
HAL Id: hal-00622830
https://hal.science/hal-00622830

Submitted on 20 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Aligning component upgrades
Roberto Di Cosmo, Olivier Lhomme, Claude Michel

To cite this version:
Roberto Di Cosmo, Olivier Lhomme, Claude Michel. Aligning component upgrades. Logics for Com-
ponent Configuration, Sep 2011, Perugia, Italy. pp.1-11, �10.4204/EPTCS.65.1�. �hal-00622830�

https://hal.science/hal-00622830
https://hal.archives-ouvertes.fr

To appear in EPTCS.
This work is licensed under the
Creative Commons Attribution License.

Aligning component upgrades∗

Roberto Di Cosmo
Univ Paris Diderot, Sorbonne Paris Cité,

Laboratoire PPS, UMR 7126,
INRIA Rocquencourt
F-75205 Paris France

roberto@dicosmo.org

Olivier Lhomme
IBM France,

1681, route des Dolines,
06560 Sophia Antipolis, France

om.lhomme@gmail.com, olivier.lhomme@fr.ibm.com

Claude Michel
I3S (UNS-CNRS),

2000 route des Lucioles, BP 121,
06903 Sophia Antipolis Cedex, France
Claude.Michel@i3s.unice.fr

Modern software systems, like GNU/Linux distributions or Eclipse-based development environment,
are often deployed by selecting components out of large component repositories. Maintaining such
software systems by performing component upgrades is a complex task, and the users need to have an
expressive preferences language at their disposal to specify the kind of upgrades they are interested
in. Recent research has shown that it is possible to develop solvers that handle preferences expressed
as a combination of a few basic criteria used in the MISC competition, ranging from the number
of new components to the freshness of the final configuration. In this work we introduce a set of
new criteria that allow the users to specify their preferences for solutions with components aligned to
the same upstream sources, provide an efficient encoding and report on the experimental results that
prove that optimising these alignment criteria is a tractable problem in practice.

1 Introduction

Recent research, in part fostered by the Mancoosi project1, has focused on the complex problem of
handling upgrades in component based software systems, with a particular attention to the case of
GNU/Linux distributions, which contain several tens of thousands of components. Installing compo-
nents (called packages in the world of distributions) may be complex: each component may need some
extra components to be installed, as described in its metadata by dependencies, and may be incompatible
with some other ones, as described in its metadata by conflicts. Indeed, determining whether a compo-
nent can be installed is NP-complete [7], but problem instances arising in practice turn out to be tractable
by modern solvers [7, 11, 5]. These practical results opened the way to explore not just the question of
finding a way of installing some components, but the best way of doing so, according to some criteria
that capture the user preferences and needs.

The Mancoosi International Solver Competition (MISC)2 was established with the goal to distill
interesting problems from real-world GNU/Linux distribution upgrade scenarii, and present them to the
solver research community. The problems are encoded in documents written using a common format,

∗Partially supported by the European Community’s 7th Framework Programme (FP7/2007-2013), grant agreement
n◦214898, “Mancoosi” project. Research partially performed at IRILL.

1http://www.mancoosi.org
2http://www.mancoosi.org/misc

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/
http://www.mancoosi.org
http://www.mancoosi.org/misc

2 Aligning component upgrades

Table 1: Optimization criteria
removed(I,S) ={name | Vp(I,name) 6= /0 and Vp(S,name) = /0}
new(I,S) ={name | Vp(I,name) = /0 and Vp(S,name) 6= /0}
changed(I,S) ={name | Vp(I,name) 6=Vp(S,name)}
notuptodate(I,S)={name | Vp(S,name) 6= /0 and does not contain the most recent version of name in S}
unsatrec(I,S) ={(name,v,c) — v is an element of Vp(S,name) and (name,v) recommends ...,c, ...

and c is not satisfied by S}

CUDF [9], that describe the universe of available components with their interdependencies and the user
request; the solvers are requested to find solutions that are ranked according to user preferences which
are currently built by composing a few basic criteria using aggregation functions like the lexicographic
ordering.

There are five basic criteria currently used in MISC: removed, changed, new, notuptodate and un-
satrecommends, which capture intuitive properties of a solution to an upgrade problems, like the number
of removed components or the number of components that are not the most up to date. They are sum-
marised in Table 1 where I is the initial installation and S is a proposed new installation. We write
Vp(X ,name) for the set of versions in which name (the name of a component) is installed in X , where
X may be I or S. That set may be empty (name is not installed), contain one element (name is installed
in exactly that version), or even contain multiple elements in case a component is installed in multiple
versions. These criteria and aggregation functions are an important starting point for this research, but
are not sufficient to capture all the important properties of an upgrade : identifying new basic criteria
and new aggregation function is an important activity, that will help improve the algorithms and tools
available for maintaining the complex software systems of tomorrow.

Contribution In the context of complex software systems, we can expect that configurations containing
synchronized components be more robust, for multiple reasons: synchronised components have been in
general developed together, and more thoroughly tested. Component metadata may contain, or can be
enriched with, information about synchronization (for example, via a Source version field), that can be
exploited to search for synchronised configuration.

In this paper, we present a new criterion, component alignment, which measures the synchronization
of closely related components in an installation and which is not expressible using the existing criteria
used in the MISC competition. Then, we show how to encode it using current solver technology, and
present experimental results that show that it is tractable in practice.

2 Component alignment

In complex software systems, like GNU/Linux distributions, components do not exist in isolation, but
are very often related to each other, even if they may be installed independently: the documentation of a
program, for example, is not necessary to run it, but they are both present, the user expects them to be of
the same version, or, in other terms, to be aligned.

With the current basic preferences used in MISC, it is not possible to express this alignment prop-
erty, and one can see that even the best solutions in the MISC 2010 competition may contain strange

R. Di Cosmo, O. Lhomme & C. Michel 3

component combinations : for example, the solutions found by the competition entrants for the problem
eeee44ce3 in the trendy track, contains surprising combinations like

Package version
aptitude-doc-fr 0.6.1.5-3
aptitude 0.4.11.11-1+b2

or even

Package version
linux-libc-dev 2.6.32-9
linux-source-2.6.30 2.6.30-8squeeze1

These are potential sources of confusion for a user that finds documentation way ahead of the installed
binaries or sources way behind the installed libraries. In the case of mixed versions of important libraries,
like gs in version 8.64 dfsg-1+squeeze1 which is used with gs-common version 8.71 dfsg-4 in
the same example, one can even experience real incompatibilities, due to combination of components
that have not been thoroughly tested together.

Obtaining an aligned installation by hand is quite painful, because of the number of involved pack-
ages: it is really necessary to be able to express the preference concisely via a criterion. To help the users
that want to avoid these inconsistencies, we propose to exploit the information about the package source,
which is present in the metadata of mainstream distributions.

In Debian, for example, packages which are built from the same source package carry in their meta-
data two pieces of information:

• a source property,that specifies the name of the source package; for example, both packages related
to the Linux kernel in the example above have a source property with the same value linux-2.6)

• the version of the source used to build them; this information is encoded in the CUDF documents
coming from Debian distributions in a sourceversion property; for example, the two packages
related to the Linux kernel in the example above are built from two different versions, 2.6.32-9
and 2.6.30-8squeeze1, of the same source linux-2.6.

Using this information, one can define what it means for an installation to be aligned.

Definition 1 (Alignment) An installation I is source aligned if all installed packages built from a same
source s are actually built from the same version of this source.

In other terms, I is aligned if all packages pi having the same value for the source property also have
the same value of the sourceversion property.

We remark here that the version of a package, and the version of the source from which they are
built do not necessarily coincide, and packages built from the same version of the same source may carry
different package versions, so that using the version of the source as an alignment criterion is the best
way of knowing whether a set of packages is aligned, without the need to guess similarity of packages
by inspecting their package versions.

3See http://data.mancoosi.org/misc2010/results/problems/debian-dudf/eeee44ce-5407-11df-b11f-00163e7a6f5e.
cudf.bz2

http://data.mancoosi.org/misc2010/results/problems/debian-dudf/eeee44ce-5407-11df-b11f-00163e7a6f5e.cudf.bz2
http://data.mancoosi.org/misc2010/results/problems/debian-dudf/eeee44ce-5407-11df-b11f-00163e7a6f5e.cudf.bz2

4 Aligning component upgrades

Notations In the following, we write S for the set of sources of the problem to solve.
We note {pi}i=1..n the set of all available packages. For simplifying the notation, pi will also denote

a 0-1 variable that expresses that package pi is installed; when the context is not enough to resolve the
ambiguity we write package pi or variable pi.

The relationships between the sources, the packages and their versions will be expressed with the
following functions:

• V (s) denotes the set of versions of source s ∈S ;

• V (p) denotes the version of the source of package p;

• P(s,v) denotes the set of packages belonging to version v of source s;

• S(p) denotes the value of the source property of package p.

For example, p ∈ P(s,v)⇔V (p) = v and S(p) = s.

3 Measuring unalignment

In order to choose among different possible installations, we need to be able to measure how far we are
from an aligned solution; for this, we need a measure of unalignment of a solution to a user query, that
can be then used as an objective function to minimize.

It turns out that there are quite a few different ways of defining such a notion, with varying cost
and expressiveness. We discuss them in the following sections, where we present the different possible
definitions. An encoding for MIP solvers, along the lines of [8], is given in detail in Section 4.

3.1 Counting unaligned packages

A first approach to building a measure of unalignment is to count the number of packages pi which are
installed and not source aligned. This can be expressed formally as the cardinality of a set:

unalignedp = card{pi|i ∈ [1..n], pi = 1,∃ jp j = 1,S(p j) = S(pi),V (p j) 6=V (pi)}

Note that in our notation, variables pi and p j are equal to 1 mean that packages pi and p j are installed.
The above set contains all packages that are installed and such that another package with the same source
in another version is also installed.

To obtain an installation that is as aligned as possible, it is then enough to minimize unalignedp, the
cardinality of the set.

3.2 Counting (sorted) unaligned package pairs

A second approach is to count the number of pairs of packages (pi, p j) which are both installed and not
aligned. This can be done by computing the cardinality of a slightly different set:

unalignedpp = card{(pi, p j)|i, j ∈ [1..n], i < j, pi = 1, p j = 1,S(p j) = S(pi),V (p j) 6=V (pi)}

The interest of this approach is to be much more discriminating than the unalignedp criteria (see
Section 3.5). Nevertheless, a drawback may be that, as it implicitly weights a cluster up to the square
of its size, a small qualitative improvement of a large and very unaligned cluster may strongly dominate
clear qualitative improvements of some other smaller or almost aligned clusters.

R. Di Cosmo, O. Lhomme & C. Michel 5

3.3 Counting version changes

In this third approach, the size of the cluster is not as important as in the unalignedpp criteria: it counts
the number of version changes in a cluster. For example, consider a cluster with six installed packages
that involve three different source versions: there will be two version changes. Formally:

unalignedvc = ∑
s∈S

max(0,numberO fVersions(s)−1)

where:

numberO fVersions(s) = card{V (pi)|i ∈ [1..n], pi = 1,S(pi) = s}

Note that numberO fVersions(s) is the number of installed versions of the source s; thus, when this
number is greater than 0, we need to subtract 1 to get the number of version changes.

3.4 Counting unaligned source clusters

Finally, one can use a much coarser granularity, counting only the source clusters which are unaligned,
independently of the number of pointwise unalignments among packages of the same cluster, by using

unalignedc = card{s|s ∈S ,∃i ∈ [1..n],∃ j ∈ [1..n], pi = 1, p j = 1,S(p j) = S(pi) = s,V (p j) 6=V (pi)}

3.5 Discussion of the different alignment criteria

The different alignment criteria differ by their weighting policies. The number of unaligned source
clusters unalignedc and the number of unaligned packages unalignedp are very close, except that the
criterion unalignedc does not take into account the size of the clusters, whereas the criterion unalignedp

weights a cluster by its size (each time a cluster of size k is unaligned, k packages are unaligned). The
criterion unalignedpp is more discriminating by weighting a cluster by its pairwise unalignment, which
may be really interesting, but it makes the implicit assumption that packages of a cluster are totally
interdependant. When this assumption is too strong and the size of the cluster is large, the weight
of a k-sized cluster can be as large as k2, and alignments in large clusters may dominates too strongly
alignments in small clusters. The criterion unalignedvc, based on version changes, provides an interesting
intermediate solution: the weight of the cluster is the number of different versions in that cluster.

To see in practice what each of the above criterion actually captures, it is useful to compare the results
on a simple example. Let’s consider a cluster c = {p1, p2, p3, p4} comprising 4 packages of the same
source, with package versions among 1,2,3,4, and a few possible unaligned configurations.

version unaligned unaligned unaligned unaligned
configuration packages pairs version changes clusters

1,1,1,1 0 0 0 0
1,1,2,1 4 3 1 1
1,1,2,2 4 4 1 1
1,1,2,3 4 5 2 1
1,2,3,4 4 6 3 1

6 Aligning component upgrades

4 Efficiently encoding the criteria using MIP

This section describes an integer programming encoding of the unaligned criteria presented above. It is
particularly efficient in practice with a MIP solver. Note that a clausal form of these criteria can also be
obtained for using a SAT solver (see the Appendix).

As a first step, the problem is reduced to the subset of sources with more than one source version.

4.1 packages

The number of unaligned packages is computed using the following formulae

nupackages = ∑
p j∈P(s,v),v∈V (s),s∈S

nup j

where nup j is a binary variable whose value is one if p j is installed and not aligned and zero otherwise.
Each nup j is handled by the following set of constraints

nup j ≤ p j

which forces nup j to 0 if package p j is not installed, and

nup j ≤ ∑
v∈V (S(p j)),v 6=V (p j)

is,v

where s = S(p j) and is,v is binary variable whose value is 1 if any package of version v from source
s is installed and zero otherwise. Therefore, the previous constraint forces nup j to zero if none of the
other versions of source s, different from V (p j), has an installed package. nup j is also involved in the
following set of constraints

∀v ∈V (S(p j)), v 6=V (p j), nup j +1≥ p j + is,v

which ensures that if p j is installed and one of the versions of s different from the source version of p j

has an installed package, then nup j is set to one.
Finally, constraints are added to handle the is,v variables. The first constraint ensures that is,v gets the

value zero if none of the packages of version v from source s is installed

is,v ≤ ∑
p j∈P(s,v)

p j

The second set of constraints sets is,v to 1 whenever at least one of the packages of version v from source
s is installed

∀p j ∈ P(s,v), p j ≤ is,v

Note that variables is,v are also used in the encoding of the two last unaligned criteria.

R. Di Cosmo, O. Lhomme & C. Michel 7

4.2 pairs

The number of unaligned pairs

nupairs = ∑
p j∈P(s,v),v∈V (s),s∈S ,pk∈P(s,v′),v′∈V (s),v′ 6=v

up j,pk

where each up j,pk is subject to the three following constraints:

up j,pk ≤ p j ∧ up j,pk ≤ pk ∧ up j,pk +1≥ p j + pk

The two first constraints insure that up j,pk = 0 if either p j or pk is not installed. Last constraint sets up j,pk

iff both p j and pk are installed.

4.3 version changes

The number nuvc of version changes is given by the following formulae:

nuvc = ∑
s∈S

ncs

where each ncs is subject to

ncs = nbinst,s−δs

where each δs is subject to

|V (s)| ∗δs ≥ nbinst,s ∧ nbinst,s ≥ δs

The first constraint sets δs to 1 iff nbinst,s ≥ 1, and the second one sets δs to 0 iff nbinst,s = 0. The nbinst,s

variable simply sum up the number of installed source versions (i.e., the number of source versions with
at least one installed package). Thus,

nbinst,s = ∑
v∈V (s)

is,v

4.4 clusters

The number of unaligned clusters of source is given by the following formulae:

nuclusters = ∑
s∈S

us

where each us is subject to

|V (s)| ∗us +1≥ nbinst,s ∧ nbinst,s ≥ 2∗us

The first constraint sets us to 1 iff nbinst,s ≥ 2, while the second one forces us to 0 iff nbinst,s ≤ 1. nbinst,s

has the same definition as in the unaligned version changes.

8 Aligning component upgrades

MISC problem id size (#srcs,#vs,#pkgs,#pairs) removed packages pairs version changes clusters
103c9978 183,531,531,377 0.71 (25,15,10,10) 1.10 (2) 1.04 (1) 1.18 (1) 1.07 (1)
1dcce248 3833,12319,12319,15595 5.00 (0,0,0,0) 11.56 (0) 11.24 (0) 13.55 (0) 11.14 (0)
218091ce 3833,12319,12319,15595 4.62 (0,0,0,0) 10.54 (0) 10.00 (0) 12.20 (0) 10.07 (0)
29180036 183,531,531,377 0.69 (25,15,10,10) 1.08 (2) 1.05 (1) 1.16 (1) 1.08 (1)
2f690324 3834,12301,12301,15558 4.52 (0,0,0,0) 10.07 (0) 9.85 (0) 11.88 (0) 9.87 (0)
3e4f8550 3805,12033,12033,14766 4.71 (0,0,0,0) 10.73 (0) 10.44 (0) 12.00 (0) 10.63 (0)
412959c6 552,1193,1193,736 0.88 (0,0,0,0) 1.47 (0) 1.38 (0) 1.54 (0) 1.32 (0)
56ae4afa 3805,12033,12033,14766 4.86 (0,0,0,0) 10.49 (0) 9.78 (0) 12.36 (0) 10.38 (0)
58a4a468 3857,12136,12136,14801 4.71 (0,0,0,0) 8.54 (0) 8.17 (0) 15.91 (0) 7.95 (0)
688250e8 3833,12319,12319,15595 7.63 (0,0,0,0) 14.97 (0) 12.33 (0) 17.80 (0) 14.56 (0)
7266f636 3840,12371,12371,15750 4.99 (0,0,0,0) 11.45 (0) 11.25 (0) 13.24 (0) 10.93 (0)
7e7e0b16 3857,12136,12136,14801 4.78 (0,0,0,0) 8.53 (0) 8.17 (0) 16.00 (0) 8.22 (0)
8ad21cec 3840,12371,12371,15750 5.00 (0,0,0,0) 11.45 (0) 11.24 (0) 13.33 (0) 11.06 (0)
9bb87ab4 3833,12319,12319,15595 4.66 (0,0,0,0) 10.66 (0) 10.08 (0) 12.39 (0) 10.17 (0)
cb0e73b0 918,1940,1940,1127 1.12 (0,0,0,0) 1.84 (0) 1.72 (0) 2.87 (0) 1.80 (0)
e0bd67a6 124,354,354,259 0.62 (32,19,13,13) 0.98 (2) 0.88 (1) 0.97 (1) 0.93 (1)
e8a3eb4c 3833,12319,12319,15595 4.68 (0,0,0,0) 10.55 (0) 10.29 (0) 12.28 (0) 10.14 (0)
eeee44ce 183,531,531,377 0.74 (25,15,10,10) 1.09 (2) 1.06 (1) 1.18 (1) 1.09 (1)

Total time 64.92 137.10 129.97 171.84 132.41

Figure 1: Running time (s) and number of unalignments on the MISC-2010 Debian problem instances

5 Experimental validation

We implemented the four alignment criteria introduced above in an experimental branch of the mccs

tool4, which uses MIP instead of the Boolean encodings, and includes several optimizations with respect
to the simple encodings detailed above.

We have run the solver on the Debian category of the problems of the MISC-2010 competition
and of the 4th run of the Misc Live competition with a realistic optimization function that requires, in
lexicographic order to first minimize removal, and then minimize unalignment, using each of the four
different criteria for unalignment. The results5 of running this experiments on an Intel Core I7-2720QM
at 2.20GHz are given in Figure 1 for the MISC-2010 competition and in Figure 2 for the 4th run of
the Misc Live competition. In these tables, the size column gives respectively, the number of sources
(with more than one version) of the problem, the total amount of versions, the total amount of packages
(corresponding to the selected sources/versions), and, the number of unique pairs. The removed column
gives the time (in seconds) required to optimise the problem according to the sole removed criterion,
as well as, in brackets, the number of unaligned packages, pairs, version changes and clusters of the
solution. Last four columns give the amount of time required to solve the problem minimizing removal
and the chosen unalignment, as well as, in brackets, the number of unalignments. Note that, for the sake
of fairness, CPLEX, the underlying MIP solver, has been limited to one thread.

These two sets of results show a strong relationship between the structure of the problem, the chosen
unalignment measure and the time required to solve the problem. However, these results seems to in-
dicate that the version change alignment criterion offers a good trade off between discriminating power
and running time.

4http://users.polytech.unice.fr/~cpjm/misc/mccs.html
5Though the two sets of Debian problems share some problem IDs, there are different problems as testified by the problem

sizes and the different times.

http://users.polytech.unice.fr/~cpjm/misc/mccs.html

R. Di Cosmo, O. Lhomme & C. Michel 9

MISC problem id size (#srcs,#vs,#pkgs,#pairs) removed packages pairs version changes clusters
1aabfc32 1224,4457,4459,10304 2.03 (217,262,69,67) 4.17 (0) 6.82 (0) 3.36 (0) 3.04 (0)
1dcce248 3795,12207,12207,15450 4.90 (0,0,0,0) 6.77 (0) 6.36 (0) 7.50 (0) 6.22 (0)
218091ce 3795,12207,12207,15450 4.51 (0,0,0,0) 8.99 (0) 8.75 (0) 10.09 (0) 8.36 (0)
26f3d4cc 1130,3886,3888,7918 2.43 (134,111,44,43) 4.04 (0) 6.69 (0) 3.63 (0) 2.93 (0)
27000e82 1403,6088,6095,24381 3.12 (360,570,69,58) 6.87 (0) 14.91 (0) 4.16 (0) 4.39 (0)
2f690324 3796,12192,12192,15423 4.79 (0,0,0,0) 7.53 (0) 7.56 (0) 9.49 (0) 7.62 (0)
3e4f8550 341,1163,1163,1547 1.08 (0,0,0,0) 1.18 (0) 1.20 (0) 1.29 (0) 1.22 (0)
4a69cf16 1400,6079,6086,24445 2.81 (337,682,68,57) 7.00 (0) 14.69 (0) 4.14 (0) 4.42 (0)
4e539b28 1130,3886,3888,7918 2.37 (134,111,44,43) 3.96 (0) 6.67 (0) 3.55 (0) 2.96 (0)
4ede8d96 908,3660,3662,13895 1.78 (45,27,18,18) 3.74 (0) 7.87 (0) 2.84 (0) 2.95 (0)
5698a62c 1400,6079,6086,24445 2.76 (337,682,68,57) 6.97 (0) 14.53 (0) 4.14 (0) 4.40 (0)
56ae4afa 341,1163,1163,1547 1.06 (0,0,0,0) 1.09 (0) 1.10 (0) 1.10 (0) 1.13 (0)
56e31304 908,3660,3662,13895 1.78 (45,27,18,18) 3.70 (0) 7.83 (0) 2.80 (0) 2.85 (0)
58a4a468 468,1584,1584,2080 1.09 (0,0,0,0) 1.16 (0) 1.15 (0) 1.20 (0) 1.14 (0)
688250e8 3795,12207,12207,15450 6.55 (0,0,0,0) 9.04 (0) 8.14 (0) 10.51 (0) 8.55 (0)
6b0d1da0 1400,6079,6086,24445 2.89 (348,679,75,60) 7.01 (0) 14.74 (0) 4.71 (0) 4.53 (0)
7266f636 3802,12259,12259,15605 4.87 (0,0,0,0) 6.81 (0) 6.34 (0) 7.45 (0) 6.38 (0)
7e7e0b16 468,1584,1584,2080 1.12 (0,0,0,0) 1.17 (0) 1.15 (0) 1.21 (0) 1.14 (0)
8ad21cec 3802,12259,12259,15605 4.82 (0,0,0,0) 6.76 (0) 6.42 (0) 7.48 (0) 6.22 (0)
978532fa 1400,6079,6086,24445 2.77 (348,679,75,60) 7.06 (0) 14.80 (0) 4.70 (0) 4.43 (0)
9bb87ab4 3795,12207,12207,15450 4.54 (0,0,0,0) 8.94 (0) 8.79 (0) 10.14 (0) 8.52 (0)
d0cc7514 1400,6079,6086,24445 2.79 (337,682,68,57) 6.96 (0) 14.69 (0) 4.11 (0) 4.42 (0)
d1583bd8 1130,3886,3888,7918 2.42 (134,111,44,43) 3.98 (0) 6.67 (0) 3.58 (0) 2.85 (0)
dd08e73e 1130,3886,3888,7918 2.40 (134,111,44,43) 4.02 (0) 6.73 (0) 3.61 (0) 2.92 (0)
e69a0e36 1426,5889,5891,20929 2.92 (274,265,69,60) 5.85 (0) 12.44 (0) 4.44 (0) 4.13 (0)
e8a3eb4c 3795,12207,12207,15450 4.44 (0,0,0,0) 8.94 (0) 8.70 (0) 10.20 (0) 8.43 (0)
ff4a1d84 1224,4457,4459,10304 1.96 (217,262,69,67) 4.13 (0) 6.83 (0) 3.46 (0) 3.05 (0)

Total time 81.00 147.84 222.57 134.89 119.20

Figure 2: Running time (s) and number of unalignment on the Misc Live (4th run) Debian problem
instances

6 Discussion

Aligning components in a software installation is an important issue; we have shown that it is possible
to capture this property in several ways, according to the discriminating power one looks for, and that a
state of the art MIP solver such as CPLEX has a running time on realistic use cases that is acceptable.

An important question is whether a similar performance can be attained using different solving ap-
proaches, like PBO, MaxSat or Answer Set Programming, which are present in the MISC competition.
We propose that the different measures of unalignment introduced here be incorporated in future MISC
competitions, and that component installers offer them to the users.

For future work, it would be interesting to allow the users to fine-tune the subset of source packages
on which the alignment is required, by introducing a more general criterion unaligned(clusters:v1,...,vn),
that evaluates unalignment only on the clusters for v1, ...,vn: this does not present significant technical
difficulties and can be done by generating the constraints only for the specified source clusters.

Alignment being only a restricted definition of a more general synchronization criterion, it may be
equally important to synchronize some packages that are not built from the same sources, but are closely
related. Such synchronization relations between packages could be expressed by extending metadata.

10 Aligning component upgrades

References
[1] Pietro Abate & Roberto Di Cosmo (2011): Predicting Upgrade Failures Using Dependency Analysis. In

Serge Abiteboul, Klemens Böhm, Christoph Koch & Kian-Lee Tan, editors: HotSWUP 2011: Hot topics in
Software Updates, ACM, pp. 145–150, doi:10.1109/ICDEW.2011.5767626.

[2] Pietro Abate, Roberto Di Cosmo, Ralf Treinen & Stefano Zacchiroli (2011): MPM: a modular package
manager. In: Proceedings of the 14th international ACM Sigsoft symposium on Component based software
engineering, CBSE ’11, ACM, New York, NY, USA, pp. 179–188, doi:10.1145/2000229.2000255.

[3] Josep Argelich, Daniel Le Berre, Inês Lynce, Joo P. Marques Silva & Pascal Rapicault (2010): Solving Linux
Upgradeability Problems Using Boolean Optimization. In Inês Lynce & Ralf Treinen, editors: LoCoCo,
EPTCS 29, pp. 11–22, doi:10.4204/EPTCS.29.2.

[4] Josep Argelich, Inês Lynce & Joo P. Marques Silva (2009): On Solving Boolean Multilevel Optimization
Problems. In Craig Boutilier, editor: IJCAI, pp. 393–398. Available at http://ijcai.org/papers09/
Papers/IJCAI09-073.pdf.

[5] Daniel Le Berre & Anne Parrain (2008): On SAT Technologies for Dependency Management and Beyond. In
Steffen Thiel & Klaus Pohl, editors: SPLC (2), Lero Int. Science Centre, University of Limerick, Ireland, pp.
197–200.

[6] Roberto Di Cosmo, Stefano Zacchiroli & Paulo Trezentos (2008): Package upgrades in FOSS distributions:
details and challenges. In Tudor Dumitras, Danny Dig & Iulian Neamtiu, editors: HotSWUp ’08: Proceed-
ings of the 1st International Workshop on Hot Topics in Software Upgrades, ACM, New York, NY, USA, pp.
1–5, doi:10.1145/1490283.1490292.

[7] Fabio Mancinelli, Jaap Boender, Roberto Di Cosmo, Jerome Vouillon, Berke Durak, Xavier Leroy & Ralf
Treinen (2006): Managing the Complexity of Large Free and Open Source Package-Based Software Distri-
butions. In Sebastian Uchitel & Steve Easterbrook, editors: ASE, IEEE Computer Society, pp. 199–208,
doi:10.1109/ASE.2006.49.

[8] Claude Michel & Michel Rueher (2010): Handling software upgradeability problems with MILP solvers. In
Inês Lynce & Ralf Treinen, editors: LoCoCo, EPTCS 29, pp. 1–10, doi:10.4204/EPTCS.29.1.

[9] Ralf Treinen & Stefano Zacchiroli (2009): Common Upgradeability Description Format (CUDF) 2.0. Tech-
nical Report 3, The Mancoosi Project. http://www.mancoosi.org/reports/tr3.pdf.

[10] Paulo Trezentos, Inês Lynce & Arlindo L. Oliveira (2010): Apt-pbo: solving the software depen-
dency problem using pseudo-boolean optimization. In: ASE ’10: Proceedings of the IEEE/ACM in-
ternational conference on Automated software engineering, ACM, New York, NY, USA, pp. 427–436,
doi:10.1145/1858996.1859087.

[11] Chris Tucker, David Shuffelton, Ranjit Jhala & Sorin Lerner (2007): OPIUM: Optimal Package In-
stall/Uninstall Manager. In: ICSE 2007, pp. 178–188, doi:10.1109/ICSE.2007.59.

http://dx.doi.org/10.1109/ICDEW.2011.5767626
http://dx.doi.org/10.1145/2000229.2000255
http://dx.doi.org/10.4204/EPTCS.29.2
http://ijcai.org/papers09/Papers/IJCAI09-073.pdf
http://ijcai.org/papers09/Papers/IJCAI09-073.pdf
http://dx.doi.org/10.1145/1490283.1490292
http://dx.doi.org/10.1109/ASE.2006.49
http://dx.doi.org/10.4204/EPTCS.29.1
http://www.mancoosi.org/reports/tr3.pdf
http://dx.doi.org/10.1145/1858996.1859087
http://dx.doi.org/10.1109/ICSE.2007.59

R. Di Cosmo, O. Lhomme & C. Michel 11

A Encoding unalignment for SAT

It is possible to write natural encodings of the different criteria for SAT; we present here the ones for the
packages and package pairs criteria.

packages The definition can be encoded as

unalignedp ⇐⇒ p∧

 ∨
S(qi)=S(p)∧V (qi)6=V (qp)

qi

For minimizing unalignment, it is enough to use the clauses coming from the dominance relation

unalignedp⇐ p∧

 ∨
S(qi)=S(p)∧V (qi)6=V (qp)

qi

 = unalignedp⇐

 ∨
S(qi)=S(p)∧V (qi)6=V (qp)

p∧qi

=

∧
S(qi)=S(p)∧V (qi)6=V (qp)

(unalignedp⇐ p∧qi)

=
∧

S(qi)=S(p)∧V (qi)6=V (qp)

¬unalignedp∨¬p∨¬qi (3)

pairs For each package pair (pi, p j)
6 which is not aligned, build a literal unalignedpi,p j which is true

iff both pi and p j are installed.

unalignedpi,p j ⇐⇒ pi∧ p j

For minimizing unalignment, it is enough to use the clauses coming from the dominance relation

unalignedpi,p j ⇐ pi∧ p j =

= ¬pi∨¬p j ∨unalignedpi,p j (3)

6Take pi < p j to avoid counting the pairs twice.

	Introduction
	Component alignment
	Measuring unalignment
	Counting unaligned packages
	Counting (sorted) unaligned package pairs
	Counting version changes
	Counting unaligned source clusters
	Discussion of the different alignment criteria

	Efficiently encoding the criteria using MIP
	packages
	pairs
	version changes
	clusters

	Experimental validation
	Discussion
	Encoding unalignment for SAT

