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ABSTRACT 

 

Background The RET/GDNF signalling pathway plays a crucial role during development of 

kidneys and enteric nervous system. In humans, RET activating mutations cause multiple 

endocrine neoplasia, whereas inactivating mutations are responsible for Hirschsprung disease. 

RET mutations have also been reported in fetuses with renal agenesis, based on analysis of a 

small series of samples. 

Objective and Methods To better characterize the involvement of RET and GDNF in kidney 

development defects, we studied a series of 105 fetuses with bilateral defects including renal 

agenesis, severe hypodysplasia or multicystic dysplastic kidney. RET and GDNF coding 

sequences, evolutionary conserved non-coding regions (ECRs) in promoters, 3’UTRs and 

RET intron 1 were analysed. Copy number variations (CNVs) at these loci were also 

investigated. 

Results We identified: (i) a low frequency (< 7%) of potential mutations in the RET coding 

sequence, with inheritance from the healthy father for four of them; (ii) no GDNF mutation; 

(iii) similar allele frequencies in patients and controls for most SNP variants, except for RET 

intron 1 variant rs2506012 that was significantly more frequent in affected fetuses than in 

controls (6% vs. 2%, P=0.01); (iv) distribution of the few rare RET variants unidentified in 

controls into the various 5’-ECRs; (v) absence of CNVs.  

Conclusion These results suggest that genomic alteration of RET or GDNF is not a major 

mechanism leading to renal agenesis and other severe kidney development defects. Analysis 

of a larger series of patients will be necessary to validate the association of the RET intron 1 

variant rs2506012 with renal development defects.  
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INTRODUCTION 

Congenital abnormalities of the kidney and urinary tract (CAKUT) are frequently observed in 

children and represent a significant cause of morbidity, accounting for more than 40% of 

pediatric end-stage renal failure, and mortality.[1] Kidney development defects (KDD) 

include: (i) bilateral/unilateral renal agenesis (BRA/URA); (ii) renal hypodysplasia (RHD) 

characterized by a reduction in the number of nephrons leading to a small overall kidney size 

and frequent dysplasia with or without cysts; and (iii) multicystic dysplastic kidney (MCDK). 

These various alterations can be observed together in a same patient or in different members 

of the same family, suggesting that they belong to a same continuum of phenotypes. Although 

most cases are sporadic and isolated, syndromic and familial cases suggest that genetic factors 

are involved. In particular, dominant mutations with variable penetrance have been found in 

several syndromic forms of KDD. The most frequently mutated genes are PAX2 in patients 

with renal-coloboma syndrome, EYA1 and SIX1 in patients with branchio-oto-renal (BOR) 

syndrome and HNF1B in patients with renal cysts and diabetes association.[2-6] Analysis of 

genotype-phenotype correlations showed that the severity of the renal disease associated with 

these mutations is extremely variable.[2,7] Other less frequent syndromes including KDD are 

associated with mutations in developmental genes such as SALL1 (Townes-Brocks 

syndrome), WNT4 (Rokitanski syndrome), KAL1 (Kallman syndrome), FRAS1 and FREM1 

(Fraser syndrome), GATA3 (RHD, hypoparathyroidism and sensorineural deafness) and GLI3 

(Pallister-Hall syndrome).[8-14] Moreover, comparative genomic hybridization and familial 

studies have highlighted several chromosomal regions that could carry other genes involved 

in KDD.[15,16]. 

Mammalian kidney development results from a reciprocal induction between the 

ureteric bud (UB) and the metanephric mesenchyme (MM). Signalling by GDNF secreted by 

the MM and the RET tyrosine kinase receptor and its co-receptor GFRα1 expressed on the 

UB plays a critical role for normal growth and branching of the UB.[17,18] The RET gene 

encodes two major splicing isoforms, RET9 and RET51, that differ in their carboxy terminus. 

These two isoforms appear to have redundant roles for kidney development.[19,20] The 

RET/GDNF signalling also plays a critical role during the development of the enteric nervous 

system. Homozygous knockout of Ret or Gdnf in mice leads to loss of enteric ganglia as well 

as severe kidney aplasia or hypodysplasia caused by a failure of UB outgrowth.[21,22] In 

humans, heterozygous loss-of-function mutations in RET resulting in haploinsufficiency are 

the most frequent alterations reported in patients with segmental intestinal aganglionosis 

known as Hirschsprung disease (HSCR).[23,24] RET is also an oncogene involved, through 
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activating mutations, in predisposition to multiple endocrine neoplasia type 2A (MEN2A) 

characterized by medullary thyroid carcinoma (MTC), pheochromocytoma and/or parathyroid 

hyperplasia.[25] Several studies have reported the association of HSCR and MTC in patients 

with RET mutations affecting the cysteine-rich extracellular domain of the protein. Both 

activating and inactivating effects have been demonstrated for the C620R mutation (so called 

the Janus mutation) because, when expressed in kidney cells, it promotes cell proliferation 

and impairs migration and branching in three-dimensional culture in response to GDNF.[26] 

Interestingly, association of HSCR with CAKUT has also been described and a RET mutation 

has been reported in few cases,[27] suggesting a common genetic basis for these two 

pathologies. Renal agenesis was also reported in a family with MTC and the Janus RET C620 

mutation.[28] Recently, both activating and inactivating RET mutations have been reported in 

a small series of fetuses with renal agenesis.[29] 

To better assess the role of the RET/GDNF signalling in KDD, we analysed coding and 

regulatory sequences of RET and GDNF in a series of 105 fetuses with severe bilateral 

defects. 

 

PATIENTS AND METHODS 

Patients  

We studied a series of 105 fetuses with bilateral KDD contributing to anamnios or severe 

oligohydramnios and that had motivated termination of pregnancy. This included 65 cases 

with BRA, 24 cases with URA and an abnormal contralateral kidney (RHD in 8 cases, 

MCDK in 16 cases), 4 cases with bilateral RHD, 10 cases with bilateral MCDK, one case 

with RHD on one kidney and MCDK on the other and one case with URA and ureteral 

duplication. Kidney defects were defined by the fetopathologists of the Société Française de 

Foetopathologie upon histological examination. Five fetuses were from consanguineous 

families, 11 cases (including 4 sib-pairs) were from 7 non-consanguineous families in which 

the mother underwent several terminations of pregnancy for anamnios, and five other cases 

had relatives with renal abnormalities. Twenty-one fetuses had extra-renal abnormalities, 

namely uterine agenesis (6 cases), bifid uterus (1 case), epididymal hypoplasia or cysts (2 

cases), or more complex syndromic associations (growth retardation, craniofacial dysmorphy, 

hand and limb anomalies, cardiopathy). No GLI3 mutation was identified in 3 fetuses with 

symptoms suggestive of Pallister-Hall syndrome. There was no indication of renal-coloboma 

or BOR syndromes in relatives of any of the studied fetuses. Moreover, we excluded the 

presence of HNF1B mutations / deletions in the fetuses with MCDK or RHD with cysts. 
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This study was fully approved by the Comité de Protection des Personnes pour la 

Recherche Biomédicale Ile de France 2 and informed consent was obtained from all parents. 

DNA was extracted from frozen liver, lung, spleen or kidney samples. For three fetuses, RNA 

was also extracted from frozen kidney samples.  

 

Sequencing of RET and GDNF coding and non-coding sequences 

We screened the 20 RET exons encoding both protein isoforms (RET9: exons 1 to 19b, 

RET51: exons 1 to 19a, 20) and the three GDNF exons (non-coding exon 1 and coding exons 

2 and 3). Evolutionary conserved non-coding regions (ECRs) located upstream of RET and 

GDNF and in RET intron 1 (http://www.dcode.org) were also analyzed. Their positions 

relative to exon 1 are given in Table 1. Finally, as variations in the 3’UTR could potentially 

disrupt genetic regulation by micro-RNAs, these regions were also analyzed. The 3’UTRs of 

RET9 and RET51 transcripts were identified from http://www.ensembl.org/. For analysis of 

the 3’UTR of GDNF, we focused on the first 1231 bp that were evolutionary conserved 

(Table 1). PCR and sequencing primers are available upon request.  

 

Table1  Evolutionary conserved sequences in 5’ and 3’ of RET and GDNF  

Evolutionary 
Conserved 
Region  

Position on 
chromosome  
 

Position 
related to the 
first exon  

Size 
(bp) 
 

Homology1 More distant 
species with 
>70% 
homology  

RET-ECR1E 
 

chr10:42794983-
42795367 

5’ (-97kb)  385 
 

78% (O) 
 

chicken 
 

RET-ECR1B 
 

chr10:42803235-
42803698 

5’ (-89 kb) 464 
 

78% (M) 
 

frog 
 

RET-ECR1 
 

chr10:42880879-
42881488 

5’ (-11.6kb) 610 
 

77% (M) 
 

chicken 
 

RET-ECR4 
 

chr10:42883631-
42883905 

5’ (-8.9kb)  275 
 

74% (M) 
 

mouse 
 

RET-ECR8 
 

chr10:42883965-
42884464 

5’ (-8.5kb) 500 
 

77% (M) 
 

mouse 
 

RET-ECR2 
 

chr10:42886856-
42887495 

5’ (-5.7kb)  640 
 

79% (M) 
 

opossum 
 

RET-ECR6  
 

chr10:42895408-
42895741 

intron 1  334 
 

76% (M) 
 

mouse/rat 
 

RET-ECR7  
 

chr10:42902036-
42902350 

intron 1  315 
 

72% (M) 
 

opossum 
 

GDNF-ECR1 
 

chr5:37876398-
37876866 

5’ (-5.5kb)  469 
 

81% (O) 
 

opossum 
 

GDNF-ECR2 
 

chr5:37877173-
37877521 

5’ (-6.2kb)  349 
 

75% (O) 
 

opossum 
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GDNF-ECR3 
 

chr5:37850279-
37851510 

3'-UTR  1231 
 

82% (M) 
 

opossum 
 

Positions on chromosomes are given according to the NCBI36/hg18 built ; 
1 % of homology of the selected region with the mouse (M) or the opossum (O) sequence 
 

Statistical analyses 

Fisher exact tests were used to compare frequencies of the variants in patients and controls. 

As 80% of the fetuses were of European origin, frequencies in controls were mostly evaluated 

by analysis of 189 unrelated Caucasians. Algerian and Turkish controls (34 and 33 cases, 

respectively) were also tested for polymorphisms present in patients originating from these 

countries. Moreover, we considered frequencies generated from the HapMap-CEU (120 

chromosomes), Pilot.1.CEU (72 chromosomes) and AGI_ASAP (74 chromosomes) 

populations (http://www.ncbi.nlm.nih.gov/projects/SNP/). For statistical study of the RET 

variant rs2506012, we analysed a second series of 171 patients, including 53 fetuses and 118 

living children, with the same spectrum of bilateral KDD as the first series. 

 

Analysis of RET cDNA 

The effect of the c.1353 G>A variant (T451T) on splicing was analysed by RT-PCR, using 

primers located in exons 6 and 8. Quantitative RT-PCR was performed using the ABsolute 

Sybr green ROX mix (Thermo Scientific) and GAPDH was used as a control.  

 

Analysis of copy number variations 

For 41 samples, the quality and the available amount of DNA allowed us to perform genomic 

analysis on Illumina Infinium HumanOmni1 beadchips. Hybridizations were performed as 

recommended by the manufacturer. We used the GenomeStudio software for normalization 

and genotyping. For identification of copy number variations (CNVs), we used the 

GenomeStudio plug-in CNVpartition and the PennCNV algorithm with default 

parameters.[30] 

 

RESULTS 

Analysis of RET 

Sequencing of the 20 exons of RET in 105 fetuses with severe bilateral KDD identified 7 

previously unreported variations in the coding region, including one nonsense mutation, four 

missense and two neutral changes (Table 2). All variations were heterozygous and none of 
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them was identified in 180 controls. The nonsense mutation resulted in a stop codon located 

58 and 16 amino acids before the C-terminus of RET51 and RET9 isoforms, respectively. 

PolyPhen-2 predicted variations D567N and V787I as probably damaging with scores of 

0.984 and 0.979 respectively and L56M as possibly damaging with a score of 0.281. Although 

R57Q was predicted as benign by PolyPhen-2, it was qualified as possibly damaging with the 

previous version of PolyPhen (score=1.558) and it affects a very conserved aminoacid.  

For fetuses with the R57Q, D567N and W1056X mutations and the P992P neutral 

variant, DNA from the parents was available. In all four cases, the variation was also present 

in the heterozygous state in the father, in whom presence of the two normal-sized kidneys was 

ascertained by renal echography. This demonstrates that none of these variants alone, even the 

nonsense mutation, is sufficient to explain the renal development defect. 

 

Table 2 Variants identified in the RET coding sequence 

Nucleotide 
Change1 

Variant Consequence Exon Phenotype Features of the variants 

c.166 
C>A 

p.L56M Missense 2 
 

BRA and  
uterine agenesis 
 

Possibly damaging2  
 

c.170 
G>A 
 

p.R57Q  Missense 2 
 

MCDK 
 

Benign2 
Present in healthy father 

c.1353 
G>A 
 

p.T451T 
 

Neutral 7 
 

URA/MCDK 
 

Potential effect on 
splicing3 
 

c.1699 
G>A 
 

p.D567N 
 

Missense 9 
 

BRA 
 

Probably damaging2 
Present in healthy father 

c.2359 
G>A 
 

p.V787I  
 

Missense 13 
 

URA/RHD 
 

Probably damaging2 
 

c.2976 
G>A 
 

p.P992P 
 

Neutral 18 
 

BRA 
 

Present in healthy father 

c.3167 
G>A 

p.W1056X 
 

Nonsense 19 
 

BRA 
 

Present in healthy father 

1 c. positions are given according to the coding sequence of NM_020975 
2 identified with PolyPhen2 (http://genetics.bwh.harvard.edu/pph2/); 
3 identified with Alamut (http://www.interactive-biosoftware.com/) and  
ESE finder (http://rulai.cshl.edu/tools/ESE/): 
BRA : bilateral renal agenesis ; URA : unilateral renal agenesis ; RHD : renal hypodysplasia. 
MCDK: multicystic dysplastic kidney 
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We questioned whether the neutral variations c.1353 G>A (T451T) located in exon 7 

and c.2976 G>A (P992P) in exon 18 could have an effect on splicing, using the mutation 

interpretation software Alamut (http://www.interactive-biosoftware.com/) and the Exonic 

Splicing Enhancer analysis software ESE finder (http://rulai.cshl.edu/tools/ESE/). While we 

did not identify any effect of the c.2976 G>A variant, both methods identified creation of sites 

for splicing factors SF2, SC25 and SPp40 by the c.1353 G>A variant (scores = 4.5, 2.5 and 

4.5, respectively), suggesting that this variant might alter splicing of exon 7.[31] To test this 

hypothesis, we amplified a cDNA fragment spanning RET exons 6 to 8 from kidney samples 

obtained for fetus H637 with the c.1353 G>A exon 7 variant, two other fetuses with KDD and 

no RET mutation, and three control fetuses without renal pathologies. We did not identify any 

abnormal-sized band associated with the variant (data not shown). To analyse if the variant 

could decrease the amount of RET transcript, we performed quantitative RT-PCR using the 

same exon 6 and exon 8 primers. In the three KDD kidney samples, the level of RET 

expression was 10 times lower than in the normal fetal kidney samples. However, RET 

expression in H637 kidney sample with the c.1353 G>A variant was not different from RET 

expression in the two other KDD kidney samples without RET mutation (data not shown). 

Altogether, these results did not allow us to validate any effect of the c.1353 G>A variant on 

RET expression. Whether the low level of RET expression in KDD kidneys is a cause or a 

consequence of the altered kidney development remains an open question.  

Several variations corresponding to known SNPs were also identified in the coding 

sequence as well as in flanking intronic sequences. We compared their frequencies in the 

KDD fetuses to controls (Table 3A). No significant difference was observed. Evolutionary 

sequence conservation has proven a valuable approach to identify genomic regions important 

for gene expression regulation. Using the ECR Browser (http://ecrbrowser.dcode.org), we 

identified 8 ECR regions that were at least 70% conserved until mouse (Table 1).  Six ECRs 

were located upstream of the transcript region (ECR1, -1B, -1E, -2, -4 and -8,) and 

sequencing of these ECRs in the 105 samples led to the identification of 11 variants (Table 

3A): five of them were referenced in the SNP database (http://www.ncbi.nlm.nih.gov/snp/) 

and their frequencies were similar in cases and controls, whereas the 6 other were unreported 

variations that were heterozygous in 1% to 6% of the fetuses (allele frequencies between 

0.005 and 0.03). We only identified the most frequent one, ECR2/504, in controls (Table 3A). 

ECR6 and ECR7 were located in intron 1 and included 7 variants that were all referenced in 

the SNP database. One of these variants, ECR6/271, was significantly more frequent in the 

KDD fetuses than in controls (heterozygous in 14/96 fetuses vs 7/189 controls, P=0.002) 
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(Table 3A). To confirm this result, we analysed a new series of 171 cases with bilateral KDD 

including 53 fetuses and 118 children. Based on analysis of all of the samples (variant 

heterozygous in a total of 24/267 fetuses/children) or fetuses only (variant heterozygous in a 

total of 17/149 fetuses), the variant frequency remains significantly higher in cases than in 

controls (P=0.04 or P=0.01, respectively). The presence of the variant in fetuses with BRA 

but also in fetuses and children with MCDK suggests that it could confer predisposition to the 

whole spectrum of KDD.  

Sequencing of the 3’UTR of both RET9 and RET51 transcriptional isoforms revealed 8 

referenced SNPs and 6 previously unreported rare variants (Table 3A). There was no 

significant difference in their frequencies in cases vs. controls.  

 

Table 3A Polymorphic variants in the RET sequence 

Position Variation in  
non coding 
sequence 

Variation 
in coding 
sequence 

Frequency of 
the minor 
allele in KDD 
fetuses   
(in controls) 

SNP 
referenced 
in NCBI 

5’
 e

vo
lu

ti
on

ar
y 

co
ns

er
ve

d 
E

C
R

s1  
 

ECR1E/83  C>A  0.01 (-) rs73262104 
ECR1E/176 C>A  0.01 (-)  
ECR1B/36  G>A  0.23 (0.23) rs1547930 
ECR1B/136 C>T  0.01 (-)  
ECR1B/262 C>T  0.01 (-) rs12572318 
ECR1B/293 G>A  0.005 (0.007)  
ECR8/48  C>T  0.29 (0.24) rs7910199 
ECR2/63 T>C  0.005 (-)  
ECR2/189  C>G  0.47 (0.51) rs2505992 
ECR2/230 delTCAC  0.005 (-)  
ECR2/504 C>T  0.03 (0.02)  

In
tr

on
 1

 E
C

R
s1  ECR6/44 G>A  0.09 (0.10) rs1897002 

ECR6/198  C>T  0.36 (0.37) rs1864411 
ECR6/213  C>T  0.33 (0.28) rs10900298 
ECR6/224  G>T  0.20 (0.23) rs1864410 
ECR6/271 C>G  0.07 (0.02)5 rs2506012 
ECR7/27  C>T  0.21 (0.19)4 rs2435357 
ECR7/244  C>A  0.21 (0.18)4 rs2506004 

E
xo

ni
c 

 a
nd

 f
la

nk
in

g 
in

tr
on

ic
 s

eq
ue

nc
es

2   

c.73+53  G>A  0.15 (0.10)3 rs12267460 
c.73+104 T>C  0.005 (nd)  
c.73+171/172 GC>AA  0.30 (0.35) rs34327391 
c.73+173 insGGGCGGC  0.15 (0.10)3  
exon2   A45A  0.23 (0.29) rs1800858 
c.337+9  G>A  0.24 (0.28) rs2435351 
exon3   V125V  0.01 (nd) rs1800859 
exon3   N199N  0.005 (nd) rs55810667 
c.626-72/71 delCC  0.33 (0.34) rs35906041 
c.1264-5  C>T  0.02 (0.009) rs9282835 
exon7   A432A  0.31 (0.29) rs1800860 
c.1648+84  A>G  0.19 (0.22) rs3026750 
c.1648+88 insC  0.19 (0.22) rs34827976 
exon11   G691S  0.22 (0.22) rs1799939 
c.2284+47  C>T  0.28 (0.28) rs760466 
c.2285-102 C>T  0.01 (nd)  
c.2285-85  G>A  0.005 (nd) rs3026766 
exon13  L769L  0.20 (0.22) rs1800861 
exon14   S836S  0.03 (0.04) rs1800862 
c.2608-24 G>A  0.20 (0.21) rs2472737 
exon15   S904S  0.23 (0.26) rs1800863  
c.2801+54  A>T  0.005 (nd) rs3026772 
c.2801+72 G>A  0.005 (nd) rs3026773 
exon18   R982C 0.05 (0.03) rs17158558 
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3’
U

T
R

 
R

E
T

92  
 

c.3219+15  C>T  0.17 (0.15)4 rs2075912 
c.3219+128 C>T  0.005 (-)  
c.3219+166  A>T  0.20 (0.22)4 rs2075913 
c.3219+731  C>T  0.15 (0.15)4 rs2565200 

3’
U

T
R

 
 R

E
T

51
2  

 
c.3345+29  A>C  0.005 (-)  
c.3345+95 C>T  0.17 (0.22)4 rs17028 
c.3345+388  G>A  0.23 (0.13)4 rs3026782 
c.3345+576 G>A  0.005 (0.003)  
c.3345+600  T>A  0.15 (0.19) rs2742240 
c.3345+1046 G>C  0.01 (0.003)  
c.3345+1116  T>C  0.20 (0.24) rs2435355 
c.3345+1506 A>G  0.17 (0.19) rs2742241 
c.3345+1582 G>A  0.005 (-)  
c.3345+1590 G>A  0.04 (0.03)  

 
1 positions are given according to the ECR sequence (see Table 1) ; 
2 c. positions are given according to NM_020975, except for RET9 3’UTR (NM_020630) ; 
3 frequency of the homozygous variant ; 
4 frequency in controls according to Pilot-CEU ;  
5 p = 0.002 ;  
(-) absent in controls (370 to 444 chromosomes) ; 
(nd) not determined  

 

Analysis of GDNF 

Sequencing of GDNF coding and non-coding sequences identified 7 referenced SNPs and 6 

unreported variants (Table 3B). Variant frequencies in the fetuses were not different from 

those in controls. Therefore, this study did not provide any indication of the involvement of 

this gene in the etiology of KDD.  

 

Table 3B  Polymorphic variants in the GDNF sequence 

 

Position Variation in  
non coding 
sequence 

Variation 
in coding 
sequence 

Frequency of 
the minor 
allele in KDD 
fetuses 
(controls) 

SNP 
referenced 
in NCBI 

5’
1  ECR1/405 G>A  0.07 (0.11)3 rs2975100 

ECR1/2 C>A  0.07 (0.22)4 rs2075680 
c.1-229 insGCC  0.01 (-)  

E
xo

ns
2  c.150 T>C  0.24 (0.33)1 rs2973033 

c.351+17 C>T  0.005 (-)  
Exon3  R143R 0.02 (0.03)5 rs36010631 

 

3’
U

T
R

1  
  

 

ECR3/57 G>T  0.005 (nd)  
ECR3/93 T>A  0.005 (nd) rs45535335 
ECR3/363 A>T  0.005 (nd) rs45611430 
ECR3/450 G>A  0.02 (0.02)  
ECR3/529 C>T  0.01 (nd) rs58787312 
ECR3/795 G>A  0.007 (-)  
ECR3/988 T>C  0.05 (0.03)  

 
1 positions are given according to the ECR sequence (see Table 1) ; 
2c. positions are given according to NM_000514 ; 
3 frequency in controls according to Pilot-CEU ; 
4 frequency in controls according to JBCI-allele ;  
5 frequency in controls according to AGI_ASAP population : 
(-) absent in controls (296 to 452 chromosomes) ; 
(nd) not determined  
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CNV analysis at RET, GDNF and other genes linked to the RET/GDNF signalling 

Finally, as CNVs could be responsible for an altered gene expression, we quantified the RET 

and GDNF loci in 41 of the fetuses, based on genomic data generated by DNA hybridization 

on Illumina HumanOmni1 chips. We extended this analysis to several other genes involved in 

the RET/GDNF pathway, namely the GDNF co-receptor encoding gene GFRA1, regulators of 

the expression of RET and/or GDNF (GDF11, PAX2, EYA1, SIX1, SIX2, SIX4, HOXA11, 

HOXD11, FOXC1, GATA3), repressors of the pathway (SPRY1, ROBO2, SLIT2), the activator 

SOX9 and target genes ETV4 and ETV5.[32-34] For each gene, we analysed not only the gene 

itself but also surrounding sequences extending up to neighbouring genes on each side, in 

order to be sure to include regulatory sequences. In addition to two intronic CNVs, in SLIT2 

and EYA1, each identified in 4 fetuses, we characterized a 1 kb heterozygous deletion 

spanning the GDNF non-coding exon 1 in one case. These three CNVs have been reported in 

controls (http://projects.tcag.ca/variation/), suggesting that they are polymorphic variations. 

There was no CNV in any of the other tested genes. 

 

DISCUSSION 

The pattern of expression of RET and GDNF in fetal kidneys, the severe disruption of kidney 

development in Ret or Gdnf knockout mice, as well as large amounts of data generated from 

cellular and organ culture models, support the major role of the RET/GDNF signalling in 

control of branching morphogenesis during kidney development.[17,18,20-22,35-39] 

Moreover, several RET mutations associated with MTC and/or HSCR have been shown to 

impair branching in a three-dimensional kidney cell culture model,[26,40] in agreement with 

a role of RET in kidney morphogenesis. It was thus expected that mutations in RET and 

GDNF could be responsible for kidney development defects in human. Accordingly, 

heterozygous RET mutations were previously reported in 30% of a small series of 29 fetuses 

with BRA or URA and one heterozygous GDNF mutation in a fetus with URA.[29] However, 

our results, based on analysis of a larger series of 105 cases including 90 fetuses with either 

BRA or URA and contralateral RHD or MCDK do not confirm the high frequency of RET 

mutations in fetuses with renal agenesis or other severe abnormality of kidney development. 

Discrepancy between the two studies could be explained by differences in the ethnic origin of 

the patients and/or by a bias due to the small number of patients in the study of Skinner et al.. 

We only report 7 potential mutations in the RET coding sequence (6.6%), and no mutation in 

the GDNF coding sequence. We did not analyse the sequence of the GDNF co-receptor 

encoding gene GFRA1 in this study because no mutation has ever been reported in this gene, 
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neither in KDD nor in HSCR.[27,29,41] As reported,[29] the RET mutations that we 

identified in KDD fetuses were heterozygous, distributed all along the gene and most of them 

were missense variants. Only one nonsense mutation was identified and absence of tissue 

available for RNA and protein extraction precluded analysis of the impact of this mutation on 

the expression of the gene. As for HSCR, heterozygosity of the mutations suggests a 

mechanism based on haploinsufficiency, leading to a dysregulation of the RET signalling in 

kidney. However, one cannot exclude that some of the missense variants might be activating 

mutations with both gain-of-function and loss-of-function effects, as suggested for some of 

the mutations previously described.[29] While Skinner et al. described the presence of two or 

three mutations in some fetuses, none of the fetuses in our series presented with several 

mutations.[29] No mutation was common to both studies and only the L56M variant has 

previously been reported in a HSCR patient.[42] Absence of splicing defect in the kidney 

from the fetus with the T451T variant suggests that this neutral variant is a rare polymorphism 

rather than a causative mutation. Moreover, heterozygosity of the P992P variant in a fetus 

from a consanguineous family and his father suggests that the kidney development defect in 

this family is probably not linked to this RET variant. Finally, while Skinner et al. did not 

trace the inherited vs. de novo origin of the mutations in their fetuses, we demonstrate that the 

missense mutations R57Q and D567N as well as the W1056X nonsense mutation were 

inherited from healthy fathers. Although we cannot eliminate the hypothesis that somatic 

mosaicism could explain the absence of phenotype in the father, these results likely indicate 

that, even if these RET mutations impair kidney development, other genetic or epigenetic 

events affecting the RET/GDNF signalling must cooperate.  

In addition to the 7 RET variations in the coding sequence, a total of 48 SNPs in coding 

and non-coding RET and GDNF sequences, as well as 21 new rare variants in non-coding 

sequences were identified in our series of fetuses (4 to 22 RET variants per fetus; 0 to 4 

GDNF variant per fetus). This includes RET SNP variants A432A in exon 7 and G691S in 

exon 11, that have been reported as associated with CAKUT,[43,44] and RET variants 

rs1864411, rs1864410, rs2435357 and rs2506004 in intron 1 that have been reported as part 

of a HSCR susceptibility haplotype.[45,46] Based on the observation that allele frequencies in 

our cases were similar to controls, our data do not support a role in KDD for any of these 

variants. Four previously unreported variants in RET 5’-ECR regions were identified in a total 

of six patients and not in controls. However, the absence of clustering of these variants in one 

specific ECR is not in favour of a role in the dysregulation of RET expression. Moreover, 
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discordant genotypes in the 3 pairs of fetuses belonging to families with recurrent KDD 

suggest that RET is not the culprit gene in these patients.  

Interestingly, we identified one polymorphism in RET intron 1 (ECR6/271, rs2506012) 

with significant over-representation of the minor G allele in KDD fetuses. Analysis of 

transcription factor binding on the ECR6 sequence using the Genomatix 

(http://www.genomatix.de) and the Mapper (http://mapper.chip.org) softwares predicted 

creation of a site for the aryl hydrocarbon receptor nuclear translocator (ARNT) transcription 

factor by this variant. ARNT is a protein that is involved in translocation of the aryl 

hydrocarbon receptor (AHR) to the nucleus, following induction by ligands like dioxin and 

polycyclic aromatic hydrocarbons. Interestingly, ARNT and its receptor AHR are both 

expressed during kidney development (http://www.gudmap.org/) and activation of AHR has 

been reported to inhibit branching morphogenesis of metanephric kidneys.[47] Thus, this 

polymorphism could confer an increased susceptibility to environmental factors and could 

result in an altered regulation of RET. ARNT has also been identified as the beta subunit of 

the heterodimeric transcription factor HIF1 (hypoxia-inducible factor 1). As HIF1A is co-

expressed with ARNT in cap mesenchyme and UB (http://www.gudmap.org/), an altered 

regulation of RET by HIF1 can also be proposed. While analysis of a second series of samples 

confirmed the difference in allele frequencies between KDD fetuses and controls, it resulted 

in a decrease in the level of significance (P=0.002 to P=0.01). Thus, analysis of a larger series 

of patients will be necessary to unambiguously draw conclusions. Moreover, due to the low 

frequency of this variant in the fetuses, its potential contribution to kidney development defect 

can only account for a small proportion of patients. 

Quantification of RET transcript in KDD vs. control kidney samples revealed down-

expression in the three KDD samples. There are several possible explanations for this result, 

including sample bias, cause or consequence of the altered differentiation process. One of the 

mechanisms involved in regulation of gene expression is through binding of micro-RNAs to 

3’UTR sequences. Indeed, variations in 3’UTR and mutations in the micro-RNA encoding 

genes, resulting in an altered gene regulation, have been reported in several pathologies.[48-

50] In one case, the variation was a common polymorphism, significantly over-represented in 

patients vs. controls.[51] In the RET gene, a variant located in the 3’UTR has been reported to 

confer protection from HSCR.[52] However, sequencing of RET and GDNF 3’UTRs in KDD 

fetuses did not allow us to identify new variants nor variants with a higher frequency in 

patients vs. controls. When the micro-RNAs that regulate RET expression during kidney 

development are identified, it will be worthwhile screening for mutations in these sequences. 
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Another genetic mechanism that could affect RET and/or GDNF expression and 

consequently kidney development is gene copy number variations. The only CNV of potential 

interest that we identified was a deletion spanning a CpG rich region and the non-coding exon 

1 of GDNF. Although this CNV has been reported in normal controls 

(http://projects.tcag.ca/variation/), suggesting that it is a polymorphism, it could result in a 

decreased GDNF expression. However, it was present in only one fetus and thus cannot be 

considered as a significant event in KDD. Moreover, CNV analysis of 17 other genes 

encoding regulators or targets of the RET/GDNF pathway including the GDNF co-receptor 

encoding gene GFRA1, did not allow us to identify any CNV affecting these genes.  

Altogether, this study clearly shows that RET and GDNF genomic alterations are not 

significantly associated with renal agenesis / hypodysplasia /multicystic dysplastic kidney in 

humans, suggesting that they play a minor role in KDD. These results are an important issue 

to be taken into account for genetic diagnosis of these defects. Interestingly, redundant 

receptor tyrosine kinase signalling, notably including FGF10/FGFR2, as well as a balance 

between positive and negative regulation of this signalling network, rather than RET/GDNF 

per se, was suggested to be the central pathway regulating branching for kidney 

development.[53] Regulatory or target genes common to these redundant signalling events 

could be worthwhile testing as new candidate genes to explain kidney development defects. 
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