
HAL Id: hal-00622504
https://hal.science/hal-00622504

Submitted on 21 Oct 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Surface reconstruction using Power Watershed
Camille Couprie, Xavier Bresson, Laurent Najman, Hugues Talbot, Leo Grady

To cite this version:
Camille Couprie, Xavier Bresson, Laurent Najman, Hugues Talbot, Leo Grady. Surface reconstruction
using Power Watershed. 10th International Symposium on Mathematical Morphology (ISMM’11),
2011, France. pp.381-392, �10.1007/978-3-642-21569-8_33�. �hal-00622504�

https://hal.science/hal-00622504
https://hal.archives-ouvertes.fr

Surface reconstruction using Power Watershed

Camille Couprie∗, Xavier Bresson†, Laurent Najman∗,
Hugues Talbot∗, and Leo Grady‡

∗ Université Paris-Est, Laboratoire d’Informatique Gaspard-Monge, Equipe A3SI,
ESIEE Paris (93160 Noisy-le-Grand, France)

† City University of Hong Kong, Dpt. of Computer Science (Hong Kong)
‡ Siemens Corporate Research, Dpt. Imaging Analytics & Informatics (Princeton

USA)
{c.couprie,l.najman,h.talbot}@esiee.fr,

xbresson@cityu.edu.hk,leo.grady@siemens.com

Abstract. Surface reconstruction from a set of noisy point measure-
ments has been a well studied problem for several decades. Recently,
variational and discrete optimization approaches have been applied to
solve it, demonstrating good robustness to outliers thanks to a global
energy minimization scheme. In this work, we use a recent approach
embedding several optimization algorithms into a common framework
named power watershed. We derive a specific watershed algorithm for
surface reconstruction which is fast, robust to markers placement, and
produces smooth surfaces. Experiments also show that our proposed al-
gorithm compares favorably in terms of speed, memory requirement and
accuracy with existing algorithms.

Keywords: optimization, point measurements, Graph cuts, total vari-
ation

1 Introduction

This paper develops a watershed-based algorithm providing a global optimal
solution to the surface reconstruction problem from a set of scattered points.
Surface fitting is a challenging problem when dealing with data containing sparse
noise, gaps, and outliers. The set of points may be for example acquired by
several scans of an object (range scanning). In this context, regularization-based
methods have been shown to be robust when the points are lacking connectivity,
ordering information, and may be contaminated by noise. While there exist
numerous explicit surface extraction techniques that estimate the exact positions
of surface points, in this work we will focus on implicit surface representation.
Implicit surfaces may be represented by level sets (e.g. [29]) or binary partitions
(e.g. [23]).

Local methods for surface reconstruction including the MPU method [5] are
sensitive to noise, as shown in the experiments of [19]. Among the recent global
approaches, the Poisson method [20] and FFT-method [21] are more robust to
noise, however they require orientation information.

2 Camille Couprie et al.

The method of Jalba and Roerdink [19] makes it possible to avoid having to
estimate orientation information. This is achieved by computing approximations
of Coulomb potentials in a grid as an input for the convection method of [29].
We propose a different approach that allows us to perform a global optimization
of the surface reconstruction problem without requiring the computation of such
field as Coulomb potentials.

A generic optimization-based regularization formulation for shape fitting
minimizes the total variation functional weighted by the distance function from
the set of points P . More generally, given two positive numbers p and q, we
consider an object indicator partition u solution of

min
u∈[0,1]

∫
Ω

w(z)p|∇u(z)|qdz

subject to u(z) = 0 ∀z ∈ Ωin,

and u(z) = 1 ∀z ∈ Ωout,

(1)

where Ωin is the set of labels inside the surface and Ωout is the set of labels
outside the surface. The weight function w is defined at every point z in a grid
as w(z) = dP (z), where dP (z) is the distance map from the points. When p

is finite and q = 1, Eq. (1) leads to a binary solution u [27]. A solution can
be deduced in the discrete setting using e.g. the network flow technique [12],
also known as Graph cuts [4]. Augmenting path max flow implementations are
fast and efficient in 2D but memory consuming as the connectivity increases,
for instance in 3D. Lempitzky and Boykov [23] have overcome this problem by
limiting the size of the search for a solution in the grid while still guaranteeing
a global optimum. However their solution is based on restrictive assumptions
assuming that the data points are provided with an estimate of the surface
orientation. Furthermore, at low resolution, results exhibit metrication artifacts
and look blocky, so a high resolution is essential for getting smooth results using
the Graph cuts method.

We propose a watershed-based approach in order to provide a way to quickly
obtain smooth surfaces at a high resolution without any need to pre-estimate
the surface orientation. Recently, Couprie et al. introduced the power watershed
method [10, 8], which can be seen as an anisotropic discretization of (1) with
p → ∞ and q = 2. Although this technique was introduced in the context of
image segmentation, the authors described how the method could be used as an
optimization method for various functionals in [9]. In the present paper we show
that the power watershed method of Couprie et al. is well-suited to address the
surface reconstruction problem. The idea of using watersheds for surface recon-
struction from a set of points is quite natural. It can be seen as a an extension of
the classical “coffee bean” segmentation example, where a watershed is applied
on a filtered distance function to separate overlapping convex objects [3].

For further comparison, we also propose in this paper to examine a well-
known weighted isotropic discretization of (1) (for q = 1) known as “Total
Variation” (TV). We mention that there exist other TV-based approaches de-
veloped to overcome metrication artefacts, e.g. [28, 15]. However, due to space

Surface reconstruction using Power Watershed 3

constraints, further comparison with these techniques will be the subject of fu-
ture work. Finally, we will also show that our algorithm compares favorably with
existing surface reconstruction algorithms [2, 5, 21, 20, 19].

2 Method

For solving the surface reconstruction problem, we first place the points cloud
onto a regular grid. Our method aims to label the nodes of the grid as an indicator
of the object to reconstruct. Since the power watershed is defined on a graph,
we begin by casting the surface reconstruction problem formulation in discrete
terms.

A graph consists of a pair G = (V,E) with vertices v ∈ V and edges e ∈
E ⊆ V × V with cardinalities n = |V | and m = |E|. An edge, e, spanning two
vertices, vi and vj , is denoted by eij . We define an edge set corresponding to
a 4 or 8-connected lattice (or 6-, 18- or 26-connected in 3D). A weighted graph
assigns a (typically non-negative and real) value to each edge called a weight.
The weight of an edge eij is denoted by w(eij) or wij . A plateau is a maximal
set of connected edges with identical weight.

Given foreground F and background B node values (also called seeds), and
p, q two real positive values, the energy presented for binary segmentation in [8]
is a discretization of (1) given by

min
x

∑
eij∈E

w
p
ij |xi − xj |

q

s.t. x(F) = 1, x(B) = 0.

(2)

In this energy, x is a labeling indicating the foreground and background
membership. The edge values wij can be interpreted as weights enforcing a
regularization of the contours, such that any (usually unwanted) high-frequency
content is penalized in x. The definition of the weights for surface reconstruction
from a set of points P is based on the construction of a discrete distance map
dP , in a grid bounding the set of points.

wij = min (dP (i), dP (j)) , (3)

where dP (i) is the discrete Euclidean distance between the node i and the set of
points P . We recall that exact Euclidean discrete distance map may be obtained
in linear time using the algorithm of Hirata [17], and that high-quality ordered
algorithms also exist [25] . The background seeds may simply correspond to the
frame, or bounding box of the lattice. The foreground seeds can be given by
the maxima of the distance function that are not connected to the frame. The
distance map may be previously filtered, for example using an attribute filter to
obtain more robust markers [6, 24].

As we illustrate in the remainder, the energy defined in (2) essentially forces
x to remain smooth within the object, while allowing it to vary quickly close
to point clusters near the boundary of the object. The data constraints enforce

4 Camille Couprie et al.

fidelity of x to a specified configuration, taking the values zero and one as the
reconstructed object indicator. Observe that the values of x may not necessarily
be binary when the value of q is strictly greater than one, which is a positive
point for the surface reconstruction problem as we will further explain in this
work.

The different values of p and q lead to different algorithms for optimizing
the energy. When the power of the weight, p, is finite, and the exponent q = 1,
we recover the Graph cuts energy which can be optimized by a max flow algo-
rithm. When q = 2, we obtain a combinatorial Dirichlet problem also known
as the Random walker problem [16]. As described in [8, 10], when the expo-
nent p tends toward infinity, the cut obtained when minimizing the energy is a
watershed cut [11], which has been shown to be equivalent to Maximum Span-
ning Forests [11] (MSF). Furthermore, an algorithm is presented to optimize the
unique watershed that optimizes the energy for q = 2 and p → ∞. The power
watershed (PW) algorithm is recalled in Algorithm 1.

Algorithm 1: Power watersheds algorithm p → ∞, q = 2

Data: A weighted graph G(V,E) comprising known labels x(B), x(F).
Result: A labeling x solution of (2).
while any node has an unknown label do

Find a maximal subgraph S ∈ G composed of edges of maximal
weight;
if S contains any nodes with known x then

Find xS minimizing (2) for q = 2 on the subset S;
Consider all xS values produced by this operation as known;

else
Merge all of the nodes in S into a single node, such that when the
value of x for this merged node becomes known, all merged nodes
are assigned the same value of x and considered known;

This set of parameters q = 2 and p → ∞ is particularly interesting :

1. The power watershed algorithm has a well-defined behavior in the absence
or lack of weight information (presence of plateaus). An example is shown
at Figure (1).

2. The worst-case complexity of the power watershed algorithm in the case
p → ∞ is given by the cost of optimizing (2) for the given q. In the best-case
scenario (all weights have unique values), the power watershed algorithm has
the same asymptotic complexity as the algorithm used for a MSF computa-
tion (quasi-linear) (See [7] for more details). In practical applications where
the plateaus have a size less than some fixed value K, then the complexity of
the power watershed algorithm matches the quasi-linear complexity of the
standard watershed algorithm.

Surface reconstruction using Power Watershed 5

(a)

F

B B

B B

1 0 0

2 1 1

1 2 1

0 1 0

1 2 1

4

1

0

0

1

2

1

1

0

1

1

1

1

1

0

0

(b)

1

0 0

0 0

0

1 0 0

2 1 1

1 2 1

0 1 0

1 1

1

0

0

1

2

1

1

0

1

1

1

1

1

0

0

(c)

1

0 0

0 0

0

1 0 0

2 1 1

1 2 1

0 1 0

1 1

1

0

0

1

2

1

1

0

1

1

1

1

1

0

0

(d)

1

0 0

0 0

0 0.33

0.67

1 0 0

2 1 1

1 2 1

0 1 0

1 1

1

0

0

1

2

1

1

0

1

1

1

1

1

0

0

(e)

1

0 0

0 0

0 0.33

0.67

0.17

0.59 0.43

0.33 0.72

0.51 0.60

0.38 0.38

1 0 0

2 1 1

1 2 1

0 1 0

1 1

1

0

0

1

2

1

1

0

1

1

1

1

1

0

0

(f)

1

0 0

0 0

0 0.33

0.67

0.17

0.59 0.43

0.33 0.72

0.51 0.60

0.38 0.38

0.25

0.27 0.25

1 0 0

2 1 1

1 2 1

0 1 0

1 1

1

0

0

1

2

1

1

0

1

1

1

1

1

0

0

(g)

1

0 0

0 0

0 0.33

0.67

0.17

0.59 0.43

0.33 0.72

0.51 0.60

0.38 0.38

0.25

0.27 0.25

1 0 0

2

2

2 1 1

1 2 1

0 1 0

1 1

1

0

0

1

2

1

1

0

1

1

1

1

1

0

0

(h)

Fig. 1. (a) Three dots in a 4× 5 lattice. (b) Associated lattice weighted by a distance
map from the dots according to (3) and squared, with Foreground and Background
seeds. Note that only the ordering of the weights counts in the power watershed al-
gorithm, thus the squared distance map can be used directly and produces the same
solution as if the weights in (3) were used. (c) First steps of the power watershed algo-
rithm to optimize (2) in the case q = 2 and p → ∞. Nodes having a maximum weight
are merged. (d) A plateau of weight 2 (in green) including different seeded nodes is en-
countered. The Random walker algorithm is applied to label the nodes on the plateau.
(e,f) New plateaus of weight 1 and 0 are encountered, the Random walker algorithm is
applied, (g) Final labeling x solution of (2). The isocontour is represented in red.

Although the PW algorithm is fast, it can be further accelerated for the
specific case of weight defined according to a distance map (3). Given the fore-
ground and background seeds, we define a narrow band S as the set obtained by
thresholding the distance map dP with the the smallest threshold TS such that
the connected components are divided between at least an interior (foreground)
and an exterior (background). We then compute the PW only on this incomplete
distance map, which saves both time and memory. In practice, it is possible to
avoid computing an exact distance map on the full grid, using for instance an
ordered algorithm propagating from the point cloud [25].

Recall that the exterior seed is connected to the frame of the image, so this is
a simple unambiguous connectivity criterion. Applying PW on S is guaranteed
to provide the same (unique) global optimizer of the energy as the solution on
the full grid, because the connectivity criterion ensures this computation yields a
Jordan curve (2D) or surface (3D) separating foreground and background seeds
and passing through only already-computed distance values. Performing the PW

6 Camille Couprie et al.

(a) Total variation
result

(b) Graph cuts
result

(c) Max Spanning
Forest result

(d) Power watershed
result

Fig. 2. Comparison of surface reconstruction from a set of points in 2D, using the total
variation method, Graph cuts, a maximum spanning forest algorithm and finally the
power watershed algorithm.

computation on the full map would not change this result because no distance
weight would be lowered, and so no new surface with a lower weight could be
found on this full map. Conversely, thresholding the distance map at a lower
value than TS would change the result, as any Jordan curve or surface separating
foreground and background seeds and computed on this map would necessarily
cross some nodes where the distance map had not been computed. Note this does
not mean that this thresholding criterion is necessary and sufficient for optimal
computation and least memory usage, as an adaptive threshold depending on
the local point density could be used instead. However, we leave it as future
work to find a better criterion than the simple global threshold.

3 Results and comparative evaluation

3.1 Comparison with Graph cuts and Total Variation

We now demonstrate the performance of the power watershed algorithm for
surface reconstruction with respect to two graph-based methods discretizing the
energy defined in equation (1), namely the weighted total variation (TV) and
the Graph cuts (GC) method.

Our first experiment consists of finding a contour fitting sparse and noisy
dots in a 2D plane. Figure 2 compares the result of TV minimization, the Graph
cuts result, a maximum spanning forest result, and the result obtained with
power watershed algorithm (q = 2, p → ∞). We observe that all resulting
contours are excluding outliers. The Graph cuts results demonstrate that this
algorithm is less sensitive to noise, but the contours are blocky because the
obtained object indicators are binary. We note that a post-processing step for
producing a smooth isosurface from such a binary object reconstruction has
recently been proposed by Lempitzky [22]. The TV contour is the smoothest

Surface reconstruction using Power Watershed 7

(a) (b) (c)

Fig. 3. Power watershed results obtained from points clouds. (a) Total size of scans :
362272 points, Grid size : 234×297×301. (b) Number of scans used : 341072 points, Grid
size : 275×276×668 (c) Total size of scans : 2748318 points, Grid size 382×270×171.

σ = 0 σ = 0.003 σ = 0.005
Error = 0 Error = 2.7× 10−3 Error = 4.0× 10−3

Fig. 4. Power watershed results obtained from noisy points clouds, corrupted by Gaus-
sian noise of variance σ. The error was computed as the average distance between the
obtained isosurface points to the original point cloud. The error is given in percentages
of the diagonal of the bounding box of the data points.

8 Camille Couprie et al.

(a) TV (122 s) (b) TV (301 s) (c) TV (950 s) (d) PW (32 s)

Fig. 5. Robustness to seed quantity: this figure shows slices of solutions obtained for
reconstructing the bunny surface, obtained on a grid of size 251 × 248 × 195, using
different seeding strategies. The interior seed is colored in red, and the background seed
in blue, and resulting isolines in green. (a,b,c) : Results obtained with TV minimization,
and (d) Result obtained with Power Watershed.

one, which may be an unwanted effect for rendering details in surfaces. Thus, the
TV method requires us to adapt the parameter p in the exponent of the weights
to the desired smoothness of the surface. The maximum spanning forest result
passes through most points and the contour looks noisy. The power watershed
result demonstrates good performance for fitting the dots, while avoiding both
blocky contours and noise. This good performance is due to the presence of
interwoven plateaus in the distance map. During the execution of the algorithm,
the Random walker (RW) algorithm is called several times around the dots,
resulting in a smooth output x. An isocontour or isosurface computation at
the 0.5 level is thus providing smooth contours compared to the binary results
obtained with Graph cuts or maximum spanning forests.

Figure 3 shows surfaces reconstructed from noisy scanned dot sets using the
power watershed (PW) algorithm. We used the coordinates of points acquired
from scans of several 3D shapes (bunny, Buddha) from the Stanford database
available online [1] In our experiments, we embedded those points in 6-connected
grids. Quantitative comparisons for the fitting quality are difficult because not all
data points are required to be part of the surface. However, we show in Figure 4
that the power watershed method is producing reasonable results even if the
point cloud is corrupted by Gaussian noise. We also compared our results to the
results obtained using TV minimization and Graph cuts at Figure 6. We can
observe that the surface obtained with the Graph cuts method is quite blocky.
Using the same rendering method to render the output x minimizing the power
watershed energy, the power watershed algorithm obtains a smoother surface
showing significantly more details. Figure 5 shows that the power watershed
method performs well even with a small amount of seeds. In contrast, the total
variation method requires a large amount of seeds placed close to the searched
surface.

Surface reconstruction using Power Watershed 9

(a) (b) (c)

Fig. 6. Grid size : 234× 297× 301. (a) Total variation minimization result, (b) Graph
cuts result, (c) power watershed result. Isosurfaces at 0.5 have been extracted on all
results, and were downsampled by 2 to render the surfaces.

3.2 Computation times and memory requirements

In our comparisons, we used the C++ software library of Lemptitzky and Boykov
available online which implements the touch-expand algorithm that minimizes
the GC energy. For that purpose, the touch-expand algorithm calls a max flow
algorithm on a partial graph, a band around the points which is extended when
the solution touches the boundary of the band. We also compare to a fast TV-
based solver often called split-Bregman algorithm [14] but identical in principle
to the Alternating Direction Method of Multipliers [13, 26]. This TV solver is
implemented in C and may be called from Matlab. Finally, we also implemented
the PW method in C. Computation times of the compared algorithms for the
bunny and Buddha data sets are provided on Table 1. The three methods have
large memory requirements when applied to the full grid. However, the graph
cuts and power watershed banded methods are less memory intensive. For the
bunny dataset, the touch-expand algorithm optimizing the Graph cuts energy
only needs to allocate 3.6% of the full grid size. The solution space for the bunny
dataset is much larger for our power watershed algorithm and reaches 33% of the
full grid, because some points are widely spaced out. Thus, on this image, the
touch expand algorithm is faster than the power watershed method. However,
points clouds may require a more extensive expansion of the research area for the
Graph cut touch expand method. For example, in the Buddha dataset, 8.75%

10 Camille Couprie et al.

of the grid size is needed for computing the Graph cuts solution. In such cases,
the power watershed approach is much faster. The TV approach has currently
no guarantee to produce a global optimum when called on a banded graph, so
the TV algorithm was implemented only on a full grid. On the Buddha dataset
for example, given a 207× 505× 207 grid, the TV-based method requires 3G of
RAM.

Point Method Grid Grid Peak Time Time /
cloud size used memory Nb voxels
Bunny GC 234× 257× 301 3.6% 212 9 1.4× 10−5

Bunny PW 234× 257× 301 31% 1180 51 9.1× 10−6

Bunny TV 195× 248× 251 100% 900 122 1.0× 10−5

Buddha GC 276× 671× 277 8.7% 850 253 5.6× 10−5

Buddha PW 276× 671× 277 16% 1500 52 6.3× 10−6

Table 1. Timing experiments (in seconds) using an PC with a 3GHz Intel dual-core
processor and 2G of RAM. The memory requirements are given in Mega Octets, and
the computation times in seconds. Note that the seeds used are different for the three
methods. For TV and PW, the seeds are imposed as hard constraints and are located
far from the point cloud (see Fig. 5). The GC touch expand method uses soft constraints
seeds computed from the normals given in input with the point cloud. We observe that
Graph cuts are fast when the point cloud configuration does not require to expand
the research area too much, like in the Bunny case (3.6%). However in the Buddha
example, there is a need for a larger expansion, where the real complexity of the Graph
cut algorithm become visible.

3.3 Comparison with some other approaches

Following the quantitative information given in [19], we compare the perfor-
mances of power watershed for the Stanford bunny reconstruction with different
methods [2, 5, 21, 20, 19]. All these methods, including the power watershed, re-
construct a surface close to the Bunny set of dots, with an error comprised
between 2× 10−4 and 6× 10−4. In terms of computation time, the Power Crust
method [2] is about 10 times slower, and the Poisson method [20] 3 times slower
than our PW approach. Although the FFT [21], MPU [5] and Hoppe et al [18]
methods are fast, the FFT method suffers from large memory requirements lim-
iting the grid resolution, and Hoppe et al and MPU methods produces artifacts
in the presence of noise (See [19]). The method of Jalba and Roerdink [19],
based on Coulomb potentials, uses 4 times less memory than our power water-
shed method, but is 5 to 10 times slower on a CPU and is still slower using a
GPU. Furthermore our PW is more flexible in the choice of the markers. In our
experiments, the amount of markers is not very large as shown in Fig. 5, but a

Surface reconstruction using Power Watershed 11

strategy using larger seeds could be employed to reduce the size of the solution
space and the computation time.

4 Conclusion

The power watershed method can be used to efficiently produce surfaces fitting
noisy measurements. Contrary to standard watershed algorithms and the Graph
cuts approach, the unique solution provided by the power watershed is not bi-
nary, resulting in the reconstruction of both smooth and detailed surfaces. In
addition, this method is fast and not limited by large memory requirements,
when using a restriction of the solution space. Finally, in comparison with other
methods, our power watershed is robust to seed placement, and requires fewer
parameters to be set. In practice, when using the power watershed method,
close-fitting markers are not as mandatory as in other methods. Future work
will follow several directions: memory and computation times improvements are
still achievable, in particular by improving the touch-expand idea used in the
Graph cuts optimization and adapting it for power watershed. The power wa-
tershed energy could also be modified to add some priors to the reconstructed
surface, such as local orientation. Finally, we hope to demonstrate the efficiency
of the power watershed technique for solving related problems such as multiview
reconstruction.

References

1. Stanford 3D scanning repository, http://graphics.stanford.edu/data/3Dscanrep/
2. Amenta, N., Choi, S., Kolluri, R.K.: The power crust. In: Proceedings of the sixth

ACM symposium on Solid modeling and applications. pp. 249–266. SMA ’01, ACM,
New York, NY, USA (2001)

3. Beucher, S., Gratin, C.: Micromorph reference manual, applications and solutions.
Ecole des Mines de Paris (1989)

4. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via
graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence
23(11), 1222–1239 (2001)

5. Braude, I., Marker, J., Museth, K., Nissanov, J., Breen, D.: Contour-based surface
reconstruction using mpu implicit models. GRAPHICAL MODELS 69, 2007

6. Breen, E., Jones, R.: Attribute openings, thinnings and granulometries. Graphical
Models and Image Processing Journal 64(3), 377–389 (1996)

7. Chazelle, B.: A minimum spanning tree algorithm with inverse-ackermann type
complexity. J. ACM 47, 1028–1047 (November 2000)

8. Couprie, C., Grady, L., Najman, L., Talbot, H.: Power watersheds: a new image
segmentation framework extending graph cuts, random walker and optimal span-
ning forest. In: ICCV’09. pp. 731–738 (2009)

9. Couprie, C., Grady, L., Najman, L., Talbot, H.: Anisotropic Diffusion Using Power
Watersheds. In: ICIP’10. pp. 4153–4156 (2010)

10. Couprie, C., Grady, L., Najman, L., Talbot, H.: Power Watersheds: A Unifying
Graph Based Optimization Framework. IEEE Transactions on Pattern Analysis
and Machine Intelligence (2011), to appear

12 Camille Couprie et al.

11. Cousty, J., Bertrand, G., Najman, L., Couprie, M.: Watershed Cuts: Minimum
Spanning Forests and the Drop of Water Principle. IEEE Transactions on Pattern
Analysis and Machine Intelligence 31(8), 1362–1374 (2009)

12. Ford, L.R., Fulkerson, D.R.: Maximal flow through a network. Canadian Journal
of Mathematics 8, 399–404 (1956)

13. Glowinski, R., Tallec, P.: Augmented Lagrangian and operator-splitting methods
in nonlinear mechanics. SIAM (1989)

14. Goldstein, T., Osher, S.: The split Bregman method for ℓ1-regularized problems.
SIIMS 2(2), 323–343 (2009)

15. Goldstein, T., Bresson, X., Osher, S.: Geometric applications of the split Bregman
method: Segmentation and surface reconstruction (2009)

16. Grady, L.: Random walks for image segmentation. IEEE Transactions on Pattern
Analysis and Machine Intelligence 28(11), 1768–1783 (2006)

17. Hirata, T.: A unified linear-time algorithm for computing distance maps. Informa-
tion Processing Letters 58(3), 129–133 (1996)

18. Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Surface recon-
struction from unorganized points. SIGGRAPH Comput. Graph. 26, 71–78 (July
1992)

19. Jalba, A.C., Roerdink, J.B.T.M.: Efficient surface reconstruction using generalized
coulomb potentials. IEEE Transactions on Visualization and Computer Graphics
13, 1512–1519 (November 2007)

20. Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson surface reconstruction. In: Proceed-
ings of the fourth Eurographics symposium on Geometry processing. pp. 61–70.
SGP ’06, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland (2006)

21. Kazhdan, M.M.: Reconstruction of solid models from oriented point sets. In: Sym-
posium on Geometry Processing. pp. 73–82 (2005)

22. Lempitsky, V.: Surface extraction from binary volumes with higher-order smooth-
ness. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (2010)

23. Lempitsky, V., Boykov, Y.: Global Optimization for Shape Fitting. In: Proc. IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). Minneapolis,
USA (2007)

24. Najman, L., Couprie, M.: Building the component tree in quasi-linear time. IEEE
Transactions on Image Processing 15(11), 3531–3539 (2006)

25. Ragnemalm, I.: The euclidean distance transform in arbitrary dimensions 14(11),
883 – 888 (1993)

26. Setzer, S.: Split Bregman algorithm, douglas-rachford splitting and frame shrink-
age. In: International Conference on Scale Space and Variational Methods in Com-
puter Vision. pp. 464–476. SSVM ’09, Springer-Verlag, Berlin, Heidelberg (2009)

27. Strang, G.: Maximum flows through a domain. Math. Prog. (26), 123–143 (1983)
28. Ye, J., Bresson, X., Goldstein, T., Osher, S.: A fast variational method for surface

reconstruction from sets of scattered points (2010), submitted
29. Zhao, H.K., Osher, S., Merriman, B., Kang, M.: Implicit, nonparametric shape

reconstruction from unorganized points using a variational level set method. Com-
puter Vision and Image Understanding 80, 295–319 (1998)

