tree T rooted in u and spanning BG(u, i).
The number of edges in T is bounded by |BG(u, i + 1)|, which can be decomposed in |BG(u, i)| +

|NG(u, i+ 1)|.
We can also bound the total number of non-tree edges as follows: for any x ∈ BG(u, i), let’s consider

B2
G(xy, 2k) ∩NG(x), where y is the parent of x in T . We know that the number of vertices in this 2-ball

is less than n1/k because it is a property of G. But |B2
G(xy, 2k) ∩ NG(x)| is also at least the number of

non-tree edges attached to x: for an edge xz /∈ T , the paths from z towards the root u and from x towards
the root until they reach common vertex are of length at most the radius of BG(u, i), which is i 6 k, and
so there is a cycle of length at most 2k using the edges xz and xy. So the total number of non-tree edges
is bounded by n1/k · |BG(u, i)|.

The termination of the while loop during iteration i+ 1 implies

|BG(u, i+ 1)| < n
i+1
k

or equivalently:
|NG(u, i+ 1)| < n

i+1
k − |BG(u, i)|

9

Therefore we have
m(u) < n1/k|BG(u, i)|+ n

1+i
k

And so
m(G) =

∑
u∈∪iXi

m(u) < n1/k
∑
i

∑
u∈Xi

|BG(u, i)|+
∑
i

|Xi| · n
i+1
k

and as
∑

i |Xi| · ni/k 6 n, we have
|E(G)| 6 2 · n1+1/k .

�

Combining these two lemmas we have:

Lemma 4 Algorithm 1 creates a spanner of size O(n3/2) in time O(n4).

Proof. Each step of the while loop adds O(n) edges from Lemma 2, and as it removes at least
√
n vertices

from the graph this can continue at most
√
n times. In total the while loop adds O(n3/2) edges to H.

After the while loop, the graph G is left with every B2
G(uv, 4W) ∩ (NG(u) ∪NG(v)) smaller than

√
n.

If we change all edges weights to 1, it is obvious that every B2
G(uv, 4) ∩ (NG(u) ∪ NG(v)) is also smaller

than
√
n. Then as B2

G(uv, 4) ∩NG(u) is always smaller than B2
G(uv, 4) ∩ (NG(u) ∪NG(v)) we can apply

Lemma 3 for k = 2, and therefore bound the number of edges added in the last step of Algorithm 1.
The total number of edges of H is O(n3/2).
The costly steps of the algorithm are the search of suitable edges uv and the cost of construction of

SPST2.
The search of suitable edges is bounded by the number of edges as an edge e which is not suitable can

be discarded for the next search: removing edges from the graph cannot improve B2
G(e, 4W). Then for

starting from one extremity of each edge a breadth first search of depth 3 must be computed, keeping only
the vertices whose path in the search encounters the other extremity. The cost of the search is bounded
by the number of edges of G. So in the end the search costs at most O(n4).

The cost of building a SPST2 is bounded by the running time of [ST84], which at worst costs O(n2)
(the reduction is essentially in O(m+ n)). Since the loop is executed at most

√
n times, the total cost is

O(n7/2).
So the total running time is O(n4). �

3.3 Stretch analysis

The proof for the stretch is done as follows: we consider a, b two vertices such that δ2F (a, b) = ` is finite (if
it is infinite there is nothing to prove). We need to prove that the spanner construction is such that at the
end, δ2H(a, b) 6 2` + O(W) . To this effect, we define PF = P 1

F ∪ P 2
F as a cycle composed of two disjoint

paths (P 1
F and P 2

F) going from a to b such that its weight sums to δ2F (a, b).
Proving the stretch amounts to show that there exists a cycle PH = P 1

H ∪ P 2
H joining a and b in the

final H, with cost at most 2` + O(W) . Observe that if the cycle PF has all its edges in H then one
candidate for PH is PF and we are done. If not, then there is at least one 2-ball whose deletion provokes
actual deletion of edges from PF (that is edges of PF missing in the final H).

In the following, let uv be the root edge of the first 2-ball whose removal deletes edges from PF (that
is they are not added in H neither during the while loop nor the last step of the algorithm). Let Gi be
the graph G just before the removal of B2

G(uv, 4W) ∩ (NG(u) ∪NG(v)) , and Gi+1 the one just after.
The rest of the discussion is done in Gi otherwise noted.
The proof is done as follows: we first show in Lemma 5 that any endpoint of a deleted edge (of PF)

belongs to an elementary cycle comprising the edge uv and of cost at most 6W . We then show in Lemma 6
that we can construct cycles using a and/or b passing through the edge uv, effectively bounding δ2H(uv, a)
and δ2H(uv, b) due to the addition of the shortest 2-path spanning tree rooted at uv. Finally we show in
Lemma 7 that the union of a cycle passing through uv and a and another one passing through uv and b
contains an elementary cycle joining a to b, its cost being at most the sums of the costs of the two original
cycles.

Lemma 5 Let e = wt be an edge of (Gi \Gi+1) \H. Then in Gi both w and t are connected to uv by a
cycle of cost at most 6W .

10

v u

w te

x

v u

w te

x

Figure 4: Proof of Lemma 5: a cycle of 6 hops exists between w and uv in Gi

a1 b1

a b

u

v

a

a1

a2

b1

b2

b

u

v

Figure 5: Proof of Lemma 7: the two cases for the simple paths.

Proof. Since e isn’t present neither in Gi+1 nor H, then at least one of its endpoints is in the vicinity of
u or v in Gi. W.l.o.g. we can consider t be a neighbour of u in Gi. w is then at most two hops from uv in
Gi. The rest of the discussion is done in Gi.

We can first eliminate the case where w is a direct neighbor of v, as there is an obvious cycle of 4 hops:
w → t→ u→ v → w .

Consider now the BFS tree rooted at u that is added to H. As w is at two hops at most from u there
is a path u→ x→ w in this tree (x is defined as the intermediate vertex of this path and may not exist).
As e was removed, it means that x is distinct from t. Furthermore, t was removed because it belonged to
a B2(uv, 4W), so there is an elementary cycle of at most 4 hops passing through t and the edge uv.

Now we distinguish two cases as illustrated by Fig. 4.
If x is distinct (which is especially true when it does not exist) from an intermediate vertex between v

and t in the cycle, then we can extract an elementary cycle of at most 6 hops passing through uv and w :
w → x→ u→ v →→ t→ w.

If x is the same as an intermediate vertex between v and t, then the cycle is w → t→ u→ v → x→ w.
�

We now show that we can use this lemma to exhibit cycles going from a to uv and from b to uv.
From the vertices belonging to both B2

Gi
(uv, 6W) and PF we choose the ones which are the closest

from a and b (we know that at least two of them exist because one edge was removed from PF during
step i of the loop). There are at maximum four of them (a1, a2, b1, b2), one for each sub-path P i

F and each
extremity {a, b}. Note that each extremity is connected to the root edge by an elementary cycle of cost at
most 6W . Two cases are possible (the placement of the vertices can be seen on Fig. 5, although the paths
on it are from the proof of lemma 7):

Case 1: There are only two extremities (then they belong to the same subpath) and their cycles which
connect them to uv do not intersect the second subpath (w.l.o.g we can suppose it is a1 and b1).

Case 2: There are more than two extremities: either some edges of the second path were removed or one

11

u

v

Q1

Q2

Q1

Q2i u

v

w

t

w

t

Figure 6: The two cases for Q1 and Q2. The big dots represent the paths’ unused portions.

of the cycles going from one of the extremities a1 or b1 to uv intersects the second path.

We show next that we can bound δ2H(uv, a) and δ2H(uv, b) with the help of the cycles connecting the
endpoints and the path PG. This is done with the two next lemmas.

Lemma 6 For any two vertices joined to the same edge uv by elementary cycles there is a simple path of
cost at most the sum of the cycles’ costs and passing through the edge uv.

Proof. Let us call w and t the two vertices. We will show there is a simple path going from w to t passing
through uv. Let us call Q1 the elementary cycle joining w to uv and Q2 the one joining t to uv. If by
following Q1 to reach from w one of the endpoints of uv we do not encounter Q2, then the path from w
to t is composed of the part of Q1, then the edge uv, then the part of Q2 which reaches t without passing
through uv. If it is not possible, then there are intersection points between Q1 and Q2. Let i be the closest
intersection point from w. The path we are looking for is therefore w → i using Q1 then i→ uv → t using
the part of Q2 which uses the edge uv (the other part would take us directly to a2 whithout using uv).
This path is simple because Q2 is an elementary cycle and it cannot cross Q1 before i because of the way
i is chosen. The two cases are shown on figure 6.

�

Lemma 7 Let a, b be two vertices such that an elementary cycle of cost δ2(a, b) has common vertices with
some B2(uv, 6W). Then δ2(a, uv) and δ2(b, uv) are bounded by δ2(a, b) + 12W

Proof. The lemma is independent of the graph, but for clarity it will be proved using the graph Gi and
PF .

Recall that we distinguished two cases depending on whether B2
Gi

(uv, 6W) intersects only one path of
PF (either P 1

F or P 2
F) or both. Fig. 5 illustrates the proof of the two cases.

Lemma 6 allows us to solve the first case : since there are no intersection on the second path, the cycle
a → a1 → uv → b1 → b → a is simple. So there is a cycle in Gi joining uv, a and b of cost at most
12W + δ2Gi

(a, b). So δ2Gi
(uv, a) is bounded by 12W + δ2Gi

(a, b) and so is δ2Gi
(uv, b).

In the second case there are three or four extremities: a1, b1, a2 and b2, with possibly a2 and b2 being
the same vertex. We can apply Lemma 6 twice: once between a1 and a2 and another time between b1 and
b2. These create a simple cycle from a to uv passing by a1 and a2 and another one from b to uv passing
by b1 and b2. We know the cycles are simple because the vertices were chosen to be the closest from a or
b. Note that a2 and b2 can be the same. So

δ2Gi
(a, uv) 6 ω(a→ a1) + 12W + ω(a2 → a) 6 δ2(a, b) + 12W

and the same for b.
�

12

Property 1 Let uv be a non cut-edge of G and T be any 2-path spanning tree rooted at uv. Then, for all
vertices a, b in G[uv] \ {u, v}, δ2G(a, b) 6 δ2T (uv, a) + δ2T (uv, b)− ω(uv).

Proof. There is in T a cycle joining a to uv of cost δ2T (uv, a), and another one joining b to uv of cost
δ2T (uv, b). Consider the subgraph P containing only the edges from these two cycles. The cost of P is
ω(P) 6 δ2T (uv, a) + δ2T (uv, b)− ω(uv) as edge uv is counted twice. It remains to show that P contains an
elementary cycle between a and b. Note that since a /∈ {u, v}, a has in P two vertex-disjoint paths leaving
a and excluding edge uv: one is going to u, and one to v. Similarly for vertex b.

W.l.o.g. we can assume that a and b are not adjacent in P . Otherwise we can subdivide edge ab
to obtain a new subgraph P ′. Clearly, if P ′ contains an elementary cycle between a and b, then P too.
Consider that one vertex z, outside a and b, is removed in P . From the remark above, in P \ {z}, there
must exists a path leaving a and joining some vertex wa ∈ {u, v} \ {z} and one path leaving b and joining
some vertex wb ∈ {u, v} \ {z}. If wa = wb, then a and b are connected in P \ {z}. If wa 6= wb, then
edge uv belongs to P \ {z} since in this case z /∈ {u, v}, and thus a path connected a to b in P \ {z}. By
Menger’s Theorem, P contains a 2-multipath between a and b. �

Lemma 8 H is a 2-multipath (2, 24W)-spanner.

Proof. If there is in F a path of cost δ2(a, b) such that every edge of it is in H, then there is nothing to
prove. If there is some removed edge, then we can identify the loop order i which removed the first edge,
and we can associate the graph Gi just before the deletion performed in the second step of the loop (so
PF still completely exist in Gi). By virtue of Lemma 5 we can identify some root-edge uv and we know
that there are some vertices of PF linked to uv by an elementary cycle of length at most 6W . Lemma 7
can then be applied, and so in Gi, δ2Gi

(a, uv) and δ2Gi
(b, uv) are both bounded by δ2Gi

(a, b) + 12W . As the
loop’s first step is to build a shortest 2-path spanning tree rooted in uv we know that in H

δ2H(a, uv) 6 δ2Gi
(a, uv) 6 δ2Gi

(a, b) + 12W

and the same for b. Property 1 can then be used in the 2-path spanning tree, to bound δ2H(a, b):

δ2H(a, b) 6 δ2H(a, uv) + δ2H(b, uv) 6 2 · δ2Gi
(a, b) + 24W

Finally, as in Gi PF still exists completely, we have that δ2Gi
(a, b) = δ2F (a, b), so

δ2H(a, b) 6 2 · δ2F (a, b) + 24W

�

4 Conclusion

We have introduced a natural generalization of spanner, the vertex-disjoint path spanners. We proved
that there exists for multipath spanners a size-stretch trade-off similar to classical spanners. We also have
presented a O(k) round distributed algorithm to construct p-multipath kp · O(1 + p/k)

2k−1-spanners of
size Õ(p2n1+1/k), showing that the problem is local : it does not require communication between distant
vertices.

Our construction is based on fault tolerant spanner. An interesting question is to know if better
construction (in term of stretch) exists as suggested by our alternative construction for p = 2.

The most challenging question is to explicitly construct the p vertex-disjoint paths in the p-multipath
spanner. This is probably as hard as constructing efficient routing algorithm from sparse spanner. We stress
that there is a significant difference between proving the existence of short routes in a graph (or subgraph),
and constructing and explicitly describing such short routes. For instance it is known (see [GS11]) that
sparse spanners may exist whereas routing in the spanner can be difficult (in term of space memory and
stretch of the routes).

13

References

[ADD+93] Ingo Althöfer, Gautam Das, David P. Dobkin, Deborah A. Joseph, and José Soares. On sparse
spanners of weighted graphs. Discrete & Computational Geometry, 9(1):81–100, 1993.

[AHL02] Noga Alon, Shlomo Hoory, and Nathan Linial. The Moore bound for irregular graphs. Graphs
and Combinatorics, 18(1):53–57, March 2002.

[BE10] Leonid Barenboim and Michael Elkin. Deterministic distributed vertex coloring in polylog-
arithmic time. In 29th Annual ACM Symposium on Principles of Distributed Computing
(PODC), pages 410–419. ACM Press, July 2010.

[BGSU08] Surender Baswana, Akshay Gaur, Sandeep Sen, and Jayant Upadhyay. Distance oracles for
unweighted graphs: Breaking the quadratic barrier with constant additive error. In 35th

International Colloquium on Automata, Languages and Programming (ICALP), volume 5125
of Lecture Notes in Computer Science, pages 609–621. Springer, July 2008.

[BK06] Surender Baswana and Telikepalli Kavitha. Faster algorithms for approximate distance ora-
cles and all-pairs small stretch paths. In 47th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pages 591–602. IEEE Computer Society Press, October 2006.

[CLPR10] S. Chechik, M. Langberg, D. Peleg, and L. Roditty. Fault tolerant spanners for general graphs.
SIAM Journal on Computing, 39(7):3403–3423, 2010.

[CW00] Lenore Jennifer Cowen and Christopher Wagner. Compact roundtrip routing in directed
networks. In 19th Annual ACM Symposium on Principles of Distributed Computing (PODC),
pages 51–59. ACM Press, July 2000.

[DGPV08] Bilel Derbel, Cyril Gavoille, David Peleg, and Laurent Viennot. On the locality of distributed
sparse spanner construction. In 27th Annual ACM Symposium on Principles of Distributed
Computing (PODC), pages 273–282. ACM Press, August 2008.

[DK11] Michael Dinitz and Robert Krauthgamer. Fault-tolerant spanners: Better and simpler. Tech-
nical Report 1101.5753v1 [cs.DS], arXiv, January 2011.

[GGV10] Cyril Gavoille, Quentin Godfroy, and Laurent Viennot. Multipath spanners. In 17th Inter-
national Colloquium on Structural Information & Communication Complexity (SIROCCO),
volume 6058 of Lecture Notes in Computer Science, pages 211–223. Springer, June 2010.

[GS11] Cyril Gavoille and Christian Sommer. Sparse spanners vs. compact routing. In 23rd Annual
ACM Symposium on Parallel Algorithms and Architectures (SPAA), pages 225–234. ACM
Press, June 2011.

[JV09] Philippe Jacquet and Laurent Viennot. Remote spanners: what to know beyond neighbors.
In 23rd IEEE International Parallel & Distributed Processing Symposium (IPDPS). IEEE
Computer Society Press, May 2009.

[KKKM07] Nate Kushman, Srikanth Kandula, Dina Katabi, and Bruce M. Maggs. R-bgp: Staying con-
nected in a connected world. In 4th Symposium on Networked Systems Design and Implemen-
tation (NSDI), 2007.

[Lin92] Nathan Linial. Locality in distributed graphs algorithms. SIAM Journal on Computing,
21(1):193–201, 1992.

[LNLP78] László Lovász, V. Neumann-Lara, and Michael D. Plummer. Mengerian theorems for paths of
bounded length. Periodica Mathematica Hungarica, 9(4):269–276, 1978.

[MTG03] Stephen Mueller, Rose P. Tsang, and Dipak Ghosal. Multipath routing in mobile ad hoc
networks: Issues and challenges. In Performance Tools and Applications to Networked Systems,
Revised Tutorial Lectures [from MASCOTS 2003], pages 209–234, 2003.

[NCD01] Asis Nasipuri, Robert Castañeda, and Samir Ranjan Das. Performance of multipath routing for
on-demand protocols in mobile ad hoc networks. Mobile Networks and Applications, 6(4):339–
349, 2001.

14

[Pel00] David Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM Monographs on
Discrete Mathematics and Applications, 2000.

[Pet07] Seth Pettie. Low distortion spanners. In 34th International Colloquium on Automata, Lan-
guages and Programming (ICALP), volume 4596 of Lecture Notes in Computer Science, pages
78–89. Springer, July 2007.

[PSA05] P. Pan, G. Swallow, and A. Atlas. Fast Reroute Extensions to RSVP-TE for LSP Tunnels.
RFC 4090 (Proposed Standard), 2005.

[PT93] László Pyber and Zsolt Tuza. Menger-type theorems with restrictions on path lengths. Discrete
Mathematics, 120(1-3):161–174, September 1993.

[RTZ08] Liam Roditty, Mikkel Thorup, and Uri Zwick. Roundtrip spanners and roundtrip routing in
directed graphs. ACM Transactions on Algorithms, 3(4):Article 29, June 2008.

[ST84] J. W. Suurballe and Robert Endre Tarjan. A quick method for finding shortest pairs of disjoint
paths. Networks, 14(2):325–336, 1984.

[TZ05] Mikkel Thorup and Uri Zwick. Approximate distance oracles. Journal of the ACM, 52(1):1–24,
January 2005.

15

	1 Introduction
	1.1 Trade-offs for non-increasing graph metric
	1.2 Motivations
	1.3 Our contributions
	1.4 Overview

	2 Main Construction
	2.1 Spanners with few hops
	2.2 Distributed bounded hop spanners
	2.3 Fault tolerant spanners
	2.4 From fault tolerant to multipath spanner

	3 Bi-path Spanners
	3.1 Construction
	3.2 Size analysis
	3.3 Stretch analysis

	4 Conclusion

