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Abstract

In this paper, under natural and easily verifiable conditions, we prove the

L
1-convergence and the asymptotic normality of the Parzen-Rosenblatt density

estimator for stationary random fields of the form Xk = g
(

εk−s, s ∈ Z
d
)

, k ∈ Z
d,

where (εi)i∈Zd are i.i.d real random variables and g is a measurable function de-

fined on R
Z
d

. Such kind of processes provides a general framework for stationary

ergodic random fields. A Berry-Esseen’s type central limit theorem is also given

for the considered estimator.
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1 Introduction and main results

Let (Xi)i∈Z be a stationary sequence of real random variables defined on a probability

space (Ω,F ,P) with an unknown marginal density f . The kernel density estimator fn

of f introduced by Rosenblatt [20] and Parzen [19] is defined for any positive integer

n and any x in R by

fn(x) =
1

nbn

n
∑

i=1

K

(

x−Xi

bn

)

where K is a probability kernel and the bandwidth bn is a parameter which converges

slowly to zero such that nbn goes to infinity. The literature dealing with the asymptotic

properties of fn when the observations (Xi)i∈Z are independent is very extensive (see

Silverman [22]). Parzen [19] proved that when (Xi)i∈Z is i.i.d. and the bandwidth bn

goes to zero such that nbn goes to infinity then (nbn)
1/2(fn(x0)−Efn(x0)) converges in

distribution to the normal law with zero mean and variance f(x0)
∫

R
K2(t)dt. Under

the same conditions on the bandwidth, this result was extended by Wu an Mielniczuk



[28] for causal linear processes with i.i.d. innovations and by Dedecker and Merlevède

[10] for strongly mixing sequences. In this paper, we are interested by the kernel density

estimation problem in the setting of dependent random fields indexed by Z
d where d is

a positive integer. The question is not trivial since Z
d does not have a natural ordering

for d ≥ 2. In recent years, there is a growing interest in asymptotic properties of kernel

density estimators for random fields. One can refer for example to Carbon et al. ([3],

[4]), Cheng et al. [8], El Machkouri [13], Hallin et al. [16], Tran [24] and Wang and

Woodroofe [25]. In [24], the asymptotic normality of the kernel density estimator for

strongly mixing random fields was obtained using the Bernstein’s blocking technique

and coupling arguments. Using the same method, the case of linear random fields with

i.i.d. innovations was handled in [16]. In [13], the central limit theorem for the Parzen-

Rosenblatt estimator given in [24] was improved using the Lindeberg’s method (see

[18]). In particular, a simple criterion on the strong mixing coefficients is provided and

the only condition imposed on the bandwith is ndbn → ∞ which is similar to the usual

condition imposed in the independent case (see Parzen [19]). In [13], the regions where

the random field is observed are reduced to squares but a carrefull reading of the proof

allows us to state that the main result in [13] still holds for very general regions Λn,

namely those which the cardinality |Λn| goes to infinity such that |Λn|bn goes to zero

as n goes to infinity (see Assumption (A2) below). In [8], Cheng et al. investigated

the asymptotic normality of the kernel density estimator for linear random fields with

i.i.d. innovations using a martingale approximation method (initiated by Cheng and

Ho [7]) but it seems that there is a mistake in their proof (see Remark 6 in [25]). Since

the mixing property is often unverifiable and might be too restrictive, it is important

to provide limit theorems for nonmixing and possibly nonlinear random fields. If d is a

positive integer, we consider in this work a field (Xi)i∈Zd of identically distributed real

random variables with a marginal density f such that

Xi = g
(

εi−s; s ∈ Z
d
)

, i ∈ Z
d, (1)

where (εj)j∈Zd are i.i.d. random variables and g is a measurable function defined on

R
Z
d

. In the one-dimensional case (d = 1), the class (1) includes linear as well as many

widely used nonlinear time series models as special cases. More importantly, it provides

a very general framework for asymptotic theory for statistics of stationary time series

(see [26] and the review paper [27]).

Let (ε
′

j)j∈Zd be an i.i.d. copy of (εj)j∈Zd and consider for any positive integer n the

coupled version X∗
i of Xi defined by X∗

i = g
(

ε∗i−s ; s ∈ Z
d
)

where ε∗j = εj 11{j 6=0} +

2



ε
′

0 11{j=0} for any j in Z
d. In other words, we obtain X∗

i from Xi by just replacing ε0

by its copy ε
′

0. Following Wu [26], we introduce appropriate dependence measures: let

i in Z
d and p > 0 be fixed. If Xi belongs to Lp (that is, E|Xi|p is finite), we define

the physical dependence measure δi,p = ‖Xi −X∗
i ‖p where ‖ . ‖p is the usual Lp-norm

and we say that the random field (Xi)i∈Zd is p-stable if
∑

i∈Zd δi,p <∞. For d ≥ 2, the

reader should keep in mind the following two examples already given in [14] :

Linear random fields: Let (εi)i∈Zd be i.i.d random variables with εi in L
p, p ≥ 2. The

linear random field X defined for any i in Z
d by

Xi =
∑

s∈Zd

asεi−s

with (as)s∈Zd in R
Z
d

such that
∑

i∈Zd a2i <∞ is of the form (1) with a linear functional

g. For any i in Z
d, δi,p = |ai|‖ε0 − ε

′

0‖p. So, X is p-stable if
∑

i∈Zd |ai| < ∞. Clearly,

if H is a Lipschitz continuous function, under the above condition, the subordinated

process Yi = H(Xi) is also p-stable since δi,p = O(|ai|).
Volterra field : Another class of nonlinear random field is the Volterra process which

plays an important role in the nonlinear system theory (Casti [5], Rugh [21]): consider

the second order Volterra process

Xi =
∑

s1,s2∈Zd

as1,s2εi−s1εi−s2,

where as1,s2 are real coefficients with as1,s2 = 0 if s1 = s2 and (εi)i∈Zd are i.i.d. random

variables with εi in L
p, p ≥ 2. Let

Ai =
∑

s1,s2∈Zd

(a2s1,i + a2i,s2) and Bi =
∑

s1,s2∈Zd

(|as1,i|p + |ai,s2|p).

By the Rosenthal inequality, there exists a constant Cp > 0 such that

δi,p = ‖Xi −X∗
i ‖p ≤ CpA

1/2
i ‖ε0‖2‖ε0‖p + CpB

1/p
i ‖ε0‖2p.

From now on, for any finite subset Λ of Zd, we denote |Λ| the number of elements in

Λ and we observe (Xi)i∈Zd on a sequence (Λn)n≥1 of finite subsets of Zd which only

satisfies |Λn| goes to infinity as n goes to infinity. It is important to note that we do

not impose any condition on the boundary of the regions Λn. The density estimator

fn of f is defined for any positive integer n and any x in R by

fn(x) =
1

|Λn|bn
∑

i∈Λn

K

(

x−Xi

bn

)
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where bn is the bandwidth parameter and K is a probability kernel. Our aim is to

provide sufficient conditions for the L1-distance between fn and f to converge to zero in

probability (Theorem 1) and for (|Λn|bn)1/2(fn(xi)−Efn(xi))1≤i≤k, (xi)1≤i≤k ∈ R
k, k ∈

N
∗, to converge in law to a multivariate normal distribution (Theorem 2) under minimal

conditions on the bandwidth parameter. We give also a Berry-Esseen’s type central

limit theorem for the considered estimator (Theorem 3). In the sequel, we denote

|i| = max1≤k≤d |ik| for any i = (i1, ..., id) ∈ Z
d and we denote also δi for δi,2. The

following assumptions are required.

(A1) The kernel K is Lipschitzian and satisfies
∫

R
K(u) du = 1,

∫

R
|K(u)| du < ∞ and

∫

R
K2(u) du <∞.

(A2) bn → 0 and |Λn| → ∞ such that |Λn|bn → ∞.

(A3) The condition
∑

i∈Zd |i| 5d2 δi <∞ is satisfied.

Theorem 1 If (A1), (A2) and (A3) hold then

lim
n→+∞

E

∫

R

|fn(x)− f(x)| dx = 0.

Remark 1. The above convergence result was obtained also by Hallin et al. ([17],

Theorem 2.1) for rectangular region Λn and under a more restrictive condition on the

bandwith parameter related to the rate of convergence to zero of the so-called stability

coefficients (v(m))m≥1 defined by v(m) = ‖X0 − X0‖22 where X0 = E (X0|Hm) and

Hm = σ (εs , |s| ≤ m). Arguing as in the proof of Lemma 9 below, one can notice that

v(m) ≤∑|i|>m δ
2
i .

In order to establish the asymptotic normality of fn, we need additional assumptions:

(A4) The marginal probability distribution of each Xk is absolutely continuous with

continuous positive density function f .

(A5) There exists κ > 0 such that sup(x,y)∈R2 fi|j(y|x) ≤ κ where fi|j is the conditional

density of Xi given Xj for any i and j in Z
d.

Remark 2. In [2], the asymptotic normality of the frequency polygon estimator for

strongly mixing random fields is established under Assumption (A5) among others.

Moreover, in the case d = 1, it is shown that the stationary autoregressive process of

order 1 satisfies Assumption (A5) (see example in [2], page 504).
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Theorem 2 Assume that (A1), (A2), (A3), (A4) and (A5) hold. For any positive

integer k and any distinct points x1, ..., xk in R,

(|Λn|bn)1/2






fn(x1)− Efn(x1)
...

fn(xk)− Efn(xk)







Law−−−−−→
n→+∞

N (0,Γ) (2)

where Γ is a diagonal matrix with diagonal elements γii = f(xi)
∫

R
K2(u)du.

Remark 3. A replacement of Efn(xi) by f(xi) for any 1 ≤ i ≤ k in (2) is a classical

problem in density estimation theory. For example, if f is assumed to be Lipschitz and

if
∫

R
|u||K(u)|du < ∞ then |Efn(xi) − f(xi)| = O(bn) and thus the centering Efn(xi)

may be changed to f(xi) without affecting the above result provided that |Λn|b3n con-

verges to zero.

Remark 4. If (Xi)i∈Zd is a linear random field of the form Xi =
∑

j∈Zd ajεi−j where

(aj)j∈Zd are real numbers such that
∑

j∈Zd a2j < ∞ and (εj)j∈Zd are i.i.d. real random

variables with zero mean and finite variance then δi = |ai|‖ε0 − ε
′

0‖2 and Theorem

2 holds provided that
∑

i∈Zd |i| 5d2 |ai| < ∞. For Λn rectangular, Hallin et al. [16]

obtained the same result when |aj| = O (|j|−γ) with γ > max{d + 3, 2d + 0.5} and

|Λn|b(2γ−1+6d)/(2γ−1−4d)
n goes to infinity. So, in the particular case of linear random

fields, our assumption (A3) is more restrictive than the condition obtained by Hallin

et al. [16] but our result is valid for a larger class of random fields (namely, the class of

spatial processes of the form (1) observed on general regions) and under only minimal

conditions on the bandwidth (see Assumption (A2)). Finally, for causal linear random

fields, Wang and Woodroofe [25] obtained also a sufficient condition on the coefficients

(aj)j∈Nd for the kernel density estimator to be asymptotically normal. Their condi-

tion is less restrictive than the condition
∑

i∈Zd |i| 5d2 |ai| < ∞ but they assumed also

E(|ε0|p) <∞ for some p > 2.

Now, we are going to investigate the rate of convergence in (2). Recall that a Young

function ψ is a real convex nondecreasing function defined on R
+ which satisfies

limt→∞ ψ(t) = ∞ and ψ(0) = 0. We define the Orlicz space Lψ as the space of real

random variables Z defined on (Ω,F ,P) such that E[ψ(|Z|/c)] < ∞ for some c > 0.

The Orlicz space Lψ equipped with the norm ‖ . ‖ψ defined for any real random variable

Z by ‖Z‖ψ = inf{ c > 0 ; E[ψ(|Z|/c)] ≤ 1 } is a Banach space. For any positive integer

n and any x in R such that f(x) 6= 0, we denote Dn(x) = supt∈R |P (Un(x) ≤ t)− Φ(t)|
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where Φ is the distribution function of the standard normal law and

Un(x) =

√

|Λn|bn (fn(x)− Efn(x))
√

f(x)
∫

R
K2(t)dt

.

For any 1 ≤ β ≤ 2 we consider the Young function ψβ defined for any x ∈ R
+ by

ψβ(x) = exp(xβ)− 1. If Xi belongs to Lψ2
, we denote also δi,ψ2

= ‖Xi−X∗
i ‖ψ2

for any

i in Z
d.

Theorem 3 Let n be a positive integer and let x in R be fixed such that f(x) 6= 0.

Assume that
∫

R
|K(t)|τdt <∞ for some 2 < τ ≤ 3.

(i) Let α > 0 and p > 1 such that
∑

i∈Zd |i|d(1+α)δi,p < ∞ then there exists κ > 0

such that Dn(x) ≤ κ|Λn|θ1(α,τ,p)bθ2(α,τ,p)n where

θ1(α, τ, p) =
αp(2− τ)

2(αp+ (τ − 1)(p+ 1))
and θ2(α, τ, p) =

p((α+ 3)(2− τ)− 3)

2(αp+ (τ − 1)(p+ 1))

(ii) Assume that X0 belongs to Lψ2
and let α > 0 such that

∑

i∈Zd |i|d(1+α)δi,ψ2
< ∞

then there exists κ > 0 such that Dn(x) ≤ κ|Λn|θ3(α,τ)bθ4(α,τ)n log
(

1 + |Λn|−θ3(α,τ)b−θ4(α,τ)n

)

where

θ3(α, τ) =
α(2− τ)

2(α + τ − 1)
and θ4(α, τ) =

(α + 3)(2− τ)− 3

2(α + τ − 1)
.

2 Proofs

The proof of all lemmas of this section are postponed to the appendix. In the sequel, the

letter κ denotes a positive constant which the value is not important and we consider

the sequence (mn)n≥1 defined by

mn = max











vn,











1

b3n

∑

|i|>vn

|i| 5d2 δi





1

3d






+ 1











(3)

where vn =
[

b
−1

2d
n

]

and [ . ] denotes the integer part function. The following technical

lemma is a spatial version of a result by Bosq, Merlevède and Peligrad ([1], pages

88-89).

Lemma 1 If (A3) holds then

mn → ∞, md
nbn → 0 and

1

(md
nbn)

3/2

∑

|i|>mn

|i| 5d2 δi → 0.
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For any z in R and any i in Z
d, we denote

Ki(z) = K

(

z −Xi

bn

)

and Ki(z) = E (Ki(z)|Fn,i) (4)

where Fn,i = σ (εi−s ; |s| ≤ mn). So, denoting Mn = 2mn + 1, (Ki(z))i∈Zd is an Mn-

dependent random field (i.e. Ki(z) and Kj(z) are independent as soon as |i−j| ≥Mn).

Lemma 2 For any p > 1, any x in R, any positive integer n and any (ai)i∈Zd in R
Zd

,

∥

∥

∥

∥

∥

∑

i∈Λn

ai
(

Ki(x)− Ki(x)
)

∥

∥

∥

∥

∥

p

≤ 8md
n

bn

(

p
∑

i∈Λn

a2i

)1/2
∑

|i|>mn

δi,p.

2.1 Proof of Theorem 1

The proof follows the same lines of the proof of Theorem 2.1 in [17]. For any positive

integer n, denote

Jn =

∫

R

|fn(x)− f(x)| dx.

For any positive real A, we have Jn = Jn,1(A) + Jn,2(A) where

Jn,1(A) =

∫

|x|>A
|fn(x)− f(x)| dx and Jn,2(A) =

∫

|x|≤A
|fn(x)− f(x)| dx.

Lemma 3 For any ε > 0, there exists A > 0 such that limn→+∞ EJn,1(A) < ε.

Now, Jn,2(A) ≤ J
(1)
n,2(A) + J

(2)
n,2 where

J
(1)
n,2(A) =

∫

|x|≤A
|fn(x)− Efn(x)| dx and J

(2)
n,2 =

∫

R

|Efn(x)− f(x)| dx

Lemma 4 J
(2)
n,2 goes to zero as n goes to infinity.

So, it suffices to show that EJ
(1)
n,2(A) goes to zero as n goes to infinity. Keeping in mind

the notation (4) and denoting

fn(x) =
1

|Λn|bn
∑

i∈Λn

Ki(x),

we have J
(1)
n,2(A) ≤ In,1(A) + In,2(A) where

In,1(A) =

∫

|x|≤A
|fn(x)− fn(x)| dx and In,2(A) =

∫

|x|≤A
|fn(x)− Efn(x)| dx.

Lemma 5 EIn,i(A) = O
(

(|Λn|bn)−1/2
)

for any A > 0 and any i ∈ {1, 2}.

Combining Lemma 3, Lemma 4 and Lemma 5, we obtain Theorem 1.
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2.2 Proof of Theorem 2

Without loss of generality, we consider only the case k = 2 and we refer to x1 and x2

as x and y (x 6= y). Let λ1 and λ2 be two constants such that λ21 + λ22 = 1 and note

that

λ1(|Λn|bn)1/2(fn(x)− Efn(x)) + λ2(|Λn|bn)1/2(fn(y)− Efn(y)) =
∑

i∈Λn

∆i

|Λn|1/2

λ1(|Λn|bn)1/2(fn(x)− Efn(x)) + λ2(|Λn|bn)1/2(fn(y)− Efn(y)) =
∑

i∈Λn

∆i

|Λn|1/2

where ∆i = λ1Zi(x) + λ2Zi(y) and ∆i = λ1Z i(x) + λ2Z i(y) and for any z in R,

Zi(z) =
1√
bn

(Ki(z)− EKi(z)) and Z i(z) =
1√
bn

(

Ki(z)− EKi(z)
)

where Ki(z) and Ki(z) are defined by (4). Applying Lemma 1 and Lemma 2, we know

that
1

|Λn|1/2

∥

∥

∥

∥

∥

∑

i∈Λn

(

∆i −∆i

)

∥

∥

∥

∥

∥

2

≤ κ(|λ1|+ |λ2|)
(md

nbn)
3/2

∑

|i|>mn

|i| 5d2 δi = o(1). (5)

So, it suffices to prove the asymptotic normality of the sequence
(

|Λn|−1/2
∑

i∈Λn
∆i

)

n≥1
.

We are going to follow the Lindeberg’s type proof of Theorem 1 in [9]. We consider

the notations

η = (λ21f(x) + λ22f(y))σ
2 and σ2 =

∫

R

K2(u)du. (6)

Lemma 6 E(∆
2

0) converges to η and supi∈Zd\{0} E|∆0∆i| = o(M−d
n ).

Let N be fixed in N
∗. Let ϕ be a one to one map from [1,N] ∩ N

∗ to a finite subset of

Z
d and (ξi)i∈Zd a real random field. For all integers k in [1,N], we denote

Sϕ(k)(ξ) =

k
∑

i=1

ξϕ(i) and Scϕ(k)(ξ) =

N
∑

i=k

ξϕ(i)

with the convention Sϕ(0)(ξ) = Scϕ(N+1)(ξ) = 0. On the lattice Z
d we define the lex-

icographic order as follows: if i = (i1, ..., id) and j = (j1, ..., jd) are distinct elements

of Z
d, the notation i <lex j means that either i1 < j1 or for some k in {2, 3, ..., d},

ik < jk and il = jl for 1 ≤ l < k. To describe the set Λn, we define the one to one

map ϕ from [1, |Λn|] ∩ N
∗ to Λn by: ϕ is the unique function such that ϕ(k) <lex ϕ(l)

for 1 ≤ k < l ≤ |Λn|. From now on, we consider a field (ξi)i∈Zd of i.i.d. random

8



variables independent of (Xi)i∈Zd such that ξ0 has the standard normal law N (0, 1).

We introduce the fields Y and γ defined for any i in Z
d by

Yi =
∆i

|Λn|1/2
and γi =

ξi
√
η

|Λn|1/2

where η is defined by (6). Note that Y is an Mn-dependent random field where Mn =

2mn+1 and mn is defined by (3). Let h be any function from R to R. For 0 ≤ k ≤ l ≤
|Λn|+1, we introduce hk,l(Y ) = h(Sϕ(k)(Y ) + Scϕ(l)(γ)). With the above convention we

have that hk,|Λn|+1(Y ) = h(Sϕ(k)(Y )) and also h0,l(Y ) = h(Scϕ(l)(γ)). In the sequel, we

will often write hk,l instead of hk,l(Y ). We denote by B4
1(R) the unit ball of C4

b (R): h

belongs to B4
1(R) if and only if it belongs to C4(R) and satisfies max0≤i≤4 ‖h(i)‖∞ ≤ 1.

It suffices to prove that for all h in B4
1(R),

E
(

h
(

Sϕ(|Λn|)(Y )
))

−−−−−→
n→+∞

E (h (ξ0
√
η)) .

We use Lindeberg’s decomposition:

E
(

h
(

Sϕ(|Λn|)(Y )
)

− h (ξ0
√
η)
)

=

|Λn|
∑

k=1

E (hk,k+1 − hk−1,k) .

Now, we have hk,k+1 − hk−1,k = hk,k+1 − hk−1,k+1 + hk−1,k+1 − hk−1,k and by Taylor’s

formula we obtain

hk,k+1 − hk−1,k+1 = Yϕ(k)h
′

k−1,k+1 +
1

2
Y 2
ϕ(k)h

′′

k−1,k+1 +Rk

hk−1,k+1 − hk−1,k = −γϕ(k)h
′

k−1,k+1 −
1

2
γ2ϕ(k)h

′′

k−1,k+1 + rk

where |Rk| ≤ Y 2
ϕ(k)(1 ∧ |Yϕ(k)|) and |rk| ≤ γ2ϕ(k)(1 ∧ |γϕ(k)|). Since (Y, ξi)i 6=ϕ(k) is inde-

pendent of ξϕ(k), it follows that

E

(

γϕ(k)h
′

k−1,k+1

)

= 0 and E

(

γ2ϕ(k)h
′′

k−1,k+1

)

= E

(

η

|Λn|
h

′′

k−1,k+1

)

Hence, we obtain

E
(

h(Sϕ(|Λn|)(Y ))− h (ξ0
√
η)
)

=

|Λn|
∑

k=1

E(Yϕ(k)h
′

k−1,k+1)

+

|Λn|
∑

k=1

E

(

(

Y 2
ϕ(k) −

η

|Λn|

)

h
′′

k−1,k+1

2

)

+

|Λn|
∑

k=1

E (Rk + rk) .

9



Let 1 ≤ k ≤ |Λn| be fixed. Since E|∆0| = O
(√

bn
)

and E

(

∆
2

0

)

converges to η (by

Lemma 6), we derive

|Λn|
∑

k=1

E|Rk| ≤ E

(

∆
2

0

(

1 ∧ |∆0|
|Λn|1/2

))

= o(1)

and
|Λn|
∑

k=1

E|rk| ≤
η3/2E|ξ0|3
|Λn|1/2

= O
(

|Λn|−1/2
)

.

Consequently, we obtain
|Λn|
∑

k=1

E (|Rk|+ |rk|) = o(1).

Now, it is sufficient to show

lim
n→+∞

|Λn|
∑

k=1

(

E(Yϕ(k)h
′

k−1,k+1) + E

(

(

Y 2
ϕ(k) −

η

|Λn|

)

h
′′

k−1,k+1

2

))

= 0. (7)

First, we focus on
∑|Λn|

k=1 E
(

Yϕ(k)h
′

k−1,k+1

)

. Let the sets {V k
i ; i ∈ Z

d , k ∈ N
∗} be defined

as follows: V 1
i = {j ∈ Z

d ; j <lex i} and for k ≥ 2, V k
i = V 1

i ∩ {j ∈ Z
d ; |i − j| ≥ k}.

For all n in N
∗ and all integer k in [1, |Λn|], we define

EMn

k = ϕ([1, k] ∩ N
∗) ∩ V Mn

ϕ(k) and SMn

ϕ(k)(Y ) =
∑

i∈EMn
k

Yi.

For any function Ψ from R to R, we define ΨMn

k−1,l = Ψ
(

SMn

ϕ(k)(Y ) + Scϕ(l)(γ)
)

. We are

going to apply this notation to the successive derivatives of the function h. Our aim is

to show that

lim
n→+∞

|Λn|
∑

k=1

E

(

Yϕ(k)h
′

k−1,k+1 − Yϕ(k)

(

Sϕ(k−1)(Y )− SMn

ϕ(k)(Y )
)

h
′′

k−1,k+1

)

= 0. (8)

First, we use the decomposition

Yϕ(k)h
′

k−1,k+1 = Yϕ(k)h
′Mn

k−1,k+1 + Yϕ(k)

(

h
′

k−1,k+1 − h
′Mn

k−1,k+1

)

.

Applying again Taylor’s formula,

Yϕ(k)(h
′

k−1,k+1 − h
′Mn

k−1,k+1) = Yϕ(k)

(

Sϕ(k−1)(Y )− SMn

ϕ(k)(Y )
)

h
′′

k−1,k+1 +R
′

k,

10



where

|R′

k| ≤ 2
∣

∣

∣
Yϕ(k)

(

Sϕ(k−1)(Y )− SMn

ϕ(k)(Y )
)(

1 ∧ |Sϕ(k−1)(Y )− SMn

ϕ(k)(Y )|
)∣

∣

∣
.

Since (Yi)i∈Zd is Mn-dependent, we have E

(

Yϕ(k)h
′Mn

k−1,k+1

)

= 0 and consequently (8)

holds if and only if limn→+∞
∑|Λn|

k=1 E|R
′

k| = 0. In fact, considering the sets Wn =

{−Mn + 1, ...,Mn − 1}d and W ∗
n = Wn\{0}, it follows that

|Λn|
∑

k=1

E|R′

k| ≤ 2E

(

|∆0|
(

∑

i∈Wn

|∆i|
)(

1 ∧ 1

|Λn|1/2
∑

i∈Wn

|∆i|
))

= 2E







∆
2

0 +
∑

i∈W ∗

n

|∆0∆i|





(

1 ∧ 1

|Λn|1/2
∑

i∈Wn

|∆i|
)





≤ 2E

(

∆
2

0

(

1 ∧ 1

|Λn|1/2
∑

i∈Wn

|∆i|
))

+ 4Md
n sup
i∈Zd\{0}

E(|∆0∆i|).

Keeping in mind that E|∆i| = O(
√
bn) and applying Lemma 1, we have

E

(

1

|Λn|1/2
∑

i∈Wn

|∆i|
)

=
|Wn|E|∆0|
|Λn|1/2

≤ κmd
nbn

(|Λn|bn)1/2
= o(1).

Since E

(

∆
2

0

)

converges to η, we derive

E

(

∆
2

0

(

1 ∧ 1

|Λn|1/2
∑

i∈Wn

|∆i|
))

= o(1).

Applying Lemma 6, we obtain
∑|Λn|

k=1 E|R
′

k| = o(1). In order to obtain (7) it remains to

control

F1 = E





|Λn|
∑

k=1

h
′′

k−1,k+1

(

Y 2
ϕ(k)

2
+ Yϕ(k)

(

Sϕ(k−1)(Y )− SMn

ϕ(k)(Y )
)

− η

2|Λn|

)



 .

Keeping in mind that Wn = {−Mn + 1, ...,Mn − 1}d and applying again Lemma 6, we

have

F1 ≤

∣

∣

∣

∣

∣

∣

E





1

|Λn|

|Λn|
∑

k=1

h
′′

k−1,k+1

(

∆
2

ϕ(k) − E(∆
2

0)
)





∣

∣

∣

∣

∣

∣

+
∣

∣

∣
η − E

(

∆
2

0

)∣

∣

∣
+ 2

∑

j∈V 1
0
∩Wn

E|∆0∆j|

≤

∣

∣

∣

∣

∣

∣

E





1

|Λn|

|Λn|
∑

k=1

h
′′

k−1,k+1

(

∆
2

ϕ(k) − E(∆
2

0)
)





∣

∣

∣

∣

∣

∣

+ o(1),
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it suffices to prove that

F2 =

∣

∣

∣

∣

∣

∣

E





1

|Λn|

|Λn|
∑

k=1

h
′′

k−1,k+1

(

∆
2

ϕ(k) − E(∆
2

0)
)





∣

∣

∣

∣

∣

∣

goes to zero as n goes to infinity. In fact, we have F2 ≤ 1
|Λn|
∑|Λn|

k=1

(

J1
k(n) + J2

k(n)
)

where

J1
k(n) =

∣

∣

∣
E

(

h
′′Mn

k−1,k+1

(

∆
2

ϕ(k) − E

(

∆
2

0

)))∣

∣

∣
= 0 since h

′′Mn

k−1,k+1 is σ
(

∆i ; i ∈ V Mn

ϕ(k)

)

∨
σ (ξi ; i ∈ Λn)-measurable and

J2
k(n) =

∣

∣

∣
E

((

h
′′

k−1,k+1 − h
′′Mn

k−1,k+1

)(

∆
2

ϕ(k) − E

(

∆
2

0

)))∣

∣

∣

≤ E







2 ∧
∑

|i|<Mn

|∆i|
|Λn|1/2



∆
2

0





= o(1).

The proof of Theorem 2 is complete.

Proof of Theorem 5. Let n be a fixed positive integer and let x be fixed in R. We

have Un(x) = Un(x) +Rn(x) where

Un(x) =

√

|Λn|bn
(

fn(x)− Efn(x)
)

√

f(x)
∫

R
K2(t)dt

and Rn(x) =

√

|Λn|bn
(

fn(x)− fn(x)
)

√

f(x)
∫

R
K2(t)dt

.

Denote Dn(x) = supt∈R |P(Un(x) ≤ t)−Φ(t)| and let ψ be a Young function. Arguing

as in Theorem 2.2 in [12], we have

Dn(x) ≤ Dn(x) + ϕ (‖Rn‖ψ) (9)

where ϕ(x) = xh−1(1/x) and h(x) = xψ(x). In the sequel we denote σ2 = f(x)
∫

R
K2(t)dt.

Since there exist α > 0 and p > 1 such that
∑

i∈Zd |i|d(1+α)δi,p < ∞, we derive from

Lemma 2 that

‖Rn(x)‖p ≤
κ
√
p

σmdα
n b

3/2
n

∑

i∈Zd

|i|d(1+α)δi,p. (10)

Applying the Berry-Esseen’s type theorem for mn-dependent random fields established

by Chen and Shao ([6], Theorem 2.6), we obtain

Dn(x) ≤
κ
∫

R
|K(t)|τf(x− tbn)dt m

(τ−1)d
n

στ (|Λn|bn)
τ
2
−1

. (11)
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Applying (9) with ψ(x) = xp, we obtain ϕ(x) = x
p

p+1 and

Dn(x) ≤
κ
∫

R
|K(t)|τf(x− tbn)dt m

(τ−1)d
n

στ (|Λn|bn)
τ
2
−1

+

(

κ
√
p

σmdα
n b

3/2
n

∑

i∈Zd

|i|d(1+α)δi,p
)

p

p+1

.

Optimizing in mn the second part of the above inequality, we obtain the point (i) of

Theorem 3. Now, we assume that X0 belongs to Lψ2
and there exists α > 0 such that

∑

i∈Zd |i|d(1+α)δi,ψ2
< ∞. We need the following lemma which can be obtained using

the expansion of the exponential function (see [23]).

Lemma 7 Let β be a positive real number and Z be a real random variable. There

exist positive universal constants Aβ and Bβ depending only on β such that

Aβ sup
p>2

‖Z‖p
p1/β

≤ ‖Z‖ψβ
≤ Bβ sup

p>2

‖Z‖p
p1/β

.

Combining (10) and Lemma 7, we obtain

‖Rn(x)‖ψ1
≤ κ

σmdα
n b

3/2
n

∑

i∈Zd

|i|d(1+α)δi,ψ2
. (12)

Applying (9) with ψ = ψ1, we obtain

Dn(x) ≤
κ
∫

R
|K(t)|τf(x− tbn)dt m

(τ−1)d
n

στ (|Λn|bn)
τ
2
−1

+ ϕ

(

κ

σmdα
n b

3/2
n

∑

i∈Zd

|i|d(1+α)δi,ψ2

)

.

Noting that limt→0
ϕ(t)

t log(1+ 1

t
)
= 1 and optimizing again in mn, we obtain the point (ii)

of Theorem 3. The Proof of Theorem 3 is complete.

3 Appendix

Proof of Lemma 1. We follow the proof by Bosq, Merlevède and Peligrad ([1], pages

88-89). First, mn goes to infinity since vn =
[

b
− 1

2d
n

]

goes to infinity and mn ≥ vn. For

any positive integer m, we consider

r(m) =
∑

|i|>m
|i| 5d2 δi.

Since (A3) holds, r(m) converges to zero as m goes to infinity. Moreover,

md
nbn ≤ max

{

√

bn, r(vn)
1/3 + bn

}

−−−−−→
n→+∞

0
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and

md
n ≥ 1

bn
(r (vn))

1/3 ≥ 1

bn
(r (mn))

1/3 since vn ≤ mn.

Finally, we obtain

1

(md
nbn)

3/2

∑

|i|>mn

|i| 5d2 δi ≤
√

r(mn) −−−−−→
n→+∞

0.

The proof of Lemma 1 is complete.

Proof of Lemma 2. Let p > 1 be fixed. We follow the proof of Proposition 1 in

[14]. For any i in Z
d and any x in R, we denote Ri = Ki(x) − Ki(x). Since there

exists a measurable function H such that Ri = H(εi−s; s ∈ Z
d), we are able to de-

fine the physical dependence measure coefficients (δ
(n)
i,p )i∈Zd associated to the random

field (Ri)i∈Zd . We recall that δ
(n)
i,p = ‖Ri − R∗

i ‖p where R∗
i = H(ε∗i−s; s ∈ Z

d) and

ε∗j = εj 11{j 6=0}+ ε
′

0 11{j=0} for any j in Z
d. In other words, we obtain R∗

i from Ri by just

replacing ε0 by its copy ε
′

0 (see [26]). Let τ : Z → Z
d be a bijection. For any l ∈ Z, for

any i ∈ Z
d,

PlRi := E(Ri|Fl)− E(Ri|Fl−1) (13)

where Fl = σ
(

ετ(s); s ≤ l
)

.

Lemma 8 For any l in Z and any i in Z
d, we have ‖PlRi‖p ≤ δ

(n)
i−τ(l),p.

Proof of Lemma 8. Let l in Z and i in Z
d be fixed.

‖PlRi‖p = ‖E(Ri|Fl)− E(Ri|Fl−1)‖p =
∥

∥E(R0|T iFl)− E(R0|T iFl−1)
∥

∥

p

where T iFl = σ
(

ετ(s)−i; s ≤ l
)

. Hence,

‖PlRi‖p =
∥

∥

∥
E
(

H ((ε−s)s∈Zd) |T iFl

)

− E

(

H
(

(ε−s)s∈Zd\{i−τ(l)}; ε
′

τ(l)−i

)

|T iFl

)∥

∥

∥

p

≤
∥

∥

∥
H ((ε−s)s∈Zd)−H

(

(ε−s)s∈Zd\{i−τ(l)}; ε
′

τ(l)−i

)∥

∥

∥

p

=
∥

∥

∥
H
(

(εi−τ(l)−s)s∈Zd

)

−H
(

(εi−τ(l)−s)s∈Zd\{i−τ(l)}; ε
′

0

)∥

∥

∥

p

=
∥

∥Ri−τ(l) − R∗
i−τ(l)

∥

∥

p

= δ
(n)
i−τ(l),p.

The proof of Lemma 8 is complete.
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For all i in Z
d, Ri =

∑

l∈Z PlRi. Consequently,
∥

∥

∑

i∈Λn
aiRi

∥

∥

p
=
∥

∥

∑

l∈Z
∑

i∈Λn
aiPlRi

∥

∥

p
.

Applying the Burkholder inequality (cf. [15], page 23) for the martingale difference se-

quence
(
∑

i∈Λn
aiPlRi

)

l∈Z, we obtain

∥

∥

∥

∥

∥

∑

i∈Λn

aiRi

∥

∥

∥

∥

∥

p

≤



2p
∑

l∈Z

∥

∥

∥

∥

∥

∑

i∈Λn

aiPlRi

∥

∥

∥

∥

∥

2

p





1

2

≤



2p
∑

l∈Z

(

∑

i∈Λn

|ai| ‖PlRi‖p

)2




1

2

By the Cauchy-Schwarz inequality, we have

(

∑

i∈Λn

|ai| ‖PlRi‖p

)2

≤
∑

i∈Λn

a2i ‖PlRi‖p ×
∑

i∈Λn

‖PlRi‖p

and by Lemma 8,
∑

i∈Zd ‖PlRi‖p ≤
∑

j∈Zd δ
(n)
j,p . So, we obtain

∥

∥

∥

∥

∥

∑

i∈Λn

aiRi

∥

∥

∥

∥

∥

p

≤



2p
∑

j∈Zd

δ
(n)
j,p

∑

i∈Λn

a2i
∑

l∈Z
‖PlRi‖p





1

2

.

Applying again Lemma 8, for any i in Z
d, we have

∑

l∈Z ‖PlRi‖p ≤
∑

j∈Zd δ
(n)
j,p . Finally,

we derive
∥

∥

∥

∥

∥

∑

i∈Λn

aiRi

∥

∥

∥

∥

∥

p

≤
(

2p
∑

i∈Λn

a2i

)
1

2
∑

i∈Zd

δ
(n)
i,p .

Since K
∗
i = E

(

K∗
i (x)

∣

∣F∗
n,i

)

where F∗
n,i = σ

(

ε∗i−s ; |s| ≤ mn

)

and
(

Ki(x)− Ki(x)
)∗

=

K∗
i (x)−K

∗
i (x), we derive δ

(n)
i,p ≤ 2‖Ki(x)−K∗

i (x)‖p. Since K is Lipschitzian, we obtain

δ
(n)
i,p ≤ 2δi,p

bn
(14)

where δi,p = ‖Xi −X∗
i ‖p. Morever, we have also δ

(n)
i,p ≤ 2‖K0(x)− K0(x)‖p.

Lemma 9 For any p > 1, any positive integer n and any x in R,

‖K0(x)− K0(x)‖p ≤
√
8p

bn

∑

|j|>mn

δj,p.

Proof of Lemma 9 . Let p > 1 be fixed. We consider the sequence (Γn)n≥0 of finite

subsets of Zd defined by Γ0 = {(0, ..., 0)} and for any n in N
∗, Γn = {i ∈ Z

d ; |i| = n}.
The cardinality of the set Γn is |Γn| = 2d(2n+1)d−1 for n ≥ 1. Let τ : N∗ → Z

d be the

bijection defined by τ(1) = (0, ..., 0) and
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• for any n in N
∗, if l ∈ ]an−1, an] then τ(l) ∈ Γn,

• for any n in N
∗, if (i, j) ∈ ]an−1, an]

2 and i < j then τ(i) <lex τ(j)

where an =
∑n

j=0 |Γj| goes to infinity as n goes to infinity. Let (mn)n≥1 be the se-

quence of positive integers defined by (3). For any n in N
∗, we recall that Fn,0 =

σ (ε−s ; |s| ≤ mn) (see (4)) and we consider also the σ-algebra Gn := σ
(

ετ(j) ; 1 ≤ j ≤ n
)

.

By the definition of the bijection τ , for any n in N, 1 ≤ j ≤ an if and only if

|τ(j)| ≤ n. So, we have Gamn
= Fn,0. Consequently, K0(x) − K0(x) =

∑

l>amn
Dl

with Dl = E (K0(x)|Gl) − E (K0(x)|Gl−1) for any l in Z. Let p ≥ 2 be fixed. Since

(Dl)l∈Z is a martingale-difference sequence, applying Burkholder’s inequality (cf. [15],

page 23), we derive

‖K0(x)− K0(x)‖p ≤



2p
∑

l>amn

‖Dl‖2p





1/2

.

Denoting K
′

0(x) = K
(

b−1
n

(

x− g
(

(ε−s)s∈Zd\{−τ(l)}; ε
′

τ(l)

)))

, we obtain

‖Dl‖p = ‖E (K0(x)|Gl)− E

(

K
′

0(x)|Gl
)

‖p ≤ ‖K0(x)− K
′

0(x)‖p

≤ 1

bn

∥

∥

∥
g ((ε−s)s∈Zd)− g

(

(ε−s)s∈Zd\{−τ(l)}; ε
′

τ(l)

)∥

∥

∥

p

=
1

bn

∥

∥

∥
g
(

(ε−τ(l)−s)s∈Zd

)

− g
(

(ε−τ(l)−s)s∈Zd\{−τ(l)}; ε
′

0

)∥

∥

∥

p

=
1

bn

∥

∥X−τ(l) −X∗
−τ(l)

∥

∥

p
=
δ−τ(l),p
bn

and finally

‖K0(x)− K0(x)‖p ≤
1

bn



2p
∑

l>amn

δ2−τ(l),p





1/2

≤
√
2p

bn

∑

|j|>mn

δj,p.

The proof of Lemma 9 is complete.

Applying Lemma 9, we derive

δ
(n)
i,p ≤ 2

√
8p

bn

∑

|j|>mn

δj,p. (15)

Combining (14) and (15), we obtain

∑

i∈Zd

δ
(n)
i,p ≤ 2





md
n

√
8p

bn

∑

|j|>mn

δj,p +
1

bn

∑

|j|>mn

δj,p



 .
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The proof of Lemma 2 is complete.

Proof of Lemma 3. We follow the proof of Lemma 4.1 in [17]. Let ε > 0 be fixed

and let A > 0 such that
∫

|x|>A/2
f(x)dx ≤ ε

3
.

We have

EJn,1(A) ≤
∫

|x|>A
E|fn(x)|dx+

∫

|x|>A
f(x)dx ≤

∫

|x|>A

∫

R

K(t)f(x− bnt)dtdx+
ε

3

=

∫

|t|>A
2

K(t)

∫

|x|>A
f(x− bnt)dxdt+

∫

|t|≤A
2

K(t)

∫

|x|>A
f(x− bnt)dxdt+

ε

3

≤
∫

|t|>A
2

K(t)

∫

|y+bnt|>A
f(y)dydt+

∫

|t|≤A
2

K(t)

∫

|y|>A(1− bn
2
)

f(y)dydt+
ε

3

≤ ε

3
+

∫

|y|>A(1− bn
2
)

f(y)dy +
ε

3
.

Consequently, we obtain limn→∞EJn,1(A) ≤ ε. The proof of Lemma 3 is complete.

Proof of Lemma 4. For any integer n and any real x, we have

J
(2)
n,2 =

∫

R

∣

∣

∣

∣

(

f ∗ 1

bn
K

(

.

bn

))

(x)− f(x)

∣

∣

∣

∣

dx

and the result follows from Theorem 1, page 6, in [11]. The proof of Lemma 4 is com-

plete.

Proof of Lemma 5. Let n in N
∗ and x in R be fixed. Applying Lemmas 1 and 2,

we have
∥

∥fn(x)− fn(x)
∥

∥

2
≤

κ
∑

|i|>mn
|i| 5d2 δi

√

|Λn|bn(md
nbn)

3/2
= o

(

(|Λn|bn)−1/2
)

.

So, we obtain the result for EIn,1(A). Now,
∥

∥fn(x)− Efn(x)
∥

∥

2

2
equals to

1

|Λn|2bn









|Λn|E
(

Z
2

0(x)
)

+
∑

j∈Zd\{0}
|j|<Mn

|Λn ∩ (Λn − j)|E
(

Z0(x)Zj(x)
)









(16)

where we recall that Z i(x) =
1√
bn

(

Ki(x)− EKi(x)
)

and Mn = 2mn + 1.

17



Lemma 10 Let x, s and t be fixed in R. Then E

(

Z
2

0(x)
)

converges to f(x)
∫

R
K2(u)du

and supi∈Zd\{0} E|Z0(s)Zi(t)| = o(M−d
n ).

Proof of Lemma 10. For any z in R, we have

EK2
0(z) = bn

∫

R

K2(v)f(z − vbn)dv = O(bn). (17)

Let s and t be fixed in R. Since E
(

K0(s)K0(t)
)

= E
(

K0(s)K0(t)
)

, we have

∣

∣E
(

K0(s)K0(t)
)

− E (K0(s)K0(t))
∣

∣ ≤ ‖K0(s)‖2‖K0(t)− K0(t)‖2.

Using (17) and Lemma 9, we have

∣

∣E
(

K0(s)K0(t)
)

− E (K0(s)K0(t))
∣

∣ ≤ κ√
bn

∑

|j|>mn

δj .

Since bn|E(Z0(s)Z0(t))− E(Z0(s)Z0(t)| = |E (K0(s)K0(t))− E
(

K0(s)K0(t)
)

|, we have

Md
n|E(Z0(s)Z0(t))− E(Z0(s)Z0(t)| ≤

κ

(md
nbn)

3/2

∑

|j|>mn

|j| 5d2 δj . (18)

Moreover, keeping in mind Assumptions (A1), (A2) and (A4), we have

lim
n

1

bn
E (K0(s)K0(t)) = lim

n

∫

R

K (v)K

(

v +
t− s

bn

)

f(s−vbn)dv = u(s, t) f(s)

∫

R

K2(u)du

(19)

where u(s, t) = 1 if s = t and u(s, t) = 0 if s 6= t. We have also

lim
n

1

bn
EK0(s)EK0(t) = lim

n
bn

∫

R

K(v)f(s− vbn)dv

∫

R

K(w)f(t− wbn)dw = 0. (20)

Let x be fixed in R. Choosing s = t = x and combining (18), (19), (20) and Lemma 1,

we obtain E(Z
2

0(x)) goes to f(x)
∫

R
K2(u)du as n goes to infinity.

In the other part, let i 6= 0 be fixed in Z
d and let s and t be fixed in R. We have

E|Z0(s)Z i(t)| ≤
1

bn
E
∣

∣K0(s)Ki(t)
∣

∣+
3

bn
E
∣

∣K0(s)
∣

∣E
∣

∣K0(t)
∣

∣. (21)

Keeping in mind that ||α| − |β|| ≤ |α − β| for any (α, β) in R
2 and applying the

Cauchy-Schwarz inequality, we obtain

∣

∣E|K0(s)Ki(t)|−E|K0(s)Ki(t)|
∣

∣ ≤ ‖K0(s)‖2‖K0(t)−K0(t)‖2+‖K0(t)‖2‖K0(s)−K0(s)‖2

18



Using (17) and Lemma 9, we obtain

Md
n

bn

∣

∣E|K0(s)Ki(t)| − E|K0(s)Ki(t)|
∣

∣ ≤ κ

(md
nbn)

3/2

∑

|j|>mn

|j| 5d2 δj . (22)

Since Assumptions (A1) and (A4) hold and Md
nbn = o(1), we have

Md
n

bn
E
∣

∣K0(s)
∣

∣E
∣

∣K0(t)
∣

∣ =Md
nbn

∫

R

|K(u)|f(s− ubn)du

∫

R

|K(v)|f(t− vbn)dv = o(1).

(23)

Moreover, using Assumption (A5), we have

E
∣

∣K0(s)Ki(t)
∣

∣ =

∫∫

R2

∣

∣

∣

∣

K

(

s− u

bn

)

K

(

t− v

bn

)∣

∣

∣

∣

f(u)
(

fi|0(v|u)− f(v)
)

dudv

+

∫∫

R2

∣

∣

∣

∣

K

(

s− u

bn

)

K

(

t− v

bn

)∣

∣

∣

∣

f(u)f(v)dudv

≤ κb2n

∫

R

|K(w)|f(s− wbn)dw ×
∫

R

|K(w)|dw

+ b2n

∫

R

|K(w)|f(s− wbn)dw ×
∫

R

|K(w)|f(t− wbn)dw.

So, using again Assumptions (A1) and (A4) and Md
nbn = o(1), we derive

Md
n

bn
E
∣

∣K0(s)Ki(t)
∣

∣ = o(1). (24)

Combining (21), (22), (23), (24) and Lemma 1, we obtain

Md
n sup
i∈Zd\{0}

E|Z0(s)Z i(t)| = o(1). (25)

The proof of Lemma 10 is complete.

Combining (16) and Lemma 10, we derive
∥

∥fn(x)− Efn(x)
∥

∥

2

2
= O

(

(|Λn|bn)−1). The

proof of Lemma 5 is complete.

Proof of Lemma 6. Let x and y be two distinct real numbers. Noting that

E(∆2
0) = λ21E(Z

2
0 (x)) + λ22E(Z

2
0(y)) + 2λ1λ2E(Z0(x)Z0(y))

E(∆
2

0) = λ21E(Z
2

0(x)) + λ22E(Z
2

0(y)) + 2λ1λ2E(Z0(x)Z0(y))

and using (18) and Lemma 1, we obtain

lim
n→+∞

Md
n |E(∆2

0)− E(∆
2

0)| = 0. (26)

19



Combining (19) and (26), we derive that E(∆
2

0) converges to η = (λ21f(x) + λ22f(y))
∫

R
K2(u)du.

Let i 6= 0 be fixed in Z
d. Combining (25) and

E|∆0∆i| ≤ λ21E|Z0(x)Z i(x)|+λ22E|Z0(y)Zi(y)|+λ1λ2E|Z0(x)Z i(y)|+λ1λ2E|Z0(y)Zi(x)|,
(27)

we obtain Md
n supi∈Zd\{0} E|∆0∆i| = o(1). The proof of Lemma 6 is complete.
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