Camille Couprie
email: c.couprie@esiee.fr

Xavier Bresson
email: xbresson@cityu.edu.hk

Laurent Najman
email: l.najman@esiee.fr

Hugues Talbot
email: h.talbot@esiee.fr

Leo Grady
email: leo.grady@siemens.com

Surface reconstruction using Power Watershed

Keywords: optimization, point measurements, Graph cuts, total variation

à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

This paper develops a watershed-based algorithm providing a global optimal solution to the surface reconstruction problem from a set of scattered points. Surface fitting is a challenging problem when dealing with data containing sparse noise, gaps, and outliers. The set of points may be for example acquired by several scans of an object (range scanning). In this context, regularization-based methods have been shown to be robust when the points are lacking connectivity, ordering information, and may be contaminated by noise. While there exist numerous explicit surface extraction techniques that estimate the exact positions of surface points, in this work we will focus on implicit surface representation. Implicit surfaces may be represented by level sets (e.g. [START_REF] Zhao | Implicit, nonparametric shape reconstruction from unorganized points using a variational level set method[END_REF]) or binary partitions (e.g. [START_REF] Lempitsky | Global Optimization for Shape Fitting[END_REF]).

Local methods for surface reconstruction including the MPU method [START_REF] Braude | Contour-based surface reconstruction using mpu implicit models[END_REF] are sensitive to noise, as shown in the experiments of [START_REF] Jalba | Efficient surface reconstruction using generalized coulomb potentials[END_REF]. Among the recent global approaches, the Poisson method [START_REF] Kazhdan | Poisson surface reconstruction[END_REF] and FFT-method [START_REF] Kazhdan | Reconstruction of solid models from oriented point sets[END_REF] are more robust to noise, however they require orientation information.

The method of Jalba and Roerdink [START_REF] Jalba | Efficient surface reconstruction using generalized coulomb potentials[END_REF] makes it possible to avoid having to estimate orientation information. This is achieved by computing approximations of Coulomb potentials in a grid as an input for the convection method of [START_REF] Zhao | Implicit, nonparametric shape reconstruction from unorganized points using a variational level set method[END_REF]. We propose a different approach that allows us to perform a global optimization of the surface reconstruction problem without requiring the computation of such field as Coulomb potentials.

A generic optimization-based regularization formulation for shape fitting minimizes the total variation functional weighted by the distance function from the set of points P . More generally, given two positive numbers p and q, we consider an object indicator partition u solution of min u∈[0,1] Ω w(z) p |∇u(z)| q dz subject to u(z) = 0 ∀z ∈ Ω in , and u(z) = 1 ∀z ∈ Ω out , [START_REF]Stanford 3D scanning repository[END_REF] where Ω in is the set of labels inside the surface and Ω out is the set of labels outside the surface. The weight function w is defined at every point z in a grid as w(z) = d P (z), where d P (z) is the distance map from the points. When p is finite and q = 1, Eq. (1) leads to a binary solution u [START_REF] Strang | Maximum flows through a domain[END_REF]. A solution can be deduced in the discrete setting using e.g. the network flow technique [START_REF] Ford | Maximal flow through a network[END_REF], also known as Graph cuts [START_REF] Boykov | Fast approximate energy minimization via graph cuts[END_REF]. Augmenting path max flow implementations are fast and efficient in 2D but memory consuming as the connectivity increases, for instance in 3D. Lempitzky and Boykov [START_REF] Lempitsky | Global Optimization for Shape Fitting[END_REF] have overcome this problem by limiting the size of the search for a solution in the grid while still guaranteeing a global optimum. However their solution is based on restrictive assumptions assuming that the data points are provided with an estimate of the surface orientation. Furthermore, at low resolution, results exhibit metrication artifacts and look blocky, so a high resolution is essential for getting smooth results using the Graph cuts method.

We propose a watershed-based approach in order to provide a way to quickly obtain smooth surfaces at a high resolution without any need to pre-estimate the surface orientation. Recently, Couprie et al. introduced the power watershed method [START_REF] Couprie | Power Watersheds: A Unifying Graph Based Optimization Framework[END_REF][START_REF] Couprie | Power watersheds: a new image segmentation framework extending graph cuts, random walker and optimal spanning forest[END_REF], which can be seen as an anisotropic discretization of (1) with p → ∞ and q = 2. Although this technique was introduced in the context of image segmentation, the authors described how the method could be used as an optimization method for various functionals in [START_REF] Couprie | Anisotropic Diffusion Using Power Watersheds[END_REF]. In the present paper we show that the power watershed method of Couprie et al. is well-suited to address the surface reconstruction problem. The idea of using watersheds for surface reconstruction from a set of points is quite natural. It can be seen as a an extension of the classical "coffee bean" segmentation example, where a watershed is applied on a filtered distance function to separate overlapping convex objects [START_REF] Beucher | Micromorph reference manual, applications and solutions[END_REF].

For further comparison, we also propose in this paper to examine a wellknown weighted isotropic discretization of (1) (for q = 1) known as "Total Variation" (TV). We mention that there exist other TV-based approaches developed to overcome metrication artefacts, e.g. [START_REF] Ye | A fast variational method for surface reconstruction from sets of scattered points[END_REF][START_REF] Goldstein | Geometric applications of the split Bregman method: Segmentation and surface reconstruction[END_REF]. However, due to space constraints, further comparison with these techniques will be the subject of future work. Finally, we will also show that our algorithm compares favorably with existing surface reconstruction algorithms [START_REF] Amenta | The power crust[END_REF][START_REF] Braude | Contour-based surface reconstruction using mpu implicit models[END_REF][START_REF] Kazhdan | Reconstruction of solid models from oriented point sets[END_REF][START_REF] Kazhdan | Poisson surface reconstruction[END_REF][START_REF] Jalba | Efficient surface reconstruction using generalized coulomb potentials[END_REF].

Method

For solving the surface reconstruction problem, we first place the points cloud onto a regular grid. Our method aims to label the nodes of the grid as an indicator of the object to reconstruct. Since the power watershed is defined on a graph, we begin by casting the surface reconstruction problem formulation in discrete terms.

A graph consists of a pair G = (V, E) with vertices v ∈ V and edges e ∈ E ⊆ V × V with cardinalities n = |V | and m = |E|. An edge, e, spanning two vertices, v i and v j , is denoted by e ij . We define an edge set corresponding to a 4 or 8-connected lattice (or 6-, 18-or 26-connected in 3D). A weighted graph assigns a (typically non-negative and real) value to each edge called a weight. The weight of an edge e ij is denoted by w(e ij) or w ij . A plateau is a maximal set of connected edges with identical weight.

Given foreground F and background B node values (also called seeds), and p, q two real positive values, the energy presented for binary segmentation in [START_REF] Couprie | Power watersheds: a new image segmentation framework extending graph cuts, random walker and optimal spanning forest[END_REF] is a discretization of (1) given by min

x eij ∈E w p ij |x i -x j | q s.t. x(F) = 1, x(B) = 0. (2)
In this energy, x is a labeling indicating the foreground and background membership. The edge values w ij can be interpreted as weights enforcing a regularization of the contours, such that any (usually unwanted) high-frequency content is penalized in x. The definition of the weights for surface reconstruction from a set of points P is based on the construction of a discrete distance map d P , in a grid bounding the set of points.

w ij = min (d P (i), d P (j)) , (3)
where d P (i) is the discrete Euclidean distance between the node i and the set of points P . We recall that exact Euclidean discrete distance map may be obtained in linear time using the algorithm of Hirata [START_REF] Hirata | A unified linear-time algorithm for computing distance maps[END_REF], and that high-quality ordered algorithms also exist [START_REF] Ragnemalm | The euclidean distance transform in arbitrary dimensions[END_REF] . The background seeds may simply correspond to the frame, or bounding box of the lattice. The foreground seeds can be given by the maxima of the distance function that are not connected to the frame. The distance map may be previously filtered, for example using an attribute filter to obtain more robust markers [START_REF] Breen | Attribute openings, thinnings and granulometries[END_REF][START_REF] Najman | Building the component tree in quasi-linear time[END_REF]. As we illustrate in the remainder, the energy defined in (2) essentially forces x to remain smooth within the object, while allowing it to vary quickly close to point clusters near the boundary of the object. The data constraints enforce fidelity of x to a specified configuration, taking the values zero and one as the reconstructed object indicator. Observe that the values of x may not necessarily be binary when the value of q is strictly greater than one, which is a positive point for the surface reconstruction problem as we will further explain in this work.

The different values of p and q lead to different algorithms for optimizing the energy. When the power of the weight, p, is finite, and the exponent q = 1, we recover the Graph cuts energy which can be optimized by a max flow algorithm. When q = 2, we obtain a combinatorial Dirichlet problem also known as the Random walker problem [START_REF] Grady | Random walks for image segmentation[END_REF]. As described in [START_REF] Couprie | Power watersheds: a new image segmentation framework extending graph cuts, random walker and optimal spanning forest[END_REF][START_REF] Couprie | Power Watersheds: A Unifying Graph Based Optimization Framework[END_REF], when the exponent p tends toward infinity, the cut obtained when minimizing the energy is a watershed cut [START_REF] Cousty | Watershed Cuts: Minimum Spanning Forests and the Drop of Water Principle[END_REF], which has been shown to be equivalent to Maximum Spanning Forests [START_REF] Cousty | Watershed Cuts: Minimum Spanning Forests and the Drop of Water Principle[END_REF] (MSF). Furthermore, an algorithm is presented to optimize the unique watershed that optimizes the energy for q = 2 and p → ∞. The power watershed (PW) algorithm is recalled in Algorithm 1.

Algorithm 1: Power watersheds algorithm p → ∞, q = 2 Data: A weighted graph G(V, E) comprising known labels x(B), x(F).

Result: A labeling x solution of (2).

while any node has an unknown label do Find a maximal subgraph S ∈ G composed of edges of maximal weight; if S contains any nodes with known x then Find x S minimizing (2) for q = 2 on the subset S; Consider all x S values produced by this operation as known; else Merge all of the nodes in S into a single node, such that when the value of x for this merged node becomes known, all merged nodes are assigned the same value of x and considered known;

This set of parameters q = 2 and p → ∞ is particularly interesting :

1. The power watershed algorithm has a well-defined behavior in the absence or lack of weight information (presence of plateaus). An example is shown at Figure [START_REF]Stanford 3D scanning repository[END_REF]. 2. The worst-case complexity of the power watershed algorithm in the case p → ∞ is given by the cost of optimizing (2) for the given q. In the best-case scenario (all weights have unique values), the power watershed algorithm has the same asymptotic complexity as the algorithm used for a MSF computation (quasi-linear) (See [START_REF] Chazelle | A minimum spanning tree algorithm with inverse-ackermann type complexity[END_REF] for more details). In practical applications where the plateaus have a size less than some fixed value K, then the complexity of the power watershed algorithm matches the quasi-linear complexity of the standard watershed algorithm. Although the PW algorithm is fast, it can be further accelerated for the specific case of weight defined according to a distance map [START_REF] Beucher | Micromorph reference manual, applications and solutions[END_REF]. Given the foreground and background seeds, we define a narrow band S as the set obtained by thresholding the distance map d P with the the smallest threshold T S such that the connected components are divided between at least an interior (foreground) and an exterior (background). We then compute the PW only on this incomplete distance map, which saves both time and memory. In practice, it is possible to avoid computing an exact distance map on the full grid, using for instance an ordered algorithm propagating from the point cloud [START_REF] Ragnemalm | The euclidean distance transform in arbitrary dimensions[END_REF].

Recall that the exterior seed is connected to the frame of the image, so this is a simple unambiguous connectivity criterion. Applying PW on S is guaranteed to provide the same (unique) global optimizer of the energy as the solution on the full grid, because the connectivity criterion ensures this computation yields a Jordan curve (2D) or surface (3D) separating foreground and background seeds and passing through only already-computed distance values. Performing the PW computation on the full map would not change this result because no distance weight would be lowered, and so no new surface with a lower weight could be found on this full map. Conversely, thresholding the distance map at a lower value than T S would change the result, as any Jordan curve or surface separating foreground and background seeds and computed on this map would necessarily cross some nodes where the distance map had not been computed. Note this does not mean that this thresholding criterion is necessary and sufficient for optimal computation and least memory usage, as an adaptive threshold depending on the local point density could be used instead. However, we leave it as future work to find a better criterion than the simple global threshold.

3 Results and comparative evaluation

Comparison with Graph cuts and Total Variation

We now demonstrate the performance of the power watershed algorithm for surface reconstruction with respect to two graph-based methods discretizing the energy defined in equation (1), namely the weighted total variation (TV) and the Graph cuts (GC) method.

Our first experiment consists of finding a contour fitting sparse and noisy dots in a 2D plane. Figure 2 compares the result of TV minimization, the Graph cuts result, a maximum spanning forest result, and the result obtained with power watershed algorithm (q = 2, p → ∞). We observe that all resulting contours are excluding outliers. The Graph cuts results demonstrate that this algorithm is less sensitive to noise, but the contours are blocky because the obtained object indicators are binary. We note that a post-processing step for producing a smooth isosurface from such a binary object reconstruction has recently been proposed by Lempitzky [START_REF] Lempitsky | Surface extraction from binary volumes with higher-order smoothness[END_REF]. The TV contour is the smoothest one, which may be an unwanted effect for rendering details in surfaces. Thus, the TV method requires us to adapt the parameter p in the exponent of the weights to the desired smoothness of the surface. The maximum spanning forest result passes through most points and the contour looks noisy. The power watershed result demonstrates good performance for fitting the dots, while avoiding both blocky contours and noise. This good performance is due to the presence of interwoven plateaus in the distance map. During the execution of the algorithm, the Random walker (RW) algorithm is called several times around the dots, resulting in a smooth output x. An isocontour or isosurface computation at the 0.5 level is thus providing smooth contours compared to the binary results obtained with Graph cuts or maximum spanning forests.

Figure 3 shows surfaces reconstructed from noisy scanned dot sets using the power watershed (PW) algorithm. We used the coordinates of points acquired from scans of several 3D shapes (bunny, Buddha) from the Stanford database available online [START_REF]Stanford 3D scanning repository[END_REF] In our experiments, we embedded those points in 6-connected grids. Quantitative comparisons for the fitting quality are difficult because not all data points are required to be part of the surface. However, we show in Figure 4 that the power watershed method is producing reasonable results even if the point cloud is corrupted by Gaussian noise. We also compared our results to the results obtained using TV minimization and Graph cuts at Figure 6. We can observe that the surface obtained with the Graph cuts method is quite blocky. Using the same rendering method to render the output x minimizing the power watershed energy, the power watershed algorithm obtains a smoother surface showing significantly more details. Figure 5 shows that the power watershed method performs well even with a small amount of seeds. In contrast, the total variation method requires a large amount of seeds placed close to the searched surface.

Computation times and memory requirements

In our comparisons, we used the C++ software library of Lemptitzky and Boykov available online which implements the touch-expand algorithm that minimizes the GC energy. For that purpose, the touch-expand algorithm calls a max flow algorithm on a partial graph, a band around the points which is extended when the solution touches the boundary of the band. We also compare to a fast TVbased solver often called split-Bregman algorithm [START_REF] Goldstein | The split Bregman method for ℓ1-regularized problems[END_REF] but identical in principle to the Alternating Direction Method of Multipliers [START_REF] Glowinski | Augmented Lagrangian and operator-splitting methods in nonlinear mechanics[END_REF][START_REF] Setzer | Split Bregman algorithm, douglas-rachford splitting and frame shrinkage[END_REF]. This TV solver is implemented in C and may be called from Matlab. Finally, we also implemented the PW method in C. Computation times of the compared algorithms for the bunny and Buddha data sets are provided on Table 1. The three methods have large memory requirements when applied to the full grid. However, the graph cuts and power watershed banded methods are less memory intensive. For the bunny dataset, the touch-expand algorithm optimizing the Graph cuts energy only needs to allocate 3.6% of the full grid size. The solution space for the bunny dataset is much larger for our power watershed algorithm and reaches 33% of the full grid, because some points are widely spaced out. Thus, on this image, the touch expand algorithm is faster than the power watershed method. However, points clouds may require a more extensive expansion of the research area for the Graph cut touch expand method. For example, in the Buddha dataset, 8.75%

of the grid size is needed for computing the Graph cuts solution. In such cases, the power watershed approach is much faster. The TV approach has currently no guarantee to produce a global optimum when called on a banded graph, so the TV algorithm was implemented only on a full grid. On the Buddha dataset for example, given a 207 × 505 × 207 grid, the TV-based method requires 3G of RAM. 1. Timing experiments (in seconds) using an PC with a 3GHz Intel dual-core processor and 2G of RAM. The memory requirements are given in Mega Octets, and the computation times in seconds. Note that the seeds used are different for the three methods. For TV and PW, the seeds are imposed as hard constraints and are located far from the point cloud (see Fig. 5). The GC touch expand method uses soft constraints seeds computed from the normals given in input with the point cloud. We observe that Graph cuts are fast when the point cloud configuration does not require to expand the research area too much, like in the Bunny case (3.6%). However in the Buddha example, there is a need for a larger expansion, where the real complexity of the Graph cut algorithm become visible.

Point

Comparison with some other approaches

Following the quantitative information given in [START_REF] Jalba | Efficient surface reconstruction using generalized coulomb potentials[END_REF], we compare the performances of power watershed for the Stanford bunny reconstruction with different methods [START_REF] Amenta | The power crust[END_REF][START_REF] Braude | Contour-based surface reconstruction using mpu implicit models[END_REF][START_REF] Kazhdan | Reconstruction of solid models from oriented point sets[END_REF][START_REF] Kazhdan | Poisson surface reconstruction[END_REF][START_REF] Jalba | Efficient surface reconstruction using generalized coulomb potentials[END_REF]. All these methods, including the power watershed, reconstruct a surface close to the Bunny set of dots, with an error comprised between 2 × 10 -4 and 6 × 10 -4 . In terms of computation time, the Power Crust method [START_REF] Amenta | The power crust[END_REF] is about 10 times slower, and the Poisson method [START_REF] Kazhdan | Poisson surface reconstruction[END_REF] 3 times slower than our PW approach. Although the FFT [START_REF] Kazhdan | Reconstruction of solid models from oriented point sets[END_REF], MPU [START_REF] Braude | Contour-based surface reconstruction using mpu implicit models[END_REF] and Hoppe et al [START_REF] Hoppe | Surface reconstruction from unorganized points[END_REF] methods are fast, the FFT method suffers from large memory requirements limiting the grid resolution, and Hoppe et al and MPU methods produces artifacts in the presence of noise (See [START_REF] Jalba | Efficient surface reconstruction using generalized coulomb potentials[END_REF]). The method of Jalba and Roerdink [START_REF] Jalba | Efficient surface reconstruction using generalized coulomb potentials[END_REF], based on Coulomb potentials, uses 4 times less memory than our power watershed method, but is 5 to 10 times slower on a CPU and is still slower using a GPU. Furthermore our PW is more flexible in the choice of the markers. In our experiments, the amount of markers is not very large as shown in Fig. 5, but a strategy using larger seeds could be employed to reduce the size of the solution space and the computation time.

Conclusion

The power watershed method can be used to efficiently produce surfaces fitting noisy measurements. Contrary to standard watershed algorithms and the Graph cuts approach, the unique solution provided by the power watershed is not binary, resulting in the reconstruction of both smooth and detailed surfaces. In addition, this method is fast and not limited by large memory requirements, when using a restriction of the solution space. Finally, in comparison with other methods, our power watershed is robust to seed placement, and requires fewer parameters to be set. In practice, when using the power watershed method, close-fitting markers are not as mandatory as in other methods. Future work will follow several directions: memory and computation times improvements are still achievable, in particular by improving the touch-expand idea used in the Graph cuts optimization and adapting it for power watershed. The power watershed energy could also be modified to add some priors to the reconstructed surface, such as local orientation. Finally, we hope to demonstrate the efficiency of the power watershed technique for solving related problems such as multiview reconstruction.

Fig. 1 .

 1 Fig. 1. (a) Three dots in a 4 × 5 lattice. (b) Associated lattice weighted by a distance map from the dots according to (3) and squared, with Foreground and Background seeds. Note that only the ordering of the weights counts in the power watershed algorithm, thus the squared distance map can be used directly and produces the same solution as if the weights in (3) were used. (c) First steps of the power watershed algorithm to optimize (2) in the case q = 2 and p → ∞. Nodes having a maximum weight are merged. (d) A plateau of weight 2 (in green) including different seeded nodes is encountered. The Random walker algorithm is applied to label the nodes on the plateau. (e,f) New plateaus of weight 1 and 0 are encountered, the Random walker algorithm is applied, (g) Final labeling x solution of (2). The isocontour is represented in red.

Fig. 2 .

 2 Fig.2. Comparison of surface reconstruction from a set of points in 2D, using the total variation method, Graph cuts, a maximum spanning forest algorithm and finally the power watershed algorithm.

Fig. 3 . 7 × 10 - 3

 37103 Fig. 3. Power watershed results obtained from points clouds. (a) Total size of scans : 362272 points, Grid size : 234×297×301. (b) Number of scans used : 341072 points, Grid size : 275 × 276 × 668 (c) Total size of scans : 2748318 points, Grid size 382 × 270 × 171.

Fig. 4 .

 4 Fig. 4. Power watershed results obtained from noisy points clouds, corrupted by Gaussian noise of variance σ. The error was computed as the average distance between the obtained isosurface points to the original point cloud. The error is given in percentages of the diagonal of the bounding box of the data points.

Fig. 5 .

 5 Fig. 5. Robustness to seed quantity: this figure shows slices of solutions obtained for reconstructing the bunny surface, obtained on a grid of size 251 × 248 × 195, using different seeding strategies. The interior seed is colored in red, and the background seed in blue, and resulting isolines in green. (a,b,c) : Results obtained with TV minimization, and (d) Result obtained with Power Watershed.

Fig. 6 .

 6 Fig. 6. Grid size : 234 × 297 × 301. (a) Total variation minimization result, (b) Graph cuts result, (c) power watershed result. Isosurfaces at 0.5 have been extracted on all results, and were downsampled by 2 to render the surfaces.

 Table

		Method	Grid	Grid	Peak	Time	Time /
	cloud		size	used memory		Nb voxels
	Bunny	GC	234 × 257 × 301 3.6%	212	9	1.4 × 10 -5
	Bunny	PW	234 × 257 × 301 31%	1180	51 9.1 × 10 -6
	Bunny	TV	195 × 248 × 251 100%	900	122 1.0 × 10 -5
	Buddha	GC	276 × 671 × 277 8.7%	850	253 5.6 × 10 -5
	Buddha	PW	276 × 671 × 277 16%	1500	52 6.3 × 10 -6