Résumé. Nous donnons une douzaine de formules concernant les polynômes de Schubert et Grothendieck, la moitié étant nouvelles, et la plupart intéressantes. En particulier, nous explicitons la décomposition d'un polynôme de Schubert comme une somme positive de polynômes de Grothendieck, et montrons comment déduire des descriptions combinatoires de la considération de différents noyaux de Cauchy.

Abstract. We give a dozen formulas concerning Schubert and Grothendieck polynomials, and their interrelations, half of them being new, and most of them interesting. In particular, we describe explicitly the decomposition of Schubert polynomials as positive sums of Grothendieck polynomials, and we show that non-commutative Schubert polynomials are obtained by reading the columns of a two-dimensional Cauchy kernel.

A six pages summary in English has been added.

' 

ooo

English summary

The space of polynomials in n variables a 1 , . . . , a n is a free module over the ring of symmetric polynomials Sym(n).

It has many Sym(n)-bases, for example the following two ones, which were already known at the end of the 19th century :

a I := a i 1 • • • a in , I = [i 1 , . . . , i n ] ≤ ρ := [n-1, . . . , 1, 0] , P I := Λ i 1 (A n-1 ) Λ i 2 (A n-2 ) • • • Λ in (A 0 ) , I ≤ ρ ,
where we write A j := {a 1 , . . . , a j } and Λ i for the elementary symmetric function of degree i.

Introducing n other indeterminates, and tensoring by Z[b 1 , . . . , b n ], one rather considers the space of Laurent polynomials

Pol := Z[B][a ±
1 , . . . , a ± n ] and proposes to describe it as a module over the ring Sym(A) of symmetric functions in A with coefficients in B.

One is especially interested in the different actions of the symmetric group S n = S(A) on Pol.

The 1-dimensional alternating representation of S(A) gives two1 related scalar products on Pol :

(f, g) = (f g, 1) = (1, f g) = σ∈Sn (-1) (σ) (f g) σ ∆ -1 , ( 2 
)
where ∆ is short for the Vandermonde ∆ := i,j (a i -a j ), and

f, g = σ∈Sn f g 1≤i<j≤n (1 -a j /a i ) -1 σ . ( 4 
)
Different varieties of divided differences act on Pol. They generate deformations of the group algebra of the symmetric group, the generators T i satisfying the braid relations, together with a Hecke relation (T i -q 1 ) (T i -q 2 ) = 0 , with some parameters q 1 , q 2 that we shall specialize in {0, 1, -1}. By reduced products of T i 's, one obtains a linear basis {T σ : σ ∈ S n } of the Hecke algebra.

The generators T i , operating on their left, that we use in this text are, apart from the simple transpositions

s i = (a i , a i+1 ) ,    ∂ i = (a i -a i+1 ) -1 (1 + s i ) = (1 -s i ) (a i -a i+1 ) -1 , π i = (1 -a i+1 /a i ) -1 (1 + s i ) = a i ∂ i , π i = (1 -s i )(a i+1 /a i -1) -1 = ∂ i a i+1 = π i -1. (1) 
By reduced products, one gets, for each permutation σ, the operators ∂ σ , π σ , π σ .

Introducing other variables x i := 1 -a -1 i , one can also take the divided differences relative to them, which we shall distinguish by putting a superscript x. It is easy to write the relations between these different operators. For example,

∂ x i = ∂ a i a i a i+1 = a i a i+1 ∂ a i .
The "maximal" operators2 are all deformations of the operator

σ∈Sn (-1) (σ) σ ∆ -1 . Indeed, ∂ ω = σ∈Sn (-1) (σ) σ ∆ -1 = ∂ 1 ∂ 2 ∂ 1 ∂ 3 ∂ 2 ∂ 1 • • • , (3) 
π a ω = a ρ ∂ a ω = (1 -x 2 ) 1 • • • (1 -x n ) n-1 ∂ x ω , (7) 
π a ω = ∂ a ω a ρ ω = ∂ a ω (a ρ ) ω ωa -ρ π a σ a ρ ω = (-1) (σ) π ωσω . (8) 
For each kind of divided differences T i , one chooses a polynomial ♥. Its images under the operators T σ constitute a family of n! polynomials, which will be a basis of Pol if ♥ satisfies some mild genericity conditions.

In the case

T i = ∂ a i , one takes ♥ = i,j: i+j≤n (a i -b j ) denoted by X ω (A, B) .
In the case

T i = π a i , one chooses ♥ = i,j:i+j≤n (1 -b j a -1 i ) denoted by G ω (A, B) ,
and in the case

T i = π a i , one prefers ♥ = 1≤i<j≤n (1 -a j b -1 i ) denoted by H ω (A, B) .
Their images are the Schubert polynomials X σ , the Grothendieck polynomials G σ , the adjoint Grothendieck polynomials H σ , respectively :

X σ (A, B) = X ω (A, B) ∂ ωσ , (9) 
G σ (A, B) = G ω (A, B) π ωσ & H σ (A, B) = H ω (A, B) π ωσ . (11) The change of variables x i = 1 -1/a i , y i = 1 -b i in the product ♥ associated to the Grothendieck polynomials leads to ♥ = i,j:i+j≤n (x i + y j -x i y j ) := G ω (x, y) (12) 
and the operators

T i = (1-x i+1 ) ∂ x i = π a i . Using (1-x i+1 ) ∂ x i instead of ∂ x i
, it is clear that the term of smallest degree of G σ (x, y) is equal to the Schubert polynomial X σ (x, -y) (a sign appeared, one has to take x := {x 1 , . . . , x n }, but -y = {-y 1 , . . . , -y n }).

Schubert and Grothendieck polynomials are non-symmetric analogs of Schur functions, and satisfy the same type of properties. In particular, they satisfy a Cauchy formula 3 if one specializes one of the two alphabets to 0 := {0, . . . , 0} or 1 := {1, . . . , 1} : 1≤i,j≤n ; i+j≤n

(x i + y j ) = σ∈Sn X σ (x, 0) X σω (y, 0) , (15) 
1≤i<j≤n

(1 -b j /a i ) = σ∈Sn G σ (A, 1) H ωσ (B, 1) . ( 16 
)
In terms of the variables x i , y j , the latter can also be written as

1≤i<j≤n (x i + y j -x i y j ) = σ∈Sn G σ (x, 0) H ωσ (y, 0) . ( 17 
)
The bases {G σ } and {H σ }, which are adjoint with respect to , , are easy to relate explicitly :

(G σ a ρ ) ω = (-1) (ωσ) H ωσω . (18) 
Using the scalar product ( , ) instead of , , one also obtains the relations between the bases X σ := X σ (x, 0) and G σ := G σ (x, 0). Moreover, the combinatorial interpretation of the coefficients given in the last section allows one to write positive coefficients in the second equation.

Theorem 1. The matrices X2G and G2X of change of basis between Schubert polynomials and Grothendieck polynomials are equal, up to permutation of rows and columns, and up to signs.

In more precise terms, one has

G σ = ν (-1) (νω) ( G σ , X ω νω ) X ν , (20) 
X νω = σ ( G ω σ , X νω ) G σω . ( 21 
)
3 M.P. Schützenberger forced me to publish it alone, in the note [START_REF] Lascoux | Classes de Chern des variétés de drapeaux[END_REF], to boost, possibly upwards, my status. The outcome was that neither my name, nor his, was ever associated to the key word Cauchy-Schubert in the literature, except, of course, in Macdonald's lectures [START_REF] Macdonald | Notes on Schubert polynomials LACIM[END_REF].

Schubert polynomials indexed by Grassmannian permutations (i.e., having only one descent) are equal to Schur functions.

In that case, writing Y I instead of X σ (x, 0) when I = [i 1 , . . . , i n ] is the (increasing) partition which is the code of a Grassmannian permutation σ, and writing G[I] for G σ (x, 0), one has by definition

Y I = x λ+ρ ∂ x ω , G[I] = x λ+ρ π a ω = x λ+ρ (1-x 2 ) • • • (1-x n ) n-1 ∂ x ω , where λ = [i n , . . . , i 1 ].
One thus can write

Y I = x λ+ρ (1-x 2 ) • • • (1-x n ) n-1 π a ω . (24) 
Since the image of a monomial x µ+ρ under π a ω is equal to G[µ n , . . . , µ 1 ] when µ ∈ N n is dominant, one gets from [START_REF] Lascoux | The Plactic Monoid, chapître du deuxième volume de Combinatorics on Words[END_REF] the expression of the Schur function Y I in terms of Grothendieck polynomials if one can replace the rational function

x λ+ρ (1-x 2 ) • • • (1-x n ) n-1 -1 by a sum of dominant monomials.
This is done by using recursively formula [START_REF] Lascoux | Le monoïde plaxique, Non-commutative structures in algebra and geometric combinatorics, Napoli 1978[END_REF]. The outcome is an explicit expansion [START_REF] Lascoux | Polynômes de Schubert[END_REF], first obtained by Lenart [35], in terms of tableaux satisfying a flag condition.

The polynomials G[J] occur in the K-theory of Grassmannians, and their theory is currently developed by Buch [START_REF] Buch | A Littlewood-Richardson rule for the K-theory of Grassmannians[END_REF]. As a matter of fact, I already considered them in [START_REF] Lascoux | Puissances extèrieures, déterminants et cycles de Schubert[END_REF], having rather in mind classes in K-theory of degeneracy loci, or of determinantal varieties.

From Section 4 onwards, we propel the theory of Schubert polynomials to the non-commutative world, using different types of Cauchy kernels.

Using planar objects is a way to lift algebraic manipulations of polynomials to the free algebra, or to the plactic algebra. This is well known for symmetric polynomials, and it is still fruitful for non-symmetric ones.

The Cauchy kernel must now be displayed as a staircase :

K(B, A) := (b 1 + a n-1 ) (b 1 + a n-2 ) (b 2 + a n-2 ) . . . . . . (b 1 + a 1 ) (b 2 + a 1 ) • • • (b n-1 + a 1 )
Distributivity with respect to ' + ' amounts to decomposing the staircase into pairs of complementary diagrams in all possible manners, one of the two diagrams coding the choice of a i in a given box of the staircase, the other coding the choice of b j .

Reading the planar objects in a specific manner, one gets from the Cauchy kernel a collection of pairs of words that one can write as a sum of products of words and interpret as an element of the tensor product of the free algebra in A and the free algebra in B.

Recall that the ring Sym(A) is a commutative sub-algebra of the plactic algebra Plax(A). This indicates that, as a first extension to the theory of commutative Schubert and Grothendieck polynomials, one should use Plax(A) instead of the free algebra, and identify words modulo the plactic relations ( 27), [START_REF] Lascoux | Symmetry and Flag manifolds, Invariant Theory[END_REF] (or some similar relations, the nilplactic ones, or idplactic ones).

Inside Plax(A), one has a distinguished sub-module, the Schubert module

Schub := • • • ⊗ Sym(A 3 ) ⊗ Sym(A 2 ) ⊗ Sym(A 1 ),
each Sym(A k ) being canonically embedded into Plax(A) by identifying a Schur function with a sum of tableaux of a given shape.

The Schubert module has many bases which lift the usual bases of Pol(A). As Z-modules4 , these two spaces are isomorphic, and the linear relations between the different bases are preserved.

An elementary symmetric function in A j = {a 1 , . . . , a j } is a special Schur function, and thus must be lifted to a sum of strictly decreasing words of a given degree, that will still be denoted by Λ k (A j ).

By ordered products, one gets the first basis of Schub :

P F I (A) := Λ i 1 (A n-1 ) Λ i 2 (A n-2 ) • • • Λ in (A 0 ) , n ∈ N, I = [i 1 , . . . , i n ] ≤ [n-1, . . . , 0] , (29) 
n being non-fixed now, identifying P F I and P F 0...0 I . One has also a basis consisting of products of complete functions

S F J = S jn (A n ) • • • S j 1 (A 1 ) , n ∈ N, J = [j 1 , . . . , j n ] ∈ N n . (30) 
To prove that these two sets generate the full module Schub, one uses transformations of Schur functions into Schur functions of flags of alphabets (cf. [START_REF] Lascoux | Symmetric functions and Combinatorial operators on polynomials[END_REF]). This allows one to reduce each component of a space Sym(A j ) to a single Λ i (A j ), or S i (A j ).

Defining non-commutative Schubert polynomials X F σ by using divided differences is delicate and will be examined in another text with Lin Hui and A.L.B. Yang. It is easier to pass through the basis P I , or the basis which is the projection of S F J . However, in that way it is not clear why any X F σ should be a positive sums of words.

Fortunately, key polynomials have an easy plactic lift, since the operators π i and π i can be made act on the free algebra, and by projection, on the plactic algebra.

Key polynomials become sums of tableaux of a given shape satisfying flag conditions, and Schubert polynomials are genuine sums of tableaux, being positive sums of key polynomials [START_REF] Lascoux | Tableaux and non-commutative Schubert polynomials[END_REF].

To obtain properties of the polynomials X F σ , one considers different noncommutative algebras and different Cauchy kernels. The reader will find them in Sections 6-9.

Let us finally point the reader to the combinatorial descriptions (45), (46) of the entries of the two matrices G2X or X2G, the first one being due to Lenart [START_REF] Lenart | Noncommutative Schubert calculus and Grothendieck polynomials[END_REF]. 

Diff érentes bases de l'anneau des polyn ômes

Peu sont les outils algébriques sur les polynômes de plusieurs variables. Le contraste n'en est que plus grand avec le monde foisonnant des polynômes symétriques.

Certes, l'anneau H n des coinvariants 5 du groupe symétrique S n est étudié depuis un siècle.

C'est un espace de dimension n! qui, par exemple, admet comme base les monômes a I , I = [i 1 , . . . , i n ] ≤ ρ := [n-1, . . . , 1, 0]. On peut même interpréter un procédé d'élimination de Cauchy comme l'utilisation de la base des produits de fonctions élémentaires (sur un drapeau d'alphabets) :

P I := Λ i 1 (A n-1 ) Λ i 2 (A n-2 ) • • • Λ in (A 0 ) , I ≤ ρ ,
où les Λ i (A j ) sont les fonctions élémentaires de A j := {a 1 , . . . , a j } (fixant n, on écrira A au lieu de A n ).

5 Z[a 1 , . . . , a n ]/Sym + (A), où Sym + (A) est l'idéal engendré par les polynômes symétriques en A = {a 1 , . . . , a n } sans terme constant.

Mais ce n'est qu'au début des années 70 que les géomètres 6 , interprétant H n comme l'anneau de cohomologie de la variété de drapeaux7 , ont mis en oeuvre des outils de calcul, qui en fait remontent à Newton, et décrit des bases plus riches que les deux précédentes.

Pour ne pas perdre les fonctions symétriques, il vaut mieux, au lieu de l'anneau quotient H n , considérer l'anneau des polynômes, en tant que module sur l'anneau des polynômes symétriques Sym(A). On prendra éventuellement un deuxième ensemble de variables B = {b 1 , b 2 , . . .} invariant sous l'action de S n , lequel permute uniquement les a i . En un mot, c'est l'anneau

Pol := Z[B][a ± 1 , .
. . , a ± n ] des polynômes de Laurent en A, à coefficients les fonctions en A, B symétriques en A, que l'on entend décrire.

Différentes déformations de l'algèbre du groupe symétrique agissent sur Pol. En particulier, pour chaque permutation σ ∈ S n , il existe une différence diviséee et deux différences divisées isobares ∂ σ , π σ , π σ , définies par produits réduits de différences élémentaires

   ∂ i = (a i -a i+1 ) -1 (1 + s i ) = (1 -s i ) (a i -a i+1 ) -1 π i = (1 -a i+1 /a i ) -1 (1 + s i ) = a i ∂ i π i = (1 -s i )(a i+1 /a i -1) -1 = ∂ i a i+1 = π i -1 (1) 
écrivant ∂ i , π i , π i dans le cas où σ = s i est la transposition simple qui échange a i , a i+1 . Nous allons introduire trois nouvelles bases, mais tout d'abord, il nous faut une forme quadratique8 à valeurs dans Sym(A) :

(f, g) = (f g, 1) = (1, f g) = σ∈Sn (-1) (σ) (f g) σ ∆ -1 , (2) 
où ∆ est le Vandermonde 1≤i<j≤n (a i -a j ). Cette forme quadratique peut se réduire à employer une suite de groupes S 2 , car σ∈Sn

(-1) (σ) σ ∆ -1 = ∂ ω = ∂ 1 ∂ 2 ∂ 1 ∂ 3 ∂ 2 ∂ 1 • • • , (3) 
où ω = [n, . . . , 1] est la permutation de plus grande longueur dans S n . On a besoin d'une deuxième forme quadratique :

f, g := f ga ρ ∂ ω = f gπ ω = σ∈Sn f g 1≤i<j≤n (1 -a j /a i ) -1 σ . (4) 
Les morphismes ∂ ω , π ω : Pol → Sym sont dits morphismes de Gysin en théorie des variétés de drapeaux.

Toute transformation homographique sur les variables a i permet de définir d'autres différences diviséees, que nous distinguerons par un exposant. Posons x i := 1 -a -1 i et convenons que S n permute les a i tout autant que les x i :

s i = (a i , a i+1 ) = (x i , x i+1 ) .
On vérifie aisément que

∂ x i = ∂ a i a i a i+1 = a i a i+1 ∂ a i (5) et que ωa -ρ π a i a ρ ω = -π n-i . (6) 
Par produit, on trouve

π a ω = a ρ ∂ ω = (1 -x 2 ) 1 • • • (1 -x n ) n-1 ∂ x ω (7) et ωa -ρ π a σ a ρ ω = (-1) (σ) π ωσω . (8) 
Par exemple,

π a 321 = a 2 ∂ a 2 a 1 ∂ a 1 a 2 ∂ a 2 = a 2 1 a 2 a 3 ∂ x 2 a 1 1 a 1 a 2 ∂ x 1 a 2 1 a 2 a 3 ∂ x 2 = a -1 3 ∂ x 2 a -1 2 a -1 3 ∂ x 1 ∂ x 2 = a -1 2 a -2 3 ∂ x 2 ∂ x 1 ∂ x 2 = (1-x 2 )(1-x 3 ) 2 ∂ x 321
, le calcul précédent ne nécessitant que la commutation de ∂ x i ou ∂ a i avec une fonction invariante par s i .

L'espace H(x 1 , . . . , x n ) est de dimension 1 en degré maximal n 2 . Bernstein-Gelfand-Gelfand et Demazure en ont déduit que les images, par les opérateurs ∂ x σ : σ ∈ S n , de n'importe quel élément ayant une composante non nulle en ce degré forment une base de H(x 1 , . . . , x n ), et donc une base de Pol (en tant que module sur Sym). La même propriété est vraie9 pour les opérateurs π a σ .

Avec M.P. Schützenberger, j'ai fait le choix de partir de

x ρ = x n-1 1 • • • x 0 n , i,j: i+j≤n (x i -y j ) , 1≤i<j≤n (1 -b j /a i ) ,
c'est-à-dire des "plus petites expressions" en un ou deux alphabets n'ayant pas de symétries. A partir de ces éléments, on engendre, par différences divisées, les objets qui nous intéressent présentement. Je restreins cet exposé aux propriétés liées au noyau de Cauchy, ainsi qu'aux changements de base. Il va sans dire que les idéees récentes les plus intéressantes concernant Schubert & Grothendieck interviennent en théorie des carquois [START_REF] Buch | Chern class formulas for quiver varieties[END_REF], [START_REF] Buch | Schubert polynomials and quiver varieties[END_REF].

Définition 1. Soit n ∈ N. Les polynômes de Schubert X σ (A, B), σ ∈ S n , sont X ω (A, B) = i,j: i+j≤n (a i -b j ) & X σ (A, B) = X ω (A, B) ∂ ωσ . (9) 
Les polynômes de Grothendieck G σ (A, B), et polynômes adjoints de Grothendieck H σ (A, B) sont

G ω (A, B) := i,j:i+j≤n (1 -b j a -1 i ) & H ω (A, B) := 1≤i<j≤n (1 -a j b -1 i ) . ( 10 
)
G σ (A, B) = G ω (A, B) π ωσ & H σ (A, B) = H ω (A, B) π ωσ . (11) 
Par exemple, pour S 3 , on a les polynômes de Grothendieck

(1-b 1 /a 1 )(1-b 2 /a 1 )(1-b 1 /a 2 ) π 1 π 2 (1-b 1 /a 1 )(1-b 1 /a 2 ) (1-b 1 /a 1 )(1-b 2 /a 1 ) π 2 π 1 (1-b 1 /a 1 ) 1-b 1 b 2 /a 1 a 2 π 1 π 2 1 et les polynômes adjoints (1- a 3 b 1 )(1- a 3 b 2 )(1- a 2 b 1 ) π 1 π 2 (1- a 3 b 1 )(1- a 3 b 2 ) a 2 b 1 a 3 b 2 (1- a 3 b 1 )(1- a 2 b 1 ) π 2 π 1 a 3 b 1 (1- a 2 a 3 b 1 b 2 ) a 2 a 3 b 1 b 2 (1- a 3 b 1 ) π 1 π 2 a 2 a 3 a 3 b 1 b 1 b 2
Nous exprimerons aussi les polynômes de Grothendieck en terme des variables x i := 1 -a -1 i , y j := 1 -b j , en les notant alors par la lettre G, avec x = {x 1 , . . . , x n }, y = {y 1 , . . . , y n }. Cela revient à partir de

G ω (x, y) := i,j:i+j≤n (x i + y j -x i y j ) (12) 
et utiliser les opérateurs (1-x i+1 ) ∂ x i = π a i . Les différences divisées isobares servent aussi à définir récursivement d'autres polynômes, qui ont maintenant pris le nom de polynômes clefs (key polynomials) 10 . Nous en donnerons deux versions {K v }, { K v }, v ∈ N ∞ , nous restreignant par simplicité à un seul alphabet.

Rappelons que nous identifions tout vecteur v ∈ N n à n vecteur dans N ∞ , en concaténant à droite une infinité de zéros. Réciproquement, N ∞ est l'ensemble des vecteurs d'entiers ayant un ensemble fini de composantes non nulles. Pour un vecteur v, nous notons v s i le vecteur obtenu en transposant les composantes i et i +1.

Définition 2. Pour toute partition décroissante λ,

K λ (A) = K λ (A) := a λ , (13) 
et pour tout v, tout i tel que v i > v i+1 , alors

K vs i (A) := K v (A) π a i & K vs i (A) := K v (A) π a i . (14) 
L'ensemble {K v , v ≤ ρ} est une base de Pol(A) en tant que Sym(A)module libre, la matrice de changement de base entre les polynômes de Schubert et les polynômes clefs étant triangulaire 11 .

Ces différentes bases sont des analogues non symétriques des fonctions de Schur. Le deuxième alphabet peut être mis en oeuvre pour en dégager des propiétés d'interpolation qui permettent d'exprimer tout polynôme dans l'une de ces bases. Dans le paragraphe suivant, nous mettons plutôt l'accent sur les deux produits scalaires (2) et (4).

Les bases de Schubert et Grothendieck vérifient des propriétés d'orthogonalité [START_REF] Lascoux | Symmetry and Flag manifolds, Invariant Theory[END_REF], que l'on peut formuler de multiples manières, par exemple comme la décomposition d'un noyau de Cauchy : 1≤i,j≤n ; i+j≤n

(x i + y j ) = σ∈Sn X σ (x, 0) X σω (y, 0) , (15) 
1≤i<j≤n

(1 -b j /a i ) = σ∈Sn G σ (A, 1) H ωσ (B, 1) , (16) 
que nous écrirons plutôt, en utilisant les variables x i , y j introduites plus haut, 1≤i<j≤n

(x i + y j -x i y j ) = σ∈Sn G σ (x, 0) H ωσ (y, 0) . (17) 

Relations entre les bases

Dans ce paragraphe, nous spécialisons chaque b i en 1, et donc chaque y i en 0.

La relation entre les deux bases de Grothendieck est élémentaire (lemme 2.9 de [START_REF] Lascoux | Anneau de Grothendieck de la variété de drapeaux[END_REF]), nous en répétons la preuve.

Lemme 1. Pour toute permutation σ,

(G σ a ρ ) ω = (-1) (ωσ) H ωσω . (18) 
Preuve.

G ω π a ωσ a ρ ω = G ω a ρ ωωa -ρ π a ωσ a ρ ω = (-1) (ωσ) G ω a ρ ω π σω = (-1) (ωσ) H ωσω ,
11 pour l'ordre lexicographique (lecture de droite à gauche) sur les codes. On a aussi que pour cet ordre, la base {X σ (A, B)} est triangulaire dans la base {X σ (A, 0)}, en écrivant 0 (resp. 1) pour un alphabet dont toutes les lettres sont spécialisées en 0 (resp. 1).

l'égalité = provenant de [START_REF] Demazure | Invariants symétriques entiers des groupes de Weyl et torsion[END_REF]. QED

Comme X ω = G ω , et que les opérateurs engendrant les polynômes de Grothendieck sont

π a i = (1 -x i+1 )∂ x i , au lieu de ∂ x i , il est clair que G σ = X σ + termes de degré > (σ) , (19) 
Les deux bases sont triangulairement équivalentes. Nous donnerons plus loin une interprétation combinatoire des coefficients du changement de base, mais montrons tout d'abord que la matrice de changement de base est "presque" auto-inverse.

L'orthogonalité H ωσ , G ζ = δ σ,ζ se réécrit (G σω a ρ ) ω G ζ π a ω = (-1) (σ) δ σ,ζ , i.e. G ω σω G ζ ∂ x ω = ( G ω σω , G ζ ) = (-1) (σ) δ σ,ζ car (a ρ ) ω π a ω = ∂ x ω .
En d'autres termes, la base adjointe de la base des polynômes de Grothendieck, pour le même produit scalaire que pour les polynômes de Schubert, est {± G ω σω }. Prenant un ordre total sur les permutations, tel que l'involution σ → σω soit la symétrie retournant la liste des permutations, on a donc12 : Théorème 1. L'inverse G2X de la matrice X2G de changement de base des polynômes de Grothendieck dans la base Schubert, y étant spécialisé en 0, est obtenue en prenant la symétrique de X2G par rapport à l'anti-diagonale, et en remplaçant les entrées par leur valeur absolue, i.e.

G σ = ν (-1) (νω) ( G σ , X ω νω ) X ν , (20) 
X νω = σ ( G ω σ , X νω ) G σω (21) 
Voici, pour n = 4, les matrices de changement de base G2X et X2G. Chaque ligne est le développement d'un polynôme de Grothendieck ou de Schubert.

Par exemple, la première matrice indique que

G 2143 = X 2143 -X 2341 -X 3142 + X 3241 et la seconde, que X 1432 = G 1432 + 2 G 2431 + G 3412 + G 3421 .
On remarquera que chacune de ces deux matrices est symétrique par rapport à son anti-diagonale, mis à part l'extra terme X 3241 dans l'expression de G 2143 , et son correspondant G 3412 dans l'expression de X 1423 .

Schur et Grothendieck

Les fonctions de Schur ont une interprétation géometrique, comme représentant les cycles de Schubert, i.e. les classes des sous-variétés de Schubert dans l'anneau de cohomologie d'une grassmannienne. Plus simplement, ce sont les polynômes de Schubert symétriques.

Les classes des sous-variétés de Schubert dans l'anneau de Grothendieck d'une grassmannienne sont aussi des fonctions symétriques. Bien entendu, elles peuvent s'exprimer comme combinaison linéaire de fonctions de Schur, les relations entre ces deux bases étant un cas particulier des relations données au paragraphe précédent.

En fait, dans mon premier article publié [START_REF] Lascoux | Puissances extèrieures, déterminants et cycles de Schubert[END_REF], j'ai donné une expression déterminantale de la classe du faisceau structural d'une sous-variété de Schubert d'une grassmannienne, et donc, en langage plus humain, calculé à mon insu les polynômes de Grothendieck en A,B, symétriques en A . Différentes expressions sont d'ailleurs possibles, entre autres suivant que l'on choisit les variables a i ou x i , ou en modifiant le déterminant par combinaison de lignes ou de colonnes.

Développant suivant B, on obtient l'expression des polynômes de Grothendieck dans la base Schur. La même méthode s'applique au développement d'un polynôme de Grothendieck vexillaire13 dans la base des polynômes de Schubert.

L'expression d'une fonction de Schur dans la base Grothendieck s'obtient aussi par un calcul algébrique direct, ainsi que le détaillent les lignes suivantes. Comme au paragraphe précédent, l'alphabet B est spécialisé en 1 = {1, 1, 1, . . .}, et donc y est spécialisé en 0. Au lieu de G σ , nous écrirons G[I], I étant le code de σ. Dans le reste du paragraphe, Y I désigne le polynôme de Schubert X σ (x, 0).

Soient n ∈ N, ρ = [n-1, . . . , 1, 0], ω = [n, . . . , 1], λ ∈ N n une partition décroissante, I sa retournée croissante.

Par définition,

Y I = x λ+ρ ∂ x ω , (22) 
G[I] = x λ+ρ π a ω = x λ+ρ (1-x 2 ) • • • (1-x n ) n-1 ∂ x ω . (23) 
On peut donc écrire

Y I = x λ+ρ (1-x 2 ) • • • (1-x n ) n-1 π a ω (24)
et l'on aura un développement de Y I en terme de polynômes de Grothendieck si l'on peut remplacer la fraction rationnelle par une somme de monômes dominants (i.e de degré faiblement décroissant en x 1 , x 2 , . . .). Pour cela, il faut faire appel au lemme suivant.

Lemme 2. Soient i, k ∈ N, et f symétrique en x i , x i+1 . Alors f x ρ x k i 1-x i+1 π a i = f x ρ (x k i x 0 i+1 + • • • + x k i x k i+1 ) π a i . (25) 
Preuve. On écrit en effet

x k i (1-x -1 i+1 = x k i x 0 i+1 + • • • + x k i x k i+1 ) + x k i x k+1 i+1 (1-x i+1 ) -1 .
Comme

π a i = (1-x i+1 )∂ x i et que f x ρ x k i x k+1 i+1 1-x i+1 (1-x i+1 ) est symétrique en x i , x i+1 , il est annulé par ∂ x i . QED Prenant la décomposition réduite π ω = (π n-1 • • • π 1 ) (π n-1 • • • π 2 ) • • • (π n-1
), on élimine successivement les facteurs (1-x n ), . . . , (1-x 2 ), (1-x n ), . . . , (1-x 3 ), . . . , (1-x n ) du dénominateur, obtenant en numérateur uniquement des monômes dominants x µ . Par définition, chacun de ces monômes est envoyé sur un polynôme de Grothendieck dont l'indice est le retourné de µ.

L'algorithme peut se représenter planairement. Il a eu n -1 étapes où l'on a multliplié par une puissance de x n , n -2 étapes où l'on a multliplié par une puissance de x n-1 , . . ., 1 étape où l'on a multliplié par une puissance de x 2 . En représentant planairement par le diagramme d'une partition chaque monôme, et écrivant i j pour les cases crées par la j-ième multiplication par x i , on obtient des remplissages de diagrammes gauches. Les lettres i sont inutiles, donnant uniquement le numéro de la ligne. Si on les efface, on obtient très exactement tous les tableaux gauches de forme intérieure I, respectant la condition de drapeau [0, 1, . . . , n-1], i.e. à la ligne numéro i ne peuvent apparaître que les entiers 1, 2, . . . , i-1. En résumé, on a la proposition suivante, due à Lenart14 [START_REF] Lenart | Combinatorial aspects of the K-theory of Grassmannians[END_REF].

Proposition 1. Pour toute partition croissante I ∈ N, on a le développement

Y I = J c J I G[J] , (26) 
où c J I est le nombre de tableaux de forme J/I respectant le drapeau [0, 1, . . . , n-1].

Par exemple, ACE> X2G(Y[1,3,4]); # input in x.i, X[] or Y[] G[1,3,4] + G[1,4,4] + 2 G[2,3,4] + 2 G[2,4,4] + 3 G[3,3,4] + 3 G[3,4,4] + 3 G[4,4,4] ce qui est donné par l'énumération + 1 + 2 + 1 1 + 1 2 + 2 2 + 1 + 1 1 + 2 1 + 1 1 1 + 1 2 1 + 2 2 1 + 1 1 2 1 + 1 2 2 1 + 2 2 2 1 .
Cette somme de tableaux gauches est produite par le calcul algébrique suivant, en écrivant à chaque étape un π a i π 2 π a 321 au lieu de π a 321 pour montrer quel couple de variables est choisi pour appliquer [START_REF] Lascoux | Le monoïde plaxique, Non-commutative structures in algebra and geometric combinatorics, Napoli 1978[END_REF]. 

Y 134 = x 431+210 ∂ x 321 = x 431+210 (1 -x 2 )(1 -x 3 ) 2 π a 321 x 431+210 (1 -x 2 )(1 -x 3 ) 2 π a 2 π a 321 = x 431 + x 432 + x 433 (1 -x 2 )(1 -x 3 ) x 210 π

Module de Schubert

L'algèbre plaxique sur un alphabet totalement ordonné A, que l'on supposera infini, est le quotient de l'algèbre libre par les relations plaxiques dues à Knuth [START_REF] Knuth | Permutations, matrices, and generalized Young tableaux[END_REF] :

cab ≡ acb (a ≤ b < c) , ( 27 
) bac ≡ bca (a < b ≤ c) . (28) 
que l'on peut écrire planairement :

c a b ≡ a c b (a ≤ b < c) b a c ≡ b c a (a < b ≤ c)
Définissant la fonction de Schur plaxique S λ comme la somme de tous les tableaux de forme la partition λ, on observe que le produit de deux fonctions de Schur est une somme de fonctions de Schur [START_REF] Lascoux | Le monoïde plaxique, Non-commutative structures in algebra and geometric combinatorics, Napoli 1978[END_REF][START_REF] Lascoux | The Plactic Monoid, chapître du deuxième volume de Combinatorics on Words[END_REF][START_REF] Fomin | Noncommutative Schur functions and their applications[END_REF], et donc que Sym(A) peut être considérée comme une sous-algèbre commutative de Plax(A) 15 .

Par produit tensoriel on a donc un plongement du module de Schubert 16

Schub := • • • ⊗ Sym(A 3 ) ⊗ Sym(A 2 ) ⊗ Sym(A 1 )
dans Plax(A).

Les fonctions élémentaires, qui sont des fonctions de Schur particulières, se relèvent, dans l'algèbre libre ou dans Plax, en sommes de mots strictement décroissants de degré donné, que nous continuerons à noter Λ k .

Par produit, on définit dans l'algèbre libre (et par projection dans l'algèbre plaxique) les produits ordonnés de fonction élémentaires par

P F I (A) := Λ i 1 (A n-1 ) Λ i 2 (A n-2 ) • • • Λ in (A 0 ) , n ∈ N, I = [i 1 , . . . , i n ] ≤ [n-1, . . . , 0] , (29) 
(identifiant donc P F I et P F 0...0 I ), et les produits de fonctions complètes

S F J = S jn (A n ) • • • S j 1 (A 1 ) , n ∈ N, J = [j 1 , . . . , j n ] ∈ N n , (30) 
(identifiant S F J et S F J0...0 ). Comme les P I (A) (resp. les images commutatives des S F J ) constituent une base vectorielle de Pol(A), on obtient donc un plongement de Pol(A) dans Plax(A) en envoyant chaque P I (A) sur P F I (A). On vérifie que c'est le même plongement que celui fourni par l'identification des produits de fonctions complètes.

Par exemple, a 2 2 = P 1100 -P 2000 -P 110 a pour image dans l'algèbre libre ou l'algèbre plaxique (a 1 +a 2 +a 3 )(a 1 +a 2 ) -(a 2 a 1 +a 3 a 1 +a 3 a 2 ) -(a 1 +a 2 )a 1 = a 2 a 2 + a 1 a 2 -a 2 a 1 .

On a aussi que a 2 2 = S 2 (A 2 )-S 1 (A 2 )S 1 (A 1 ), et donc, utilisant la base S F (A) :

S F 02 (A) -S F 11 (A) = a 1 a 1 +a 1 a 2 +a 2 a 2 -(a 1 +a 2 )a 1 = a 2 a 2 + a 1 a 2 -a 2 a 1 ,
ce qui est bien le même relèvement de a 2 2 . On peut réduire tout élément de Schub à une combinaison linéaire de P F I (A), ou de S F J (A), en utilisant récursivement les identités 17

Λ i (A n )Λ j (A n ) -Λ j+1 (A n )Λ i-1 (A n ) = Λ i (A n+1 )Λ j (A n ) -Λ j+1 (A n+1 )Λ i-1 (A n )
16 C'est-à-dire, le module engendré par les produits finis de fonctions symétriques en . . . , A 3 , A 2 , A 1 , en respectant l'ordre des alphabets A n := {a 1 , . . . , a n }. 17 Plus généralement, on peut transformer l'expression déterminantale d'une fonction de Schur en les fonctions complètes ou élémentaires d'un alphabet en un déterminant où les alphabets sont différents dans chaque ligne, cf. [START_REF] Lascoux | Symmetric functions and Combinatorial operators on polynomials[END_REF].

et S j (A n )S i (A n )-S i-1 (A n )S j+1 (A n ) = S j (A n )S i (A n-1 )-S i-1 (A n )S j+1 (A n-1 ) .
Cette remarque implique que le module de Schubert a pour bases linéaires

{P F I (A) : I ≤ [. . . , 2, 1, 0]} et {S F J (A)}, et est isomorphe à Pol(A).
Si l'on a perdu en grande partie la structure multiplicative de Pol(A), on a par contre préservé les opérateurs associés au groupe symétrique. Les différences divisées seront examinées dans un autre texte avec Lin Hui et Boliya Yang [START_REF] Lascoux | Lattice graphs and Schubert polynomials[END_REF], nous nous contentons ici des différences divisées isobares.

On définit récursivement l'action 18 sur Plax de π i , i ∈ N, par :

α ≥ β , a α i a β i+1 π i = a α i a β i+1 + a α-1 i a β+1 i+1 + • • • + a β i a α i+1 (31) 
a α i a β i+1 + a β i a α i+1 π i = a α i a β i+1 + a β i a α i+1 (32) 
en imposant la compatibilité suivante, pour tout n, k et tout mot u dont la restriction aux lettres a i , a i+1 est plaxiquement égal à une puissance de a i+1 a i :

c 1 • • • c n π i = d 1 • • • d n , c i , d j ∈ A, implique (c 1 • • • c k ) u (c k+1 • • • c n ) π i = (d 1 • • • d k ) u (d k+1 • • • d n ) . (33) 
On vérifie ensuite que l'image d'un S F J (A) appartient encore à Schub. Les différences divisées isobares 19 π i et π i préservent donc le module de Schubert.

Cette préservation fournit donc deux autres bases de Schub, qui relèvent les polynômes clefs [START_REF] Lascoux | Keys and standard bases, Invariant Theory and Tableaux[END_REF].

Définition 3. Pour toute partition décroissante λ, K F λ (A) = K F λ (A) = • • • a λ 3 3 a λ 2 2 a λ 1 1 , (34) 
et pour tout v, tout i tel que v i > v i+1 , alors

K F vs i (A) = K F v (A) π a i & K F vs i (A) = K F v (A) π a i . ( 35 
)
18 En fait, sur l'algèbre libre, de manière compatible avec la projection sur Plax [START_REF] Lascoux | Keys and standard bases, Invariant Theory and Tableaux[END_REF]. 19 Mais elles ne vérifient pas les relations de tresse, il n'y a donc pas de manière évidente de relever un π σ en un opérateur sur Schub si σ n'est pas une transposition simple. Cependant, l'image d'un élément "dominant"

• • • a λ3 3 a λ2 2 a λ1 1 , avec λ 1 ≥ λ 2 ≥ • • • , par un produit réduit π i • • • π j ne
dépend pas de ce produit, mais seulement de la permutation s i • • • s j (cf. [START_REF] Lascoux | Keys and standard bases, Invariant Theory and Tableaux[END_REF]). A condition de ne prendre comme points de départ que des éléments dominants, on obtient ainsi facilement un relèvement plaxique de calculs commutatifs. On a en fait [START_REF] Lascoux | The Plactic Monoid, chapître du deuxième volume de Combinatorics on Words[END_REF][START_REF] Lascoux | Double Crystal graphs, Studies in Memory of Issai Schur[END_REF][START_REF] Kashiwara | Crystal base and Littelmann refined Demazure character formula[END_REF], une structure de graphe cristallin sur l'ensemble des mots d'un degré donné, avec des opérateurs e i , f i en terme desquels on peut exprimer les π i non commutatifs et leurs produits.

Reiner et Shimozono définissent les K F

v (A) par énumération de mots majorés par les éléments d'une classe plaxique ou nilplaxique idoine [START_REF] Reiner | Key polynomials and a flagged Littlewood-Richardson rule[END_REF].

Bien entendu, c'est la base Schubert ou Grothendieck qui est la plus fondamentale. En utilisant la décomposition dans la base P I (A), on peut écrire le représentant X F σ (A) dans Schub d'un polynôme de Schubert X σ (A, 0). Nous avions, M.P. Schützenberger et moi, pensé à cette définition dès la première note sur les polynômes de Schubert, mais elle ne nous avait pas semblé devoir être gardée, faisant apparaître des signes négatifs. Cela nous a amené à utiliser plutôt les K F v (A), mais alors cela pose le problème de décrire l'ensemble des décompositions réduites d'une permutation, pour inteerpréter les coefficients c v σ . Définition 4. Soit σ ∈ S n une permutation. Soit X σ (A, 0) = v c v σ K v (A) la décomposition du polynôme de Schubert d'indice σ dans la base des polynômes clefs. Alors le polynôme de Schubert plaxique X F σ (A) est égal à

X F σ (A) = v c v σ K F v (A) . (36) 
Nous donnons dans la section suivante une définition plus directe. Le reste de ce texte se borne à utiliser différents noyaux de Cauchy, les seules opérations requises étant de développer des produits dans les algèbres plaxique ou nilplaxique.

On prendra garde que mis à part le premier et troisième cas, le noyau ne se développe pas comme un produit dans les algèbres indiquées. Il faut d'abord énumérer toutes les décompositions d'un certain diagramme avant d'effectuer des calculs algébriques.

Les calculs commutatifs liés aux polynômes Schubert ou Grothendieck utilisent fréquemment le fait que l'anneau des polynômes en n variables soit un module libre sur l'anneau des polynômes symétriques. L'image de tout Sym(A n ) dans Plax(A) est encore un anneau, mais par contre le module de Schubert n'est pas un module sur les fonctions symétriques. Déjà pour n = 2, l'on voit que Sym(A 2 ) ⊗ Sym(A 1 ) a un plongement différent de Sym(A 1 ) ⊗ Sym(A 2 ) dans Plax(A). On donnera dans un autre texte des formules de Pieri relatives au module de Schubert, qui prennent en compte ce qui reste de la multiplication.

Pol(y) ⊗ Plax(A)

Étendons les coefficients de Plax(A) aux polynômes en des variables commutatives y i commutant avec les lettres de A.

On définit, dans cet espace, un noyau de Cauchy :

K(y, A) := (y 1 + a n-1 ) (y 1 + a n-2 ) (y 2 + a n-2 ) . . . . . . (y 1 + a 1 ) (y 2 + a 1 ) • • • (y n-1 + a 1 )
en lisant par colonnes, de gauche à droite.

Théorème 2. Le noyau K(y, A) se décompose en une somme de produits de polynômes de Schubert :

K(y, A) = σ∈Sn X σ (y, 0)X F σω (A) . (37) 
Preuve. Chaque colonne du noyau s'écrit, dans Plax(A), comme une somme

i y i j Λ i (A j ) .
Le noyau appartient donc à Pol(y) ⊗ Schub(A). Le coefficient d'un polynôme de Schubert en y est par là même l'élément de Schub(A) qui relève le coefficient du même polynôme dans le cas commutatif. C'est donc un polynôme de Schubert plaxique. QED Par exemple, pour n = 4, le coefficient de X 2341 (y, 0) = y 1 y 2 y 3 est

X F 1432 = a 3 a 2 a 2 + a 3 a 2 a 1 + a 3 a 1 a 1 + a 2 a 2 a 1 + a 2 a 1 a 1 ≡ 3 2 2 + 3 1 2 + 3 1 1 + 2 1 2 + 2 1 1 . 
(on écrit 1, 2, . . . dans les tableaux, au lieu de a 1 , a 2 , . . .).

Pour obtenir un X F σ (A), il suffit donc de savoir décomposer un polynôme (commutatif) en y dans la base Schubert, c'est-à-dire, on n'a besoin que d'algèbre linéaire. # on utilise les variables x.i au lieu de y.i NoyauPolPlax:=proc(n) local res,i,j; res:=w[]; for i from 1 to n-1 do for j from 0 to n-i- 

[2,1,2]+w[3,2,2]+w[3,1,1]+w[2,1,1]+w[3,1,2] 7. Plax(B) ⊗ Plax(A) Considérons le noyau K(B, A) := (b 1 + a n-1 ) (b 1 + a n-2 ) (b 2 + a n-2 ) . . . . . . (b 1 + a 1 ) (b 2 + a 1 ) • • • (b n-1 + a 1 )
Pour développer ce noyau, il faut cette fois-ci énumérer toutes les décompositions du diagramme escalier en deux diagrammes complémentaires. On lira, comme ci-dessus, un mot en A pour le premier diagramme (une boîte à hauteur i se lit a i , mais par symétrie, il faut lire le deuxième diagramme par lignes (de droite à gauche), les lignes de bas en haut, pour obtenir un mot en B (une boîte en colonne j se lit b j ).

Par exemple, la décomposition

• • • • • , • • • • • (38) 
se lit (en gardant trace des colonnes par des parenthèses)

• a 3 a 3 • a 2 • a1 • a 1 • = (a 3 a 1 ) (a 3 a 2 ) (a 1 ) ( ) ; b 1 • • b 1 • b 3 • b 2 • b 4 = (b 4 b 2 ) (b 3 b 1 ) ( ) (b 1 ) .

Le mot de degré maximal en

A ou B est (a n-1 • • • a 1 )(a n-2 • • • a 1 ) • • • (a 1 ) ou (b n-1 • • • b 1 )(b n-2 • • • b 1 ) • • • (b 1 ) ,
et les différents mots obtenus en sont des sous-mots. En décomposant plus généralement le diagramme d'une partition (au lieu seulement de l'escalier), nous montrerons dans un autre texte que le noyau K(B, A) appartient à l'espace Schub(A) ⊗ Schub(B) , les lettres de A commutant avec les lettres de B.

Le corollaire de cette assertion est que la somme des produits de mots obtenue par développement du noyau K(B, A) est égale à :

σ∈Sn X F σ (B)X F σω (A)
dans Plax(B) × Plax(A).

On trouvera par exemple, en énumérant

a 3 a 2 b 2 b 1 b 2 b 3 , a 3 b 1 a 2 b 1 b 2 b 3 , a 3 b 1 b 2 a 1 b 2 b 3 , a 3 b 1 b 2 b 1 a 1 b 3 , b 1 a 2 b 2 a 1 b 2 b 3 , b 1 a 2 b 2 b 1 a 1 b 3 , le terme a 3 a 2 + a 3 a 1 + a 2 a 1    b 3 b 2 b 1 b 2 + b 3 b 2 b 1 b 1    , qui est bien égal à X F 2431 (B) X F 1342 (A). 8. Pol(x) ⊗ NPl(V) Soient v 1 , v 2 , .
. . , v n-1 vérifiant les relations nilplaxiques [START_REF] Lascoux | Polynômes de Schubert[END_REF][START_REF] Edelman | Balanced tableaux[END_REF] :

v 2 i = 0 , v i v i+1 v i = v i+1 v i v i+1 (39) v j v i v k = v j v k v i , v i v k v j = v k v i v j (i < j < k) (40) 
Définissons, dans l'algèbre nilplaxique engendrée par les v i , à coefficients en les variables commutatives x, le noyau nilplaxique

K(x, V) := (1 + x 1 v n-1 ) (1 + x 1 v n-2 ) (1 + x 2 v n-1 ) . . . . . . (1 + x 1 v 1 ) (1 + x 2 v 2 ) • • • (1 + x n-1 v n-1 )
On développe, là encore, par colonnes successives de gauche à droite. Chaque produit20 de colonnes donne un tableau dans NPl(V). La forme de ce tableau est obtenue par une suite d'adjonctions de bandes verticales 21 , que l'on remplit par les lettres x 1 , x 2 , . . . pour distinguer ces bandes. On obtient ainsi une paire de tableaux, un tableau nilplaxique et un tableau en x 1 , x 2 , . . . de forme transposée. Le noyau peut donc en fait être considéré comme un élément de Plax ⊗ NPl plutôt que Pol ⊗ NPl.

On aurait pu transposer le noyau pour avoir, comme dans la construction de Schensted, l'adjonction de bandes horizontales que l'on peut remplir avec x 1 , x 2 , . . ., ou bien des lettres toutes différentes, en distinguant de gauche à droite les différentes occurences de x 1 , x 2 , . . . :

x i -→ x (1) i , x (2) 
i , x

(3) i , . . . La construction de Schensted peut se réinterpréter en considérant des mots en bilettres commutatives, ou des matrices d'entiers [START_REF] Knuth | Permutations, matrices, and generalized Young tableaux[END_REF] : les deux tableaux de Schensted jouent alors un rôle symétrique et sont échangés en variant l'ordre lexicographique sur les bilettres. Cette construction n'est pas directement applicable au cas nilplaxique, car les relations nilplaxiques ne sont pas des relations de commutation 22 .

L'évaluation du noyau dans l'algèbre NilCoxeter fait apparaître comme coefficients les polynômes de Schubert en x (cf. [START_REF] Billey | Some combinatorial properties of Schubert polynomials[END_REF][START_REF] Fomin | Schubert polynomials and the NilCoxeter algebra[END_REF][START_REF] Fomin | The Yang-Baxter equation, symmetric functions and Schubert polynomials[END_REF]), et résulte des formules de récurrence données dans la note [START_REF] Lascoux | Structure de Hopf de l'anneau de cohomologie et de l'anneau de Grothendieck d'une variété de drapeaux[END_REF] (pour plus de détails, cf. [23, ch. 10]).

L'évaluation dans l'algèbre nilplaxique est plus délicate, et résulte de la considération de vice-tableaux [START_REF] Lascoux | Double Crystal graphs, Studies in Memory of Issai Schur[END_REF], mais on peut aussi l'obtenir à partir de la description des polynômes clefs par Reiner et Shimozono [START_REF] Reiner | Key polynomials and a flagged Littlewood-Richardson rule[END_REF].

L'assertion (25) de [START_REF] Lascoux | Double Crystal graphs, Studies in Memory of Issai Schur[END_REF] est que le noyau K(x, V) décompose en une somme de tableaux en V, les coefficients étant des polynômes-clefs en x (une description plus précise exige des constructions concernant les tableaux et les décompositions réduites dont nous n'avons pas besoin dans ce texte).

Pour compenser ce manque, voici ce que donne ACE :

Encore une fois, le développement doit être tel que les mots maximaux soient

(u n-1 • • • u 1 )(u n-2 • • • u 1 ) • • • (u 1 ) et (v n-1 • • • b 1 )(v n-2 • • • b 1 ) • • • (v 1 ) .
On lit donc le mot en U par colonnes, de gauche à droite, et le mot en V par diagonales successives, de l'extèrieur vers l'origine.

Ainsi, la paire de diagrammes [START_REF] Reiner | Key polynomials and a flagged Littlewood-Richardson rule[END_REF] donne maintenant les mots

• u 3 u 3 • u 2 • u1 • u 1 •
= (u 3 u 1 ) (u 3 u 2 ) (u 1 ) ( ) ;

v 4 • • v 4 • v 2 • v 3 • v 1 = (v 4 v 2 v 1 ) ( ) (v 4 v 3 ) ( ) .
Nous n'examinerons pas ici les propriétés de ces mots, mais prendront leurs images dans les deux algèbres de Hecke NilCox, IdCox, appelées NilCoxeter et IdCoxeter. Leurs générateurs ūi et vj vérifient ū2 i = ūi & v2 i = 0 . Les relations de tresse étant des quotients des relations nilplaxiques ou idplaxiques, chaque mot en v j ou u i s'évalue dans NilCox ou IdCox respectivement, en envoyant u i sur ūi , et v j sur vj .

La décomposition de l'escalier en toutes les paires de diagramme complémentaires fournit une collection de paires de mots 23 (u σ , v ζ ), σ, ζ ∈ S n , paires que l'on écrit comme des produits en convenant que les lettres de U commutent avec celles de V.

Au lieu de paire de diagrammes complémentaires dans l'escalier, on peut, comme le fait Lenart, prendre tous les remplissages possibles (dits triangles) du diagramme de la partition [1, . . . , n-1] par les nombres 0, 1. Bergeron et Billey [2] utilisent quant à lui/elle des triangles de +, ∅.

La lecture précédente associe à chaque triangle t un produit de mots u(t) v(t), et le noyau s'interprète comme un élément de IdCox(U)⊗NilCox(V) :

K(U, V) = t u(t) v(t) . (44) 
Il se trouve que Lenart [START_REF] Lenart | Noncommutative Schubert calculus and Grothendieck polynomials[END_REF] a donné une interprétation de l'ensemble des v(t) tels que u(t) = u σ . Théorème 3 (Lenart). Pour toute permutation σ ∈ S n , l'alphabet y étant spécialisé en 0, on a

G σ = t (-1) (ζω)-(σ) X ζω , (45) 

'

  

  433 ) + (x 443 + x 444 ) x 210 π a 321 , où nous avons figuré des parenthèses pour marquer les étapes.On trouvera dans Buch[START_REF] Buch | A Littlewood-Richardson rule for the K-theory of Grassmannians[END_REF] une étude plus approfondie du cas des polynômes de Grothendieck grassmanniens. cas de deux alphabets A = {a 1 , a 2 , a 3 }, B = {b 1 , b 2 }, on énumerera, au lieu de partitions, des paires du type qu'on lira, suivant des règles qui seront précisées par la suite, comme le produit des motsa 2 a 3 a 1 et b 1 b 2 b 1 .De fait la théorie des fonctions symétriques et sa version plaxique reposent essentiellement sur la formule de Cauchy, en un mot, sur la décomposition d'un rectangle. Dans les paragraphes suivants, nous montrons que similairement, la théorie des polynômes de Schubert et Grothendieck met en oeuvre la décomposition d'un diagramme escalier, et qu'introduire deux dimensions dans le calcul algébrique permet d'accéder facilement a la non-commutativité.

	• •	•	,	•	• •

a 1 π a 321 = (x 431 + x 441 ) + (x 432 + x 442 ) + (x 433 + x 443 ) (1 -x 3 ) x 210 π a 2 π a 321 = (x 431 + x 432 + x 433 ) + (x 441 + x 442 + x 443 + x 444 ) + (x 432 + x 433 ) + (x 442 + x 443 + x 444 ) + (x

Equation numbers correspond to the text in French ; equations lose their total order as well as their completeness in the English summary.

i.e., indexed by ω = [n, . . . , 1], the permutation of maximal length in S n .

or as Z[y 1 , y 2 , . . .] modules, but in that case y 1 , y 2 , . . . are commutative indeterminates.

Bernstein, Gelfand, Gelfand [3], mais on ne saurait restreindre à la géométrie le champ d'activité de ces auteurs, et Demazure[START_REF] Demazure | Invariants symétriques entiers des groupes de Weyl et torsion[END_REF].

nous ne nous intéressons ici qu'au groupe linéaire ; les autres groupes classiques donnent lieu à une théorie semblable.

C'est l'opérateur choisi par Cauchy et Jacobi pour construire une fonction symétrique à partir d'un monôme, ou plus généralement, d'un produit de fonctions d'une variable, et obtenir ainsi les fonctions de Schur avant l'heure.

Pour n = 2, l'énoncé implique que x 1 , x 1 ∂ x 1 = 1 est une base de H(x 1 , x 2 ), ainsi que {x 1 , x 1 π a 1 = 1}.Par contre, on ne peut prendre π a 1 pour l'anneau H(a 1 , a 2 ), puisque a 1 π a 1 = a 1 + a 2 ≡ 0.

Ils apparaissent dans la formule des caractères de Demazure[START_REF] Demazure | Une formule des caractères[END_REF] et décrivent les espaces de sections des fibrés inversibles amples au dessus des sous-variétés de Schubert de la variété de drapeaux.

nous montrons plus loin que les matrices X2G sont positives. Cela découle de l'interprétation combinatoire des coefficients obtenue par Lenart[START_REF] Lenart | Noncommutative Schubert calculus and Grothendieck polynomials[END_REF]. Nous avons inclus cette propriété dans l'énoncé du théorème, en écrivant des valeurs absolues dans la deuxième équation.

qui a une expression déterminantale généralisant le cas symétrique, les multifonctions de Schur remplaçant les fonctions de Schur.

qui en donne une preuve utilisant des chemins non-coupants, preuve cependant non directe puisqu'elle suppose connu le développement des polynômes de Grothendieck dans la base Schur.

C'est cette propriété, et plus particulièrement, une formule de Pieri non-commutative, qui m'a amené à rencontrer M.P. Schützenberger en 1974, et à collaborer avec lui à partir de cette date. Fomin et Greene[START_REF] Fomin | Noncommutative Schur functions and their applications[END_REF] montrent que l'on peut affaiblir les relations plaxiques, et que l'on n'a en fait besoin que d'une formule de Pieri pour le produit Λ 1 Λ 2 .

s'il est non nul, c'est-à-dire, s'il est réduit en tant que produit de transpositions simples.

vertical strip

Il existe en fait une opération de plaxification[START_REF] Reiner | Plactification[END_REF], mais elle exige justement de transformer les mots.

D écomposition des diagrammes et non-commutativit é

Couper un alphabet en deux : A → A ∪ A fait partie des opérations de base sur les fonctions symétriques. C'est le coproduit de Sym considérée comme algèbre de Hopf [START_REF] Geissinger | Hopf algebras of symmetric functions and class functions, Combinatoire et représentations du groupe symétrique[END_REF]. On peut l'interpréter aussi comme doubler les lettres : a → a , a , ou bien les munir d'un spin.

Etant donné un diagramme de boîtes dans le plan, on peut similairement le décomposer en deux diagrammes complémentaires, en décidant d'attribuer chaque boîte à l'un ou l'autre, de toute les manières possibles.

Par exemple, devient ,

en écrivant une somme au lieu d'une énumération de 2 4 termes. Introduisant des règles de lecture de chacun des diagrammes, on obtient, à partir d'un diagramme, une somme de paire d'objets qui peuvent être, selon le problème considéré, des monômes, des mots, des tableaux, des décompositions réduites, &c. Nous donnerons quatre des combinaisons possibles.

La version finie de la formule de Cauchy, dans le cas commutatif, s'interprète comme la décomposition d'une fonction de Schur rectangle en A-B en une somme de produits de fonctions de Schur en A et B d'indice complémentaire. On aura ainsi, pour exprimer S 222 (A-B) en terme de A et B, la décomposition symbolique

Dans le cas non-commutatif, il n'est pas suffisant de savoir décomposer le diagramme d'une partition en deux diagrammes de partitions. Ainsi, dans le A gauche, on a tous les tableaux (écrits comme des mots) obtenus en évaluant les mots en v i dans l'algèbre nilplaxique. A droite, les coefficients en x ont été décomposés dans la base des polynômes clefs, écrivant K[v] au lieu de K v (x).

IdCox(U) ⊗ NilCox(V)

Soient v 1 , v 2 , . . . , v n-1 vérifiant les relations nilplaxiques (39,40) et u 1 , u 2 , . . . , u n-1 vérifiant les relations idplaxiques :

somme sur tous les triangles t tels que u

La symétrie entre les bases Grothendieck et Schubert vue au théorème 1 permet alors d' énoncer :

somme sur tous les triangles t tels que

Par exemple, pour n = 4, les trois termes suivants de K(U, V)

donnent, en tenant compte du retournement des permutations

C'est donc le même modèle combinatoire qui décrit les deux développements, quoique le développement d'un polynôme de Schubert comme une somme positive de classes de faisceaux structuraux de variétés de Schubert paraisse beaucoup plus mystérieux que le développement inverse lié à une filtration de l'anneau de Grothendieck.

Il faut en fait faire intervenir des propriétés de l'ordre d'Ehresmann-Bruhat sur le groupe symétrique, que M.P. Schützenberger et moi avons formulées en terme de plongement dans le treillis distributif des matrices à signes alternants (alternating sign matrices) [START_REF] Lascoux | Treillis et bases des groupes de Coxeter[END_REF]. On trouvera dans [START_REF] Lascoux | Chern and Yang through Ice[END_REF] comment lire les polynômes de Schubert ou Grothendieck sur ces matrices.

On notera que le nombre de termes dans l'expression d'un polynôme de Schubert X σ dans la base Grothendieck est le même que dans la base des monômes : il est en effet égal au nombre de triangles t tels que v(t) = v σ . Il est donc aussi égal au nombre de termes du développement de X σ -1 . Cette propriété d'invariance par rapport à l'inversion des permutations a d'ailleurs été remarquée depuis longemps en ce qui concerne le développement des polynômes de Schubert dans la base des monômes (cf. [START_REF] Lascoux | Classes de Chern des variétés de drapeaux[END_REF]).

Nous terminerons sur un exemple pour une permutation et son inverse :