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Chapter 10

Distance, granulometry, skeleton

In this chapter, we present a series of concepts and operators based on the notion
of distance. As often with mathematical morphology, there exists more than one way
to present ideas, that are simultaneously equivalent and complementary. Here, our
problem is to present methods to characterize sets of points based on metric, geometry
and topology considerations. An important concept is that of the skeleton, which is of
fundamental importance in pattern recognition, and has many practical applications.

10.1. Skeletons

The notion of skeleton, which we will define shortly in more than one way, is
very useful in many applications. Intuitively, the skeleton of an object (of a set of
points) X is a set of “median” lines, constituted of points that are located at an equal
distance from distinct areas of the border ofX . Historically, a definition of the general
concept was proposed by Listing in 1861 [LIS 61], under the name of “cyclomatic
diagram”. This diagram results from the contraction of a closed curve in the Euclidean
plane, under topology preservation constraints. This notion is essentially a homology
concept.

A more precise and geometric definition, that of the median axis was proposed
by Blum almost exactly one hundred years later [BLU 61, BLU 67]. This definition
requires the notion of maximal ball.
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292 Mathematical Morphology

Figure 10.1. Illustration of a maximal ball in the Euclidean case. The Ball
Bmax is maximal because no other ball can contain it and simultaneously be

included in the set. In contrast, the ball B2 is not maximal.

10.1.1. Maximal balls

Maximal balls are a simple geometric concept that will allow us to introduce the
notion of skeleton of a set of points.

DEFINITION 10.1 ( Ball).– The ballBr(x) of radius r and center x is the set of points
y of Rn such that d(x, y) < r, where d is a distance (e.g. the Euclidean distance or
the city-block distance)

DEFINITION 10.2 ( Maximal ball).– A maximal ball Bmax
r of radius r for set X is a

ball included in X such that ∀s > r, if Bmax
r ⊂ Bs then Bs 6⊂ X .

This notion is illustrated on Fig 10.1. We remark that on this figure, where the set
under study exhibit a regular border, the maximal ball Bmax is tangent to the border
of the set in two distinct points. This is common but not the general case: sometime
there are more than two points, and even a non-countable number. The point C on
this figure is the center of Bmax. It is clearly located at the same distance of the two
points of Bmax that are tangent to the border of the set.

10.1.2. Firefronts

Almost simultaneously to the definition of Blum appear those of Calabi and Hart-
nett [CAL 68], as well as that of Montanari [MON 68], that use the notion of firefront.

DEFINITION 10.3 ( Firefront and quench function).– Suppose a fire is lit on the border
of X and propagates toward the interior of X at a constant rate, in an isotropic
manner. Assuming that a burnt point does not lit itself again, then the locus of points
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Figure 10.2. Illustration of the concept of firefront. Fire propagates from the
border of the object toward its interior, in an isotropic manner. The point C is

a quench point and is a center of maximal ball.

of X where several firefronts meet are called the quench points. The function that at
each quench point associates the time at which the point stopped burning is equivalent
to the distance to the border of the set. This function is called the quench function.

This definition is useful conceptually, because it forms the basis of many algorith-
mic ideas, in particular regarding skeletonization methods that use the idea of “eating
up” at the border of the object.

PROPERTY 10.4.– For a sufficiently regular compact set X 1 in the Euclidean space,
points p are centers of maximal balls of X if and only if they are quench points.

It is not immediately obvious that the two notions are equivalent, but it is not very
difficult to prove. Intuitively, the meeting point C of several firefronts is located at
the same distance of n distinct points A1, A2, . . . , An of the border of X , from where
the firefronts originate, due to the constant propagation rate. Because of the isotropic
propagation, the segments [CAi] all have the same length, are normal to the border
of X and are radii of a ball BC,Ai

, centered in C. In addition, this ball is necessarily
included in X , otherwise another distinct point from the border or X would have
extinguished C before the firefronts coming from the points AI . Finally, any ball that
would include BC,AI

and included in X must also be normal to ∂X on all points Ai.
It is therefore necessarily centered in C and of radius [CAi], therefore the ball BC,Ai

is maximal.

1. Here we admit we need to define the notion of tangent disk to the border ∂X of X. As a regularity
condition, we can for instance take that ∂X be everywhere twice differentiable.
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Conversely, let BC a maximal ball of X , centered in C. Since it is maximal, it
intersects ∂X on at least two points A andB. Indeed, if we suppose that BC does not
intersect ∂X at any point, then by definition, we can include a circle strictly in X BC ,
and so BC is not maximal. This is still true if BC intersects ∂X on a single point A,
assuming all the following curves are tangent in A: the border of X , that of BC and
that of the circle. Finally, the two firefronts issuing from A and B meet in C, and so
C is a quench point.

The definition of firefronts is useful as an illustration but not very rigorous, and
linked to the continuous domain. It may be useful to consider the properties of the
skeleton in this domain.

10.1.3. Properties of the skeleton in the continuum

With standard disclaimers, the preceding definitions apply to the continuous do-
main, in this case arbitrary dimension manifolds, equipped with a Riemannian metric.
Here we shall only describe the Rn case with the Euclidean metric. We will consider
as before the set X to be skeletonized as a compact set with a border everywhere
twice differentiable. To avoid some limit cases, we shall consider that the interior of
X , denoted X̊ is connected.

In this context, the two definitions of the skeleton given earlier are equivalent, and
exhibit the following properties:

PROPERTY 10.5.– Properties of the skeleton in the continuous domain

– Non-continuity: a continuous deformation of the set can induce non-continuous
changes in the associated skeleton. For instance, the euclidean skeleton of a disk is a
single point : its center. However, any infinitesimal change on the border of the disk
will result in at least one branch in the skeleton.

– Homotopy: the skeleton is homotopic to the original set.

– Negligibility: the Lebesgue measure of the skeleton is zero. This translates into
the property that the skeleton does not contain any neighborhood.

– Invariance by isometric transform: applying any isometric transform (i.e: a
translation or rotation) before or after the computation of the skeleton leads to the
same result.

– Links with the distance transform:
- The function that associates any point of the skeleton with its distance to

the border of the set, also known as the quench function seen earlier can be used to
reconstruct the original set perfectly. This is achieved simply by dilating each point
of the skeleton with the ball of radius equal to the value of the quench function at that
point.
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- The skeleton is centered in the object, in the sense that each point of the
skeleton is located at equal distance from at least two distinct points from the border
of the object.

- For each point belonging to the skeleton, the line of greatest ascent for the
distance transform issuing from that point is in the direction of the skeleton. We say
the upstream of every skeleton point also belongs to the skeleton.

- For every point of the skeleton, the slope of the upstream is strictly less than 1.
- The centers of maximal balls are special points of the distance transform:

they form the ridge point of this transform.

These properties are explored in detail in [MAT 88a, MAT 88c]. Many are demon-
strated in [RIV 87]. The non-continuity of the skeleton translates in practice into a
high sensitivity to noise. Just one point added to the border of an object can induce
the formation of a new branch of the skeleton. A small arbitrary change of X may
involve a change of topology and radical changes in the appearance of the skeleton.
In general we try to regulate these effects by filtering either on the shape of X , or on
the skeleton itself [VIN 91a, ATT 95].

The homotopy of the skeleton is not guaranteed by all discrete skeletonization
algorithms. Most of them however, try to ensure this important property, which is
discussed in Section 10.6. Preservation of the homotopy of the skeleton is a property
used in pattern recognition.

The fact that the skeleton is negligible in the continuum is sometimes reflected in
need to be thin, i.e., it can be erased by an erosion with the elementary ball for the
connectivity of the grid used for computing it. Some algorithms attempt to produce
a skeleton of thickness of one a pixel, which is not necessarily compatible with other
properties of the skeleton, such as centering.

10.2. Skeletons in discrete spaces

We can not calculate, much less use in a practical way, the continuous skeleton,
but we will seek, in the discrete domain, to reproduce all or part of its characteristics.

First, note that there exist skeletonization algorithms that start from the definition
of the continuum, and formulate the problem in this area. For example, we can model
a forest fire through an evolution of the contour by Partial Differential Equation (PDE),
and find the skeleton points by detecting points of shocks, which are points in space
where only a weak solution of the PDE exists, or maintaining the Center of Maximal
Balls (CMB) as anchors for the evolution of the contour [LEY 91, SID 99, TOR 03].
Ultimately, despite its theoretical elegance, these methods are still a discrete skeleton
due do the fact that the PDE used for the calculation are discretized. It is difficult to
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prove anything about the results because the solutions are only approximate. Finally
things can become even more complicated in 3D and more.

We can not reproduce in a discrete setting all the properties of continuous skele-
tons, but we may instead choose a particular compromise as needed.

We will try to calculate, for a discrete object X , an object S(X)

– homotopic to the set X;

– thin: that is to say, a minimum number of pixel or voxel large, or an object
erasable the elementary erosion;

– which contains the centers of discrete maximal balls;

– centered in the object X , that is to say that every point of S(X) should be at
equal distance, for the underlying grid, of two distinct points of the boundary of X .

The latter property is usually impossible to satisfy strictly. For example, for the
8-connectivity in the planeZ2, for a setX that consists of a 10×10 square, the centers
of maximal balls, which are within this grid squares of size e n × n with n odd, are
not located at equal distance from all points of the border of X .

In the following sections we present two approaches that allows to define the skele-
ton of a shape in a discrete space. The first approach, described in Section 10.3, relies
on the granulometry concept, familiar in mathematical morphology. It has the ad-
vantage of inducing interesting generalizations based on such family of structuring
elements non-symmetrical or not connected. The second approach involves using dis-
crete distances to define the notions of ball and maximal ball relatively to a given
object (Section 10.4). This latter approach allows the use of the exact Euclidean dis-
tance, which provides for the skeleton less sensitivity to the orientation of the object
in space, a full rotation invariance being impossible to guarantee.

10.3. Granulometric families and skeletons

10.3.1. Granulometric family

We first start by defining a way to characterize the size of a set of points. We shall
see later that this characterization is rich in consequences.

DEFINITION 10.6.– We first define the concept of a granulometric family using the
following steps:

1) we define a family of erosions {αi} called elementary by convex structuring
elements indexed by an integer i;

2) we construct the family of structuring elements κi = αi . . . α2α1;
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(a) (b) (c) (d)

Figure 10.3. Granulometric families that are homogeneous (a, b, c) and
heterogeneous (d)

3) these structuring elements define a granulometric family {κi};

4) in most cases we use a homogeneous family, that is to say when all elementary
erosions are identical: ∀i, αi = α1, implying κi = (α1)

i.

Heterogeneous families can be used to obtain a finer control over the granulometry,
in particular, they allow the use of more isotropic structuring elements. These families
are illustrated in Figure 10.3.

DEFINITION 10.7.– We have the following property, by construction: ∀j ≤ i, γκi
◦

γκj
= γκi

. We say that each κi is open by all κj for j ≤ i. This property is called
“absorption property”.

10.3.2. Applications of granulometries

Granulometric families allows to define incremental operations with desirable prop-
erties.

– We can trivially extend the definition to grayscale.

– For example, binary or greyscale granulometries can be used to characterize
texture or to obtain information about the image without segmentation.

– We give some examples of applications of granulometries in Chapter 1 and in
Chapters 13 and 19.
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10.3.3. Ultimate eroded formula

The ultimate eroded consists of specific points of the skeleton, and is defined as
follows:

DEFINITION 10.8 (Ultimate eroded).–

U(X) =
⋃

i∈N

Ui(X), where Ui(X) = εκi
(X) \ δ∞εκi

(X)[εκi+1(X)] (10.1)

Here, denotes δ∞A (B) the reconstruction of the set B in the mask A, as introduced
in Chapter 1. It uses the basic structuring element of the grid to make the operation
(see below).

The ultimate eroded has the following properties:

– Increasingness

– Anti-extensivity

– Idempotence (it is thus an opening)

– All the Ui are disjoint

– If we dilate a point of Ui by the structuring element κi, the result is called a
maximal ball.

The definition of a discrete ball is close to the one of the continuum: in the contin-
uum we have a continuous family of balls.

The process of obtaining the ultimate eroded is illustrated in Figure 10.4. Each
point of an ultimate eroded corresponds to a center of maximal ball, so convex as
defined by the family of structuring elements αi. The connected components of the
ultimate erodeds identify and possibly separate approximately convex parts of a par-
ticle [SER 82]. The ultimate eroded of each component is the last step before his
disappearance by successive erosions, hence its name.

10.3.4. Lantuéjoul formula

From its definition, it follows that the ultimate eroded is a subset of the skeleton.
We can adapt the formula of ultimate eroded to produce a different definition of the
skeleton. This formula is due to Christian Lantuéjoul [LAN 78, LAN 80b]:

DEFINITION 10.9 (Lantuéjoul formula).– The skeleton S(X) of a set X is the set of
points defined with the following formula:

S(X) =
⋃

i∈N

Si(X), where Si(X) = εκi
(X) \ γ1[εκi

(X)] (10.2)
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Erosion size 1Erosion size 1 Erosion size 1 Erosion size 1

reconstruction reconstruction reconstruction reconstruction

Residue Residue Residue Residue Sum of the residues

=

A

B

C

1 2 3 4 5

Figure 10.4. Process for obtaining the ultimate eroded. In the first row (line A), we have the
successive erosions A1,A2, etc., with a unit ball as structuring element. In the second row (line
B), the successive binary reconstructions of Ai+1 in Ai. So B2 is the reconstruction of A3 in
A2. Third row (line C) we have the residues Ci = Ai −Bi. Finally, the ultimate eroded is the
union ∪iCi .

Here, γ1 is the opening by the unit ball, that is achieved with the smallest structuring
element of the chosen granulometric family. In the continuum it may be infinitesi-
mal [MAT 92], but this is not a necessity. In the discrete framework, it is done with
α1, which is often the basic structuring element of the grid (e.g. a square 3 × 3 in
8-connectivity). This definition is inspired from the ultimate eroded, by replacing
the opening by reconstruction by the unit opening. Residuals of the unit opening of
each successive erosion are the elements of Lantuéjoul skeleton. This procedure is
illustrated in two parts, first Figure 10.5 is the illustration of the part A\γ1(A) of the
equation 10.2, which corresponds to residues of the opening. Then in Figure 10.6,
we show the union of residues for the family erosions A = εκi

(X) with X being a
rectangle. In both cases we take a disk as structuring element.

In a purely discrete setting, the Lantuéjoul formula still applies. In Figure 10.7
we have the example of the skeleton of Lantuéjoul of a simple discrete figure, taking
as unit ball the four-connected neighborhood (the center point plus its four relative
nearest neighbors). The key here is to choose a granulometric family εκi

, for example
with a constant αi.
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(a) (b) (c) (d)

Residue

(e)

Figure 10.5. A residue using the Lantuéjoul formula, i.e. the result of
A\γ1(A): (a) part of an object A, in light grey, (b) erosion by a unit ball,
(c) result of the erosion, in light gray on a dark background, (d) dilation

process by the same ball, (e) result of the opening, and its residue in black

(a) (b) (c)

Figure 10.6. The family of residues of the opening for a simple figure: a rectangle. The suc-
cessive erosions form nested rectangles, from the lightest to the darkest. The used unit ball is
shown in the top left of each rectangle. Residues are in black. In (a) we show the result with a
large unit ball for the opening. If the diameter of the ball tends to zero (b), i.e. the case of the
infinitesimal unit ball, we finally obtain the limiting case of continuous skeleton, in (c) .

(a) (b) (c)

Figure 10.7. Lantuéjoul skeleton in the discrete case: in (a) the silhouette of a
bear, in (b) its Lantuéjoul skeleton, with as unit ball the four-connected

neighborhood, in (c) the ultimate eroded with the same unit ball
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We have the important following property:

PROPERTY 10.10.– Lantuéjoul skeleton is composed of the center of the maximal
balls.

Without bringing a formal proof, we can see why this is so. The LANTUÉJOUL

residues at iteration i of the set X are the points kept by an erosion of size i and
removed through an opening of size i+ 1. They are thus the center of a ball of size i
contained in X , but no ball of size i+ 1 or higher can be centered at this point.

Let us observe that any set of points not reconstructed by the opening by recon-
struction in the formula of ultimate erodeds would also not be reconstructed with the
Lantuéjoul formula, thus the following property holds.

PROPERTY 10.11.– The ultimate eroded is a subset of the Lantuéjoul skeleton.

10.4. Discrete distances

This Section provides a brief introduction to the main discrete distances used in
image processing. For a more detailed treatment, the reader can refer to [THI 07].
From one of these distances, we deduce immediately the notions of ball and maximal
ball for a given object X , and we call medial axis of X all the centers of the maximal
balls for X .

Let us consider a set E (in the sequel we generally take E = Zn, with, in most
of the examples, n = 2), a distance on E is an application d from E × E to R+ that
satisfies:

∀x, y ∈ E, d(x, y) = d(y, x) (symmetry) (10.3)

∀x, y ∈ E, d(x, y) = 0 ⇔ x = y (separation) (10.4)

∀x, y, z ∈ E, d(x, z) ≤ d(x, y) + d(y, z) (triangular inegality) (10.5)

If we consider a subset Y of E and a point x in E, the distance from x to Y is
defined by d(x, Y ) = min{d(x, y) | y ∈ Y }.

Let X be a strict subset of E, called “object”, the distance map of X is the appli-
cation DX from E to R+ defined by:

∀x ∈ E, DX(x) = d(x,X) (10.6)



302 Mathematical Morphology

where X denotes the complement of X in E. By abuse of language, we will retain
the name “distance map” even if d does not verify the triangular inequality.

In digital image processing, we have extensively used the distances known under
the names of “city-block distance” (or “Manhattan distance”) and “chessboard dis-
tance” (in 2D), because these distances are the easiest to calculate [ROS 68]. We
denote them respectively d4 and d8, referring to the number of points which are dis-
tance 1 of a given point. They are defined by:

d4(x, y) =

n∑

i=1

|yi − xi| (10.7)

d8(x, y) =
n

sup
i=1

|yi − xi| (10.8)

The major problem of these distances is their non-rotational invariance. In practice
this means that if one performs a distance measurement on an object taken from a dig-
ital image, we can obtain significantly different results depending on the orientation of
the object during the shooting. Note that a full rotation invariance can not be achieved
when one uses discrete images, however we would like that the effects of a rotation
on the measurement of distances do not exceed the size of the discretization step.

In an attempt to overcome this defect of distances d4 and d8, the so-called chamfer
distances have been introduced and studied [MON 68, BOR 84]. To define these dis-
tances we must assume that the setE is equipped with a module structure (see [THI 07]).
We call chamfer mask a finite set of pairs consisting of a displacement vk and a weight
pk:

M = {(vk, pk) | vk ∈ E, pk ∈ R+, k ∈ {1, . . . ,m}} (10.9)

satisfying the following conditions:

i) each of the vk and of the pk is not null,

ii) M has a central symmetry, that is to say that if (v, p) is inM then (−v, p) is also
in M ,

iii) M contains a base of E, that is to say that for all x in E, there exists a m-uplet
(a1 . . . am) of positive or null integers such that

∑
1≤k≤m akvk = x.

Let x and y two points of E, we set

dM (x, y) = min{
∑

1≤k≤m

akpk | y = x+
∑

1≤k≤m

akvk, ak ∈ N} (10.10)

For example, the following mask allows to retrieve the d4 distance:
M4 = {((1, 0), 1), ((0, 1), 1), ((−1, 0), 1), ((0,−1), 1)}.
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d4 d8 dM5,7 dE

Figure 10.8. Discrete balls obtained from the d4, d8 and dM5,7 distances and
from the Euclidean distance dE

The mask
M5,7 = {((1, 0), 5), ((1, 1), 7), ((0, 1), 5), ((−1, 1), 7),
((−1, 0), 5), ((−1,−1), 7), ((0,−1), 5), ((1,−1), 7)}

is often used in 2D. By varying the number of pairs in the mask and the weights
used, it is possible to obtain more or less accurate approximations of the Euclidean
distance, which we discuss below. We can compare on Figure 10.8 the forms of the
balls obtained from different distances.

However, the lowest sensitivity to the effects of rotations can only be achieved by
using the Euclidean distance dE :

d2
E(x, y) = (y − x)2 =

n∑

i=1

(yi − xi)
2 (10.11)

dE(x, y) =
√
d2
E(x, y) (10.12)

The Euclidean squared distance d2
E , which is not a distance because it does not ver-

ify the triangukar inequality is however sufficient in many applications, and easier to
handle computationally than the Euclidean distance: indeed, it only involves integers
when the points are integer coordinates. Moreover, if we can calculate a distance map
relative to d2

E , it is easy to deduce a map of Euclidean distance.

To calculate a distance map relative to d2
E , the naive algorithm (direct application

of the definition) has a quadratic complexity in the number of points in the image,
which is very inefficient in practice. In 1980, Danielsson [DAN 80] proposes a linear
time algorithm for computing an very correct approximation for this kind of distance
map for two-dimensional images.

However, it is only relatively recently that this problem has received a truly sat-
isfactory solution: an algorithm giving an exact result, linear in computation time,
and that can be generalized whatever the dimension n of the space. This algorithm,
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published in 1996 by Hirata [HIR 96], based on earlier work [SAI 94] of Saito and
Toriwaki, and was found independently by Meijster et al. [MEI 00]. Another ap-
proach [MAU 03], based on the notion of Voronoï diagram, also provides an efficient
and accurate algorithm. In both cases, these algorithms called “separable”, compute
recursively a distance map of dimension n from maps of dimension n − 1 computed
independently of each other (line by line, plan by plan, etc.) We describe in detail the
first of these algorithms in the case n = 2.

Let us set E = [0 . . . ℓ − 1] × [0 . . . h − 1]. To compute the distance map DX

relative to a subset X of E, we have to compute, for any point x of E, the quantity

dX(x) = min{(y1 − x1)
2 + (y2 − x2)

2 | y ∈ X} (10.13)

Let us set, for any j ∈ [0 . . . h− 1]

dX1(x1, j) = min{(y1 − x1)
2 | (y1, j) ∈ X} (10.14)

We can write Eq. (10.13) under the form

dX(x) = min{dX1(x1, j) + (j − x2)
2 | 0 ≤ j < h} (10.15)

The calculation of the values of dX1 can be done independently, thanks to Eq. (10.14),
for each image line, and the dX1 are stored in a table. Then, we calculate the values
dX by Eq.(10.15) independently column by column.

To interpret Eq. (10.15) geometrically, note that when x1 is fixed, as is the case
when performing the calculations for a given column, and for a given j, the expression
dX1(x1, j) + (j − x2)

2 defines a parabola whose minimum is reached for x2 = j and
is dX1(x1, j). The calculations relative to Eq. (10.15) are therefore tantamount to
finding the lower envelope of a family of parabolas (see Figure 10.9).

The algorithm described in [HIR 96, MEI 00] consists in calculating the points of
integer abscissa of the envelope in two passes, one considering the ascending half-
parabolas and the other, the descending half-parabolas. A stack structure allows to act
on each parabola with only two operations: one of stacking, the other of unstacking,
which ensures the linearity of the algorithm. Moreover, its implementation requires
only twenty lines of code.

Following the same approach, D. Coeurjolly proposed algorithms to calculate with
an optimal complexity a subset of the exact Euclidean medial axis, sufficient to recon-
struct the original object, to make this reconstruction, and to calculate the function that
for each point x of an object X associates the set of points of X which are minimum
distance of xd [COE 03, COU 07a]. This fonction, called projection on X , plays an
essential role in defining and calculating the bisector function, which is the subject of
Section 10.5 of this chapter.
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Figure 10.9. Parabolas obtained for: j = 3, dX1(x1, j) = 4;
j = 4, dX1(x1, j) = 1; j = 5, dX1(x1, j) = 2; j = 6, dX1(x1, j) = 5.

10.5. Bisector function

We denote by E the set Rn or Zn. Let S be a non-empty subset pf E, and let
x ∈ E. The projection of x on S, denoted by ΠS(x), is the set of all points y in S that
are closest to x; more precisely, ΠS(x) = {y ∈ S, ∀z ∈ S, d(y, x) ≤ d(z, x)}.

The bisector angle of a point x in X can be defined, in the continuous framework,
as the maximal unsigned angle formed by x (as the vertex) and any two points in
the projection of x on X [MEY 79, TAL 92]. In particular, if #ΠX(x) = 1, then the
bisector angle of x is zero. The bisector function ofX is the function which associates
to each point x of X , its bisector angle in X .

This very definition of the bisector function was used in [ATT 96] in order to pro-
vide a filtering criterion for skeletons based on Voronoi diagrams in the continuous
plane. It has been also adapted to the discrete case in [TAL 92, MAL 98, COU 07a].
We give here the definition proposed in [COU 07a].

DEFINITION 10.12.– Let X ⊂ E, and let x ∈ X . The extended projection of x
on X , denoted by Πe

X
(x), is the union of the sets ΠX(y), for all y in Γ4(x) such that

d2(y,X) ≤ d2(x,X).
The (discrete) bisector angle of x in X , denoted by θX(x), is the maximal unsigned
angle between the vectors

→
xy,

→
xz, for all y, z in Πe

X
(x). In particular, if #Πe

X
(x) = 1,

then θX(x) = 0. The (discrete) bisector function of X , denoted by θX , is the function
which associates to each point x of X , its discrete bisector angle in X .

Thanks to the algorithm introduced in [COU 07a], the Voronoi mapping ΠX can
be computed in optimal time. For each object point x, we must then compute Πe

X
(x)

using the adjacency relation Γ and the distance map D2
X . The last step to obtain the

bisector angle consists in the computation of the maximum unsigned angle between
all the pairs of vectors {→

xy,
→
xz} for all y, z in Πe

X
(x). In practice, the mean cardinal
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(a) (b) (c) (d)

Figure 10.10. (a): a set X and its medial axis [RÉM 05] (in black); (b): the
bisector function θX (dark colors correspond to wide angles); (c): filtered
medial axis, based on the values of θX ; (d): detail of the non-filtered and

filtered medial axis.

(a) (b)

Figure 10.11. (a): a set X (in white); (b): the bisector function of X.

of the extended projections for a given shape is usually quite small; thus considering
all possible pairs constitutes the best choice. However, sub-quadratic algorithms exist
for this task.

In Figure 10.10, we show a set X together with its medial axis (a) and the discrete
bisector function θX (b). We illustrate the use of this function to eliminate spurious
points of the medial axis: in (c), we show the points of the medial axis (in black)
which have a bisector angle greater than 40 degrees. A zoomed detail of both axes is
shown in (d). Notice that only the bisector angles of the medial axis points need to
be computed for this application. Figure 10.11 shows the bisector function of a more
complex 2D shape.

The definition and computation of this discrete bisector function can be straight-
forwardly extended to Z3. To conclude this section, we present in Figure 10.12 an
illustration of the bisector function of a three-dimensional object (a vertebra).
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(a) (b)

(c) (d)

Figure 10.12. (a): a view of a subset X of Z3 (vertebra). (b,c,d): the bisector
function, illustrated in an “X-ray” manner: the gray level of a point

corresponds to the average of the bisector angles on a straight line parallel to
one of the three axes.

10.6. Homotopic transformations

As we saw before, the discrete medial axis is not topologically equivalent, in gen-
eral, to the original object. Some algorithms used to compute the medial axis proceed
by iterated thinning, that is, iterative removal of points from the object. The notion of
simple point permits to garantee that such a transformation preserves topology.

Intuitively, a point of an object (a subset of Zn) is called simple if it can be deleted
from this object without altering topology. This notion, pionneered by Duda, Hart,
Munson [DUD 67], Golay [GOL 69] and Rosenfeld [ROS 70], has since been the
subject of an abundant literature (see e.g., [KON 89]). In particular, local characteri-
zations of simple points have been proposed in 2D, 3D and even 4D, on which efficient
implementation of thinning procedures are based [COU 09b].

In Figure 10.13, the points (or pixels) x, y, z, t are not simple: the removal of x
from the set X of pixels would create a new connected component of the complement
X ofX ; the removal of y would merge two connected components ofX ; the removal
of z would split a connected component of X ; and the removal of t would delete
a connected component of X . On the other hand, the pixels a, b and c are simple
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Figure 10.13. Illustration of 2D simple pixels. The set X is made of the pixels
in gray, a, b, c are simple whereas x, y, z, t are not simple.

x
y

Figure 10.14. A set X of voxels. The voxels x and y are not simple.

pixels. We see that, in 2D, the notion of connectedness (for bothX andX) suffices to
characterize simple pixels.

Things are more difficult in 3D. Consider the example of the set X depicted in
Figure 10.14, removing the voxel x or the voxel y from X would not split, merge,
create or suppress any component of X nor any component of X . However neither x
nor y is simple, for the deletion of x (resp. y) causes the suppression (resp. creation)
of a tunnel. The notion of tunnel can be formalized thanks to the fundamental group
introduced by Poincaré. This group is a topological invariant that is preserved by any
continuous deformation.

However, it is still possible to characterize 3D simple points by local conditions
that are only based on connectedness (see [BER 94a, BER 94b]), we give one such
characterization in the sequel. The fact that a global notion, the one of simple point,
can be characterized by a local test, is remarkable. It is even more surprising that con-
nectedness alone suffices to provide such a local characterization in 3D. However, this
is no longer true in 4D and higher dimensions. In [COU 09b], a definition of simple
point based on the collapse operation is presented, and new local characterizations in
2D, 3D and 4D spaces are introduced. This article also analyzes the difficulties that
make it impossible to extend this kind of characterizations to dimension 5 and higher.



Distance, granulometry, skeleton 309

10.6.1. Neighborhoods, connectedness

We recall here basic definitions of digital topology for binary images [KON 89].

A point x ∈ Zd (d = 2, 3) is defined by (x1, . . . , xd) with xi ∈ Z.

We consider the neighborhood relations Γ4 and Γ8 defined, for any point x ∈ Z2,
by:
Γ4(x) = {y ∈ Z2 | |y1 − x1| + |y2 − x2| ≤ 1},
Γ8(x) = {y ∈ Z2 | max(|y1 − x1|, |y2 − x2|) ≤ 1},
and the neighborhood relations Γ6, and Γ26 and Γ18 defined, for any point x ∈ Z3,
by:
Γ6(x) = {y ∈ Z3 | |y1 − x1| + |y2 − x2| + |y3 − x3| ≤ 1},
Γ26(x) = {y ∈ Z3 | max(|y1 − x1|, |y2 − x2|, |y3 − x3|) ≤ 1},
Γ18(x) = {y ∈ Γ26(x) | |y1 − x1| + |y2 − x2| + |y3 − x3| ≤ 2}.

In the sequel, we denote by n a number such that n ∈ {4, 8, 6, 18, 26}. We define
Γ∗
n(x) = Γn(x) \ {x}. The point y ∈ E said to be n-adjacent to the point x ∈ E if
y ∈ Γ∗

n(x). An n-path is a sequence of points x0 . . . xk such that xi is n-adjacent to
xi−1 for i = 1 . . . k.

Let X ⊆ E, we say that two points x, y of X are n-connected in X if there
exists a n-path in X between these two points. This defines an equivalence relation.
The equivalence classes of this relation are the n-connected components of X . A
subset X of E is said to be n-connected if it is composed of exactly one n-connected
component.

The set of all n-connected components of X is denoted by Cn(X). A subset Y
of E is said to be n-adjacent to a point x ∈ E if there exists a point y ∈ Y that is
n-adjacent to x. The set of n-connected components of X that are n-adjacent to x is
denoted by Cxn(X). Remark that Cn(X) andCxn(X) are sets of subsets of X , not sets
of points. Furthermore, if S is a set, we denote by #S the number of its elements.

10.6.2. Connectivity numbers and simple points

Let us first define connectivity numbers in the 2D case. We see later that the 3D
case is more complex.
LetX ⊆ Z2 and x ∈ Z2. The connectivity number Tn(x,X) is defined by: Tn(x,X) =
#Cxn [Γ∗

8(x) ∩X ]

If we use the n-connectivity for X , then we must use the n-connectivity for X ,
for example in 2D the 4-connectivity for X is associated with the 8-connectivity for
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X (and vice-versa), and in 3D the 6-connectivity for X is associated with the 18- or
the 26-connectivity for X (and vice-versa). This is necessary to have a correspon-
dence between the topological characteristics of X and those of X (see [KON 89]).
Furthermore, it is sometimes necessary, in 3D, to make a distinction between the 6-
connectivity that is associated with the 18-connectivity, and the 6-connectivity that
is associated with the 26-connectivity. In order to make this distinction explicit,
we use the symbol 6+ to denote the 6-connectivity that is associated with the 18-
connectivity (see [BER 94a]). To summarize, we have the following possibilities
in 2D: (n, n) = (4, 8) or (8, 4); and in 3D: (n, n) = (6, 26), (26, 6), (6+, 18) or
(18, 6+).

In the 3D case, the definition of connectivity numbers is based on the notion of
geodesic neighborhood. Let X ⊆ Z3 and x ∈ Z3, the geodesic n-neighborhood of x
in X of order k is the set Γkn(x,X) recursively defined by:
Γ1
n(x,X) = Γ∗

n(x) ∩X , and
Γkn(x,X) = ∪{Γn(y) ∩ Γ∗

26(x) ∩X, y ∈ Γk−1
n (x,X)}.

In other terms, Γkn(x,X) is the set composed of points y of Γ∗
26(x)∩X such that there

exists a n-path π from x to y, the length of which is less than or equal to k, under the
condition that all points of π but x must belong to Γ∗

26(x) ∩ X . The geodesic neigh-
borhoods Gn(x,X) are defined by: G6(x,X) = Γ2

6(x,X), G6+(x,X) = Γ3
6(x,X),

G18(x,X) = Γ2
18(x,X), et G26(x,X) = Γ1

26(x,X).
We can now give a definition of connectivity numbers in 3D [MAL 93, BER 94a,
BER 94b].

DEFINITION 10.13.– Let X ⊆ Z3 and x ∈ Z3. The connectivity number Tn(x,X)
is defined by: Tn(x,X) = #Cn[Gn(x,X)]

Notice that a formulation in terms of geodesic neighborhoods also permits to re-
trieve the definition of connectivity numbers in 2D.

If we use the n-connectivity for X and the n-connectivity for X , the connectivity
numbers Tn(x,X) and Tn(x,X) describe the topological characteristics of point x
in the object X . In particular, connectivity numbers can be used to detect whether a
point is simple or not [BER 94a, BER 94b], in 2D and in 3D:

PROPERTY 10.14.– Let X ⊆ E and x ∈ X . The point x is n-simple if and only if
Tn(x,X) = 1 and Tn(x,X) = 1.

To give an intuitive interpretation of this caracterization, a point is simple if and
only if there is in its neighborhood exactly one “object”component and one “back-
ground”component.
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10.6.3. Homotopic thinning

It remains to decide in which order simple points will be deleted. We present, with
Algorithm 1, a thinning strategy which consists of controlling this order based on a
priority function. This function associates, to each point x of X , an integer or real
number P (x), which represents the priority of point x. The points of X having the
lowest values of P will be considered first. Some points x can be given the priority
P (x) = +∞, meaning that such points cannot be deleted; in other words, these
points with infinite priority are anchor points (see [DAV 81, VIN 91a, PUD 98]) for
the thinnning.

Algorithm 1: Guided thinning

Data: X ⊆ E,P a function from X to Z or R
Result: X
repeat

Let x be an element of X such that x is simple for X and P (x) is minimal ;
X = X \ {x} ;

until stability;

We will discuss later on (sec. 10.6.5) some specific problems that occur whenever
the priority function is an Euclidean distance map.

10.6.4. Sequential and parallel thinning algorithms

Homotopic transforms discussed in this chapter are sequential by nature, in the
sense that after each simple point deletion, this modification must be taken into ac-
count when testing the simplicity of other points. In other words, preserving topology
is not guaranteed if one deletes several simple points simultaneously: for example
in Figure 10.13, deleting both simple points a and a′ would merge two connected
components of the background.

Consequently, some arbitrary choices must sometimes be done with respect to the
order in which simple points are treated. This may lead to different results for a same
object. On the other hand, parallel thinning strategies, which are not covered by this
chapter, produce skeletons that are uniquely defined.

Nevertheless, general conditions that permit to guarantee topology preservation
while simultaneously deleting several simple points are much more difficult to estab-
lish than single simple point characterizations. Numerous attempts have been done
during the last 40 years to solve this problem [COU 06a]. The notion of minimal
non-simple set, introduced by C. Ronse [RON 88], allows for testing whether a set of
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Figure 10.15. Illustration of the geometric distorsion of a skeleton. (a): A part of an object
(in gray), skeleton points found by Algorithm 1 with the Euclidean distance map as priority
function (circles), steepest descent path with regard to the same map (squares). (b): One step
of thinning (see text). Numbers indicate the distance map values. .

simple points can be removed while preserving topology. The notion of P-simple point
proposed in [BER 95] has the same goal and constitutes fulthermore a general algo-
rithmic scheme for designing 3D thinning algorithms, such that topology preservation
is guaranteed by construction. Recently, a general framework for the study of parallel
thinning in arbitrary dimension has been developped by G. Bertrand [BER 07a]. This
framework, centered on the notion of critical kernel, generalizes both the one of min-
imal non-simple sets and the one pf P-simple points. The interested reader can find a
complete review on critical kernels on the site http://www.esiee.fr/~info/ck .

10.6.5. Skeleton based on the Euclidean distance

The skeletonization methods which are based on homotopic thinnings, in the sense
of section 10.6.3, provide a formal guarantee that the skeleton and the original object
have the same topology. The simplest such method consists in computing an ultimate
homotopic skeleton of the object X constrained by the medial axis of X , that is,
removing iteratively simple points from X which do not belong to MA(X), taking
the distance map as a priority function in order to select first the points which are
closest to the background. This can be done using the guided thinning procedure
described previously (Algorithm 1), with P = DX and Y = MA(X).

The drawback of this method has been well analyzed in [TAL 92]. Roughly speak-
ing the method does not guarantee that points of the homotopic skeleton outside the
medial axis are “well centered” in the object. In Figure 10.15, we give an example
that illustrates the kind of problem that may occur.

In Figure 10.15b, numbers correspond to squared Euclidean distances from each
object point to the nearest background point. The circled point with value 1, is one
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of the points that belong to the constraint set Y (see Algorithm 1), that is, a point of
the medial axis. Assume that all points with value less to or equal to 8 have been
treated by the algorithm. At this step, points in gray are still in the object X , as
well as the two circled points (the point valued 1 for it belongs to Y , and the one
valued 4 for it has been detected as non-simple when it has been examined). All other
points are outside of X . Clearly, the point v valued 8, adjacent to z valued 4, will
be selected before its neighbor w valued 9, and since it will be simple at this stage, it
will be removed from X . This behaviour will be reproduced during subsequent steps,
creating a diagonal skeleton branch. This contradicts a property of skeleton in the
continuous space, that asserts that such a branch should follow a steepest descent path
on the distance map. To check this, let us compute the slopes of segments zv and zw in
our example configuration: (

√
8−

√
4)/1 ≈ 0.83, and (

√
9−

√
4)/

√
2 ≈ 0.71. Thus,

point v should be kept in the skeleton rather than point w, following this criterion .

To solve this problem, a strategy proposed in [COU 07a] consists of defining a pri-
ority function that takes into account both the distance map and an auxiliary function
defined in the neighborhood of each dynamically detected skeleton point. Let x be
such a point, to any neighbor y of x that is still in X but not in Y , we associate the
value py = DX(x) + (DX(y) − DX(x))/d(x, y), with DX(x) =

√
D2
X(x). The

new priority function, for any point y, is defined by min(py, DX(y)). We see that
(DX(y) −DX(x))/d(x, y) is the slope of xy, thus the neighbors of x will be treated
in increasing order of slope, since the value py is always less than or equal to the value
DX(y) (for all x, y in Z2 or Z3 with x 6= y, we have d(x, y) ≥ 1).

For example, in the previous case, we have DX(v) =
√

8 ≈ 2.83, DX(w) = 3,
pv =

√
4 + (

√
8 −

√
4)/1 =

√
8 and pw =

√
4 + (

√
9 −

√
4)/

√
2 ≈ 2.71; thus the

point w will be selected before v with this strategy. The algorithm is described below.

The time complexity of this algorithm depends on the data structure used to rep-
resent the sets Q and R. Specifically, this data structure must allow for efficiently
choosing (p, x) at the beginning of the “while”loop, and also for fast insertion of new
couples. If one uses e.g., a balanced binary tree [COR 09], the overall complexity of
the algorithm is O(n log n), where n is the number of points in the image.

10.7. Conclusion

In this chapter we introduced the concepts of skeleton, medial axis, distance, gran-
ulometry and thinning, and some links between these concepts.

The definition of a series of dilations of a point by a family of structuring elements
defines a granulometric family, by analogy with screening in geology. This family
produces a notion of distance, and an operator: the distance function. The latter, in
addition to its intrisic interest, can be used to define some characteristic points of a
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Algorithm 2: Euclidean skeleton
Data: X ⊆ E,DX the Euclidean distance map of X , Y ⊆ X
Result: Z
Z =X ;
Q ={(DX(x), x); where x is an arbitrary point of X \ Y };
R ={(px, x); where x is an arbitrary point of X \ Y adjacent to Y , and where
px = min{DX(z) + (DX(x) −DX(z))/d(x, z), z ∈ Y } };
while Q 6= ∅ or R 6= ∅ do

choose (p, x) in Q ∪R such that p be minimal;
Q =Q \ {(p, x)}; R =R \ {(p, x)};
if x ∈ Z \ Y then

if x is simple for Z then

Z =Z \ {x};

else

Y =Y ∪ {x};
R =R ∪ {(py, y); with y ∈ Γ(x) ∩ (Z \ Y ) and with
py = DX(x) + (DX(y) −DX(x))/d(x, y)};

binary form, the centers of maximal balls. We showed how to compute these centers
in continuous and discrete spaces, by the means of a granulometric family.

To retrieve certain desirable properties of the continuous skeleton in the discrete
space, in particular the conservation of topological characteristics, we have been led to
introduce the concepts of simple point and homotopic thinning. These concepts apply
in dimensions greater than 2, in grayscale images and also in association to discrete
Euclidean metric.

With certain precautions, it is now possible do define a skeleton with good robust-
ness properties and rotation invariance. Studying the stability of skeletons is still a sub-
ject of active research, with contributions from different disciplines, particular from
computational geometry. Attali, Boissonnat and Edelsbrunner identify in [ATT 09]
prominent contributions in this area. These include in particular the λ-medial axis
introduced by Chazal and Lieutier in [CHA 05], having a continuity property limited
to certain values of the parameter λ, which has recently been adapted to the discrete
framework in [CHA 09].


