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Paths, homotopy and reduction in digital images

Loı̈c Mazo · Nicolas Passat· Michel Couprie ·
Christian Ronse

August 27th, 2010

Abstract The development of digital imaging (and its subsequent applications) has led to
consider and investigate topological notions, well-defined in continuous spaces, but not nec-
essarily in discrete/digital ones. In this article, we focus on the classical notion of path. We
establish in particular that the standard definition of pathin algebraic topology is coherent
w.r.t. the ones (often empirically) used in digital imaging. From this statement, we retrieve,
and actually extend, an important result related to homotopy-type preservation, namely the
equivalence between the fundamental group of a digital space and the group induced by digi-
tal paths. Based on this sound definition of paths, we also (re)explore various (and sometimes
equivalent) ways to reduce a digital image in a homotopy-type preserving fashion.

Keywords topology · digital imaging · paths· fundamental group· homotopy-type
preservation

1 Introduction

Several different models have been proposed to deal with topological properties in finite
sets. The first works dedicated to this issue have been developed by Alexandroff [1] in 1937.
After this first attempt, no other works have been proposed for approximately 30 years, and
we had to wait until the mid 60’s to see (simultaneous) new contributions in the mathematics
community [29,36] and also in the computer science one [34,9]. The rapid and important
raise of digital imaging, and the associated need of efficient image analysis tools for 2-D, and
later 3-D (and even 4-D) digital images have provided a strong motivation to the research
related to the definition of sound discrete/digital topological models. Indeed, in order to be
able to segment, process, or analyse digital images in various application fields, it is often
fundamental to be able to preserve, retrieve or integrate topological information.
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Université de Strasbourg, LSIIT, UMR CNRS 7005, Parc d’Innovation, Bd S. Brant, BP 10413, 67412
Illkirch Cedex, France
E-mail: loic.mazo@unistra, passat@unistra.fr, cronse@unistra.fr

Loı̈c Mazo, Michel Couprie
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2

In the mathematics community, after the pioneering works ofAlexandroff, McCord [29]
firmly linked finite spaces with simplicial complexes, whileStong [36] undertook homeo-
morphism and homotopy type classifications. Many years later, at the end of the century, this
subject yielded new developments whose main goal was to classify simplicial complexes via
finite spaces [10,31,3,21].

In the computer science community, works have essentially focused on specific –and
pragmatic– questions related to topology, namely the definition of a notion ofadjacencyre-
lation, and the induced notions ofconnectivityandarcs. These notions enable in particular
to lead to high-level concepts of topology, such as homotopy, with natural applications to
“homotopy type-preserving” transformations of topological spaces/digital images. The first
–and very intuitive– solution to define an adjacency relation onZn is to consider that two
points are adjacent if there are neighbours in then-D cubic grid (possibly enriched by some
well chosen sets of “diagonals”). This framework led –in order to avoid paradoxical intersec-
tions between objects– to the classical definition ofdual adjacenciesin digital images [34,
9,33]. In this approach, known asdigital topology, no topology is however actually defined
and there are, in particular, no open/closed sets. To retrieve topological notions, a possible
way is to definecontinuous analoguesof n-D digital images, assuming that each point in
such images physically corresponds to a unitn-cube of the Euclidean space. Following this
analogy, it becomes possible to justify the use of dual adjacencies [32] and to define alge-
braic structures isomorphic to those used in topology [16,23]. An alternative way to deal
with connectivity in digital pictures is to find a topology inZn, i.e., a family of subsets of
Zn (defined as open sets), leading to the desired adjacency relation (in this framework, two
pointsx, yare adjacent if the set{x, y} is connected). In [18], it is proved that there is only one
convenient solution –the product of Khalimsky lines [13]– for defining such a framework,
unfortunately this solution breaks the homogeneity ofZn. (To avoid this phenomenon, it is
necessary to add points between those actually in the image,which is equivalent to identify
the points of a digital image with some cells of abstract cellular complexes [20,15].) All
these topological models have found practical applications in the context of digital image
analysis, especially for the definition of “topology-preserving” procedures (i.e., procedures
enabling to modify a binary digital image without altering its homotopy type), including
reduction ones (used for skeletonisation or segmentation), seee.g.[8].

The quite pragmatic motivations of the works on topologicalmodelling of digital im-
ages can probably explain why most of the proposed definitions only aim at mimicking or
adapting the definitions of the classical topology to retrieve intuitive notions such as con-
nectivity and continuous deformation. Moreover, if the works of Alexandroff are relatively
well known in both (mathematics and computer science) communities, those of McCord
and Stong have visibly never been considered in the researchrelated to topology in digi-
tal images. Consequently, it is generally believed that theclassical definitions of topology
cannot be “directly” embedded in the universe of digital images in a sound fashion1 (i.e.,
while preserving their correct and intrinsic properties).In particular, it seems thatpathsin
finite spaces have been quite systematically replaced byad hocdefinitions. This justifies to
carefully explore the relations between continuous paths and digital paths of finite spaces.

The purpose of this article is to study the consequences of the use of the general topol-
ogy standard definition of a path, namely a continuous function from [0, 1], when working
in a digital space. We describe the images of such paths in a digital space and compare them
with the regular digital paths defined in the framework of theKhalimsky topology [14] or in

1 In [22], Latecki writes “topology is basically not a finite concept and reduces to triviality whenever
applied to finite sets”.
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the equivalent framework of abstract cellular complexes [20]. We show that both definitions
lead to very close geometrical objects: our first main result(Theorem 2) states that under
each continuous pathp, lies another continuous path which is a step function (for such a
path, we saya finite path), whose image is included in the image ofp and which is equal
to p for at least one value of the parameter in each step interval.We also look at homotopy
equivalence between paths and describe their discrete counterparts that we calldeforma-
tions. We show that two finite paths with a same image are homotopically equivalent and
our second main theorem (Theorem 3) establishes that two finite paths with distinct images
are homotopically equivalent iff the image of one of them is a deformation of the image of
the other one. Then, we retrieve (and in fact, extend, since we do not suppose the ambiant
space to be finite), without the need of high level preliminary results, the property recently
proved in algebraic topology [3] that the fundamental groupof a digital space is isomorphic
to the group of digital paths equipped with the deformations. Since our model is based on
classical definitions, we have the possibility of reinvest any external result in the field of
image analysis and processing. In particular, we explore and compare some tools devoted
to the reduction of finite, or countable, spaces and which have counterparts in continuous
analogues embedded in the Euclidean space.

In order to do so, Section 2 first recalls background notions related to general topology
and partially ordered sets. (These notions enable to make this article globally self-contained,
and then more comprehensible for the reader.) In Section 3, we study in detail the paths in
digital images,i.e., the continuous functions of [0, 1] → Zn (whereZn is interpreted from
the topological point of view mentioned above) and we justify why we can avoid to consider
the “functional side” of paths. In particular, we prove thatthe fundamental group of a digital
space is isomorphic to the “fundamental-like” group which is generally considered in digital
image analysis. Then, topological algebraic structures being well defined, we can borrow
any tool in the existing literature on countable/finite spaces for use in image analysis and
processing. Thereby, in Section 4, we study and confront various ways to make minimal
changes in a digital image while preserving, as far as possible, its topology. Concluding
remarks will be found in Section 5.

2 Background notions

2.1 General topology

In this subsection, we recall some basic definitions and classical properties of topology
without proof. The main purpose here is to introduce useful notations and to gather results
needed in the sequel of the article. The reader interested inproofs, or details on a particular
notion, can find them in any lecture book on general topology (for example, [30,37]) or on
algebraic topology (for example, [11,25,26].

2.1.1 Topological spaces

Let X be a set, the elements of which will be called points. Atopologyon X is a collection
U of subsets ofX, calledopen sets, such that:

(i) ∅,X are open sets;
(ii) any finite intersection of open sets is an open set;

(iii) any union of open sets is an open set.
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4

The complement inX of an open set is called aclosed set. From the above definition, any
finite union of closed sets is a closed set and any intersection of closed sets is a closed set. A
set of open sets is abasisfor a topology if any open set is a union of open sets of this basis.
A neighbourhoodof a pointx ∈ X is a subset ofX including an open set containingx.

The closure Y of a subsetY ⊆ X is the smallest closed set includingY. The interior
Y◦ of a subsetY ⊆ X is the largest open set included inY. It is also the union of all open
sets included inY. Closure and interior are dual notions sinceY◦ = X \

(

X \ Y
)

and Y =
X \ (X \ Y)◦ . For any subsetY ⊆ X, the setUY = {U ∩ Y | U ∈ U} is a topology onY
called thetopology inducedby U onY. The set{∅,X} is a topology onX called thetrivial , or
indiscrete, topology. The set 2X of all subsets ofX is a topology which is calleddiscretein
mathematics. Here, since we find this designation confusingwith the meaning of topology
in a discrete space, we will call itultra-discrete.
Topology is a tool to give a precise meaning to the intuitive notion of “nearness”. With
the trivial topology, any point inX is near any other point inX while with the ultra-discrete
topology, the space is totally disconnected. So, we are not interested by these two topologies
but for examples and counterexamples. Therefore we must look at other topologies to use in
finite or discrete spaces.

2.1.2 Continuous maps and spaces classification

Let X,Y be topological spaces (i.e., spaces equipped with a topology). A functionf : X→ Y
is continuousif the preimage of any open set ofY is an open set ofX. In particular, if the
topology onY has a basisB and the preimage of any set ofB is an open set inX, then f is
continuous. Iff is bijective and bothf and f −1 are continuous, thenf is ahomeomorphism
and the spacesX,Y are calledhomeomorphic.

If Y is a subset ofX, Y is a retract of X if there exists a continuous map, called a
retraction, r : X→ Y such thatr(y) = y for all y ∈ Y. A continuous mapr : X × [0, 1] → X
is a(strong) deformation retractionif, for every x in X, y in Y we haver(x, 0) = x, r(x, 1) ∈ Y
andr(y, 1) = y (and for everyt in [0, 1], r(y, t) = y). If such a map exists,Y is a (strong)
deformation retractof X.

When Y is not a subspace ofX, there exists however a similar notion as the one of
retraction. Two continuous mapsf , g : X → Y arehomotopicif there exists a continuous
map, called ahomotopy, h : X × [0, 1] → Y such thath(x, 0) = f (x) andh(x, 1) = g(x) for
all x ∈ X. The spacesX andY arehomotopy equivalent(or have the samehomotopy type) if
there exist two continuous mapsf : X→ Y andg : Y→ X, calledhomotopy equivalences,
such thatg ◦ f is homotopic to the identity map idX and f ◦ g is homotopic to idY. If X and
Y are homeomorphic, they are homotopy equivalent: given a homeomorphismϕ betweenX
andY, ϕ andϕ−1 are homotopy equivalences betweenX andY. The converse is not true in
general (for example, a ball is homotopy equivalent –but nothomeomorphic– to a point). A
topological space iscontractibleif it has the homotopy type of a single point.

2.1.3 Topological properties

A topological spaceX is connectedif it cannot be split into two non-empty open sets. The
union of any collection of connected subspaces ofX, pairwise intersecting, is connected. In
particular, if X,Y are connected andX ∩ Y , ∅, thenX ∪ Y is connected. Theconnected
componentsof X are the maximal (for inclusion) connected subspaces ofX. Every x in X
belongs to exactly one such component since the set{x} is connected and the union of all
connected sets containingx is connected and - trivially - maximal for inclusion. Hence,the
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5

connected components of a spaceX form a partition ofX. Note also that the image of a
connected set by a continuous map is connected.

Let x1, x2 be two points inX. A pathfrom x1 to x2 in X is a continuous mapπ : [0, 1]→
X with π(0) = x1 andπ(1) = x2. A spaceX is path-connectedif for every pair (x1, x2) in X,
there is a path fromx1 to x2 in X. A path-connected space is connected.

A spaceX is compactif from each collection of open sets, the union of which isX (such
a collection is called acover), one can extract a finite cover. The image of a compact set by
a continuous map is also compact.

A spaceX satisfies theseparation axiom T0 (or, shortly, is aT0-space) if for every pair
(x1, x2) (x1 , x2) in X there is an open set ofX which contains exactly one element of the
pair. That is, one can distinguish them from a topological viewpoint. It is equivalent to state
that x1 does not belong to the closure of{x2} or x2 does not belong to the closure of{x1}. If
for every pair (x1, x2) (x1 , x2), x1 does not belong to the closure of{x2} and x2 does not
belong to the closure of{x1}, that is, if for eachx ∈ X, {x} is closed, thenX is aT1-space.
Hausdorff spaces, or T2-spaces, like Rn equipped with the usual topology, have a stronger
property: any two distinct points have disjoint neighbourhoods. Note that aT2-space isT1

and aT1-space isT0.

2.1.4 Algebraic topology

Let X be a topological space. Two pathsp, q in X are equivalentif they have the same
extremities (i.e., p(0) = q(0) andp(1) = q(1)) and are homotopic by an homotopyh such
thath(0, u) = p(0) = q(0) andh(1, u) = p(1) = q(1) for all u ∈ [0, 1]. It is easy to check that
this relation on paths is actually an equivalence relation.We write [p] for the equivalence
class ofp. If p, q are two paths inX such thatp(1) = q(0) we can define the productp ·q by:

(p · q)(t) =

{

p(2t) if t ∈ [0, 1
2],

q(2t − 1) if t ∈ [ 1
2 , 1].

This product is well defined on equivalence classes by [p] · [q] = [p · q]. Let x be a point of
X. A loop at x is a path inX which starts and ends atx. The product of two loops atx is a
loop atx and the setπ1(X, x) of equivalence classes of loops atx is a group for this product.
It is called thefundamental groupof X (with basepoint x) or thefirst homotopy groupof
X. If X is path-connected, the groupπ1(X, x) does not depend on the basepoint (i.e., for any
pointsx, y ∈ X, π1(X, x) andπ1(X, y) are isomorphic). Higher homotopy groups are defined
by replacing loops atx by continuous maps from [0, 1]n to X that associate the boundary
of the n-cube tox. The product on such maps is then defined by gluing two faces ofthe
n-cubes:

p · q(t1, . . . , tn) =

{

p(2t1, t2, . . . , tn) if t1 ∈ [0, 1
2 ],

q(2t1 − 1, t2, . . . , tn) if t1 ∈ [ 1
2 , 1].

Conventionally, the set of path-connected components ofX is denoted byπ0(X, x), but it has
no group structure.

Let X and Y be two topological spaces with base pointsx and y. A continuous map
f : X→ Y is aweak homotopy equivalenceif the morphismsfn : πn(X, x)→ πn(Y, y) defined
by fn([p]) = [ f ◦ p] are all bijective (f0 is just a bijection, not a morphism). Two spacesX,Y
areweakly homotopy equivalentif there is a sequence of spacesX0 = X,X1, . . . ,Xr = Y
(r > 1) such that there exist weak homotopy equivalencesXi−1 → Xi or Xi → Xi−1 for all
i ∈ [1, r ]. Hence, two weakly homotopy equivalent spacesX,Y have isomorphic homotopy
groups.
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6

Two homotopy equivalent spaces are weakly homotopy equivalent (the converse is not
true in general but the Whitehead’s theorem [39,40]) statesthat it is true in complexes (see
Section 4.1).

2.2 Partially ordered sets

Because of their capacity to encompass all topological approaches on digital images, our
work is presented in the framework ofposets(Partially Ordered SETS). For this reason,
but mainly to show how discrete spaces are concerned with continuity, this subsection on
partially ordered sets is more detailed than the previous ones. We give proofs, as far as
possible, while we state properties with hypothesis close to our subject. Readers interested
in more general hypothesis may refer to [1,29,36,2,28,27].

Let X be a set. A binary relation onX is apartial order if it is reflexive, antisymmetric,
and transitive. Apartially ordered set, or poset, is a couple (X,P) where the relationP
is a partial order onX. The relationQ defined onX by xQy if yPx is a partial order on
X called thedual order. We say that two pointsx, y in X arecomparableif xPy or yPx.
We say that a poset islocally finite if for each pointx in X, there are finitely many points
comparable withx (note that for many authors, locally finite means that each point x has
a finite neighbourhood). As an example,N equipped with the dual of the usual order (i.e.,
with >) is not locally finite with the definition we use though each point n ∈ N has a finite
neighborhood [0, n] (see Theorem 1 for the definition of the topology). If, for all pairs (x, y)
of elements ofX, x andy are comparable, the relationP is a total order on X. A chain in
X is a totally ordered subset ofX. A poset isfinite-dimensionalif there is an integern such
that any chain inX has a cardinal less or equal thann+ 1. The smallest integern having this
property is called thedimensionof X and we writen = dim(X).

We write x⊳y whenxPy andx , y and we set:

− x↑ = {y ∈ X | xPy} andx↑⋆ = x↑ \ {x} = {y ∈ X | x⊳y};
− x↓ = {y ∈ X | yPx} andx↓⋆ = x↓ \ {x} = {y ∈ X | y⊳x}.

If x andy are comparable, we writex ≍ y; otherwise, we writex - y. The set of points
comparable with a given pointx is denotedxl (xl = x↓ ∪ x↑) andxl⋆ = xl \ {x} = x↓⋆ ∪ x↑⋆.
A point x ∈ X is minimal if x↓ = {x} andmaximalif x↑ = {x}. A point x ∈ X is theminimum
of X if x↑ = X and is themaximumof X if x↓ = X.

The Hasse diagram is the oriented graph of thecoveringrelation defined by:y coversx
(x ≺ y) if x⊳y and there is noz such thatx⊳z⊳y. Orienting all arcs from top to bottom, this
diagram offers good visual representations of (small) posets (see Figure 8).

2.2.1 Topology in posets

Let us forget for a while posets in order to define Alexandroff spaces. A topological spaceX
is anAlexandroff spaceif any intersection of open sets is an open set. In such a space, closed
sets satisfy the definition properties of open sets, namely,∅,X are closed sets, any union
and any intersection of closed sets is a closed set, so one canexchange open and closed
sets, tThe obtained topology is then called thedual topology. As any set has a closure, any
elementx of an Alexandroff space has asmallest neighbourhood(an open set included in
any open set containingx), denoted byUx, which is the closure of{x} for the dual topology.
Conversely, a topological spaceX in which each point has a smallest neighbourhood is an
Alexandroff space. Moreover, since for any open setV ⊆ X, we haveV =

⋃

x∈V Ux, the
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7

set of smallest neighbourhoods is a basis for the topology. When a topological setX has
the T1-separation property, each singleton is closed; thus an Alexandroff space with the T1-
separation property is ultra-discrete. It is the reason whythe only Alexandroff spaces worthy
of interest are non-T1. We call the T0-Alexandroff spacesA-spaces. McCord has proved in
[29] that if an Alexandroff space is not T0, the identification of the points that share the same
smallest neighbourhood give a homotopy equivalent quotient space which is T0.

Now let us go back to posets with the next theorem known as Alexandrov specialisation
theorem which establishes a canonical link between A-spaces and posets.

Theorem 1 ([1]) Let (X,U) be an A-space. The relationP defined on X by xPy if y ∈ Ux is
a partial order on X. Conversely, let(X,P) be a poset. The setU defined byU = {U ⊆ X |
∀x ∈ U, x↑ ⊆ U} is a topology on X,(X,U) is an A-space and, for all x∈ X, Ux = x↑.

If Y is a subset ofX, the topology associated to the poset (Y,P) is the topology induced
by the one associated to the poset (X,P). The dual topology of the topology associated to
the poset (X,P) is the topology associated to the dual orderQ.

From now on, posets will always be equipped with the topologyU described in Theorem
1.

The easy following property founds an interesting application when a continuous func-
tion, like a path, is defined from a compact subset ofRn, that is a closed bounded subset, to
a locally finite poset.

Property 1 Any compact locally finite poset is finite.

Proof Let X be a compact locally finite poset. SinceX is compact, there exists a finite set
A ⊆ X such that (Ux)x∈A is a finite subcover of the open cover (Ux)x∈X. As X is locally finite,
eachUx is finite and, therefore,X =

⋃

x∈A Ux is finite.

2.2.2 Continuity and connectivity

Property 2 Let X,Y be posets. A functionf : X→ Y is continuous iff it is non-decreasing.

Proof ([36]) (Stong assumesX andY to be finite, but he does not use it in his proof) Suppose
that f is continuous. Letx1Px2 be two points inX. Since f −1(U f (x1)) is an open set contain-
ing x1, it includesx↑1 sox2 ∈ f −1(U f (x1)) and f (x2) ∈ U f (x1), that is f (x1)P f (x2). Conversely,
suppose thatf is non-decreasing. For somey ∈ Y, takex ∈ f −1(Uy), which meansyP f (x).
For anyx′ ∈ Ux, xPx′, soyP f (x)P f (x′) andx′ ∈ f −1(Uy). HenceUx ⊆ f −1(Uy) for any
x ∈ f −1(Uy). That is, f −1(Uy) is open.

Let x, y ∈ X. We say thatx, y are adjacentif the set{x, y} is connected. A sequence
(xi)r

i=0 (r > 0) of points inX is anarc in X (from x0 to xr ) if for all i ∈ [1, r ], xi−1 andxi are
distinct and adjacent. The integerr is thelengthof the arc (xi)r

i=0. If for all xi , 16 i 6 r − 1,
xi−1 < xi ⇔ xi > xi+1, we say that the arc isminimal2. If for all x, y ∈ X there exists an arc
in X from x to y, we say thatX is arc-connected.

Property 3 Two pointsx, y ∈ X are adjacent iff x andy are comparable.

2 The definition of a path by Kovalevsky [20] in the framework ofcellular complexes corresponds to the
definition of an arc given above while the definition of a digital path by Konget al. [19] in the framework of
the Khalimsky topology corresponds to the definition of a minimal path above.
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Proof Let S = {x, y} and supposex, y are not comparable, that isx < Uy andy < Ux. Then,
Ux ∩ S = {x} andUy ∩ S = {y} are disjoint open sets ofS. Therefore,S is not connected.
If x, y are comparable, for examplexPy, every open set containingx containsy, so it is
impossible to breakS into two non-empty open sets. ThusS is connected.

Lemma 1 Let X be a poset. If x and y are comparable, then there is a path from x to y.

Proof ([36]) (Stong assumesX andY to be finite, but he does not use it in his proof) Suppose
xPy and letp : [0, 1]→ X be the function defined byp(t) = x if t 6 1

2 andp(t) = y if t > 1
2.

We claim thatp is continuous,i.e., p is a path. To prove this assertion, it is sufficient to
prove that for anyUz, p−1(Uz) is open in [0, 1]. If x, y < Uz, thenp−1(Uz) is empty and thus
is open. Ifx ∈ Uz, zPxPy soy ∈ Uz andp−1(Uz) = [0, 1] is open. Ifx < Uz andy ∈ Uz, then
p−1(Uz) =] 1

2 , 1] which is an open set of [0, 1].

The material for the next property, and for its proof, is alsoin [36].

Property 4 Let X be a poset. The following statements are equivalent:

1. X is path-connected;
2. X is connected;
3. X is arc-connected.

Proof 1⇒ 2 is true in any topological space. To prove 2⇒ 3, supposeX is connected and
take a pointx ∈ X. By proposition 3, it is straightforward to prove that the sets A of points
in X that are connected tox by an arc and its complement,X = B \ A, are open. AsX is
connected andA , ∅, B is empty andX is arc-connected. Finally to prove 3⇒ 1, supposeX
is arc-connected. From Lemma 1, we derive easily thatX is path-connected.

Observe that the above property means that the standard definition of paths and the
digital one lead to the same path-connected components.

2.2.3 Homotopy

Let f , g be two continuous maps from a topological spaceY to X. We write fEg when
f (a)Pg(a) for all a ∈ Y. It is straightforward that the relationE is a partial order onC(Y,X),
the set of continuous maps fromY to X. For some givenx1, x2 ∈ X, y1, y2 ∈ Y, we set
C(Y,X)⋆ = { f ∈ C(Y,X) | f (y1) = x1, f (y2) = x2}. Unlike others authors ([36,26,2]), we
do not use here the compact-open topology on continuous functions but the Alexandroff
topology associated to the poset (C(Y,X),E).

Property 5 ([36]) Let X be a poset andY any topological space. Letp, p′ ∈ C(Y,X) be
such thatp′Ep. Then, there is a homotopyh betweenp and p′ such that for ally ∈ Y,
p(y) = p′(y)⇒ ∀u ∈ [0, 1], h(y, u) = p(y) = p′(y).

Proof Defineh : Y× [0, 1]→ X by h(y, t) = p(y) if t < 1 andh(y, 1)==p′(y). Let Ux be some
smallest neighbourhood for somex ∈ X. Then,h−1(Ux) = p−1(Ux) × [0, 1[∪ p′−1(Ux) × {1}.
Now,y ∈ p′−1(Ux)⇒ p′(y) ∈ Ux ⇒ p(y) ∈ Ux (for p′Ep)⇒ y ∈ p−1(Ux). Thus,p′−1(Ux) ⊆
p−1(Ux) andh−1(Ux) = p−1(Ux)× [0, 1[∪ p′−1(Ux)× [0, 1]. As p, p′ are continuous,p−1(Ux)
andp′−1(Ux) are open and, therefore,h−1(Ux) is open which establishes the continuity ofh.

Corollary 1 Let X be a poset. If X has a maximum, or a minimum, then X is contractible.
In particular, for any x∈ X, x↓ and x↑ are contractible.
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Proof Let x be the minimum ofX andϕ the constant map that takesX onto{x}. The function
ϕ is non-decreasing and verifiesϕE idX. Hence, thanks to Property 5, we derive that{x} is a
strong deformation retract ofX.

The following corollary is a direct consequence of the Property 5 (takingY = [0, 1]). It
is of first importance for our study of paths in posets.

Corollary 2 Let X be a poset and a, b be two points in X. Let p, p′ be two paths in X from
a to b such that p′Ep. Then, p and p′ are equivalent3.

Property 6 Let X be a poset andY a compact topological space. The connected components
of C(Y,X) (resp.C(Y,X)⋆), equipped with the binary relationE, are the homotopy equiva-
lence classes ofC(Y,X) (resp.C(Y,X)⋆).

Proof Suppose thatf andg are in the same connected component ofC(Y,X) (resp.C(Y,X)⋆).
From Properties 4 and 3 (applied to the posetC(Y,X) or C(Y,X)⋆), there exists a sequence
(qi)r

i=0 (r > 1) of paths inC(Y,X) (C(Y,X)⋆) such thatq0 = f , qr = g and, for alli ∈ [1, r ],
qi−1, qi are comparable, and thus, thanks to Property 5, homotopy equivalent. Hence,f and
g are homotopy equivalent (from Property 5, we easily derive that, if f , g ∈ C(Y,X)⋆, there is
a homotopyh such that for allt ∈ [0, 1], h(., t) ∈ C(Y,X)⋆). Conversely, leth : Y× [0, 1]→ X
be a homotopy between some mapsf andg of C(Y,X) (with h(yi , t) = xi for all t ∈ [0, 1] and
i ∈ {1, 2}). Defineh⋆ : [0, 1] → C(Y,X) by (h⋆(t)) (y) = h(y, t). It is clear thath⋆(0) = f and
h⋆(1) = g (andh⋆(t) ∈ C(Y,X)⋆). We want to prove thath⋆ is continuous and is therefore a
path from f to g. Let t be a point in the preimageh−1

⋆ (Up) of some smallest neighbourhood
in C(Y,X). Ash is continuous, for eachy ∈ Y, there are open setsVy ⊆ Y, Iy ⊆ [0, 1] such that
y ∈ Vy, t ∈ Iy andh(Vy × Iy) ⊆ Up(y). Thanks to the compacity ofY, there is a finite subset
A of Y such that{Vy}y∈A is a finite cover ofY. ThenI =

⋂

y∈A Iy is an open neighbourhood
of t and for all t′ ∈ I , y ∈ Y, h(y, t′) ∈ h(Vy, I ) ⊆ h(Vy, Iy) ⊆ Up(y) hencet′ ∈ h−1

⋆ (Up)
and I ⊆ h−1

⋆ (Up). We can now conclude thath⋆ is continuous and thatf , g are in the same
(path-)connected component ofC(Y,X) (C(Y,X)⋆).

As a particular case of Property 6, we obtain that the connected components ofΠa,b, the
set of paths inX from a to b equipped with the binary relationE, are the equivalence classes
of Πa,b and from Property 4 we derive immediately the following corollary.

Corollary 3 Let X be a poset and a, b two points in X. Two paths p, p′ in X from a to b are
equivalent iff there exists a sequence(pi)r

i=0 (r > 0) in Πa,b such that p0 = p, pr = p′ and,
for all i ∈ [1, r ], pi−1 and pi are comparable.

3 Paths and arcs

The aim of Section 3 is to understand precisely how paths behave in a poset and to study the
link between their image and the arcs defined in Section 2.2.2. In the sequel of the article,
(X,P) is a poset (X need not to be finite nor, even, locally finite).

3 See Section 2.1.4
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3.1 Finite paths

We say that a functionf : [0, 1]→ X is astep functionif there exists finitely many intervals
(I i)r

i=0 (r ∈ N) such thatf is constant on each intervalI i and [0, 1] =
⋃r

i=0 I i . If for all
i ∈ [1, r ], sup(I i−1) = inf(I i) and f (I i−1) , f (I i), we write f =

∑r
i=0 xi1I i where{xi} = f (I i).

Note that we use the notationf =
∑r

i=0 xi1I i by analogy with mathematical analysis but it is
purely formal and there is no meaning behind this summation.

As a path inX is a continuous map from [0, 1] to X and [0, 1] is compact, the image of a
pathp in a locally finite posetX is compact and therefore finite (Property 1). Nevertheless,
this does not mean thatp is a step function. For example, letx⊳y be faces inX and consider
the mapp : [0, 1] → {x, y} defined byp(0) = x, p

(]

1
2r+1 ,

1
2r

[)

= {y} andp
([

1
2r ,

1
2r−1

])

= {x}
for any positive integerr . The functionp is a loop atx in X (continuity of p is obvious since
∅, {y}, {x, y} are the only open sets in{x, y}) but this path goes throughx andy countably
many times and it is even impossible to tell which is the second point crossed by the path
p. Observe that this path is greater than the constant pathp0 : [0, 1] → {x} and less than
p1 : [0, 1] → X defined byp1(0) = x, p

(]

0, 1
2

[)

= {y}, p
([

1
2 , 1
])

= {x} and thusp is
equivalent top0 andp1 (Property 5).

Definition 1 (Finite path) A pathp in X is afinite pathif it is a step functionp =
∑r

i=0 xi1I i .
The sequence (I i)r

i=0 is called theintervals sequenceof p and the sequence(xi)r
i=0 the track

of p. A finite path isregular if there is no singleton in its intervals sequence. A finite path is
minimal if for all xi , 1 6 i 6 r − 1, in the track ofp, xi−1 < xi ⇔ xi > xi+1.

Proposition 1 The track of a finite path is an arc, and any arc is the track of a regular finite
path.

Proof Let p =
∑r

i=0 xi1I i , (r > 0), be a finite path. Ifr = 0, it is obvious thatχ is an arc. If
r > 1, takei ∈ [1, r ]. The set{xi−1, xi} = p (I i−1 ∪ I i) is connected sinceI i−1 ∪ I i is connected
andp is continuous. Hence,χ is an arc.

Let χ = (xi)r
i=0 (r > 0) be an arc. Ifr = 0, the constant pathp defined byp([0, 1]) = {x0}

has trackχ. If r = 1, from Lemma 1 and its proof, there exists a regular path fromx0 to x1.
If r > 2, the productp1 . . . pr of regular pathspi from xi−1 to xi (1 6 i 6 r) is a path with
trackχ and it can easily be seen, from the very definition of this product, that a product of
regular paths is regular.

Lemma 2 A step function p=
∑r

i=0 xi1I i is a finite path in X iff for all i ∈ [0, r −1], xi ≍ xi+1

and xiPxi+1 ⇔ sup(I i) ∈ I i .

Proof Supposep is continuous. Leti ∈ [0, r − 1]. By Proposition 1,xi ≍ xi+1. If xiPxi+1,
then xi < Uxi+1 (sincexi , xi+1 by convention when writingp =

∑r
i=0 xi1I i ). So the open

setp−1(Uxi+1) includes the intervalI i+1 but not the intervalI i . Thus, inf(I i+1) = sup(I i) is not
in I i+1, i.e., sup(I i) ∈ I i . If the inequalityxiPxi+1 is false thenxi+1 < Uxi and the open set
p−1(Uxi ) includes the intervalI i but not the intervalI i+1. So sup(I i) is not in I i . Hence, the
equivalencexiPxi+1 ⇔ sup(I i) ∈ I i holds. Conversely, suppose that there is somes > 0
such that any step function

∑r
i=0 xi1I i with r 6 s is continuous when for alli ∈ [0, r − 1],

xi ≍ xi+1 and xiPxi+1 ⇔ sup(I i) ∈ I i . Let p =
∑s+1

i=0 xi1I i be a step function such that for
all i ∈ [0, s], xi ≍ xi+1 andxiPxi+1 ⇔ sup(I i) ∈ I i . Indeed, for alli ∈ [0, s− 1], xi ≍ xi+1

andxiPxi+1 ⇔ sup(I i) ∈ I i so the step functionp′ =
∑s−1

i=0 xi1I i + xs1Is∪Is+1 is continuous.
Let U be an open set inX. If xs, xs+1 < U, or xs, xs+1 ∈ U, thenp−1(U) = p′−1(U) is open.
If xs ∈ U andxs+1 < U then necessarily the inequalityxsPxs+1 is false which implies that
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sup(Is) < Is. Thus,Is+1 is closed andp−1(U) = p′−1(U)\ Is+1 is open. Ifxs < U andxs+1 ∈ U
then, sincexs andxs+1 are comparable,xsPxs+1 and, by hypothesis, sup(Is) ∈ Is. Thus,Is+1

is open andp−1(U) = p′−1(U) ∪ Is+1 is open. As in each case the preimage of an open
set is open,p is continuous. Observing that, ifs = 0, the mapp is constant and therefore,
continuous, we may conclude by induction.

Theorem 2 is the main result of Section 3.1. It states that anypathp in a poset is equiv-
alent to a finite path, the track of which is ”very close” to theimage ofp. Thus, it is a first
link between the continuous notion of path and the discrete one of arc.

Theorem 2 For all x, y ∈ X and any path p from x to y, there exists a minimal regular finite
path from x to y, p′Ep, the track of which is included in the image of p. Moreover, in any
interval I in the interval sequence of p′, there is an element t such that p′(t) = p(t).

Proof Let p be a path fromx to y in X. For eacht ∈ [0, 1], p−1(Up(t)) is open and contains
t. Let Jt be the connected component ofp−1(Up(t)) containingt (Jt is an open interval).
Since [0, 1] is compact and the family(Jt)t ∈ [0,1] is an open cover of [0, 1], there exists a
finite subsetA of [0, 1], such that(Jt)t ∈ A covers [0, 1]. If, for somet, t′ ∈ A, Jt ∩ Jt′ , ∅ and
p(t)Pp(t′), we removet′ from A and we replaceJt by Jt∪Jt′ so we can suppose thatJt∩Jt′ ,

∅ ⇒ p(t) - p(t′) (observe that it implies thatt cannot belong toJt′ ). Let A′ be a subset ofA
such thatA′ is a minimal cover of [0, 1] (for any strict subsetB of A′, (Jt)t ∈ B does not cover
[0, 1]). Let (ti)r

i=0 be the (strictly) ordered sequence of reals inA′ (wherer is the cardinal of
A′). From the hypothesis onA′, we derive that the sequences (inf(Jti ))

r
i=0 and (sup(Jti ))

r
i=0 are

strictly ordered,Jti−1 ∩ Jti , ∅ for all i ∈ [1, r ] andJti−1 ∩ Jti+1 = ∅ for all i ∈ [1, r −1] . Finally,
for eachi = 1, . . . , r , we choose a realwi in Jti−1 ∩ Jti and we setw0 = −∞, wr+1 = +∞,
p(w0) = x, p(wr+1) = y. Observe that for anyi = 1, . . . , r , p(ti−1)⊳p(wi) andp(ti)⊳p(wi). We
setJw0 = J0 ∩

[

0, t0
2

[

, Jwr+1 = J1∩
] tr+1

2 , 1
]

and, fori ∈ [1, r ], if Jwi * Jti−1 ∩ Jti , we setJwi to

any open intervalJ such thatwi ∈ J ⊂ J ⊂ Jwi ∩ Jti−1 ∩ Jti . We definep′ : [0, 1] → p ([0, 1])
by:

p′(t) =

{

p(wi) if t ∈ Jwi (0 6 i 6 r + 1),
p(ti) if t ∈

[

sup(Jwi ), inf(Jwi+1)
]

(0 6 i 6 r),

Since
[

sup(Jwi ), inf(Jwi+1)
]

⊂ Jti and for all (t, u) ∈ [0, 1]×Jt , p(t)Pp(u), we have straight-
forwardly p′Ep. Furthermore,p′ is a step function. We have stated above thatp(ti−1)⊳p(wi)
andp(ti)⊳p(wi) for any i ∈ [1, r ]. So, in order to prove the minimality ofp′ and, thanks to
Lemma 2, its continuity, we still need to look at the extremities, that is, to comparep(w0)
with p(t0) and p(tr ) with p(wr+1). If p(t0) = x, then p′(t) = p(t0) = x on [0, inf(J1)],
otherwise 0 ∈ Jt0 so p(t0)⊳p(w0). Similarly, if p(tr ) = y, then p′(t) = p(tr ) = y on
[

sup(Jtr ), 1
]

, otherwise 1∈ Jtr so p(tr )⊳p(wr+1). Now, we are able to conclude thatp′

is a minimal finite path fromx to y. As for any i ∈ [1, r ], Jwi ⊂ Jti−1 ∩ Jti , we have
] vi−1, ui

[

⊂
[

sup(Jwi ), inf(Jwi+1)
]

andp′ is regular. Aswi ∈ Jwi andti ∈
[

sup(Jwi ), inf(Jwi+1)
]

(for ti < Jti−1 ∩ Jti andti < Jti ∩ Jti+1), in any intervalI in the interval sequence ofp′, there is
an elementt such thatp′(t) = p(t).

There is no hope to find in the general case finite paths greaterthan a given path. For
instance, consider the posetX = {x, y, z} wherexPy, xPz. Let p : [0, 1]→ X be the function
defined byp(t) = x if t belongs to the Cantor setC (i.e., t has a ternary numeral with no
“1”), p(t) = y if t < C and the first “1” in a ternary numeral oft is in odd position (starting
from point), p(t) = z if t < C and the first “1” in a ternary numeral oft is in even position.
The mapp is continuous becausep−1({y}) =] 1

3 ,
2
3[∪] 1

27,
2
27[∪] 7

27,
8
27[∪] 19

27,
20
27[∪] 25

27,
26
27[∪ . . .
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is open andp−1({z}) =] 1
9 ,

2
9[∪] 7

9 ,
8
9[∪ . . . is open. However any open set of [0, 1] containing

0, contains real numbers with ternary numerals the first “1” of which is in even, or odd,
position. Thus, a finite path greater thanp should have a value in 0 greater thany andz.
Such a value does not exist inX. Moreover, observe that, for any integern, we can find a
subset ofZn isomorphic toX.

The two following technical results will be needed in the proof of Proposition 3 and
Theorem 3.

Lemma 3 For all x, y ∈ X and any paths p1, p2, p3 from x to y such that p1Ep2 and p3Ep2,
there are three finite paths from x to y, p′1Ep1, p′2Ep2, p′3Ep3, such that p′1Ep′2 and p′3Ep′2.

Proof The proof of Lemma 3 is close to the proof of Theorem 2. Howeverwe need to make
some changes in the proof of the theorem. For allt ∈ [0, 1], we now defineJt as an interval
containingt and included inp−1

1 (Up1(t)) ∩ p−1
2 (Up2(t)) ∩ p−1

3 (Up3(t)). The finite setA′ is such
that (Jt)t ∈ A′ is a minimal cover of [0, 1] and the sequences (ti)r

i=0, (wi)r
i=0 are defined as in

the proof of Theorem 2. Observe that it is no longer possible to assume thatti−1, ti < Jti−1∩Jti
and therefore, it may happen thatp(ti−1) = p(wi) or p(ti) = p(wi). The mapsp′k, k ∈ {1, 2, 3},
are defined by:

p′k(t) =

{

pk(wi) if t ∈ Jwi (0 6 i 6 r + 1),
pk(ti) if t ∈

[

sup(Jwi ), inf(Jwi+1)
]

(0 6 i 6 r).

Of course, we still havep′kEpk for eachk ∈ {1, 2, 3} and the proof of continuity for the
three maps need not to be changed (except that we replacep(ti−1)⊳p(wi) andp(ti)⊳p(wi) by
p(ti−1)Pp(wi) andp(ti)Pp(wi)).

Lemma 4 − Let p be a finite path. There is a regular path p′ with same track as p such
that p′ E p.

− Let p1 E p2 be two finite paths. There are two regular paths p′
1Ep1, p′2Ep2 with same

tracks as p1 and p2 such that p′1 E p′2.

Proof Let p be a non-regular finite path. Letu ∈ [0, 1] such that{u} is an interval of the
intervals sequence ofp and I , J be the intervals before and after{u} in this sequence (if
u = 0 or u = 1, we setI = ∅ or J = ∅). We denote byx the point inX such thatp(u) = x.
Sincep is continuous, there is a realε > 0 such thatp (]u− ε, u+ ε[) ⊆ Ux and we can
chooseε such that ]u− ε, u[∩[0, 1] ⊆ I , ]u, u+ ε[∩[0, 1]) ⊆ J. Set pεx : [0, 1] → X, the
function defined bypεx(t) = x if t ∈ [u − ε2 , u +

ε
2 ] and pεx(t) = p(t) otherwise. Clearly,

we havepεx E p and, from Lemma 2, we derive thatpεx is a finite path (sincep is itself a
finite path) which has the same track asp. This way, we can remove all singletons from the
intervals sequence ofp, resulting in a regular pathp′ E p with same track thanp.

Let p1 E p2 be two finite paths. Thanks to the first part of the proof, we know there
is a regular pathp′1Ep1Ep2. We slightly modify the above construction ofp′ in order
to get p′1Ep′2. Let u ∈ [0, 1] such that{u} is an interval of the intervals sequence ofp2

and I2, J2 be the intervals before and after{u} in this sequence (ifu = 0, or u = 1, we
set I2 = ∅ or J2 = ∅). Set x = p(u). Take ε > 0 such thatp (]u− ε, u+ ε[) ⊆ Ux,
]u− ε, u[∩[0, 1] ⊆ I , ]u, u+ ε[∩[0, 1]) ⊆ J and either ]u − ε, u] or [u, u + ε[ is included
in an interval of the intervals sequence ofp′1 (such a choice is possible sincep′1 is regular).
Suppose, for example, that [u, u+ε[ is included in an interval of the intervals sequence ofp′1
(the other case is similar) and, therefore,u , 1, J , ∅, and there is a pointyPx (sincep′1Ep2)
in X such asp′1 ([u, u+ ε[) = {y}. Set pεx : [0, 1] → X, the function defined bypεx(t) = x
if t ∈ [u, u + ε2 ] and pεx(t) = p2(t) otherwise. As above, we havep′2 continuous andp′2Ep2.
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Moreover, we have alsop′1Ep′2. Doing successively this construction for all singletons in the
intervals sequence ofp2, we obtain a regular pathp′2 with same track asp2 and such that
p′1Ep′2Ep2.

3.2 Arcs

Theorem 2 means that every path in a poset is homotopic to a finite path, the image of which
is an arc. Processing digital images, one usually either just look at images of paths, that is at
arcs, and ignore functional definition or link arcs with paths in continuous analogs. In this
subsection we focus our attention on relations between arcsand paths in the poset itself.

We can think at a track (of a finite path) as a map from the set of finite paths onto arcs
(Proposition 1). Obviously this map is not injective. The next proposition gives some light
upon this point.

Proposition 2 Two finite paths in X with same track are equivalent.

Proof Let p =
∑r

i=0 xi1I i andp′ =
∑r

i=0 xi1Ji be two paths inX with same track (r is a non
negative integer). For eachi = 0 . . . , r , we denoteαi , βi (α′i , β

′
i ) the lower and upper bound

of I i (Ji). Thanks to Lemma 2, we know that, for eachi = 0, . . . , r , intervalsI i andJi have
the same form:αi ∈ I i ⇔ α

′
i ∈ Ji andβi ∈ I i ⇔ β

′
i ∈ Ji . For all u ∈ [0, 1], we denoteKi,u

the interval with the same form asI i , Ji and the bounds of which are (1− u)αi + uα′i and
(1 − u)βi + uβ′i . It follows again from Lemma 2 that the step functionpu =

∑r
i=0 xi1Ki,u is a

finite path. Leth : [0, 1] × [0, 1] → X be the function defined byh(t, u) = pu(t). We have
h(t, 0) = p(t) andh(t, 1) = p′(t) for all t ∈ [0, 1]. It can be seen that for any open setU,
h−1(U) is an union of open trapezoid in [0, 1] × [0, 1], the bases of which arep−1(U) × {0}
andp′−1(U) × {1}. Hence,h is continuous:p andp′ are equivalent.

Now a new question arises: it is not difficult to see that the converse of the previous
proposition is false (i.e. unlessX is a singleton, there are inX equivalent finite paths which
have distinct tracks), but when two finite paths are homotopic, what about their tracks? To
go further, we need to introduce an elementary modification on arcs (see also [7,18]).

Definition 2 (Stretching) An arcχ = (xi)r
i=0 (r > 2) is anelementary stretchingof an arcχ′

if for some j ∈ [1, r −1], χ′ = (xi)r
i=0,i, j or xj−1 = xj+1 andχ′ = (xi)r

i=0,i, j−1,i, j . An arcχ is a
deformationof an arcχ′ if there is a sequence (χi)s

i=0 of arcs inX such thatχ0 = χ, χs = χ
′

and for anyi ∈ [1, s], eitherχi is an elementary stretching ofχi−1 or χi−1 is an elementary
stretching ofχi .

We will also call elementary stretching the transformationbetween an arc and an el-
ementary stretching of this arc. Observe that ifχ = (xi)r

i=0 is an elementary stretching of
χ′ = (xi)r

i=0,i, j , necessarily the three pointsxj−1, xj , xj+1 are mutually comparable. Bar-
mak and Minian in [3] use a similar notion which leads to the same deformations: an arc
χ = (xi)r

i=0 (r > 2) is close toan arcχ′ if for some j 6 k 6 j′ in [1, r − 1], χ′ = (xi)r
i=0,i<[ j, j′ ]

andxj⊳ . . .⊳xk⊲ . . .⊲xj′ or xj⊲ . . .⊲xk⊳ . . .⊳xj′ .

Proposition 3 Let p, p′ be two finite paths with tracksχ, χ′. If χ′ is a deformation ofχ, then
p and p′ are equivalent.
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(a) (b)

(c)

Fig. 1 (a) An arcχ. The arrows give the ordering of the sequence. (b, c) Two elementary stretching ofχ .

Proof Let p and p′ be two finite paths inX with tracksχ, χ′. Since a deformation is a
sequence of elementary stretchings and homotopy is an equivalence relation, it is sufficient
to prove the result for an elementary stretching. So we assume thatχ′ is an elementary
stretching ofχ and, thanks to Lemma 4, we can also assume thatp and p′ are regular. We
set p =

∑r
i=0,i, j xi1I i or

∑r
i=0,i, j−1,i, j xi1I i andp′ =

∑r
i=0 xi1Ji (2 6 r and 16 j 6 r − 1).

If xj−1⊳xj⊳xj+1 or xj+1⊳xj⊳xj−1, we setp1(t) = p(t) if t ∈
⋃

i, j Ji and p1(Jj) = {xj−1}.
Otherwise (xj⊳xj−1 andxj⊳xj+1, or xj−1⊳xj andxj+1⊳xj), let α andβ be the lower bound
and the upper bound ofJj (α , β sincep′ is regular) andγ = α+β

2 . We setp1(t) = p(t) if
t ∈
⋃

i, j Ji , p1(t) = xj−1 if t ∈ [α, γ[, p1(t) = xj+1 if t ∈]γ, β] and p1(γ) = xj−1 if xj−1⊳xj+1,
p1(γ) = xj+1 if xj+1⊳xj−1 (see Figure 2). In any case, we can derive from Lemma 2 thatp1 is
a path. Since the tracks ofp1 andp are the same,p1 andp are equivalent. Moreover, it can
easily be seen thatp1Ep′ or p′Ep1. Thusp1 andp′ are equivalent and, by transitivity,p and
p′ are equivalent.

p′
�

≤

α γ β

xj+1

xj

xj−1

p1
�

≤

α γ β

xj+1

xj

xj−1

(a)

p′
�

≤

α γ β

xj

xj+1

xj−1

p1
�

≤

α γ β

xj

xj+1

xj−1

(b)

Fig. 2 (a) Case xj+1⊳xj⊳xj−1 (case xj−1⊳xj⊳xj+1 is similar). (b) Case xj⊳xj−1, xj⊳xj+1 (case
xj−1⊳xj , xj+1⊳xj is similar with an open intervalJj ). Note that in this case, it could happen thatxi−1 = xi+1.

We can now state that the notion of deformation is the discrete counterpart of the con-
tinuous notion of homotopy equivalence.
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Theorem 3 Two finite paths p, p′ in X with tracksχ , χ′ are equivalent iff χ is a deforma-
tion ofχ′.

Proof Let p and p′ be two distinct finite equivalent paths inX from point a to pointb and
Πa,b be the poset of paths inX from a to b. Sincep andp′ are equivalent, there is a path from
p to p′ in Πa,b (Proposition 6) and, thus, there is an arc inΠa,b from p to p′ (Property 4). Of
course we can suppose that this arc is minimal (otherwise we delete the superfluous paths).
Moreover, we claim that we can build a minimal arc inΠa,b from p to p′, the elements of
which are all finite. Suppose thatP = (pi)r

i=0 (r > 2) is a minimal arc inΠa,b from p to p′,
thek first elements of which are finite (16 k 6 r − 1). Case 1:pkEpk−1. SinceP is minimal,
we havepkEpk+1. We derive from Theorem 2 that there is a finite pathq in Πa,b such that
qEpk. Thus, the sequenceP′ = (qi)r

i=0 whereqk = q andqi = pi otherwise, is a minimal
arc inΠa,b from p to p′, thek + 1 first elements of which are all finite. Case 2:pk−1Epk,
and thuspk+1Epk. Thanks to Corollary 3, we know there exist three finite pathsq, q′, q′′

such thatqEpk−1, q′Epk, q′′Epk+1 andqEq′, q′′Eq′. If pk+1 , p′ we setP′ = (qi)
r
i=0 where

qk−1 = q, qk = q′, qk+1 = q′′ andqi = pi otherwise. Then,P′ is a minimal arc inΠa,b from
p to p′, thek + 2 first elements of which are finite. Ifpk+1 = p′ we setP′ = (qi)

r+1
i=0 where

qi = pi if i 6 k− 2, qk−1 = q, qk = q′, qk+1 = q′′ andqr+1 = p′. Then,P′ is a minimal arc in
Πa,b from p to p′, the elements of which are all finite. This way, we build iteratively an arc
in Πa,b from p to p′, the elements of which are all finite.

Therefore, to prove that the tracks ofp is a deformation of the track ofp′ it is sufficient
to do so for two finite and comparable paths, sayp1 andp′1. Moreover, thanks to Lemma 4
and Lemma 2, we can easily build two comparable regular (finite) paths froma to b, q =
∑r

i=0 xi1I i Pq′ =
∑s

j=0 yj1J j , with same tracks asp1 andp′1 and such that the intervalsI i (0 6
i 6 r) have no common bounds with the intervalsJj (0 6 j 6 s). Thus, we denote (αi)r+s+1

i=0
the strictly increasing sequence the elements of which are the bounds of the intervalsI i and
Jj : α0 = 0, αr+s+1 = 1, for each 16 i 6 r + s eitherq or q′, but not both, change its value
on αi and no others changes occur. For eachi ∈ [0, r + s+ 1] and eachj ∈ [0, r + s] we
define the step functionsqi andq′j by qi(t) = q′(t) if t < αi , q(t) otherwise andq′j (t) = q′(t)

if t < α j+α j+1

2 , q(t) otherwise. In particular,q0 = q andqr+s+1 = q′ (sinceq′(1) = q(1)). We
denote byχi andχ′j the tracks ofqi andq′j (i ∈ [0, r + s+ 1], j ∈ [0, r + s]). From Lemma 2,
we easily derive that the step functionsqi andq′j are finite paths froma to b. We want now
to prove that, for alli ∈ [0, r + s], eitherχk (χk+1) is equal toχ′k or is a stretching ofχ′k or the
converse. The proof consists in checking the 2×4 configurations relative toqk andq′k and to
q′k and qk+1. These 8 configurations are depicted in Figures 3 and 4 which clearly establish
that in any case we have equality or stretching. Note that in the Figures 3 and 4 we denote
by f (t−) and f (t+) the values taken by a finite pathf on some intervals ]t − ε, t[, ]t, t + ε[
whereε > 0 is small enough to assume thatf is constant on these intervals.

The converse part of the proof is given by Proposition 3.

To go further in the parallelism between paths and arcs, homotopies and deformations,
we will now study the arc product defined by (x0, . . . , xr ).(y0, . . . , ys) = (x0, . . . , xr , y1, . . . , ys).
More formally:

Definition 3 (Arcs product) Let χ1 = (xi)r
i=0 andχ2 = (yi)s

i=0 (r, s > 0) be two arcs such
thatxr = y0. Thearc productis defined byχ1.χ2 = (zi)r+s

i=0 wherezi = xi if i 6 r andzi = yi−r

if i > r .

Let x be a point inX. It is easy to check that being a deformation or equal is an equiva-
lence relation in the set of arcs inX from x to x. We write [χ] for the equivalence class of an
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qk
�

≤

αk αk+αk+1

2

p(α−

k
)

p(α+

k
)

p′(αk)
q′k

�

≤

αk αk+αk+1

2

p(α−

k
)

p(α+

k
)

p′(αk)

(a)
qk

�

≤

αk αk+αk+1

2

p(α+

k
)

p(α−

k
)

p′(αk)
q′k

�

αk αk+αk+1

2

p(α−

k
)

p(α+

k
)

p′(αk)

(b)
qk

�

≤

αk αk+αk+1

2

p(αk)

p′(α−

k
)

p′(α
+

k
)

q′k
�

≤

αk αk+αk+1

2

p(αk)

p′(α−

k
)

p′(α
+

k
)

(c)
qk

�

≤

αk αk+αk+1

2

p(αk)

p′(α+

k
)

p′(α
−

k
)

q′k
�

≤

αk αk+αk+1

2

p(αk)

p′(α+

k
)

p′(α
−

k
)

(d)

Fig. 3 (a) qk is a stretching ofq′k (depending onp(α+k ) = p′(αk) or not, we use one of the two cases in the
definition of elementary stretchings). (b) qk = q′k. (c) q′k is a stretching ofqk . (d) If p′(α+k ) , p(αk), q′k is a
stretching ofqk, otherwiseqk = q′k.

arcχ and we denote byρ(X, x) the set of equivalence classes. It is not more difficult to verify
that the arc product is well defined on classes by [χ1].[χ2] = [χ1.χ2] andρ(X, x) equipped
with the arc product is a group (the identity element of whichis [(x)] and the inverse of
[(xi)r

i=0] is [(xi)i=r0]).

Theorem 4 Let x∈ X. The fundamental groupπ1(X, x) of X with basepoint x is isomorphic
to the groupρ(X, x).

Proof By Theorem 2 we know that there are finite paths in any class ofπ1(X, x) and by
Theorem 3, we may define a mapϕ : π1(X, x)→ ρ(X, x) byϕ([p]) = [χ] whereχ is the track
of any finite path equivalent top. From Proposition 3, we derive thatϕ is injective and from
Proposition 1,ϕ is surjective. Finally,ϕ is a morphism since we can easily see that the track
of a product of two finite paths is the product of the tracks of these finite paths.

Remark 1Barmak and Minian in [3] have proved the same result in a different way and in
the frame of finite spaces. They establish an isomorphism betweenρ(X, x) and a group of
loops composed with edges of the simplicial complexK(X) associated toX (see section 4.1),
then invoke an isomorphism between the edge-paths group ofK(X) and the fundamental
group of its geometric realization|K(X)| (see section 4.1) described by Spanier [35] and
conclude thanks to the weak homotopy equivalence between|K(X)| andX established by
McCord (see section 4.1).
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+

k+1
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Fig. 4 (a) q′k = qk+1. (b) If p′(αk) , p(α−k+1), q′k is a stretching ofqk+1, otherwiseq′k = qk+1. (c), (d)
q′k = qk+1.

4 Reduction

In this section, we are interested in retractions, or more general decreasing transformations,
that minimally alter the topology of a poset and the topologyof a continuous analogue. In
particular, we will visit minimal modifications of such setsthat do not change homotopy
type. But before thinking at transformations, we present insection 4.1 the way we embed a
digital image in a poset and how the continuous analogue of the digital image is defined.

4.1 Complexes

Complexes are topological sets whose combinatorial organisation provide a way to link
digital images, namely subspaces ofZn, with the continuous Euclidean spaceRn.

4.1.1 Simplicial complexes

Simplicial complexes are among the simplest combinatorialstructures. They are commonly
used in the field of geometric modelling.

An abstract simplicial complexis a setK of non-empty subsets, calledsimplices, of a set
V, such that each non-empty subset of a simplex is a simplex. The elements ofV are called
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vertices. Each vertex must belong to at least one simplex. A non-empty(proper) subset of
a simplex is a (proper) faceof the given simplex. For in this section we focus on digital
images, we assume that the simplices of a complex are finite and that their cardinalities are
bounded. Thus, we can define thedimensionof a simplex which is its number of vertices
minus one and the dimension of a complex which is the maximum of the dimensions of its
simplices.

In Rn, a set of points aregeometrically independentif any k-hyperplane (k 6 n) contains
no more thank + 1 of them. The (geometric) simplex spanned by a set of geometrically
independent points is the convex hull of these points which are theverticesof the geometric
simplex. Ak-faceof a simplex is a simplex spanned byk vertices of the simplex. A(geo-
metric) simplicial complex Kis a set of simplices inRn such that any face of a simplex inK
is a simplex inK and any intersection of two simplices inK is a simplex inK. The faces of
the complex are the faces of its simplices. The vertices of the complex are the vertices of its
simplices. Note that the vertices of a complex need not be geometrically independent. The
geometric realization|K| of the complexK is the union of its simplices equipped with the
topology the closed sets of which are the sets that intersecteach simplex in a closed set of
Rn. Because a union of closed sets is not always a closed set, this topology could be differ-
ent from the usual topology onRn. But here, asK is locally finite,i.e.any vertex belongs to
finitely many simplices, this topology is the usual topologyonRn. Theopen simplicesof |K|
are the interiors of itsk-faces (k > 1) and its 0-faces. Each pointx in |K| belongs to a unique
open simplex spanned by some verticesv1, . . . , vk (k > 1) and there exists a uniquek-uple
(b1, . . . , bk) in [0, 1]k such thatx =

∑k
i=0 bi vi . Let f be a function between the set of vertices

of two complexesK andK′, the function|K( f )| which associates to each pointx =
∑k

i=0 bi vi

in |K| the pointy of |K′| defined byy =
∑k

i=0 bi f (vi) is the simplicial map associated to f.
This map is continuous.

A realization of an abstract simplicial complexK is a geometric simplicial complex
whose vertices are in one to one correspondence with the vertices ofK and whose simplices
are spanned by the images of the simplices ofK. Any abstract simplicial complexK of
dimensionn can be realized inR2n+1 [12].

There is a narrow link between posets and simplicial complexes discovered by Alexan-
droff [1]. Let X be a poset. The points inX are the vertices of a simplicial complexK(X) the
simplices of which are the (finite) chains ofX (see figure 6). Conversely, it is plain that the
simplices of a given simplicial complexK, equipped with the inclusion relation, is a locally
finite poset denotedX(K). Note thatK(X(K)) is not equal toK but to a simplicial complex
called thebarycentric subdivisionof the complexK. These correspondences are not only
algebraic and the topologies on the poset and the geometric realization of the complex are
concerned as well. The following theorem due to McCord givesthe key-properties of the
mapϕX : |K(X)| → X which associates to each point in the geometric realizationof K(X),
the highest element of the unique open simplex it belongs to (remember that a simplex of
K(X) is a chain).

Theorem 5 (McCord [29]) Let X be a poset. There is a weak homotopy equivalenceϕX :
|K(X)| → X. Furthermore, one can associate to each continuous map f: X → Y between
two posets the simplicial map|K( f )| such that the following diagram is commutative:

X Y

|K(X)| |K(Y)|

f

|K( f )|

ϕX ϕY
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Observe that, as we have proved that the fundamental groupπ1(X, x) of a posetX with
basepointx is isomorphic to the groupρ(X, x) of its arcs fromx to x (for any x ∈ X),
Theorem 5 gives by transitivity an isomorphism betweenρ(X, x) and the fundamental group
of the geometric realization ofK(X).

4.1.2 Cubical complexes

In digital images, grids are often cubical ones, so it is interesting in image analysis to replace
simplices in complexes byn-cubes.

We setF10 = {{a} | a ∈ Z} andF11 = {{a, a+ 1} | a ∈ Z}. A subsetf of Zn which is the
Cartesian product ofmelements ofF11 andn−melements ofF10 is a faceor anm-face(of
Zn), m is thedimensionof f , and we write dim(f ) = m. We denote byFn

m the set composed
of all m-faces ofZnand byFn the set composed of all faces ofZn. Let f ∈ Fn be a face.
The set{g ∈ Fn | g ⊆ f } is a cell and any union of cells is anabstract cubical complex.
The geometric cubical complexesare defined in the same manner, except we change the
definition ofF11 by settingF11 = {[a, a + 1] | a ∈ Z}. The geometric realization|K| of a
geometric cubical complexK is the union of its faces (see figure 5).

(a) (b) (c)

Fig. 5 (a) An abstract (cubical) cellC composed of one 2-face, four 1-faces and four 0-faces The four small
black squares represent four points inZn mutually 8-adjacent. (b) The geometric (cubical) cellgC which is
the realization ofC. (c) The geometric realization|gC| of gC.

The points in a digital image are often a measure of a physicalquantity on a piece of
the Euclidean space. Then, the abstract cellular complex framework - and in particular the
cubical complexes - enable to model the adjacency relationsbetween these pieces of the Eu-
clidean space in a topologically sound manner. Furthermore, as an abstract cellular complex
(equipped with the inclusion) is a poset, Theorem 5 ensures that this complex is weakly ho-
motopy equivalent to its geometric realization (more precisely, to the geometric realization
of the associated simplicial complex - see figure 6 -) which isa conceivable representation
of the tessellation of the Euclidean space captured by the measure device. We say that this
geometric realization is thecontinuous analogueof the digital image. The second part of
Theorem 5 says that any continuous transformations of the complex image has an equiva-
lent on the continuous analogue compatible with the weak homotopy equivalence.

4.1.3 Collapses

Whitehead has defined elementary transformations on complexes as follows. LetX be a
complex and (x, y) a pair of faces inX such thatx is the only face ofX including y. Then,
(x, y) is a free pair, and the setY = X \ {x, y} is an elementary collapseof X, or X is
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(a) (b)

(a)

(b) (g)

(c)

(h)(d)(i)

(e)

(f )
(g, b, a)

(g, c)

(h, a)

(d) (c)

Fig. 6 (a)An abstract cubical 2-cellf which models a digital point ofZn. (b) The Hasse diagramm ofX( f ).
(c) The simplicial complexK(X( f )). (d) The geometric realization ofK(X( f )).

an elementary expansionof Y. If a setY is obtained fromX by a sequence of elementary
collapses (a sequence of elementary collapses and expansions), thenY is acollapseof X (X
andY aresimple-homotopyequivalent) and one writeXց Y (X�ցY). A set iscollapsible
if it collapses onto a singleton.

If Y is acollapseof X then|Y| is a strong deformation retract of|X| (and thus,|X| and|Y|
are homotopy equivalent)[38]. Figure 7 illustrates this property.

(a) (b) (c) (d)

Fig. 7 (a) A complexX. (d) A complexY which is an elementary collapse ofX. (b-c) Two steps in a strong
deformation retraction of|X| onto |Y|.

4.2 Unipolar points

In the 60’s, Stong [36] introduced the notion of(co)linear pointsin order to classify finite
spaces with respect to homotopy type. More recently, May [28] called thembeat points
and Bertrand [6]unipolar points. We keep this last designation. In the same article, and for
the same goal, Stong also defined thecoreof a finite space (see Definition 5) which is the
smallest subset ofX homotopic toX. Most results in this subsection were first established
in Stong’s article for finite spaces. Most of his proofs can beeasily adapted to posets so we
do not recall them.
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Definition 4 (Unipolar point) Let X be a poset.

− A point x ∈ X is down unipolarif there isy⊳x such thatz⊳x implieszPy (i.e. x↓⋆ = y↓).
− A point x ∈ X is up unipolar if it is down unipolar for the dual order onX.
− A point isunipolar if it is either down unipolar or up unipolar.

Proposition 4 Let X be a poset. A point x∈ X is unipolar iff X \ {x} is a strong deformation
retract of X.

Proof The “only if” part of this proof is in [36]. The ”if” part is original and rely on our
Theorem 2.
Let us assume thatY = X \ {x} is a strong deformation retract ofX. Thus, there is an
homotopyh : X × [0, 1] → X such thath(z, t) = z for all (z, t) ∈ Y × [0, 1] andh(x, 0) =
x, h(x, 1) , x. The maph(x, .) : [0, 1] → X is a path inX from x to h(x, 1) so, following
Theorem 2, we denotep =

∑r
i=0 xi1I i (r > 1), with pEh(x, .), a regular finite path fromx to

h(x, 1) with property that in any intervalI of the interval sequence ofp, there is an element
t such thatp(t) = h(x, t). Let t1 ∈ I1 verifying p(t1) = h(x, t1) = x1 which is an element of
Y comparable tox (Proposition 1). The maph(., t1) : X → X is continuous and, therefore,
non-decreasing (Property 2) so for anyy ∈ Y, y⊳x⇒ yPx1 andx⊳y⇒ x1Py (sinceh(., t1)
is the identity map onY). As x1 is comparable tox, we derive thatx is unipolar.

Definition 5 (Core) Let Y ⊆ X. We say thatY is a core ofX if it has no unipolar point and
it is a strong deformation retract ofX.

Property 7 1. Any finite poset has a core.
2. Two finite posets are homotopy equivalent iff they have homeomorphic cores.

Observe in particular that Property 7 implies that one can greedily remove the unipolar
points of a finite poset in order to obtain a core which will be homeomorphic to any other
core of the same poset. In particular, when the poset is contractible, we have the corollary
below.

Corollary 4 If X is finite and contractible, there is a sequence(xi)r
i=0(r > 0) of points in X

such that X= {xj}
r
j=0 and, for all i ∈ [1, r ], xi is unipolar in{xj}

i
j=0. Furthermore, if x∈ X is

unipolar, we can choose xr = x.

Proof The fact thatX is contractible means thatX is homotopy equivalent to a point. Since
X is finite,X has a core and any core ofX is a singleton (Property 7). It is not difficult to see
that it implies that one can greedily construct a sequence (xi)r

i=0(r > 0) of points inX such
thatX = {xj}

r
j=0 and, for alli ∈ [1, r ], xi is unipolar in{xj}

i
j=0.

Bertrand [6] has established that down (or up) unipolar points can be deleted in parallel,
that is, if x , y are down unipolar points inX theny is down unipolar inX \ {x}. It is no
longer true for unipolar points (forgetting “down”) as shown by the example of Figure 8.
Nevertheless, we can state the next proposition.

Proposition 5 If x , y are unipolar points then either(a)y is unipolar in X\ {x} or (b), for
one order on X (P or Q), x is down-unipolar and covers y, for the other order y is down-
unipolar and covers x and the mapϕ : X \ {x} → X \ {y} defined byϕ(z) = z if z , y and
ϕ(y) = x is an homeomorphism.
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y

x

Fig. 8 Left: a subsetX of Fn. Right: its Hasse diagram. The 2-facex is down unipolar and the 1-facey is up
unipolar. Neitherx in X \ {y} or y in X \ {x} are unipolar.

Proof Let x , y be unipolar points inX. If x andy are not comparable, it is easy to see that
y is unipolar inX \ {x} since Definition 4 only involves comparable points. Ifx andy are
comparable, we can setx⊳y. If y is up-unipolar,y is unipolar inX \ {x} since definition 4
applied toy only involves pointsz such thaty⊳z. We suppose now thaty is down unipolar
and we denotez the maximum ofy↓⋆. Hence, for anyt ∈ X, t⊳y ⇔ tPz (1). If x , z,
obviously this inference is true for anyt ∈ X\ {x} andy is unipolar inX\ {x}. If x = zandx is
down unipolar, we use the result established in [6]. Ifx = zandx is up unipolar, necessarily
y is the minimum ofx↑⋆: for any t ∈ X, x⊳t ⇔ yPt (2). We defineϕ : X \ {x} → X \ {y} by
ϕ(t) = t if t , y andϕ(y) = x. Trivially, ϕ is a bijection and from(1) and(2) we derive that
ϕ andϕ−1 are non-decreasing, that is, continuous.

4.3 Simple points

Simple points were first introduced by Bertrand in [6] in order to perform topologically
sound thinning algorithms in posets. They have been used by Barmak and Minian [5] to
define a collapse operation in posets which corresponds actually to the collapse operation in
complexes associated to posets. The proofs of Property 8 andTheorem 6, which are out of
scope of this paper, can be found in [5].

Definition 6 (Simple point)
A point x ∈ X is down simple (in X)if x↓⋆ is contractible.
A point x ∈ X is up simple (in X)if x↑⋆ is contractible.
A point issimple (in X)if it is either down simple or up simple.

Observe that unipolar points are simple points since ifx ∈ X is a down (up) unipolar
point, x↓⋆ (x↑⋆) has a maximum (minimum) and is therefore contractible (Property 1). We
saw previously (Proposition 4) that the removal of a unipolar point is a strong deformation
retraction. It is no longer true for simple points. See Figure 9 for a counterexample where
the removal of a simple point is not even a retraction. Nevertheless, Property 8 states that
homotopy groups are not changed by such a deletion and, furthermore, Theorem 6 ensure
that this deletion corresponds to a deformation retract on the continuous analogue.

Property 8 [5] Let X be a finite poset. Letx ∈ X be a simple point. Then, the inclusion
i : X \ {x} → X is a weak homotopy equivalence.

Theorem 6 (Barmak and Minian [5]) Let X be a finite poset. Let x∈ X be a simple
point andK(X), K(X \ {x}) the simplicial complexes associated to X and X\ {x}. Then,
K(X)ց K(X \ {x}).
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(a) (b)

Fig. 9 X is the subset ofF2 depicted in (a) andx is the 2-face inX (note thatX = x↓). The facex is simple
sincex↓⋆, depicted in (b), is clearly contractible. ButX \ {x} = x↓⋆ is not a retraction ofX, for a retraction,
as any continuous function, preserves connectivity and it is impossible to find an image forx in x↓⋆, while
leaving unchanged the other points inX, without disconnecting some connected subset ofX.

From an algorithmic point of view, simple points have good properties since they can
be deleted in parallel. Obviously, ifx, y are two points inX with dim(x) = dim(y), there
is no need to know wetherx has been deleted fromX or not to decide ify↓⋆, or x↑⋆ is
contractible. Moreover, as we have seen above, the decisionon the contractibility can be
greedily performed. Thus, a topology-preserving thinningprocedure consists of repeating
until stability the removal of thek-dimensional simple points fork = 0 ton. Figure 10 gives
an example of the result of such a procedure when applied to a 2D-picture. A detailed study
of algorithms quite similar to the previous scheme can be found in [24].

(a) (b)

Fig. 10 Left: the original image. Right: a squeleton obtained by theparallel removal of simple points of same
dimension until stability.

4.4 Free pairs and unipolar/simple points

In this subsection, we supposeX ⊆ Fn. In order to perform thinning onX, it is usual to do
collapses whenX is a complex but, viewingX as a poset, it is possible to remove unipolar
or simple points. So we want to compare these three ways to reduce a subset ofFn.

Lemma 5 Let 0 6 k 6 m6 n and x∈ Fn
m. Let y∈ x↓ be a k-face.

1. There exist exactly m− k faces in x↓ of dimension(k + 1) which include y.
2. Let x1, x2 be two(m− 1)-faces in x↓ such that x= x1 ∪ x2 and y intersects both x1 and

x2. If k , 0, there exists in y↓ exactly one(k − 1)-face which are included in x1 and one
(k− 1)-face which are included in x2.
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Proof If k = m, Lemma 5 is trivial. Suppose now thatm> k. Without loss of generality, we
can assume thatx =

∏n
i=1 I i whereI i ∈ F11 if i 6 m, I i ∈ F01 otherwise (see Section 4.1.2)

andy =
∏n

i=1 Ji where∅ ⊂ Ji ⊂ I i if i 6 m− k andJi = I i otherwise.

1. It is plain that the only (k+ 1)-faces included inx and includingy are them− k faceszj ,
1 6 j 6 m− k defined byzj =

∏n
i=1 Ki with Ki = Ji if i , j andK j = I j .

2. Sincey intersects bothx1 andx2, there existsj ∈ [m− k+ 1,m] such thatx1 =
∏n

i=1 K1i

and x2 =
∏n

i=1 K2i with Ki1 = Ki2 = I i if i , j, ∅ ⊂ K j1 ⊂ I j andK j2 = I j \ K j1.
Therefore, the only (k − 1)-facez included iny and inx1 (resp.x2) is z =

∏n
i=1 Li with

Li = Ji if i , j andL j = Ki1 (resp.L j = Ki2).

An easy consequence of Lemma 5, is that the boundaryx↓⋆ of a cell x↓ in Fn is not
contractible since for anyk-facey in x↓⋆, there exist at least two (k + 1)-faces includingy,
except ify is maximal inx↓⋆, and two (k − 1)-faces included iny, except ify is minimal in
x↓⋆, and thereforex↓⋆ has no unipolar point. So,x↓⋆ is not contractible (Corollary 4).

Corollary 5 The boundary x↓⋆ of a cell x↓ in Fn is not contractible.

Lemma 6 Let x, y ∈ X, xPy, be two faces withdim(x) = dim(y) − 1. Then, y↓⋆ \ {x} is
contractible.

Proof We setm = dim(y) andY = y↓⋆ \ {x}. If m = 1, lemma 6 is trivial (Y is a singleton).
Suppose now thatm> 2. We denotex′ the face opposite tox in y↓ : x′ = y\ x. We will shrink
Y to {x′}, removing unipolar points fromY. First, we remove the faces inx↓⋆ in decreasing
order relatively to their dimension. For any (m−2)-facez in x↓ we derive from Lemma 5 that
there are two (m− 1)-faces iny↓ includingz, one of which isx. Hence,z is up unipolar inY
and, thanks to Propositions 4 and 5, we deduce that the setY1 = {z ∈ Y | z < x↓ or dim(z) <
m− 2} is a strong deformation retract ofY. Since, according to Lemma 5, any (m− k)-face
in x↓⋆ is included in exactly one (m− k + 1)-face iny↓ \ x↓, we can inductively remove all
faces ofx↓ from Y with the same argumentation as above. Hence,Z = Y \ x↓ is a strong
deformation retract ofY. In a second step, we are going to prove that the faces inZ \ x′↓ are
successively down unipolar if we remove them in an increasing order w.r.t. their dimension.
Note that, sincex′ = y\x, there is no 0-face inZ\x′↓. So, suppose we have removed all faces
in Z \ x′↓ of dimension less thank (1 6 k 6 m− 2) and letz be ak-face inZ \ x′↓. Lemma
5 ensures that there exists inz↓ exactly one (k − 1)-face inZ1 = Z \ {t ∈ Z | dim(t) < k}
(which belongs tox′↓) soz is down unipolar inZ1. Hence, we can inductively prove thatx′↓

is a strong deformation retract ofY. As any cell is contractible (Property 1), we are done.

Remark 2The previous lemma is false if we omit the hypothesis dim(x) = dim(y) − 1 and
if dim(y) > 3. Indeed, when the dimension ofy is greater than 2, one can find a facex ∈ y↓,
with dim(x) < dim(y)−1, such that there exists a subsetX of Y = y↓⋆ \ {x} which contains at
least txo points but no unipolar point forX and the minimal (maximal) points of which are
minimal (maximal) points ofy↓⋆. Therefore any core ofY (and also any core ofy↓⋆) include
X. So,Y is not contractible (and neither isy↓⋆). Such a subsetX is depicted in Figure 11 in
a three dimensional space.

Proposition 6 Let X be a subcomplex ofFn.

a) If x ∈ X is unipolar, then x is simple and there exists y∈ X such as(y, x) is a free pair.
b) If x ∈ X is simple, there exist y, z ∈ x↑⋆ such as(y, z) is a free pair.
c) If (x, y) is a free pair, y is unipolar and x is simple in X\ {y}.
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Fig. 11 The setX shown in this figure contains eighteen faces included in the boundary of a 3-face: six 2-
faces (in green), six 1-faces (in red) and six 0-faces (in blue). The subset ofX composed of the 0-faces and
the 1-faces ofX is a closed arc as is the subset ofX composed of the 1-faces and the 2-faces ofX. Thus,
there are no unipolar points inX and all minimal (maximal) points inX are minimal (maximal) points for the
boundary of the 3-face. Therefore, the boundary of the 3-face and any subset of this boundary includingX
will not be contractible.

Proof a) Letx ∈ X be a unipolar point. SinceX is a complex,x↓ ⊆ X and thus,x cannot be
down unipolar (for am-face in a cubical complexe covers 2m faces). So,x is up unipolar,
i.e. x↑⋆ has a minimum (denotedy) and is therefore contractible (Corollary 1). Hence,x
is simple. Moreover, dim(y) = dim(x)+ 1 (for X is a complex) and,y being the only face
in x↑⋆ with this dimension, we deduce from Lemma 5-a that it does notexist any face
z ∈ x↑⋆ such that dim(z) > dim(y). Thus, (y, x) is a free pair inX.

b) Let x ∈ X be a simple face. Then,x↑⋆ is contractible (forx↓⋆ is not contractible:
Corollary 5). Hence, eitherx↑⋆ is a singleton or there is a facey unipolar inx↑⋆ (Corollary
4). If x↑⋆ is a singleton{y}, (y, x) is a free pair. Otherwise, we derive from the previous
part of this proof that there is a facez in x↑⋆ such that (z, y) is a free pair inx↑⋆ and thus
in X.

c) Let (x, y) be a free pair. The facex is the only face iny↑⋆ soy is up unipolar and, sinceX
is a complex, dim(y) = dim(x) − 1. Moreover, thanks to Lemma 6, we conclude thatx is
simple inX \ {y} (for x↓⋆ ∩ (X \ {y}) = x↓⋆ \ {y}).

4.5 w-simple points

The example of Figure 11 puts in evidence the need of a weaker condition on points to be
deleted when processing the reduction of a digital image. The following definition of a w-
simple point (”w” stands for ”weak”) and their properties are due to Barmak and Minian [4]
who call themγ-points. Bertrand in [6] defines a quite similar notion.

Definition 7 A point x of a poset is aw-simple pointif the posetxl⋆ is homotopically trivial,
i.e. if all its homotopy groups are trivial.

Property 9 gives several ways to prove that an element of a finite poset is a w-point and
Property 10 ensures that the deletion of a w-point does not modify the homotopy groups.

Property 9 Let X and Y be finite posets. Thenxl⋆ is homotopically trivial ifx↓⋆ or x↑⋆ is
homotopically trivial.

Property 10 Let X be a finite poset. Letx ∈ X be a w-simple point. Then, the inclusion
i : X \ {x} → X is a weak homotopy equivalence.
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Last, Theorem 7 states that, when deleting a w-point in a finite poset, the homotopy type
of the continuous analogue keeps unchanged.

Theorem 7 Let X be a finite poset and let x∈ X be a w-simple point. Then|K(X \ {x})| and
|K(X)| are simple-homotopy equivalent.

In a 3D-image X, the cost to decide wether the setxl⋆ is homotopically trivial is not
expensive. Indeed,K(xl⋆) is a 2-dimensional simplicial complex and it is enough to compute
its connected components and its Euler characteristic. Moreover, the scheme proposed for
the deletion of simple points is still valid (same dimensional w-simple points can be remove
in parallel). An example of the use of this scheme on a 3-D image is given in Figure 12.

(a) (b)

Fig. 12 Reduction by w-points removal in 3D-space. Left: a hollow pinched torus whith five little holes.
Right: The same torus after the removal of w-points untill stability.

5 Conclusion

We have studied the links between the standard notion of pathin a topological space and
the notion of path in a graph (here, the Hasse diagram) and showed that there are closer
that it could be thought. In particular, they lead to the samefundamental group. It is a
new validation of the use of posets, as Kalimsky spaces or complexes spaces, to analyse or
process digital images. In a further work in preparation, wewill study the relations between
the digital paths, and the digital fundamental groups inZn, as defined by [17], and the paths
and fundamental groups inFn. Anyway, we hope we have succeeded to convince the reader
that continuity is also a rich concept when applied to discrete or finite spaces. In fact, when
dealing with finites spaces, the problems arise from injectivity, rather than from continuity.
Such notions as Jordan curves, surfaces, manifolds which involve homeomorphisms,i.e.
one-to-one correspondences, with pieces ofRn cannot be used as-is in finite spaces and
must be adapted. Nevertheless, standard topology offers a set of tools usable in finite spaces
and useful links between finite spaces and continuous analogues.
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