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Opinion Dynamics with Decaying Confidence:

Application to Community Detection in Graphs

Irinel-Constantin Morărescu∗, Antoine Girard#

Abstract

We study a class of discrete-time multi-agent systems modeling opinion dynamics with decaying

confidence. We consider a network of agents where each agent has an opinion. At each time step, each

agent exchanges its opinion with its neighbors and updates its opinion by taking into account only its

neighbors opinions that differs from its own opinion less than some confidence bound. This confidence

bound is decaying: an agent gives repetitively confidence only to its neighbors that approach sufficiently

fast its own opinion. Essentially, the agents try to reach an agreement with the constraint that it has to be

approached no slower than a prescribed convergence rate. Under that constraint, global consensus may

not be achieved and only local agreements may be reached. The agents reaching a local agreement form

communities inside the network. In this paper, we analyze this opinion dynamics model: we show that

communities correspond to asymptotically connected component of the network and give an algebraic

characterization of communities in terms of eigenvalues of the matrix defining the collective dynamics.

Finally, we apply our opinion dynamics model to address the problem of community detection in graphs.

We propose a new formulation of the community detection problem based on eigenvalues of normalized

Laplacian matrix of graphs and show that this problem can be solved using our opinion dynamics model.

We provide experimental results that show that our opinion dynamics model provides an approach to

community detection that is not only appealing but also effective.
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I. INTRODUCTION

The analysis of multi-agent systems received an increasing interest in the past decades. In such

systems, a set of agents interact according to simple local rules in order to achieve some global

coordinated behavior. The most widely studied problem is certainly the consensus or agreement

problem where each agent in the network maintains a value and repetitively averages its value

with those of its neighbors, resulting in all the agents in the network reaching asymptotically a

common value called consensus value. It is to be noted that the graph of interaction describing

the network of agents is generally not fixed and may vary in time. Conditions ensuring consensus

have been established by various authors including [JLM03], [BHOT05], [Mor05], [RB05]

(see [OSFM07] for a survey). More recently, there have been several works providing estimations

of the rate of convergence towards the consensus value [OT09], [AB08], [ZW09].

In this paper, we adopt a different point of view. We consider a discrete-time multi-agent

system where the agents try to reach an agreement with the constraint that the consensus

value must be approached no slower than a prescribed convergence rate. Under that constraint,

global consensus may not be achieved and the agents may only reach local agreement. We call

communities the subsets of agents reaching a consensus. Our model can be interpreted in terms of

opinion dynamics. Each agent has an opinion. At each time step, the agent receives the opinions

of its neighbors and then updates its opinion by taking a weighted average of its opinion and

the opinions of its neighbors that are within some confidence range of its own opinion. The

confidence ranges are getting smaller at each time step: an agent gives repetitively confidence

only to the neighbors that approach sufficiently fast its own opinion. This can be seen as a model

for negotiation process where an agent expects that its neighbors move significantly towards its

opinion at each negotiation round in order to keep negotiating. Our model can be seen as an

extension of the opinion dynamics with bounded confidence proposed by Krause in [Kra97] and

studied in [HK02], [BHT06].

We analyze our opinion dynamics model by first studying the relation between asymptotic

agreement of a subset of agents and the fact that they are asymptotically connected. We show

that under suitable assumptions, these are actually equivalent (i.e. communities correspond to

asymptotically connected component of the network) except for a set of initial opinions of

measure 0. We then give an algebraic characterization of communities in terms of eigenvalues
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of the matrix defining the collective dynamics.

Finally, we apply our opinion dynamics model to address the problem of community detection

in graphs. In the usual sense, communities in a graph are groups of vertices such that the

concentration of edges inside communities is high with respect to the concentration of edges

between communities. Given the increasing need of analysis tools for understanding complex

networks in social sciences, biology, engineering or economics, the community detection problem

has attracted a lot of attention in the recent years (see the extensive survey [For09]). We propose a

new formulation of this problem based on eigenvalues of normalized Laplacian matrix of graphs.

Then, we show that the communities that are obtained using our opinion dynamics model matches

the classical notion of communities in graphs. Using two examples of network, we show that

our opinion dynamics model not only provides an appealing approach to community detection

but that it is also effective.

II. OPINION DYNAMICS WITH DECAYING CONFIDENCE

A. Model Description

We study a discrete-time multi-agent model. We consider a set of n agents, V = {1, . . . , n}.

A relation E ⊆ V × V models the interactions between the agents. We assume that the relation

is symmetric ((i, j) ∈ E iff (j, i) ∈ E) and anti-reflexive ((i, i) /∈ E). V is the set of vertices

and E is the set of edges of an undirected graph G = (V,E), describing the network of agents.

Each agent i ∈ V has an opinion modeled by a real number xi(t) ∈ R. Initially, agent i has

an opinion xi(0) = x0i independent from the opinions of the other agents. Then, at every time

step, the agents update their opinion by taking a weighted average of its opinion and opinions

of other agents:

xi(t+ 1) =
n∑
j=1

pij(t)xj(t) (1)

with the coefficients pij(t) satisfying

∀i, j ∈ V, (pij(t) 6= 0 ⇐⇒ j ∈ {i} ∪Ni(t)) (2)

where Ni(t) denotes the confidence neighborhood of agent i at time t:

Ni(t) =
{
j ∈ V | ((i, j) ∈ E) ∧

(
|xi(t)− xj(t)| ≤ Rρt

)}
(3)

with R > 0 and ρ ∈ (0, 1) model parameters. We make the following additional assumptions:
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Assumption 1: For t ∈ N, the coefficients pij(t) satisfy

(a) pij(t) ∈ [0, 1], for all i, j ∈ V .

(b)
∑n

j=1 pij(t) = 1, for all i ∈ V .

This model can be interpreted in terms of opinion dynamics. At each time step t, agent i ∈ V

receives the opinions of its neighbors in the graph G. If the opinion of i differs from the opinion

of its neighbor j more than a certain threshold Rρt, then i does not give confidence to j and

does not take into account the opinion of j when updating its own opinion. The parameter

ρ characterizes the confidence decay of the agents. Agent i gives repetitively confidence only

to neighbors whose opinion converges sufficiently fast to its own opinion. This model can be

interpreted in terms of negotiations where agent i requires that, at each negotiation round, the

opinion of agent j moves significantly towards its own opinion in order to keep negotiating with

j.

Remark 1: We assume that ρ ∈ (0, 1), however, let us remark that for a complete graph

G (every agent talks with all the other agents) and ρ = 1 (there is no confidence decay), our

model would coincide with Krause model of opinion dynamics with bounded confidence [Kra97],

[HK02], [BHT06].

Our first result states that the opinion of each agent converges to some limit value:

Proposition 1: Under Assumption 1, for all i ∈ V , the sequence (xi(t))t∈N is convergent. We

denote x∗i its limit. Furthermore, we have for all t ∈ N,

|xi(t)− x∗i | ≤
R

1− ρ
ρt. (4)

Proof: Let i ∈ V , t ∈ N, we have from (1), Assumption 1 and (2)

|xi(t+ 1)− xi(t)| =

∣∣∣∣∣
(

n∑
j=1

pij(t)xj(t)

)
− xi(t)

∣∣∣∣∣
=

∣∣∣∣∣
n∑
j=1

pij(t)(xj(t)− xi(t))

∣∣∣∣∣
=

∣∣∣∣∣∣
∑

j∈Ni(t)

pij(t)(xj(t)− xi(t))

∣∣∣∣∣∣
≤

∑
j∈Ni(t)

pij(t)|xj(t)− xi(t)|
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Then, it follows from equation (3) that

|xi(t+ 1)− xi(t)| ≤
∑

j∈Ni(t)

pij(t)Rρ
t

Finally, Assumption 1 gives for all t ∈ N

|xi(t+ 1)− xi(t)| ≤ (1− pii(t))Rρt ≤ Rρt.

Let t ∈ N, τ ∈ N, then

|xi(t+ τ)− xi(t)| ≤
τ−1∑
k=0

|xi(t+ k + 1)− xi(t+ k)| ≤
τ−1∑
k=0

Rρt+k

Therefore,

|xi(t+ τ)− xi(t)| ≤
R

1− ρ
ρt(1− ρτ ) ≤ R

1− ρ
ρt (5)

which shows, since ρ ∈ (0, 1), that the sequence (xi(t))t∈N is a Cauchy sequence in R. Therefore,

it is convergent. Equation (4) is obtained from (5) by letting τ go to +∞.

The previous proposition allows us to complete the interpretation of our opinion dynamics

model. The agents try to reach an agreement with the constraint that the consensus value must be

approached no slower than O(ρt). Under that constraint, global agreement may not be attainable

and the agents may only reach local agreements. We refer to the sets of agents that asymptotically

agree as communities.

Definition 1: Let i, j ∈ V , we say that agents i and j asymptotically agree, denoted i ∼∗ j,

if and only if x∗i = x∗j .

It is straightforward to verify that ∼∗ is an equivalence relation over V .

Definition 2: A community C ⊆ V is an element of the quotient set C = V/ ∼∗.

Let us remark that the community structure is dependent on the initial distribution of opinions.

In the following, we shall provide some insight on the structure of these communities. But first,

we need to introduce some additional notations.

B. Notations and Preliminaries

We define the set of interactions at time t, E(t) ⊆ V × V as

E(t) =
{
(i, j) ∈ E| |xi(t)− xj(t)| ≤ Rρt

}
.
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Let us remark that (i, j) ∈ E(t) if and only if j ∈ Ni(t). The interaction graph at time t is then

G(t) = (V,E(t)).

For a set of agents I ⊆ V , the subset of edges of G connecting the agents in I is EI =

E∩ (I× I). Let E ′ ⊆ EI be a symmetric relation over I , then the graph G′ = (I, E ′) is called a

subgraph of G. If I = V , then the graph G′ = (V,E ′) is called a spanning subgraph of G. The

set of spanning subgraphs of G is denoted S(G). For all t ∈ N, G(t) ∈ S(G). Let us remark

that the set S(G) is finite: it has 2|E|/2 elements where |E| denotes the number of elements in

E. Given a partition of the agents P = {I1, . . . , Ip}, we define the set of edges EP =
⋃
I∈P EI

and the spanning subgraph of G, GP = (V,EP). Essentially, GP is the spanning subgraph of

G obtained by removing all the edges between agents belonging to different elements of the

partition P . An interesting such graph is the graph of communities GC = (V,EC) where:

EC = {(i, j) ∈ E| i ∼∗ j} .

Let G′ = (V,E ′) ∈ S(G), a path in G′ is a finite sequence of edges (i1, i2), (i2, i3), . . . , (ip, ip+1)

such that (ik, ik+1) ∈ E ′ for all k ∈ {1, . . . , p}. Two vertices i, j ∈ V are connected in G′ if

there exists a path in G′ joining i and j (i.e. i1 = i and jp = j). A subset of agents I ⊆ V is a

connected component of G′ if for all i, j ∈ I with i 6= j, i and j are connected in G′ and for

all i ∈ I , for all j ∈ V \ I , i and j are not connected in G′. The set of connected components

of G′ is denoted K(G′). Let us remark that K(G′) is a partition of V .

We define the vectors of opinions x(t) = (x1(t), . . . , xn(t))
> and of initial opinions x0 =

(x01, . . . , x
0
n)
>. The dynamics of the vector of opinions is then given by

x(t+ 1) = P (t)x(t)

where P (t) is the row stochastic matrix with entries pij(t). For a set of agents I ⊆ V , with

I = {v1, . . . , vk}, we define the vector of opinions xI(t) = (xv1(t), . . . , xvk(t))
>. Given a n× n

matrix A with entries aij , we define the k×k matrix AI whose entries are the avivj . In particular,

PI(t) is the matrix with entries pvivj(t). Let us remark that PI(t) is generally not row stochastic.

We state the following preliminary result that will be useful in further sections.

Lemma 1: Let I ⊆ V be a subset of agents such that no agent in I is connected to an agent

in V \ I in the graph G(t), then under Assumption 1

xI(t+ 1) = PI(t)xI(t)

April 28, 2010 DRAFT



7

and PI(t) is an aperiodic row stochastic matrix. Moreover, if I is a connected component of

G(t) then PI(t) is irreducible.

Proof: Let i ∈ I , then

xi(t+ 1) =
n∑
j=1

pij(t)xj(t) =
∑
j∈I

pij(t)xj(t) +
∑
j∈V \I

pij(t)xj(t).

Since i is not connected to any agent in V \I in G(t), it follows from equation (2) that pij(t) = 0

for all j ∈ V \ I . Therefore,

xi(t+ 1) =
∑
j∈I

pij(t)xj(t)

which gives xI(t+ 1) = PI(t)xI(t). Similarly, we obtain from Assumption 1

1 =
n∑
j=1

pij(t) =
∑
j∈I

pij(t)

Since in addition, all entries of PI(t) are nonnegative, it follows that PI(t) is a row stochastic

matrix. It is aperiodic because equation (2) gives that for all i ∈ I , pii(t) > 0. By definition of

irreducibility, if I is a connected component of G(t) then PI(t) is irreducible.

The following sections are devoted to the analysis of the community structure of the network

of agents.

III. ASYMPTOTIC CONNECTIVITY AND AGREEMENT

In this section, we explore the relation between communities and asymptotically connected

components of the network. Let us remark that the set of edges E can be classified into two

subsets as follows:

Ef = {(i, j) ∈ E| ∃tij ∈ N, ∀s ≥ tij, (i, j) /∈ E(s)}

and

E∞ = {(i, j) ∈ E| ∀t ∈ N, ∃s ≥ t, (i, j) ∈ E(s)} .

Intuitively, an edge (i, j) is in Ef if the agents i and j stop interacting with each other in finite

time. E∞ consists of the interactions between agents that are infinitely recurrent. It is clear that

Ef ∩E∞ = ∅ and E = Ef ∪E∞. Also, since E and thus Ef is a finite set, there exists T ∈ N

such that

∀(i, j) ∈ Ef , ∀s ≥ T, (i, j) /∈ E(s). (6)
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Let us remark that the sets Ef and E∞ and the natural number T generally depend on the vector

of initial opinions x0. We define the graph G∞ = (V,E∞).

Definition 3: Let i, j ∈ V , we say that agents i and j are asymptotically connected if and

only if i and j are connected in G∞. We say that they are asymptotically disconnected if they

are not asymptotically connected.

A. Asymptotic Connectivity Implies Asymptotic Agreement

Proposition 2: Under Assumption 1, if two agents i, j ∈ V are asymptotically connected then

they asymptotically agree.

Proof: Let (i1, i2), (i2, i3), . . . , (ip, ip+1) be a path in G∞ joining i = i1 and j = ip+1. We

can choose a path without loops (i.e. ik 6= ik′ for all k 6= k′) and therefore p ≤ n− 1. Let t ∈ N,

k ∈ {1, . . . , p}, since (ik, ik+1) ∈ E∞ there exists τk ∈ N such that (ik, ik+1) ∈ E(t + τk). Let

us define in addition τ0 = 0, τp+1 = 0, then

|xi(t)− xj(t)| = |xi1(t+ τ0)− xip+1(t+ τp+1)|

≤ |xi1(t+ τ0)− xi1(t+ τ1)|

+

p∑
k=1

(
|xik(t+ τk)− xik+1

(t+ τk)|+ |xik+1
(t+ τk)− xik+1

(t+ τk+1)|
)

≤
p+1∑
k=1

|xik(t+ τk−1)− xik(t+ τk)|+
p∑

k=1

|xik(t+ τk)− xik+1
(t+ τk)|.

Let τ k = min(τk−1, τk) for k ∈ {1, . . . , p+ 1}, then from equation (5) we have for all k ∈

{1, . . . , p+ 1}

|xik(t+ τk−1)− xik(t+ τk)| ≤
R

1− ρ
ρt+τk ≤ R

1− ρ
ρt.

Moreover, since (ik, ik+1) ∈ E(t+ τk)

|xik(t+ τk)− xik+1
(t+ τk)| ≤ Rρt+τk ≤ Rρt.

Therefore,

|xi(t)− xj(t)| ≤ (p+ 1)
R

1− ρ
ρt + pRρt ≤ n

R

1− ρ
ρt + (n− 1)Rρt

which shows by letting t go to +∞ that i and j asymptotically agree.

Remark 2: The notion of asymptotic connectivity has already been considered in several

works (including [JLM03], [BHOT05], [Mor05]) for proving consensus in multi-agent systems.
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Actually, the previous proposition could be proved using Theorem 3 in [Mor05]. However, for

the sake of self-containment, we preferred to provide a simpler proof of the result that uses the

specificities of our model.

B. Asymptotic Agreement Implies Asymptotic Connectivity

The converse result of Proposition 2 is much more challenging: it is clear that it cannot hold

for all initial conditions. Indeed, if all the initial opinions x0i are identical, then it is clear that the

agents asymptotically agree independently from the fact that they are asymptotically connected

or not. Hence, the better we can expect is the converse result to hold for almost all initial

conditions. In this paragraph, we will need additional assumptions in order to be able to prove

this result. The first one is the following:

Assumption 2: The sequence of matrices P (t) satisfy the following conditions:

(a) For all t ∈ N, P (t) is invertible.

(b) For all t ∈ N, t′ ∈ N, if G(t′) = G(t) then P (t′) = P (t).

Let us remark that the first assumption can be enforced, for instance, by choosing pii(t) > 1/2

for all i ∈ V , for all t ∈ N, in that case P (t) is a strictly diagonally dominant matrix and

therefore it is invertible. The second assumption states that P (t) only depends on the graph

G(t), then we shall write P (t) = P (G(t)) where P (G′) is the matrix associated to a graph

G′ ∈ S(G). From the first assumption, P (G′) must be invertible. Then, we can define for all

t ∈ N, the following set of matrices:

Qt =
{
P (G0)

−1P (G1)
−1 . . . P (Gt−1)

−1| Gk ∈ S(G), 0 ≤ k ≤ t− 1
}
. (7)

Let us remark that since S(G) is finite, the set Qt is finite: it has at most 2t×|E|/2 elements.

We shall now prove the converse result of Proposition 2 in two different cases.

1) Average preserving dynamics: We first assume that the opinion dynamics preserves the

average of the opinions:

Assumption 3: For all t ∈ N, for all j ∈ V ,
∑n

i=1 pij(t) = 1

This assumption simply means that the matrix P (t) is doubly stochastic. It is therefore average

preserving: the average of x(t) is equal to the average of x(t+1). Similar to Lemma 1, we can

prove the following lemma:

April 28, 2010 DRAFT



10

Lemma 2: Let I ⊆ V be a subset of agents such that no agent in I is connected to an agent

in V \ I in the graph G(t), then under Assumption 3, PI(G(t)) is average preserving.

Proof: It is sufficient to remark that for all j ∈ I , and i ∈ V \ I , equation (2) gives that

pij(t) = 0. Therefore it follows that for all j ∈ I ,∑
i∈I

pij(t) =
n∑
i=1

pij(t) = 1

which proves that PI(G(t)) is average preserving.

We now state the main result of the section:

Theorem 1: Under Assumptions 1, 2 and 3, for almost all vectors of initial opinions x0, two

agents i, j ∈ V asymptotically agree if and only if they are asymptotically connected.

Proof: The if part of the theorem is a consequence of Proposition 2. To prove the only if

part, let us define the following set

W = {(I, J)| (I ⊆ V ) ∧ (I 6= ∅) ∧ (J ⊆ V ) ∧ (J 6= ∅) ∧ (I ∩ J = ∅)}

Since V is a finite set, it is clear thatW is finite (it has less than 22n elements). For all (I, J) ∈ W ,

let |I| and |J | denote the number of elements of I and J respectively. We define the vector of

Rn, cIJ whose coordinates cIJ,k = 1/|I| if k ∈ I , cIJ,k = −1/|J | if k ∈ J , and cIJ,k = 0

otherwise. We define the (n− 1)-dimensional subspace of Rn:

HIJ = {x ∈ Rn| cIJ · x = 0} .

Finally, let us define the subset of Rn:

X0 =
⋃
t∈N

 ⋃
(I,J)∈W

( ⋃
Q∈Qt

QHIJ

)
where Qt is the set of matrices defined in (7). Since W is a finite set and for all t ∈ N, Qt are

finite sets, X0 is a countable union of (n− 1)-dimensional subspaces of Rn. Therefore X0 has

Lebesgue measure 0.

Let x0 ∈ Rn be a vector of initial opinions, let us assume that there exist two agents i, j ∈ V

that asymptotically agree but are asymptotically disconnected. Let us show that necessarily, x0

belongs to the set X0. Let I and J denote the connected components of G∞ containing i and

j respectively. Since i and j are asymptotically disconnected, I ∩ J = ∅, therefore (I, J) ∈ W .

Let T be defined as in equation (6), since no agent in I is connected to an agent outside of I
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in G∞ (and hence in G(t) for t ≥ T ), we have by Lemma 1, that for all t ≥ T , xI(t + 1) =

PI(G(t))xI(t). From Lemma 2, we have that PI(G(t)) is average preserving. Therefore, for all

t ≥ T , the average of xI(t) is the same as the average of xI(T ). From Proposition 2, all agents

in I asymptotically agree, then the limit value is necessarily the average of xI(T ). Therefore

x∗i = (1|I| · xI(T ))/|I| where 1|I| denote the |I|-dimensional vector with all entries equal to 1.

A similar discussion gives that x∗j = (1|J | · xJ(T ))/|J |. Since i and j asymptotically agree, we

have (1|I| · xI(T ))/|I| = (1|J | · xJ(T ))/|J |. This means that x(T ) ∈ HIJ and therefore

x0 = P (G(0))−1P (G(1))−1 . . . P (G(T − 1))−1x(T ) ∈
⋃

Q∈QT

QHIJ

which leads to x0 ∈ X0.

Hence, in the case of average preserving dynamics, asymptotic connectivity is equivalent to

asymptotic agreement for almost all vectors of initial opinions. We shall now prove a similar

result under different assumptions.

2) Fast convergence assumption: We now replace the average preserving assumption by

another assumption. From Proposition 1, we know that the opinion of each agent converges to

its limit value no slower than O(ρt). This is an upper bound, numerical experiments show that

in practice the convergence to the limit value is often slightly faster than O(ρt). This observation

motivates the following assumption:

Assumption 4: There exists ρ < ρ and M ≥ 0 such that for all i ∈ V , for all t∈ N,

|xi(t)− x∗i | ≤Mρt.

Remark 3: The previous assumption always holds unless there exists i ∈ V such that

lim sup
t→+∞

1

t
log(|xi(t)− x∗i |) = log(ρ).

It should be noted that unlike Assumptions 1, 2 and 3, it is generally not possible to check

a priori whether Assumption 4 holds. However, numerical experiments tend to show that in

practice, Assumption 4 holds.

The previous assumption allows us to state the following result:

Lemma 3: Under Assumptions 1 and 4, there exists T ′ ∈ N such that for all t ≥ T ′, G(t) =

G∞. Moreover, G∞ = GC .

Proof: We shall prove the lemma by showing that there exists T ′ ∈ N such that for all t ≥ T ′,

E(t) ⊆ E∞ ⊆ EC ⊆ E(t). Firstly, let T1 ≥ T where T is defined as in equation (6), then for all
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t ≥ T1, E(t) ⊆ E∞. Secondly, let (i, j) ∈ E∞, then agents i and j are asymptotically connected.

From Proposition 2, it follows that i and j asymptotically agree. Therefore, (i, j) ∈ EC . Thirdly,

let (i, j) ∈ EC , then x∗i = x∗j and for all t ∈ N

|xi(t)− xj(t)| ≤ |xi(t)− x∗i |+ |x∗i − x∗j |+ |xj(t)− x∗j |

≤ |xi(t)− x∗i |+ |xj(t)− x∗j |

From Assumption 4, we have for all t ∈ N,

|xi(t)− xj(t)| ≤ 2Mρt.

Since ρ < ρ, there exists T2 ∈ N, such that for all t ≥ T2, 2Mρt ≤ Rρt. Then, for all

t ≥ T2, (i, j) ∈ E(t). Let T ′ = max(T1, T2), then for all t ≥ T ′, E(t) = E∞ = EC and thus

G(t) = G∞ = GC .

The previous result states that after a finite number of steps, the graph of interactions between

agents remains always the same. Then, we can state a result similar to Theorem 1:

Theorem 2: Under Assumptions 1, 2 and 4, for almost all vectors of initial opinions x0, two

agents i, j ∈ V asymptotically agree if and only if they are asymptotically connected.

Proof: The if part of the theorem is a consequence of Proposition 2. To prove the only if

part, let us define the following set associated to a spanning subgraph G′ ∈ S(G):

W(G′) = {(I, J)| (I ⊆ V ) ∧ (J ⊆ V ) ∧ (I 6= J) ∧ (I ∈ K(G′)) ∧ (J ∈ K(G′))}

Since V is a finite set, it is clear thatW(G′) is finite (it has less than 22n elements). Let (I, J) ∈

W(G′), I =
{
v1, . . . , v|I|

}
, J =

{
w1, . . . , w|J |

}
. Since I and J are connected components of G′,

we have from Lemma 1 that PI(G′) and PJ(G′) are aperiodic irreducible row stochastic matrices.

Let eI(G′) and eJ(G′) be the left Perron eigenvectors of PI(G′) and PJ(G′), respectively:

eI(G
′)>PI(G

′) = eI(G
′)> and eI(G′) · 1|I| = 1

and

eJ(G
′)>PJ(G

′) = eJ(G
′)> and eJ(G′) · 1|J | = 1.

We define the vector of Rn, cIJ whose coordinates are given by cIJ,vk = eI,k if vk ∈ I , cIJ,wk
=

−eJ,k if wk ∈ J and cIJ,k = 0 if k ∈ V \ (I ∪ J). We define the (n− 1)-dimensional subspace

of Rn:

HIJ(G
′) = {x ∈ Rn| cIJ(G′) · x = 0} .
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Finally, let us define the subset of Rn:

X0 =
⋃
t∈N

 ⋃
G′∈S(G)

 ⋃
(I,J)∈W(G′)

( ⋃
Q∈Qt

QHIJ(G
′)

) (8)

where Qt is the set of matrices defined in (7). S(G) is a finite set and for all G′ ∈ S(G),W(G′)

is a finite set. Moreover for all t ∈ N, Qt is a finite set. Then, X0 is a countable union of

(n− 1)-dimensional subspaces of Rn. Therefore X0 has Lebesgue measure 0.

Let x0 ∈ Rn be a vector of initial opinions, let us assume that there exist two agents i, j ∈ V

that asymptotically agree but are asymptotically disconnected. Let us show that necessarily, x0

belongs to the set X0. Let I and J denote the connected components of G∞ containing i and j

respectively. Since i and j are asymptotically disconnected, I 6= J , therefore (I, J) ∈ W(G∞).

Since I is a connected component of G∞, it follows from Lemma 1 and Lemma 3 that for all

t ≥ T ′, xI(t+ 1) = PI(G
∞)xI(t). Moreover, PI(G∞) is an aperiodic irreducible row stochastic

matrix and from the Perron-Frobenius Theorem (see e.g. [Sen81]), it follows that 1 is a simple

eigenvalue of PI(G∞) and all other eigenvalues of PI(G∞) have modulus strictly smaller than

1. Therefore,

lim
t→+∞

xI(t) = (eI(G
∞) · xI(T ′))1|I|

and x∗i = eI(G
∞) · xI(T ′). A similar discussion gives that x∗j = eJ(G

∞) · xJ(T ′). Since i

and j asymptotically agree, we have eI(G
∞) · xI(T ′) = eJ(G

∞) · xJ(T ′). This means that

x(T ′) ∈ HI,J(G
∞) and therefore

x0 = P (G(0))−1P (G(1))−1 . . . P (G(T ′ − 1))−1x(T ′) ∈
⋃

Q∈QT ′

QHIJ(G
∞)

which leads to x0 ∈ X0.

In this section, we showed that asymptotic connectivity of agents implies asymptotic agreement

and that under additional reasonable assumptions these are actually equivalent except for a set

of vectors of initial opinions of Lebesgue measure 0. In other words, we can consider almost

surely that the communities of agents correspond to the connected components of the graph G∞.

In the following, under Assumptions 1, 2 and 4, we show that an algebraic characterization

of communities can be given in terms of eigenvalues of the matrix associated to the graph of

communities P (GC).

April 28, 2010 DRAFT



14

IV. ALGEBRAIC CHARACTERIZATION OF COMMUNITIES

Let G′ ∈ S(G), let I ⊆ V be a subset of agents such that no agent in I is connected to an

agent in V \ I in the graph G′, then from Lemma 1, PI(G′) is a row stochastic matrix. Let

λ1(PI(G
′)), . . . , λ|I|(PI(G

′)) denote the eigenvalues of PI(G′) with λ1(PI(G′)) = 1 and

|λ1(PI(G′))| ≥ |λ2(PI(G′))| ≥ · · · ≥ |λ|C|(PI(G′))|.

Let C ∈ C, then no agent in C is connected to an agent in V \C in the graph GC . The following

theorem gives a characterization of the communities in terms of the eigenvalues λ2(PC(GC)) for

C ∈ C.

Theorem 3: Under Assumptions 1, 2 and 4, for almost all vectors of initial opinions x0, for

all communities C ∈ C, such that |C| ≥ 2,

|λ2(PC(GC))| < ρ.

Proof: Let us consider a spanning subgraph G′ ∈ S(G), let I =
{
v1, . . . , v|I|

}
, with |I| ≥

2, be a connected component of G′ then from Lemma 1, PI(G′) is an aperiodic irreducible

row stochastic matrix. Then, from the Perron-Frobenius Theorem, it follows that 1 is a simple

eigenvalue of PI(G′). Therefore, λ2(PI(G′)) 6= 1. Let fI(G′) be a left eigenvector of PI(G′)

associated to eigenvalue λ2(PI(G′)). Let us define the vector of Rn, cI(G′) whose coordinates

are given by cI,vk(G
′) = fI,k(G

′) if vk ∈ I and cI,k(G
′) = 0 if k ∈ V \ I . We define the

(n− 1)-dimensional subspace of Rn:

HI(G
′) = {x ∈ Rn| cI(G′) · x = 0} .

Finally, let us define the subset of Rn:

Y 0 =
⋃
t∈N

 ⋃
G′∈S(G)

 ⋃
I∈K(G′), |I|≥2

( ⋃
Q∈Qt

QHI(G
′)

) .

where Qt is the set of matrices defined in (7). S(G) is a finite set and for all G′ ∈ S(G), K(G′)

is a finite set. Moreover, for all t ∈ N, Qt is a finite set. Then, Y 0 is a countable union of

(n− 1)-dimensional subspaces of Rn. Therefore Y 0 has Lebesgue measure 0.

Let X0 be given as in equation (8), let x0 ∈ Rn \X0 be a vector of initial opinions. Let us

assume there is a community C ∈ C with |C| ≥ 2, such that |λ2(PC(GC))| ≥ ρ. Let us show that

necessarily, x0 belongs to the set Y 0. First, since x0 /∈ X0, we have from the proof of Theorem 2

April 28, 2010 DRAFT



15

that C is a connected component of G∞ = GC . Therefore, from Lemma 1 and Lemma 3, for

all t ≥ T ′, xC(t + 1) = PC(GC)xC(t) and PC(GC) is an aperiodic irreducible row stochastic

matrix. From the Perron-Frobenius Theorem, it follows that 1 is a simple eigenvalue of PC(GC)

and all other eigenvalues of PC(GC) have modulus strictly smaller than 1. Let eC(GC) be the

left Perron eigenvector of PC(GC):

eC(GC)
>PC(GC) = eC(GC)

> and eC(GC) · 1|C| = 1

Then

lim
t→+∞

xC(t) = x∗C where x∗C = (eC(GC) · xC(T ′))1|C|.

Let us remark that for all t ≥ T ′,

xC(t+ 1)− x∗C = PC(GC)(xC(t)− x∗C). (9)

Let fC(GC) be a left eigenvector of PC(GC) associated to eigenvalue λ2(PC(GC)):

fC(GC)
>PC(GC) = λ2(PC(GC))fC(GC)

>.

Then, it follows from equation (9) that for all t ≥ T ′,

fC(GC) · (xC(t)− x∗C) = fC(GC) · (xC(T ′)− x∗C)λ2(PC(GC))(t−T
′).

Therefore, by the Cauchy-Schwarz inequality, we have for all t ≥ T ′

‖xC(t)− x∗C‖ ≥
|fC(GC) · (xC(t)− x∗C)|

‖fC(GC)‖

≥ |fC(GC) · (xC(T ′)− x∗C)|
‖fC(GC)‖

|λ2(PC(GC))|(t−T
′).

Since we assumed |λ2(PC(GC))| ≥ ρ, we have for all t ≥ T ′

‖xC(t)− x∗C‖ ≥
|fC(GC) · (xC(T ′)− x∗C)|

‖fC(GC)‖ρT ′
ρt. (10)

Now, let us remark that it follows from Assumption 4 that for all t ∈ N

‖xC(t)− x∗C‖ ≤
√
|C|Mρt. (11)

Inequalities (10) and (11) give for all t ≥ T ′

|fC(GC) · (xC(T ′)− x∗C)|
‖fC(GC)‖ρT ′

ρt ≤
√
|C|Mρt.
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Since ρ < ρ, the previous inequality holds for all t ≥ T ′ if and only if |fC(GC)·(xC(T ′)−x∗C)| =

0. Therefore, fC(GC) ·xC(T ′) = fC(GC) ·(xC(T ′)−x∗C) = 0 which means that x(T ′) ∈ HC(GC).

Therefore,

x0 = P (G(0))−1P (G(1))−1 . . . P (G(T ′ − 1))−1x(T ′) ∈
⋃

Q∈QT ′

QHC(GC)

which leads to x0 ∈ Y 0. Therefore, we have proved that for all vectors of initial opinions

x0 ∈ Rn \ (X0 ∪ Y 0), for all communities C ∈ C such that |C| ≥ 2, |λ2(PC(GC))| < ρ. We

conclude by remarking that X0 ∪ Y 0 is a set of Lebesgue measure 0.

In this section, we showed that the community structure C satisfies some properties related to

the eigenvalues of the matrix PC(GC), for C ∈ C. In the following, we use this result to address

the problem of community detection in graphs.

V. APPLICATION: COMMUNITY DETECTION IN GRAPHS

In this section, we propose to use the model of opinion dynamics with decaying confidence

to address the problem of community detection in graphs.

A. The Community Detection Problem

In the usual sense, communities in a graph are groups of vertices such that the concentration

of edges inside one communitiy is high and the concentration of edges between communities is

comparatively low. Because of the increasing need of analysis tools for understanding complex

networks in social sciences, biology, engineering or economics, the community detection problem

has attracted a lot of attention in the recent years. The problem of community detection is however

not rigorously defined mathematically. One reason is that community structures may appear at

different scales in the graph: there can be communities inside communities. Another reason is that

communities are not necessarily disjoint. A formalization of the community detection problem

has been proposed in terms of optimization of a quality function called modularity [NG04].

However, it has been shown that this optimization problem is NP-complete [BDG+08]. Therefore,

approaches for community detection rely mostly on heuristic methods. We refer the reader to

the excellent survey [For09] and the references therein for more details.

In this section, we formulate the community detection problem using a measure of connectivity

of graphs given by the eigenvalues of their normalized Laplacian matrix. Let G = (V,E) be an
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undirected graph with V = {1, . . . , n}, with n ≥ 2. For a vertex i ∈ V , the degree di(G) of i

is the number of neighbors of i in G. The normalized Laplacian of the graph G is the matrix

L(G) given by

Lij(G) =


1 if i = j and di(G) 6= 0,

−1√
di(G)dj(G)

if (i, j) ∈ E,

0 otherwise.

Let us review some of the properties of the normalized Laplacian matrix (see e.g. [Chu97]).

σ1(L(G)) = 0 is always an eigenvalue of L(G), it is simple if and only if G is connected.

All other eigenvalues are real and belong to the interval [0, 2]. The second smallest eigenvalue

of the normalized Laplacian matrix is denoted σ2(L(G)). It can serve as an algebraic measure

of the connectivity: σ2(L(G)) = 0 if the graph G has two distinct connected components,

σ2(L(G)) = n/(n − 1) if the graph is the complete graph (for all i, j ∈ V , i 6= j, (i, j) ∈ E),

in the other cases σ2(L(G)) ∈ (0, 1].

Remark 4: The second smallest eigenvalue of the (non-normalized) Laplacian matrix is called

algebraic connectivity of a graph. In this paper, we prefer to use the eigenvalues of the normalized

Laplacian matrix because it is less sensitive to the size of the graph. For instance, if G is the

complete graph then σ2(L(G)) = n/(n− 1) whereas its algebraic connectivity is n.

Let P be a partition of the set of vertices V . For all I ∈ P , with |I| ≥ 2, L(GI) denotes the

normalized Laplacian matrix of the graph GI = (I, EI) consisting of the set of vertices I and

of the set of edges of G between elements of I .

We now propose a formulation of the community detection problem:

Problem 1: Given a graph G = (V,E) and a real number δ ∈ (0, 1], find a partition P of V

such that for all I ∈ P , such that |I| ≥ 2, σ2(L(GI)) > δ.

If σ2(L(G)) > δ, it is sufficient to choose the trivial partition P = {V }. If δ ≥ σ2(L(G)),

then we want to find groups of vertices that are more densely connected than the global graph.

This coincides with the notion of community. The larger δ the more densely connected the

communities. This makes it possible to search for communities at different scales of the graph.

Let us remark that the problem is not really well posed as it may have several solutions.

Indeed, the trivial partition P = {{1}, . . . , {n}} is always a solution of the proposed problem.

In order to evaluate the quality of the computed partition, we propose to consider the following
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measure:

µ(G,P) =

 max
I∈P

σ2(L(GI)) if for all I ∈ P , |I| ≥ 2

+∞ otherwise.

Note that if P is a solution of Problem 1, then µ(G,P) > δ. In order to solve the problem in

an effective way, µ(G,P) should be as close of δ as possible.

In the following, we show how to solve Problem 1 using an opinion dynamics with decaying

confidence model.

B. Opinion Dynamics for Community Detection

Let α ∈ (0, 1/2), we consider the opinion dynamics with decaying confidence model given

by:

xi(t+ 1) =


xi(t) +

α

|Ni(t)|
∑

j∈Ni(t)

(xj(t)− xi(t)) if Ni(t) 6= ∅

xi(t) if Ni(t) = ∅
(12)

where Ni(t) is given by equation (3). It is straightforward to check that this model is a particular

case of the model given by equations (1) and (2) and that Assumption 1 holds. Moreover, since

α ∈ (0, 1/2) it follows that for all i ∈ V , t ∈ N, pii(t) > 1/2. Therefore the matrix P (t)

is strictly diagonally dominant and hence it is invertible. Also, P (t) = P (G(t)), where for a

subgraph G′, P (G′) = Id− αQ(G′) where Id is the identity matrix and

Qij(G
′) =


1 if i = j and di(G′) 6= 0,

−1
di(G′)

if (i, j) ∈ E ′,

0 otherwise.

(13)

where di(G′) denotes the degree of i in the graph G′. Therefore, Assumption 2 holds as well. Let

us remark that the matrix P (t) is generally not average preserving and therefore Assumption 3

does not hold.

Before stating the main result of this section, we need to prove the following lemma :

Lemma 4: Let P be a partition of V , I ∈ P such that |I| ≥ 2. Then, λ is an eigenvalue of

PI(GP) if and only if σ = (1− λ)/α is an eigenvalue of L(GI).
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Proof: First, let us remark that PI(GP) = Id − αQ(GI) where Q(GI) is defined as in

equation (13). Then, let us introduce the matrices R(GI) and D(GI) defined by

Rij(GI) =


1√
di(GI)

if i = j and di(GI) 6= 0,

−1
di(GI)

√
dj(GI)

if (i, j) ∈ EI ,

0 otherwise.

and

Dij(GI) =


√
di(GI) if i = j,

0 otherwise.

Then, let us remark that L(GI) = D(GI)R(GI) and Q(GI) = R(GI)D(GI). It follows that

L(GI) and Q(GI) have the same eigenvalues. The stated result is then obtained from the fact

that the matrix Q(GI) = (Id− PI(GP))/α.

We now state the main result of the section which is a direct consequence of Theorem 3 and

Lemma 4:

Corollary 1: Let ρ = 1 − αδ, under Assumption 4, for almost all vectors of initial opinions

x0, the set of communities C obtained by the opinion dynamics model (12) is a solution to

Problem 1.

In the next section, we propose to evaluate experimentally the validity of our approach.

C. Case Study 1: Zachary Karate Club

We propose to evaluate our approach on a standard benchmark for community detection: the

karate club network initially studied by Zachary in [Zac73]. This is a social network with 34

agents shown on the top left part of Figure 1. The original study shows the existence of two

communities represented on the figure by squares and triangles.

We propose to use our opinion dynamics model (12) to uncover the community structure of

this network. We chose 4 different values for δ. The parameters of the model where chosen

as follows: α = 0.1, R = 1 and ρ = 1 − αδ. For each different value of δ, the model was

simulated for 100 different vectors of initial opinions chosen randomly in [0, 1]34. Simulations

were performed as long as enabled by floating point arithmetics.

The experimental results are reported on Figure 1 and Table I. For each different value

of δ, we indicate the different partitions in communities obtained after running the opinion
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δ |C| min
C∈C,|C|≥2

σ2(L(GC)) µ(G,P) Occurrences

0.1 1 0.132 0.132 100

0.2 2 0.250 0.363 100

0.3 3 0.334 0.667 67

0.3 3 0.363 0.678 31

0.3 4 0.336 2.000 2

0.4 4 0.566 0.667 92

0.4 3 0.334 0.667 6

0.4 5 0.566 2.000 1

0.4 5 0.566 +∞ 1

TABLE I

QUANTITATIVE PROPERTIES OF THE PARTITIONS OF THE KARATE CLUB NETWORK OBTAINED BY THE OPINION DYNAMICS

MODEL (100 DIFFERENT VECTORS OF INITIAL OPINIONS FOR EACH VALUE OF δ.

dynamics model. For each partition C, we give the number of communities in the partition, the

minimal value of σ2(L(GC)) for C ∈ C, this value being greater than δ indicates that Problem 1

has been solved. We computed the measure µ(G,P) in order to evaluate the quality of the

obtained partition. We also indicate the number of times that each partition occurred over the

100 simulations of the opinion dynamics model.

We can check in Table I that all the computed partitions are solutions of Problem 1 with

the exception of the partition reported in line 7 that occurred 6 times over 100 simulations for

δ = 0.4. This partition is actually the same than the one reported in line 3. A closer inspection

of the simulation data shows that in the case of δ = 0.4, this partition would have been further

subdivided if the model had been simulated beyond what is allowed by floating point arithmetics.

Let us remark that in general the computed partition depends on the initial vector of opinions,

this is the case for δ = 0.3 and δ = 0.4. However, it is interesting to note that the partitions

that are obtained the most frequently have comparatively a good quality measure µ(G,P). This

shows that our approach not only allows to solve Problem 1 but solves it in an effective way.

In Figure 1, we represented the graphs of communities GC that are the most frequently obtained

for the different values of δ. It is interesting to remark that for δ = 0.2 we almost obtained the

communities that were reported in the original study [Zac73]. Only one agent has been classified
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Fig. 1. Graphs GC for the most frequently obtained partition of the karate club network for δ = 0.1 (top left), δ = 0.2 (top

right), δ = 0.3 (bottom left), δ = 0.4 (bottom right).

differently. One may argue that this agent has originally 4 neighbors in each community so it

could be classified in one or the other. It is also interesting to see that our approach allows us

to search for communities at different scales of the graph. When δ increases, the communities

become smaller but more densely connected.

D. Case Study 2: Books on American Politics

We propose to use our approach on a larger example consisting of a network of 105 books

on politics [NG04], initially compiled by V. Krebs (unpublished, see www.orgnet.com). In

this network, each vertex represents a book on American politics bought from Amazon.com.

An edge between two vertices means that these books are frequently purchased by the same

buyer. The network is presented on the top left part of Figure 2 where the shape of the vertices

represent the political alignment of the book (liberal, conservative, centrist).
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We used our opinion dynamics model (12) to uncover the community structure of this network.

We chose 3 different values for δ. The parameters of the model are the same than in the previous

example: α = 0.1, R = 1 and ρ = 1 − αδ. For each different value of δ, the model was

simulated for 100 different vectors of initial opinions chosen randomly in [0, 1]105. Simulations

were performed as long as enabled by floating point arithmetics. The experimental results are

reported on Figure 2 and Table II.

Let us remark that all the computed partitions are solutions to the Problem 1. Also, for the

same value of δ, the quality measure is almost the same for all partitions. Actually, all the

partitions obtained for the same value of δ are almost the same. In Figure 2, we represented the

graphs of communities GC that are the most frequently obtained for the different values of δ.

Let us remark that even though the information on the political alignment of the books is not

used by the algorithm, our approach allows to uncover this information. Indeed, for δ = 0.1, we

obtain 2 communities that are essentially liberal and conservative. For δ = 0.2, we then obtain

4 communities: liberal, conservative, centrist-liberal, centrist-conservative.

δ |C| min
C∈C,|C|≥2

σ2(L(GC)) µ(G,P) Occurrences

0.1 2 0.134 0.187 99

0.1 2 0.129 0.182 1

0.15 3 0.187 0.329 89

0.15 3 0.182 0.322 11

0.2 4 0.269 0.791 71

0.2 4 0.266 0.810 18

0.2 4 0.269 0.810 5

0.2 4 0.268 0.791 4

0.2 4 0.269 0.750 2

TABLE II

QUANTITATIVE PROPERTIES OF THE PARTITIONS OF THE BOOKS NETWORK OBTAINED BY THE OPINION DYNAMICS MODEL

(100 DIFFERENT VECTORS OF INITIAL OPINIONS FOR EACH VALUE OF PARAMETER δ.
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Fig. 2. Graphs GC for the most frequently obtained partition of the books network: initial graph (top left), δ = 0.1 (top right),

δ = 0.15 (bottom left), δ = 0.2 (bottom right). Shapes represent political alignment of the books: circles are liberal, squares

are conservative, triangles are centrist.

VI. CONCLUSION AND FUTURE WORK

In this paper, we introduced and analyzed a model of opinion dynamics with decaying

confidence where agents may only reach local agreements organizing themselves in communities.

Under suitable assumptions, we have shown that these communities correspond to asymptotically

connected component of the network. We have also provided an algebraic characterization of

communities in terms of eigenvalues of the matrix defining the collective dynamics. To complete

the analysis of our model, future work should focus on relaxing Assumption 4 by studying the

model behavior when there is an agent i ∈ V that approaches its limit value at a rate exactly ρ:

lim sup
t→+∞

1

t
log(|xi(t)− x∗i |) = log(ρ).
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In the last part of the paper, we have applied our opinion dynamics model to address the

problem of community detection in graphs. We believe that this new approach offers an appealing

interpretation of community detection: communities are sets of agents that succeed to reach an

agreement under some convergence rate constraint. We have shown on two examples that this

approach is not only appealing but is also effective. In the future, we shall work on a distributed

implementation of our approach. Let us remark that this should be feasible since our approach

is by nature based on distributed computations. Then, we shall use our approach to analyze a

number of networks including large scale networks.
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