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Chapter 1

The Phase Only Transform for unsupervised surface defect

detection

D. Aiger and H. Talbot

Université Paris-Est, Laboratoire d’Informatique Gaspard-Monge, Equipe

A3SI

ESIEE Paris, 2 Boulevard Blaise-Pascal, 93162 Noisy-le-Grand Cedex

France

{d.aiger,h.talbot}@esiee.fr

We present a simple, fast, and effective method for detecting defects on
textured surfaces. Our method is unsupervised and contains no learn-
ing stage or information on the texture being inspected. The method
is based on the Phase Only Transform (PHOT) which correspond to
the Discrete Fourier Transform (DFT), normalized by the magnitude.
The PHOT removes any regularities, at arbitrary scales, from the image
while preserving only irregular patterns considered to represent defects.
The localization is obtained by the inverse transform followed by adap-
tive thresholding using a simple standard statistical method. The main
computational requirement is thus to apply the DFT on the input image.
The method is also easy to implement in a few lines of code. Despite its
simplicity, the methods is shown to be effective and generic as tested on
various inputs, requiring only one parameter for sensitivity. We provide
theoretical justification based on a simple model and show results on
various kinds of patterns. We also discuss some limitations.

1.1. Introduction

Vision-based inspection of surfaces has many real-world applications, for

instance industrial wood, steel, ceramic and silicon wafers, fruits, aircraft

surfaces and many more. It is in high demand in industry in order to

replace the subjective and repetitive process of manual inspection. A com-

prehensive survey on recent developments in vision based surface inspection

using image processing techniques, particularly those that are based on tex-

ture analysis methods, was proposed by Xie.1 According to this work, one

1
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can divide the methods for surface defect detection into four categories,

namely: statistical approaches, structural approaches, filter-based meth-

ods, and model-based approaches. A significant differentiating factor in vi-

sual inspection approaches is that of supervised classification versus novelty

detection. For applications where both normal and defective samples can

be easily obtained, supervised classification based approaches are usually

favored. However, when defects are unpredictable and defective samples

are unavailable, novelty detection is more desirable.

Texture is one of the most important characteristics in identifying de-

fects or flaws. Much effort was invested in extracting useful texture fea-

tures.2–4 Statistical texture analysis methods investigate the spatial distri-

bution of pixel values. In structural approaches, texture is characterized by

primitives or texture elements, and the spatial arrangement of these primi-

tives.5 The goals of structural approaches are to extract texture primitives,

and to model the spatial arrangement. Filter based approaches share a com-

mon characteristic, which is to apply filter banks on the image and com-

pute the energy of the filter responses. These methods can be divided into

spatial domain, frequency domain, and joint spatial/spatial-frequency do-

main techniques. Model based methods include, among many others, frac-

tal models,6 autoregressive models,7 random field models,8 and the texem

model.9

In a novelty detection task, the task is to identify whether an input

pattern is an expected part of the data or unknown. As for defect detec-

tion, it involves assigning a normal or abnormal label to a pattern (e.g. a

surface or a pixel). In contrast to supervised classification, novelty detec-

tion only needs the normal samples for training purposes and usually uses

a distance measure and a threshold for decision making. Recently, Markou

and Singh10,11 gave a detailed review of novelty detection approaches, us-

ing statistical and neural network based approaches. Statistical parametric

approaches are commonly used in visual inspection.12–15 A fundamental

assumption is that the data distribution is Gaussian in nature, thus, it can

be easily statistically modeled by means and covariances.

Working in the frequency domain is closely related to our contribution.

Many methods apply filtering in the frequency domain, particularly when

no straightforward kernel can be found in the spatial domain. The image

is transformed into the Fourier domain, multiplied with the filter func-

tion and then re-transformed into the spatial domain. Coggins and Jain16

used ring filters and orientation filters for feature extraction. D’Astous and

Jernigan17 used peak features, such as strength and area, and power dis-
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tribution features, such as power spectrum eigenvalues and circularity, to

discriminate textures. Tsai and Heish18 used the Fourier transform (FT)

to reconstruct textile images for defect detection. Chan and Pang19 ex-

tracted harmonic peaks from horizontal and vertical power spectrum slices.

The phase of the DFT was used for matching images by the Phase Only

Correlation (POC).20 It was also used for image coding.21

The main focus of this chapter is to develop an unsupervised method for

defect detection. We concentrated on a method that does not require any

prior information or learning stage. This solves the practical problem of

collecting usable examples of good patterns and defective ones. In addition,

in many inspection applications, the pattern of the inspected surface is

not known a-priori. As we work in the frequency domain, we have the

advantages of a global view, solving the problems of selecting good kernel

sizes. On the other hand, our method localizes defects without the need for

any post processing. The idea is very simple: instead of trying to detect

peaks in the Fourier transform of the input images, it simply removes all

regularities in the image of various sizes and patterns at once by normalizing

the FT of the input image by its magnitude. Through this operation, only

the phase information remains while all regular patterns at all scales are

removed. The localization of the defects is achieved by transforming back

to the spatial domain. We show that since no analysis is being performed

in the Fourier domain, removing regularities by normalizing the magnitude

serves as a multiscale regularity removal, therefore, random textures are

effectively removed as well.

1.2. The importance of the phase

In their important paper, Oppenheim and Lim investigated the importance

of phase in signals.22 We review here some of their insights. In the Fourier

representation of signals, spectral magnitude and phase tend to play dif-

ferent roles and in some situations, many of the important features of a

signal are preserved even if only the phase is retained. This is not true

in general for the spectral magnitude. This observation about phase has

been made in a number of different contexts and applications. In general,

reconstructing an object from the magnitude only is not of much value in

representing the original object, whereas reconstructions from the phase

only have many important features in common with the original objects.

A phase-only image has Fourier transform phase equal to that of the orig-

inal image and a FT magnitude of unity. Figure 1.1 show reconstruction
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Fig. 1.1. The Phase only inverse Vs. Magnitude Only inverse - left: original, middle:

magnitude only, right: phase only

of Lenna with magnitude only and phase only. It shows that although the

rebuilt image contains the same frequency terms as the original input, the

magnitude-only transform bears no resemblance to the original image, it

does not allow recognition due to the missing phase. Conversely, a phase-

only reconstruction shows a picture similar to the shape of the original

Lenna. It appears that the phase contains significant information, espe-

cially regarding the edge location. In addition, the phase only transform

removes periodicity and regularity so it does more than just preserving

the edges. In Section 1.3.2 we model the problem, give some theoretical

justifications and explain why it works.

1.3. The new method

1.3.1. Applying the Phase Only Transform

In the context of this chapter, our goal is not to reconstruct a signal from

its FT. In fact, we wish to do almost the opposite, namely, to filter out most

patterns. We wish to eliminate some parts of the signal while preserving

others. The above discussion provides a way to do it for our application of

defect detection in images. Our purpose is to eliminate the so-called regular

patterns while preserving correspondingly “rare” events in the image which

can be considered to be defects. The fact that phase-only reconstruction

preserves much of the correlation between signals would suggest that the

location of events tends to be preserved. If we assume that in our applica-

tion, a non defective region contains non-localized structures (e.g. regular

patterns or homogeneous regions) and that a defect is well localized, it is

reasonable to use the phase to filter all non localized patterns (see Section

1.3.2).

Our algorithm is very simple and can be implemented in a few lines

of code. The first step is to apply the DFT on the input (real) image.
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The discrete two-dimensional Fourier transform of an image array F (u, v)

is defined in series form as:

F(u, v) =
1

N

N−1
∑

j=0

N−1
∑

k=0

F (j, k) exp{−2πi

N
(uj + vk)}

where i =
√
−1. The indices (u, v) are called the spatial frequencies

of the transformation. The result is a matrix of complex numbers in the

frequency domain,

F(u, v) = R(u, v) + iI(u, v)

or in magnitude and phase-angle form,

F(u, v) = M(u, v) exp{iΦ(u, v)}
where

M(u, v) =
√

R2(u, v) + I2(u, v)

and

Φ(u, v) = arctan{ I(u, v)

R(u, v)
}

By normalizing every complex number by dividing both the real and

imaginary parts by M(u, v) we essentially remove all regular patterns at

every scales at once. Note that we don’t have to analyze the Fourier im-

age. This normalization works on all frequencies at once and eliminates

the regularities. The algorithm of the first stage can now be written (algo-

rithm 1.1):

Algorithm 1.1 The Phase Only Transform

Require: input image I(u, v)

compute F(u, v){I}
for all (u,v) do

F(u, v) = F(u,v)
M(u,v)

end for

O(u, v) = F−1(u, v)
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The resulted image is O(u, v). The spectral magnitude of images tends

to fall off at high frequencies, the phase-only signal will experience a high-

frequency emphasis which will accentuate narrow events without modifying

their position. It is reasonable to identify 1
M(u,v) as generally emphasizing

high frequencies over low frequencies.

1.3.2. Theoretical justification

We justify here why the Phase-Only Transform (PHOT) works. For this

we express the fact that for texture, the range of value taken by the phase

is small compared to that for a defect in the texture.

1.3.2.1. Phase of regular texture

We limit ourselves to 1-D, as the discussion extends readily to n-D due

to the FT separability, and we carry out the discussion in the continuous

domain for simplicity. We need some definitions to start:

Definition 1 (projection). Let φ be a function defined over a 1-D do-

main D. The projection p of φ is the indicator function of the domain of

φ(y) for all y.

pD[φ(x)](y) =

{

1 if there is an x over D such that φ(x) − y = 0

0 otherwise.

We note that if D is bounded and φ takes discrete values, i.e. if φ is zero al-

most everywhere, then pD[φ(x)] is also zero almost everywhere. Conversely,

if φ is monotonic and non-constant, then it Lebesgue measure is non-zero.

Definition 2 (Phase integral excursion). The integral excursion E of

the phase of a real signal is a measure of the range of values that the phase

of its FT actually takes. More precisely, let S(x) be a real signal. Let

F [S](ω) =

∫ +∞

−∞

S(x)e−iωxdx = aS(ω)eiφS(ω)

be its FT with ω real belonging to [0, 2π]. Assuming φS(x), the phase of S,

to be either monotonic or discrete on that domain, we define

E [S] =

∫ 2π

0

pD[φ(x)](y)dy. (1.1)

Our phase integral excursion is a measure of the density of the values

of φS(ω) projected onto the y-axis. We limit ourselves to phases that are
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monotonic or discrete as this is sufficient for our discussion, and as in these

cases, we can define pD implicitly. To continue, we need a simple definition

of texture.

Definition 3 (regular texture). We defined a regular texture as a signal

representable by a convergent Fourier sum:

S(x) =
+N
∑

n=−N

cn exp(inx), N ≥ 0. (1.2)

We know that Fourier sums can represent any square-integrable

bounded periodic signal with arbitrary precision almost everywhere, which

is what we require to represent regular textures. We now have then the

following theorem:

Theorem 1 (Phase integral excursion of a regular texture).

The phase integral excursion of any regular texture over a finite domain

is zero.

Proof: The FT of S reduces to a superposition of a finite number of

Dirac peaks, therefore φ(x ∈ D) is zero almost everywhere, and so is its

projection. Finally, so is its phase integral excursion, as the integral of a

function with only countably non-zero values is zero. ¤

1.3.2.2. Phase of a defect

A defect in a texture can be defined as an abrupt change in its regularity.

To study this we model it by a box function.

Definition 4 (Random box function). A random box function H(a, b)

is a function which has the following form:

H(a, b)[x] =







0 ifx < a

1 ifa ≤ x ≤ b

0 ifx > b

We use the following well-known properties of the Fourier transform to

derive the expression of the FT of H(a, b).

• Translation invariance : F [f(x − x0)](ω) = e−ix0ωF [f(x)](ω).

• Scale invariance : F [f(ax)](ω) = 1
|a|F [f(x)](ω

a
).

• The expression of the centered box function : H(−1
2 , 1

2 ) = sinc(ω
2 )
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The expression of the FT of the random box function is therefore :

F [H(a, b)](ω) = e−i( a+b

2
)ω

[

sinc(
ω

2(b − a)
)

]

. (1.3)

The phase of this FT is simply

φH(a,b)[F [H(a, b)]](ω) = −(
a + b

2
)ω. (1.4)

We now have the following theorem :

Theorem 2 (Phase excursion of the random box function). The

phase excursion of the random box function is almost surely non-zero.

Proof: Ignoring phase wraparound over 2π, If a + b 6= 0, then φH(a,b)

is monotonic and non constant, and so, even including phase wraparound,

pD[φ(x)] is 1 on a measurable set. Its integral over the range of φ is therefore

non-zero, and so is the integral phase excursion. We note that since a and

b are random, the probability of a + b = 0 is zero. ¤

Let us assume a regular texture on the one hand, and a regular texture

with a defect in the other. Theorem 1 tells us that the former has a FT

with a phase composed of only a few different values. The latter might be

viewed as a superposition of a regular texture and a random box function

with random values for a and b. Theorem 2 tells us that its FT features a

phase composed of uncountably infinite different values.

We now show that the phase-only transform can readily distinguish

between these two cases even in the discrete setting.

1.3.3. 1D examples

In this section we show a few examples on 1D signals and give some insights

about the behavior of the Phase Only Transform. We refer to the PHOT

here, as the signal that is transformed back to the spatial domain, after

being normalized by the magnitude. As already shown by the 2D example,

most of the information on edges and sharp peaks is contained in the phase.

If a signal contains a single peak or edge and a flat region, the phase part

of the FFT must be significant, because the sum of many trigonometric

functions is needed to construct the flat part. On the other hand, if a

signal is constructed of a sum of pure sine or cosine functions of various

frequencies with zero or little phase content, the PHOT will be almost zero.

This is true not only for signals that are periodic within a finite support.
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Figure 1.2 shows such a signal. In Figure 1.3 we see a sharp peak that

requires large phase content. We conclude that signals (not necessarily

periodic) that have a small phase content would yield a smooth PHOT,

while those with large phase content representing a peak or an edge yield

a large peak in the PHOT which corresponds to the location of the peak

or edge in the input signal. Assuming that a defected signal is composed

of sum of sine function of various frequencies and a peak, the result of the

PHOT is a collection of peaks in the spatial domain that are localized in

the original defect location while the part that is corresponding to the first

term is eliminated. Figure 1.4 shows a small defect (peak), composed with

a sine (or cosine) wave. In Figure 1.5 we show another example on a signal

that appears non-periodic due to the limited domain, yet, is composed from

a sum of trigonometric functions which are all removed, while the defect

remains.

Our model of an input signal is thus composed of two terms, a non-

defected term, A(x) which is a sum of sine or cosine functions with relatively

small phase content, and a defect term, B(x) which is assumed to be a peak

or step edge, thus contains large phase content:

S(x) = A(x) + B(x)

Since the PHOT eliminates the sum of (low phase content) sines, we

are left mainly with B(x), as expected from section 1.3.2. The inverse

transform then yields the localization of the defect in the spatial domain.

1.3.4. Thresholding using Mahalanobis distance

In order to be able to use a totally unsupervised method with no learning

component, we have to assume that for each input image the majority of

the image pixels are intact (see Section 1.4). In this case, we can use simple

statistics. We use the result of the PHOT as a probability map of a pixel

being a defect. As commonly used, we assume a Gaussian distribution and

use the Mahalanobis distance. We compute the mean and variance of the

distribution from the image obtained by the PHOT. Since we normalize

each of the FFT basis when we reconstruct the PHOT image, the global

mean and standard deviation of the image are now both 1/N where N is

the number of pixels. However, since the noise can be significant, we first

smooth the PHOT image by a Gaussian filter and only then compute the

mean and variance (we have used Gaussian of σ = 3.0). The user provides
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Fig. 1.2. A signal with little phase content - the PHOT is almost flat. Top: signal and

its PHOT. Middle: magnitude of frequencies. Bottom: phase of frequencies.

a value in sense of Mahalanobis distance. We threshold the PHOT result

such that every pixel with a distance larger than this value is considered

as a defected pixel. Figure 1.6 shows an input image, the PHOT result

interpreted as Mahalanobis distance from the mean and the thresholding

result using a Mahalanobis distance of 4.0. Of course more sophisticated

statistical methods can be used instead.

1.4. Characteristics and limitations of the Phase Only

Transform

The most appealing characteristic of the PHOT is that it removes any

regularities from the image without the need to identify peaks in the Fourier

domain. Only spikes that do not correspond to a sum of trigonometric

functions inside the image domain are left. Note that the regularities should

not be presented in the entire image. Every large enough regular patterns

are removed by the transform by normalizing the resulted complex number

by its magnitude. In this sense, our method is different from those that

work only on periodic patterns. Figure 1.7 shows an example of image

that has several subpatterns that are regular but the entire image is not.

The only parameter in the threshold on the Mahalanobis distance and it is

exactly the same in Figures 1.6 and 1.7. The result shows that the PHOT

has no difficulty in detecting defects in this image. The results look very

similar to the human perception of ”novel pattern”. The entire image is
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Fig. 1.3. A small defect in a sum of sine curves. Top: signal and its PHOT. Middle:
magnitude of frequencies. Bottom: phase of frequencies.

not regular but contains patterns that in some way similarly perceived.

We should note here that this can be also considered as a limitation of the

method, since large defects can be viewed as regular subpattern, thus might

be removed by the PHOT.

As can be expected, if we use 2D FFT on the image, every periodicity

or regularity (or homogeneity) is removed by the PHOT. This contains also

large defected patterns and 1D structures. For example, a defect structured

as a line or scratch in the image, would not be well detected as can be seen in

Figure 1.8. On the other hand, the same characteristic, can be used (to our

advantage) to obtain defect detection on multiple patterns where nothing

has to be known by the algorithm in advance (“blind” defect detection). In

Figure 1.9 the results of our algorithm on a image that contains two totally

different regularities are shown. It can be observed that the boundary

regions between regularities were removed by the PHOT. This means that

1D long defected patterns may not be detected. A way to solve this problem

is to apply the PHOT on lines instead on the entire 2D image. This would

work however only in a highly regular patterns. We will investigate this

direction in the future.
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Fig. 1.4. A defect in a single sine curve. Top: signal and its PHOT. Middle: magnitude
of frequencies. Bottom: phase of frequencies.

1.5. Complexity and real time performance

In many inspection system that apply defect detection algorithms for qual-

ity assurance, the time performance of the algorithm is critical as it might

be used in a real manufacturing process. As can be easily concluded from

our algorithm, the complexity is O(n log n) where n is the number of pixels

in the input image. This, of course, comes from the DFT that we have

to apply. The further processing and statistics is obviously linear with n.

For very large or continuously inspected patterns, one can apply the algo-

rithm on partial sub-windows without affecting the detection performance

substantially . It is also very simple to implement the algorithm on paral-

lel machines by decomposing the input. We successfully implemented the

algorithm on a GPU (Graphics Processing Unit) using the Nvidia CUDA

language. The FFT is also quite fast in practice and effective parallelization

exists using Intel’s SSE2 and SSE3 instructions, as well as on DSPs.
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Fig. 1.5. Non periodic (but with little phase) signal and a defect (large phase con-
tent). Top: signal and its PHOT. Middle: magnitude of frequencies. Bottom: phase of

frequencies.

1.6. Results

We implemented the algorithm using C++ and Visual Studio. the results

on a large set of images are shown in Figures 1.10. All the results were ob-

tained using the same parameter for thresholding the Mahalanobis distance

(4.0). No other parameter is needed for our algorithm. The sensitivity of

the algorithm can be changed by the user by altering the Mahalanobis

threshold.

1.6.1. Multiple sub-patterns and arbitrary patterns

As already mentioned in Section 1.4, our method does not require that

the entire inspected pattern be regular. It can process many sub-patterns

simultaneously. In fact, the PHOT is a detector for novel patterns. It em-

phasizes patterns that do not appear much in the image. It is worth noting

that we do not assume anything about the size of the pattern, so it can vary.

In Figure 1.11 an image containing many texture patches of different size
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Fig. 1.6. Image in the process of defect detection: left - input image, middle - Maha-
lanobis distance from the mean (multiply by 30 for visualization), right - thresholding

using distance 4.0

Fig. 1.7. Non regular patterns: left - input image, middle - Mahalanobis distance from
the mean (multiply by 30 for visualization), right - thresholding using distance 4.0

and regularities is proceeded and the result (using Mahalanobis threshold

4.0) is shown on the right. The synthetic defect almost invisible by eye in

the image is detected since it is novel. Another spike on top of the image is

also detected. In Figure 1.12 a scene that contains a house with a textured

roof is shown. The image contains textures as well as homogeneous and

irregular regions. The synthetic defect as well as the novel pattern of the

lamp on the right are well detected.

1.6.2. Images with no defects

We tested our simple adaptive threshold on input images which are texture

patches without any defect. The purpose of this test is to verify that

the method does not produce false positives. We used exactly the same

parameter as in all other tests, namely, a Mahalanobis distance = 4.0. In

Figure 1.13 we show two texture patches which are not quite regular (to
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Fig. 1.8. Limitation of 2D transform: Scratches could not be detected as they are 1D
regular.

Fig. 1.9. Multiple patterns: top - input image, bottom - thresholding using distance
4.0

make the test more difficult), their PHOT results and the output using

threshold equal to 4.0. It can be seen that no false positive defects were

produced for either inputs. It can be observed in the PHOT result (middle),

how the strength of the response is related to the perception of ”novelty”.

Although no pixel exceeds distance 4.0, some regions have larger response

correlated to the measure of their regularity.
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Fig. 1.10. Results on various patterns: in each of the three columns, left - input image,
right - results by thresholding using distance 4.0

1.7. Other potential applications

The main application of the Phase Only Transform presented in this chap-

ter is defect detection, however, as the PHOT detects novel patterns in an

image it can be also used for other applications. Salient regions are gener-

ally regarded as the candidates of attention focus in human eyes, which is

the key stage in object detection. The phase spectrum plays a key role for

saliency detection.23 The saliency map can be calculated by the image’s

Phase spectrum of Fourier Transform alone. It was shown, similarly to the

analysis in this chapter, that phase information specifies where each of the

sinusoidal components resides within the image. The locations with less pe-

riodicity or less homogeneity in either the vertical or horizontal orientation
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Fig. 1.11. Multiple textures of various size and regularities and a synthetic defect: top
- input image, bottom - thresholding using distance 4.0

Fig. 1.12. Arbitrary scene with synthetic defect: top - input image, bottom - result

show were the object candidates are located. In,23 each pixel of the image

is represented by a quaternion that consists of color, intensity and motion

feature. The Phase spectrum is then used to obtain the spatio-temporal

saliency map, which considers not only salient spatial features like color,

orientation and etc. in a single frame but also temporal feature between

frames like motion. Two examples from23 is shown in Figure 1.14

Another possible application is to measure the amount of ”rectification”

in images containing repeated patterns (like textures) that were taken in

perspective. This can subsequently allow a rectification algorithm that

maximizes this measure. For example, in Figure 1.15, the left image con-

tains more homogeneity than the unrectified image to the right, thus a

measure that is based on, say, the integration of the PHOT of the image

would be much larger for the image to the right. Minimizing this measure

(maximizing the homogeneity) would achieve rectification. The effect of

repeated pattern on the PHOT is clearly observed.
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Fig. 1.13. Images with no defects: left - input image, middle - PHOT result (multiplied
by 30 for visualization), right - result using threshold of 4.0

Fig. 1.14. Results from23 on saliency: bottom input image with main objects, top:
saliency obtained by their method using the PHOT
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Fig. 1.15. Perspective and rectified textures. Top: rectified (left) and unretified (right)
images with repeated patterns. Bottom: their corresponding PHOT.

1.8. Conclusions

A novel method for defect detection on surface patches was presented. The

main advantage of the new algorithm is its extreme simplicity (it consists

manly of a standard forward and inverse FFT), its generality to work for

various pattern without prior knowledge and the fact that it is unsuper-

vised. We gave theoretical justification for a reasonable model. We show

results on a large set of inputs and the results are very similar to the per-

ception of defects where no prior information is given. The new algorithm

has only one parameter which is the sensitivity of the algorithm. It is an

advantage in real inspection systems, where ease of use is important. The

algorithm is also fast in practice and can be used in real time systems.

Moreover, parallelization of the algorithm can be easily obtained by simply

subdividing the input.
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