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‘ Preprint

Paths, homotopy and reduction in digital images

Loic Mazo - Nicolas Passat- Michel Couprie -
Christian Ronse

August 27th, 2010

Abstract The development of digital imaging (and its subsequentiegjibns) has led to
consider and investigate topological notions, well-defimecontinuous spaces, but not nec-
essarily in discretgligital ones. In this article, we focus on the classicalowif path. We
establish in particular that the standard definition of pathlgebraic topology is coherent
w.r.t. the ones (often empirically) used in digital imagifigom this statement, we retrieve,
and actually extend, an important result related to homotgpe preservation, namely the
equivalence between the fundamental group of a digitalespad the group induced by digi-
tal paths. Based on this sound definition of paths, we alexpéore various (and sometimes
equivalent) ways to reduce a digital image in a homotopgtyreserving fashion.

Keywords topology - digital imaging- paths- fundamental group homotopy-type
preservation

1 Introduction

Several diferent models have been proposed to deal with topologicagepties in finite
sets. The first works dedicated to this issue have been gmaloy Alexandr [1] in 1937.
After this first attempt, no other works have been proposea@pproximately 30 years, and
we had to wait until the mid 60’s to see (simultaneous) newirgmrtions in the mathematics
community [29,36] and also in the computer science one [34 18 rapid and important
raise of digital imaging, and the associated neediafient image analysis tools for 2-D, and
later 3-D (and even 4-D) digital images have provided a stnmotivation to the research
related to the definition of sound discrtigital topological models. Indeed, in order to be
able to segment, process, or analyse digital images inusapplication fields, it is often
fundamental to be able to preserve, retrieve or integrgtelégical information.
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In the mathematics community, after the pioneering work&lekandrdf, McCord [29]
firmly linked finite spaces with simplicial complexes, whi¢ong [36] undertook homeo-
morphism and homotopy type classifications. Many years, lat¢he end of the century, this
subject yielded new developments whose main goal was tsifsiasmplicial complexes via
finite spaces [10, 31, 3,21].

In the computer science community, works have essentiattyded on specific —and
pragmatic— questions related to topology, nhamely the digfimof a notion ofadjacencyre-
lation, and the induced notions obnnectivityandarcs These notions enable in particular
to lead to high-level concepts of topology, such as homotefih natural applications to
“homotopy type-preserving” transformations of topolajispacesligital images. The first
—and very intuitive— solution to define an adjacency retatio Z" is to consider that two
points are adjacent if there are neighbours inrifi& cubic grid (possibly enriched by some
well chosen sets of “diagonals”). This framework led —inerth avoid paradoxical intersec-
tions between objects— to the classical definitiomwél adjacenciesn digital images [34,
9,33]. In this approach, known aggital topology no topology is however actually defined
and there are, in particular, no opgelosed sets. To retrieve topological notions, a possible
way is to definecontinuous analoguesf n-D digital images, assuming that each point in
such images physically corresponds to a maiube of the Euclidean space. Following this
analogy, it becomes possible to justify the use of dual ajeies [32] and to define alge-
braic structures isomorphic to those used in topology [3B,2n alternative way to deal
with connectivity in digital pictures is to find a topology #f, i.e., a family of subsets of
Z" (defined as open sets), leading to the desired adjacendipre(a this framework, two
pointsx, y are adjacent if the s¢x, y} is connected). In [18], it is proved that there is only one
convenient solution —the product of Khalimsky lines [13b+ flefining such a framework,
unfortunately this solution breaks the homogeneitZaf(To avoid this phenomenon, it is
necessary to add points between those actually in the imddeh is equivalent to identify
the points of a digital image with some cells of abstractutatl complexes [20,15].) All
these topological models have found practical applicationthe context of digital image
analysis, especially for the definition of “topology-pregeg” proceduresi(e., procedures
enabling to modify a binary digital image without altering homotopy type), including
reduction ones (used for skeletonisation or segmentatieee.g.[8].

The quite pragmatic motivations of the works on topologiteldelling of digital im-
ages can probably explain why most of the proposed defisitamy aim at mimicking or
adapting the definitions of the classical topology to rg&ietuitive notions such as con-
nectivity and continuous deformation. Moreover, if the Wopf Alexandrdt are relatively
well known in both (mathematics and computer science) conities, those of McCord
and Stong have visibly never been considered in the resealated to topology in digi-
tal images. Consequently, it is generally believed thatcthssical definitions of topology
cannot be “directly” embedded in the universe of digital gea in a sound fashiéri.e.,
while preserving their correct and intrinsic propertids) particular, it seems thatathsin
finite spaces have been quite systematically replacextihyocdefinitions. This justifies to
carefully explore the relations between continuous patiasdigital paths of finite spaces.

The purpose of this article is to study the consequenceseaigk of the general topol-
ogy standard definition of a path, namely a continuous fonctiom [Q 1], when working
in a digital space. We describe the images of such paths igitaldipace and compare them
with the regular digital paths defined in the framework of Ktealimsky topology [14] or in

1 In [22], Latecki writes “topology is basically not a finite meept and reduces to triviality whenever
applied to finite sets”.
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the equivalent framework of abstract cellular complexéd.[®@/e show that both definitions
lead to very close geometrical objects: our first main re€iiieorem 2) states that under
each continuous patp, lies another continuous path which is a step function (farhsa
path, we sa finite patl), whose image is included in the image mand which is equal
to p for at least one value of the parameter in each step inteévalalso look at homotopy
equivalence between paths and describe their discreteerpants that we calleforma-
tions We show that two finite paths with a same image are homotipieguivalent and
our second main theorem (Theorem 3) establishes that twie finths with distinct images
are homotopically equivalenffithe image of one of them is a deformation of the image of
the other one. Then, we retrieve (and in fact, extend, sineelevnot suppose the ambiant
space to be finite), without the need of high level prelimyn@sults, the property recently
proved in algebraic topology [3] that the fundamental grotip digital space is isomorphic
to the group of digital paths equipped with the deformatidisce our model is based on
classical definitions, we have the possibility of reinvasy axternal result in the field of
image analysis and processing. In particular, we explocecampare some tools devoted
to the reduction of finite, or countable, spaces and whicle leunterparts in continuous
analogues embedded in the Euclidean space.

In order to do so, Section 2 first recalls background notieated to general topology
and partially ordered sets. (These notions enable to makauiticle globally self-contained,
and then more comprehensible for the reader.) In Sectiore3tudy in detail the paths in
digital imagesj.e., the continuous functions of [@] — Z" (whereZ" is interpreted from
the topological point of view mentioned above) and we jystifiiy we can avoid to consider
the “functional side” of paths. In particular, we prove tha fundamental group of a digital
space is isomorphic to the “fundamental-like” group whislgénerally considered in digital
image analysis. Then, topological algebraic structuresgoeell defined, we can borrow
any tool in the existing literature on countgffiileite spaces for use in image analysis and
processing. Thereby, in Section 4, we study and confroribuarways to make minimal
changes in a digital image while preserving, as far as plessiis topology. Concluding
remarks will be found in Section 5.

2 Background notions
2.1 General topology

In this subsection, we recall some basic definitions andsidakproperties of topology
without proof. The main purpose here is to introduce use@tidtions and to gather results
needed in the sequel of the article. The reader interestpobufs, or details on a particular
notion, can find them in any lecture book on general topoldgy&xample, [30,37]) or on
algebraic topology (for example, [11, 25, 26].

2.1.1 Topological spaces

Let X be a set, the elements of which will be called pointsgopologyon X is a collection
U of subsets oK, calledopen setssuch that:

(i) 0,X are open sets;
(ii) any finite intersection of open sets is an open set;
(iif) any union of open sets is an open set.
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The complement irX of an open set is called@dosed setFrom the above definition, any
finite union of closed sets is a closed set and any interseofiolosed sets is a closed set. A
set of open sets istaasisfor a topology if any open set is a union of open sets of thigsbas
A neighbourhoodf a pointx € X is a subset oK including an open set containing
Theclosure’Y of a subsely C X is the smallest closed set includifvg Theinterior
Y° of a subsety C X is the largest open set included Yn It is also the union of all open
sets included irY. Closure and interior are dual notions sinte= X\ (X_\Y) andY =
X\ (X\Y)°. For any subseY C X, the setly = {UNY | U € U} is a topology onY
called thetopology inducedy U onY. The se{, X} is a topology orX called thetrivial, or
indiscrete topology. The set®2of all subsets oK is a topology which is callediscretein
mathematics. Here, since we find this designation confusitiythe meaning of topology
in a discrete space, we will calliftra-discrete
Topology is a tool to give a precise meaning to the intuiticgion of “nearness”. With
the trivial topology, any point itX is near any other point iX while with the ultra-discrete
topology, the space is totally disconnected. So, we arentetdsted by these two topologies
but for examples and counterexamples. Therefore we mulsidbother topologies to use in
finite or discrete spaces.

2.1.2 Continuous maps and spaces classification

Let X, Y be topological spaceg€., spaces equipped with a topology). A functibn X — Y
is continuousif the preimage of any open set ¥fis an open set oK. In particular, if the
topology onY has a basi® and the preimage of any set 8fis an open set ikX, thenf is
continuous. Iff is bijective and botrf and f~* are continuous, theh is ahomeomorphism
and the spaceX, Y are callechomeomorphic

If Y is a subset ofX, Y is aretract of X if there exists a continuous map, called a
retraction r : X — Y such that(y) = yforall y € Y. A continuous map : X x [0,1] — X
is a(strong) deformation retractioif, for every xin X, yin Y we haver(x,0) = x,r(x,1) € Y
andr(y,1) = y (and for everyt in [0, 1], r(y,t) = y). If such a map existsy is a(strong)
deformation retracbf X.

WhenY is not a subspace of, there exists however a similar notion as the one of
retraction. Two continuous magsg : X — Y arehomotopicif there exists a continuous
map, called daomotopyh : X x [0, 1] — Y such thath(x, 0) = f(x) andh(x, 1) = g(x) for
all x e X. The spaceX andY arehomotopy equivaler{br have the sameomotopy typgif
there exist two continuous maps. X — Y andg : Y — X, calledhomotopy equivalences
such thag o f is homotopic to the identity map idand f o g is homotopic to ig. If X and
Y are homeomorphic, they are homotopy equivalent: given agoomorphismy betweenX
andY, ¢ andg™! are homotopy equivalences betweéandY. The converse is not true in
general (for example, a ball is homotopy equivalent —buthmmheomorphic— to a point). A
topological space isontractibleif it has the homotopy type of a single point.

2.1.3 Topological properties

A topological spaceX is connectedf it cannot be split into two non-empty open sets. The
union of any collection of connected subspaceX gbairwise intersecting, is connected. In
particular, if X, Y are connected and N'Y # 0, thenX U Y is connected. Theonnected
component®f X are the maximal (for inclusion) connected subspaces. &very x in X
belongs to exactly one such component since théxés connected and the union of all
connected sets containings connected and - trivially - maximal for inclusion. Henteg
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connected components of a spatdorm a partition of X. Note also that the image of a
connected set by a continuous map is connected.

Let x4, X2 be two points inX. A pathfrom x; to x, in X is a continuous map : [0, 1] —

X with (0) = x; andn(1) = xo. A spaceX is path-connectedf for every pair (1, x2) in X,
there is a path fronx; to x; in X. A path-connected space is connected.

A spaceX is compactf from each collection of open sets, the union of whickXiésuch
a collection is called aovel), one can extract a finite cover. The image of a compact set by
a continuous map is also compact.

A spaceX satisfies theseparation axiom g (or, shortly, is aTlp-spacé if for every pair
(x1, X2) (X1 # %2) in X there is an open set of which contains exactly one element of the
pair. That is, one can distinguish them from a topologicaiwpoint. It is equivalent to state
thatx; does not belong to the closure {o&} or x, does not belong to the closure {of}. If
for every pair &, x2) (X1 # X2), X1 does not belong to the closure o&} and % does not
belong to the closure di;}, that is, if for eachx € X, {x} is closed, therK is aT;-space
Hausdoyf spacesor T,-spaceslike R" equipped with the usual topology, have a stronger
property: any two distinct points have disjoint neighbamgtis. Note that &,-space isTy
and aT;-space islo.

2.1.4 Algebraic topology

Let X be a topological space. Two patpsq in X are equivalentif they have the same
extremities {.e., p(0) = q(0) andp(1) = g(1)) and are homotopic by an homotohysuch
thath(0, u) = p(0) = g(0) andh(1, u) = p(1) = (1) for allu € [0, 1]. It is easy to check that
this relation on paths is actually an equivalence relativa.write [p] for the equivalence
class ofp. If p, g are two paths ixX such thatp(1) = q(0) we can define the produpt g by:

[ p@y iftefo.d],
(p-9)®) = { qt-1)ifte [%,i].

This product is well defined on equivalence classesy[q] = [p - g]. Let x be a point of
X. A'loop at x is a path inX which starts and ends at The product of two loops atis a
loop atx and the set; (X, X) of equivalence classes of loopsxas a group for this product.
It is called thefundamental groupf X (with basepoint X or thefirst homotopy groupf
X. If X is path-connected, the groap(X, X) does not depend on the basepoirg.(for any
pointsx,y € X, m1(X, X) andr1(X,y) are isomorphic). Higher homotopy groups are defined
by replacing loops ak by continuous maps from [@]" to X that associate the boundary
of the n-cube tox. The product on such maps is then defined by gluing two facekeof
n-cubes: 2 ) . 0.3

p(2ty, to, .. ., ty if t1 € [0, 5],
Pt tn) = { U2~ L. t) if o € [2.1]

Conventionally, the set of path-connected componenisisfdenoted byry(X, X), but it has
no group structure.

Let X andY be two topological spaces with base poirtandy. A continuous map
f . X = Yis aweak homotopy equivaleniéehe morphismsf,, : (X, X) — mn(Y,y) defined
by fo([p]) = [f o p] are all bijective (o is just a bijection, not a morphism). Two spacey
areweakly homotopy equivaleiftthere is a sequence of spacks = X, Xy,..., % =Y
(r > 1) such that there exist weak homotopy equivalerXes — X or X; — X;_; for all
i €[1,r]. Hence, two weakly homotopy equivalent spae¥ have isomorphic homotopy
groups.
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Two homotopy equivalent spaces are weakly homotopy earivdthe converse is not
true in general but the Whitehead’s theorem [39, 40]) stdtasit is true in complexes (see
Section 4.1).

2.2 Partially ordered sets

Because of their capacity to encompass all topologicalaggbres on digital images, our
work is presented in the framework pbsets(Partially Ordered SETS). For this reason,
but mainly to show how discrete spaces are concerned wittineoty, this subsection on
partially ordered sets is more detailed than the previowssolVe give proofs, as far as
possible, while we state properties with hypothesis closaur subject. Readers interested
in more general hypothesis may refer to [1,29, 36, 2,28, 27].

Let X be a set. A binary relation oX is apartial order if it is reflexive, antisymmetric,
and transitive. Apartially ordered setor poset is a couple X, <) where the relationg
is a partial order orX. The relation>> defined onX by x>y if y<x is a partial order on
X called thedual order We say that two pointg,y in X are comparableif xy or y<Ix.
We say that a poset Iscally finite if for each pointx in X, there are finitely many points
comparable withx (note that for many authors, locally finite means that eadhtpohas
a finite neighbourhood). As an examplé equipped with the dual of the usual ordée(
with >) is not locally finite with the definition we use though eactinbm € N has a finite
neighborhood [n] (see Theorem 1 for the definition of the topology). If, for@éirs (x, y)
of elements ofX, x andy are comparable, the relatica is atotal order on X. A chainin
X is a totally ordered subset &f. A poset isfinite-dimensionalf there is an integen such
that any chain irK has a cardinal less or equal tham 1. The smallest integerhaving this
property is called theimensiorof X and we writen = dim(X).

We write x<ty whenxgy andx # y and we set:

- X' ={ye X|xgy}andx™ = x"\ {x} = {y € X | x<y};
— xt={ye X|ygxjandxt* = xt\ (x} = {y e X | y<x}.

If x andy are comparable, we write < y; otherwise, we writex % y. The set of points
comparable with a given pointis denotedd (x* = x! U xT) andx¥™* = x¥\ {x} = x!* U xT*.
A point x € X is minimalif x! = {x} andmaximalif x = {x}. A point x € X is theminimum
of X if x! = X and is themaximunof X if x! = X.

The Hasse diagram is the oriented graph ofdbeeringrelation defined byy coversx
(x < y) if xay and there is na@ such thatx<z<y. Orienting all arcs from top to bottom, this
diagram dfers good visual representations of (small) posets (seegd-gju

2.2.1 Topology in posets

Let us forget for a while posets in order to define Alexariispaces. A topological spage

is anAlexandrgf spaceif any intersection of open sets is an open set. In such a spased
sets satisfy the definition properties of open sets, nandely,are closed sets, any union
and any intersection of closed sets is a closed set, so onexcéiange open and closed
sets, tThe obtained topology is then called doal topology As any set has a closure, any
elementx of an Alexandrd space has amallest neighbourhoothn open set included in
any open set containing, denoted byJy, which is the closure ofx} for the dual topology.
Conversely, a topological spaeein which each point has a smallest neighbourhood is an
Alexandrdf space. Moreover, since for any open ¥ett X, we haveV = |J,y Uy, the
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set of smallest neighbourhoods is a basis for the topologyeM\a topological seX has
the T;-separation property, each singleton is closed; thus arafildrdf space with the 7-
separation property is ultra-discrete. It is the reason thikyonly Alexandré spaces worthy
of interest are non-I. We call the B-Alexandrdf space®-spacs. McCord has proved in
[29] that if an Alexandr space is not g, the identification of the points that share the same
smallest neighbourhood give a homotopy equivalent qubsipace which is d.

Now let us go back to posets with the next theorem known asakidsov specialisation
theorem which establishes a canonical link between A-spand posets.

Theorem 1 ([1]) Let(X, W) be an A-space. The relatica defined on X by Qy ify € Uy is
a partial order on X. Conversely, |€X, <) be a poset. The seét defined byl = {U C X |
¥x e U, x" c U} is atopology on X(X, W) is an A-space and, for all & X, Uy = x'.

If Y is a subset 0K, the topology associated to the poséty) is the topology induced
by the one associated to the pos€tg). The dual topology of the topology associated to
the posetX, <) is the topology associated to the dual orger

From now on, posets will always be equipped with the topoldglescribed in Theorem
1.

The easy following property founds an interesting appia@atvhen a continuous func-
tion, like a path, is defined from a compact subsekbfthat is a closed bounded subset, to
a locally finite poset.

Property 1 Any compact locally finite poset is finite.

Proof Let X be a compact locally finite poset. Sinseis compact, there exists a finite set
A C X such that(y)xea is a finite subcover of the open covéry)«x. As X is locally finite,
eachUy is finite and, thereforeX = [ Jya Uy is finite.

2.2.2 Continuity and connectivity
Property 2 Let X, Y be posets. A functior : X — Y is continuousft it is non-decreasing.

Proof ([36]) (Stong assumes andyY to be finite, but he does not use it in his proof) Suppose
that f is continuous. Lek; <Ix, be two points inX. Sincef‘l(Uf(xl)) is an open set contain-
ing xg, it includesxl SOXp € f*l(Uf(xl)) andf(x) € Ugy,), thatisf(x;)<f(xz). Conversely,
suppose thaf is non-decreasing. For soryes Y, takex € f~1(Uy), which meang<f(X).

For anyx’' € Uy, x<x, soy<f(x)<f(x) andx € f-1(Uy). HenceUy ¢ f~1(Uy) for any

x € f~}(Uy). That is, f~(Uy) is open.

Let x,y € X. We say thatx,y are adjacentif the set{x,y} is connected. A sequence
(%i)i_o (r > 0) of points inX is anarc in X (from x, to x) if for all i € [1,r], x_; andx; are
distinct and adjacent. The integeis thelengthof the arc &);_,. If forall x, 1<i<r-1,
Xi_1 < X © % > X1, we say that the arc iminimaP. If for all x,y € X there exists an arc
in X from xtoy, we say thak is arc-connected

Property 3 Two pointsx,y € X are adjacentf x andy are comparable.

2 The definition of a path by Kovalevsky [20] in the frameworkoeflular complexes corresponds to the
definition of an arc given above while the definition of a digjppath by Konget al.[19] in the framework of
the Khalimsky topology corresponds to the definition of aimal path above.
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Proof LetS = {x,y} and suppose, y are not comparable, thatis¢ Uy andy ¢ Uy. Then,
UyNS = {x} andUy N S = {y} are disjoint open sets @. Therefore S is not connected.
If x,y are comparable, for exampbedy, every open set containing containsy, so it is
impossible to breals into two non-empty open sets. Th8ds connected.

Lemma 1l Let X be a poset. If x and y are comparable, then there is a path X to y.

Proof ([36]) (Stong assumes andY to be finite, but he does not use it in his proof) Suppose
x<y and letp : [0, 1] — X be the function defined bg(t) = xif t < J andp(t) = yif t > 3.

We claim thatp is continuousj.e., p is a path. To prove this assertion, it isfscient to
prove that for anyJ,, p~3(U,) is open in [Q1]. If x,y ¢ U,, thenp~1(U,) is empty and thus

is open. Ifx € U,, z<axQy soy € U, andp™(U,) = [0, 1] is open. Ifx ¢ U, andy € U,, then
p~1(U,) =]3, 1] which is an open set of [a].

The material for the next property, and for its proof, is als{36].

Property 4 Let X be a poset. The following statements are equivalent:

1. Xis path-connected;
2. Xis connected;
3. Xis arc-connected.

Proof 1= 2 is true in any topological space. To prove=23, suppose« is connected and
take a pointx € X. By proposition 3, it is straightforward to prove that théssg of points
in X that are connected to by an arc and its complemerX, = B\ A, are open. AX is
connected and # 0, Bis empty andX is arc-connected. Finally to prove=3 1, suppose&
is arc-connected. From Lemma 1, we derive easily ¥t path-connected.

Observe that the above property means that the standardtidefiaf paths and the
digital one lead to the same path-connected components.

2.2.3 Homotopy

Let f,g be two continuous maps from a topological spaté X. We write f<g when
f(a)<g(a) for all a € Y. It is straightforward that the relation is a partial order o2 (Y, X),
the set of continuous maps fromto X. For some giverxg, X, € X, y1,¥2 € Y, we set
C(Y, X)s = {f € C(Y,X) | f(y1) = X, f(y2) = X2}. Unlike others authors ([36, 26, 2]), we
do not use here the compact-open topology on continuougifuscbut the Alexandi®
topology associated to the posétY; X), Q).

Property 5 ([36]) Let X be a poset and any topological space. Lgt, p’ € C(Y, X) be
such thatp’ap. Then, there is a homotopy betweenp and p’ such that for ally € Y,

P(Y) = p'(y) = Yu € [0, 1], h(y, u) = p(y) = P'(Y)-

Proof Defineh: Y x[0,1] — X by h(y,t) = p(y) if t < 1 andh(y, 1)=p'(y). Let U« be some
smallest neighbourhood for somes X. Then,h™(Uy) = p~(U,) x [0, 1[U p"~(Uy) x {1}.
Now,y € p~(U,) = P'(y) € Ux = ply) € Uy (for p'sp) = y € p~2(Uy). Thus,p~*(U,) c
p~1(U,) andh=1(U,) = p1(U,) x[0, 1[U p~1(Uy) %[0, 1]. As p, p’ are continuousp=(Uy)
andp’~1(U,) are open and, therefors;(U,) is open which establishes the continuitytof

Corollary 1 Let X be a poset. If X has a maximum, or a minimum, then X is actitite.
In particular, for any xe X, x and X are contractible.
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Proof Let x be the minimum oK andy the constant map that tak&onto{x}. The function
¢ is non-decreasing and verifigst idx. Hence, thanks to Property 5, we derive thétis a
strong deformation retract of.

The following corollary is a direct consequence of the Prop8 (takingyY = [0, 1]). It
is of first importance for our study of paths in posets.

Corollary 2 Let X be a poset and, b be two points in X. Let,p’ be two paths in X from
a to b such that fp. Then, p and ‘pare equivalert

Property 6 Let X be a poset an¥ a compact topological space. The connected components
of (Y, X) (resp.C(Y, X),), equipped with the binary relatiog, are the homotopy equiva-
lence classes @(Y, X) (resp.C(Y, X).).

Proof Suppose that andg are in the same connected componer@(@f X) (resp.C(Y, X)).
From Properties 4 and 3 (applied to the podet, X) or C(Y, X),), there exists a sequence
(@) (r = 1) of paths inC(Y, X) (€(Y, X),) such thaigy = f, g = gand, for alli € [1,r],
gi-1, G are comparable, and thus, thanks to Property 5, homotopyadent. Hencef and

g are homotopy equivalent (from Property 5, we easily detivag,tif f, g € C(Y, X), there is

a homotopyh such that for alt € [0, 1], h(., t) € C(Y, X),). Conversely, leh: Yx[0,1] —» X
be a homotopy between some mdpandg of C(Y, X) (with h(y;,t) = x forall t € [0, 1] and

i €{1,2}). Defineh, : [0, 1] — C(Y, X) by (h.(t)) (y) = h(y, t). Itis clear thath, (0) = f and
h, (1) = g (andh,(t) € (Y, X)4). We want to prove that, is continuous and is therefore a
path fromf to g. Lett be a point in the preimage;*(U,,) of some smallest neighbourhood
in €(Y, X). Ashis continuous, for each e Y, there are open se¥§ C Y, I, C [0, 1] such that
y € Vy,t e Iy andh(Vy x ly) € Uyy). Thanks to the compacity of, there is a finite subset
A of Y such thafVy}yea is a finite cover ofY. Thenl = (N4 ly is an open neighbourhood
of t and for allt’ € 1,y € Y, h(y,t') € h(Vy, 1) € h(Vy,ly) € Upy hencet’ € h;}(Up)
and! ¢ h;}(Up). We can now conclude that, is continuous and that, g are in the same
(path-)connected component®@fY, X) (C(Y, X)).

As a particular case of Property 6, we obtain that the comukemdmponents a7, ,, the
set of paths irK from a to b equipped with the binary relation, are the equivalence classes
of 17, and from Property 4 we derive immediately the following dizany.

Corollary 3 Let X be a poset and b two points in X. Two paths, p’ in X from ato b are
equivalent ff there exists a sequen¢p;)/_, (r > 0) in IT,p such that p = p, pr = p’ and,
foralli € [1,r], pi—1 and p are comparable.

3 Paths and arcs

The aim of Section 3 is to understand precisely how pathsJeeihaa poset and to study the
link between their image and the arcs defined in Section 212.the sequel of the article,
(X, Q) is a posetX need not to be finite nor, even, locally finite).

3 See Section 2.1.4
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3.1 Finite paths

We say that a functior : [0, 1] — X is astep functiorif there exists finitely many intervals
(I, (r € N) such thatf is constant on each intervgl and [Q1] = Ui |;. If for all

i €[1,r], sup(i-1) = inf(l;) and f(li-1) # f(l;), we write f = 3[_, %1, where{x} = f(1;).
Note that we use the notatidn= ).{_, x;1;, by analogy with mathematical analysis but it is
purely formal and there is no meaning behind this summation.

As a path inX is a continuous map from [@] to X and [Q 1] is compact, the image of a
pathpin a locally finite posei is compact and therefore finite (Property 1). Nevertheless,
this does not mean thatis a step function. For example bety be faces inX and consider
the mapp : [0, 1] — {x,y} defined byp(0) = X, p(] s er {y} and p([Zr, - l]) = {x}
for any positive integer. The functionp is a loop atx in X (continuity of p is obvious since
0,{y}, {x,y} are the only open sets ifx, y}) but this path goes througk andy countably
many times and it is even impossible to tell which is the sdgooint crossed by the path
p Observe that this path is greater than the constant path[0, 1] { x} and less than

1 [0.1] — X defined byps(0) = x p([0.}]) = ([21]) x} and thusp is
equivalent tope and p; (Property 5).

Definition 1 (Finite path) A pathpin X s afinite pathif it is a step functionp = }}[_, x1,,.
The sequencd;;_, is called thentervals sequencef p and the sequends);_, thetrack
of p. Afinite path isregularif there is no singleton in its intervals sequence. A finitéhga
minimalif for all x;, 1 <i<r -1, inthe track ofp, Xi_1 < X © X > Xi41.

Proposition 1 The track of a finite path is an arc, and any arc is the track aégular finite
path.

Proof Let p = 3{_; %1, (r > 0), be a finite path. If = 0, it is obvious thaj is an arc. If
r > 1, takei € [1,r]. The set{x_1, xi} = p(li_1 U [;) is connected sinck_; U |; is connected
andp is continuous. Hencg, is an arc.

Lety = (X){_ (r > 0) be an arc. If = 0, the constant path defined byp([0, 1]) = {Xo
has tracky. If r = 1, from Lemma 1 and its proof, there exists a regular path frgro x;.
If r > 2, the productp; ... p; of regular pathgy; from x_; to X (1 < i < r) is a path with
track y and it can easily be seen, from the very definition of this poddthat a product of
regular paths is regular.

Lemma 2 A step function = Y[_, X1, is a finite path in Xfforalli € [0,r —1], X =< Xi41
and %<x;1 < sup(l;) € 1;.

Proof Supposep is continuous. Let € [0,r — 1]. By Proposition 1% < Xiy1. If Xi<X,1,
thenx ¢ Uy, (sincex # X1 by convention when writingd = Y/_, %1,,). So the open
setp™(Uy,,) includes the intervall,; but not the interval;. Thus, inf(i,1) = sup(;) is not
in li.1, i.e, sup(li) € l;. If the inequalityx <1 is false thenxi,; ¢ Uy and the open set
p~1(Uy) includes the interval; but not the interval;,;. So suplj) is not inl;. Hence, the
equivalencex;<Ix,1 < sup(l;) € i holds. Conversely, suppose that there is same 0
such that any step functiofi_, x1;, with r < sis continuous when for all € [0,r — 1],

X =< X1 andx <X, < sup(li) € I;. Letp = ?:leilh be a step function such that for
alli € [0,9], x < X1 andx<Ix:1 © sup(li) € I;. Indeed, for alli € [0,s— 1], X < X1
andx<Ix,1 < sup(l;) € |; so the step functionp’ = Zf:ol X1, + Xsliui,,, IS continuous.
Let U be an open set iX. If Xs, Xs1 € U, OF Xg, X1 € U, thenp2(U) = p~1(U) is open.
If xs € U andxs,; ¢ U then necessarily the inequalik¢<xs,; is false which implies that
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sup(ls) ¢ ls. Thus,ls,q is closed ang™(U) = p~1(U)\ .1 is open. Ifxs ¢ U andxs,; € U
then, sincexs andxs,; are comparabless<ixs,1 and, by hypothesis, syp) € Is. Thus,ls;1
is open andp~1(U) = p~}(U) U g1 is open. As in each case the preimage of an open
set is openp is continuous. Observing that, $f= 0, the mapp is constant and therefore,
continuous, we may conclude by induction.

Theorem 2 is the main result of Section 3.1. It states thafpatlyp in a poset is equiv-
alent to a finite path, the track of which is "very close” to iheage ofp. Thus, it is a first
link between the continuous notion of path and the discreteds arc.

Theorem 2 For all x,y € X and any path p from x to y, there exists a minimal regulardinit
path from x to y, fxp, the track of which is included in the image of p. Moreoweiy
interval | in the interval sequence of,fhere is an element t such that(®) = p(t).

Proof Let p be a path fromx toy in X. For eaclt € [0, 1], p~1(U) is open and contains
t. Let J be the connected component pfl(Upy) containingt (J; is an open interval).
Since [Q1] is compact and the famil{d;); < o,1; IS an open cover of [A], there exists a
finite subsefA of [0, 1], such tha{J;); < » covers [Q1]. If, for somet,t’ € A, kN Jy # 0 and
p(t)<p(t’), we remove’ from A and we replacd; by J;UJy so we can suppose than J, #
0 = p(t) % pt’) (observe that it implies thatcannot belong tdy). Let A’ be a subset oA
such thaty’ is a minimal cover of [01] (for any strict subseB of A, (J;); c g does not cover
[0,1]). Let (t)]_, be the (strictly) ordered sequence of real®\ifwherer is the cardinal of
A). From the hypothesis oi¥, we derive that the sequences (#f));_, and (sup{;));_, are
strictly ordered J;, , N J; # O foralli e [1,rlandJ, , N J,, =0Oforalli e [1,r-1]. Finally,
for eachi = 1,...,r, we choose a reatl; in J;, N Jt. and we setvy = —o0, Wyyq = +09,
p(Wo) = X, p(Wr+1) = y. Observe that for any=1,....r, p(ti-1)<p(w;) and p(t)<p(w;). We
setdy, = Jo N [O, 2[, Jw,., = IN] t’*l l] and, forl € [1 r], if Jy, & I, N J,, we setd,, to

any open interval such thaw; € J c J c J,, N J,_, N J;, . We definep’ : [0,1] — p([0, 1])
by:

() = pw)if teJy (0O<i<r+1),
PO = pit) if te [supdu). inf(d.)] ©<i<n),

Since[sup@w,), inf(Jw,,)] € J, andforall ¢, u) € [0, 1]xJ;, p(t)<p(u), we have straight-
forwardly p’<p. Furthermorep’ is a step function. We have stated above &t 1)< p(w;)
and p(t)<p(w;) for anyi € [1,r]. So, in order to prove the minimality g¥ and, thanks to
Lemma 2, its continuity, we still need to look at the extreest that is, to comparp(wo)
with p(to) and p(t;) with p(w,1). If p(to) = X, thenp'(t) = p(to) = x on [0, inf(Jy)],
otherwise Oe J, so p(to)<p(wo). Similarly, if p(t;,) =y, thenp’(t) = p(t;)) = y on
[sup@;,), 1], otherwise 1€ J; so p(t)<p(w.1). Now, we are able to conclude that
is a minimal finite path fromx to y. As for anyi € [1,r], J, ¢ %, N J, we have
JVi-1. U [C [sup@y). inf(d,,)] andp’ is regular. Asw; € J,, andt; € [sup@y,).inf(Jw,.,)]
(fort ¢ J,_, N J, andt; ¢ J;, N J;,,), in any intervall in the interval sequence @f, there is
an element such thatp'(t) = p(t).

There is no hope to find in the general case finite paths grédaeara given path. For
instance, consider the posét= {x, Y, z} wherexy, x<z Letp: [0, 1] — X be the function
defined byp(t) = x if t belongs to the Cantor s€ (i.e., t has a ternary numeral with no
“1"), p(t) = yif t ¢ C and the first “1” in a ternary numeral ¢fis in odd position (starting
from point), p(t) = zif t ¢ C and the first “1” in a ternary numeral ¢fis in even position.

The mapp is continuous because™({y}) =11, 2[u] L, Z[U] L, £[U] 22, B[u]Z, L[u.
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is open ando({z}) =13, £[U]Z, &[u ... is open. However any open set of | containing
0, contains real numbers with ternary numerals the first “fLlivbich is in even, or odd,
position. Thus, a finite path greater tharshould have a value in 0 greater thaand z
Such a value does not exist ¥ Moreover, observe that, for any integerwe can find a
subset ofZ" isomorphic toX.

The two following technical results will be needed in the gfrof Proposition 3 and
Theorem 3.

Lemma 3 For all x,y € X and any paths {9 p2, ps from x to y such that ap, and p<pa,
there are three finite paths from x to y, 91, p,<p2, p3<ps, such that p<p), and g<p,.

Proof The proof of Lemma 3 is close to the proof of Theorem 2. Howsweneed to make
some changes in the proof of the theorem. Fot all0, 1], we now definel; as an interval
containingt and included inp;*(Up, ) N P;(Up,) N P31 (Upy)- The finite set’ is such
that ()t o is a minimal cover of [01] and the sequences)[_,, (W)/_, are defined as in
the proof of Theorem 2. Observe that it is no longer possibiessume thaf 1, t ¢ J,_,NJ;,
and therefore, it may happen tha(ti_1) = p(w;) or p(t;) = p(w;). The maps;, k € {1,2, 3},
are defined by:

/(f) = pc(w;) if te Jy (O<i<r+1),
PO = { pe(t) i € [Suphy).inf(dy,)] O<i <1).

Of course, we still havep, <py for eachk € {1,2,3} and the proof of continuity for the
three maps need not to be changed (except that we repface < p(w;) and p(ti)<p(w;) by
P(ti-1)<Tp(wi) and p(ti) < p(wi)).

Lemma4 - Let p be a finite path. There is a regular pathwith same track as p such
that p < p.

- Let p < p2 be two finite paths. There are two regular pathgip;, p,<p, with same
tracks as p and p such that p < p,.

Proof Let p be a non-regular finite path. Let < [0, 1] such that{u} is an interval of the
intervals sequence g andl, J be the intervals before and aftas} in this sequence (if
u=0oru=1,wesetl =0orJ=0). We denote by the point inX such thatp(u) = x.
Sincep is continuous, there is a real > 0 such thatp(Ju—&,u+ ¢[) € Uy, and we can
choosee such that §i — &, u[N[0,1] € I,]Ju,u+¢[N[0,1]) € J. Setps : [0,1] — X, the
function defined byp(t) = xif t € [u- 5,u+ 5] and pi(t) = p(t) otherwise. Clearly,
we havep; < p and, from Lemma 2, we derive thaf is a finite path (since is itself a
finite path) which has the same track@sThis way, we can remove all singletons from the
intervals sequence g, resulting in a regular pathy < p with same track tham.

Let p1 < p, be two finite paths. Thanks to the first part of the proof, wevkrbere
is a regular pathp;<p;<p,. We slightly modify the above construction @f in order
to get pj<p),. Letu € [0, 1] such that{u} is an interval of the intervals sequence f
and |, J, be the intervals before and aft@s} in this sequence (il = 0, oru = 1, we
setl, = 0 or J, = 0). Setx = p(u). Takee > 0 such thatp(Ju—e,u+¢g[) € Uy,
Ju—¢&,u[N[0,1] C I,]Ju,u+ £[N[0,1]) € J and either &I — &, u] or [u,u + &[ is included
in an interval of the intervals sequencemf(such a choice is possible sinpgis regular).
Suppose, for example, that, L+ £[ is included in an interval of the intervals sequencepf
(the other case is similar) and, therefanes 1, J # 0, and there is a pointdx (sincep; <py)
in X such asp; ([u,u+¢[) = {y}. Setp; : [0,1] — X, the function defined by;(t) = x
if t € [u,u+ 5] andpg(t) = p2(t) otherwise. As above, we hayg continuous ang,<p,.
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Moreover, we have alsp; <p,. Doing successively this construction for all singletamthie
intervals sequence qd,, we obtain a regular path,, with same track ap, and such that

PP, P2

3.2 Arcs

Theorem 2 means that every path in a poset is homotopic taa fiath, the image of which
is an arc. Processing digital images, one usually eithétgok at images of paths, that is at
arcs, and ignore functional definition or link arcs with path continuous analogs. In this
subsection we focus our attention on relations betweenaardpaths in the poset itself.

We can think at a track (of a finite path) as a map from the sendéfpaths onto arcs
(Proposition 1). Obviously this map is not injective. Theingroposition gives some light
upon this point.

Proposition 2 Two finite paths in X with same track are equivalent.

Proof Let p = 3{_; %1, andp’ = Y|_, %1y be two paths irX with same trackr(is a non
negative integer). For eadh= 0...,r, we denotey;, 5; (o, /) the lower and upper bound
of I; (J;). Thanks to Lemma 2, we know that, for edach O,...,r, intervalsl; and J; have
the same formw; € |} © of € J andg € |; & B € J.. For allu € [0, 1], we denoteK| ,
the interval with the same form dg J; and the bounds of which are @u)a; + ue] and
(1 - u)Bi +uB. It follows again from Lemma 2 that the step functipn= Y{_; X1k, is a
finite path. Leth : [0, 1] x [0, 1] — X be the function defined big(t,u) = py(t). We have
h(t,0) = p(t) andh(t,1) = p’(t) for all t € [0,1]. It can be seen that for any open &&t
h~1(U) is an union of open trapezoid in,[0] x [0, 1], the bases of which aneg1(U) x {0}
andp’~1(U) x {1}. Hencehis continuousp andp’ are equivalent.

Now a new question arises: it is notfiifult to see that the converse of the previous
proposition is falsei(e. unlessX is a singleton, there are X equivalent finite paths which
have distinct tracks), but when two finite paths are homatophat about their tracks? To
go further, we need to introduce an elementary modificatioaros (see also [7,18]).

Definition 2 (Stretching) An arcy = (x)i_o (r > 2) is anelementary stretchingf an arcy’
if forsomej e [1,r-1],x' = (Xi)ir:O,i;tj Or Xj_1 = Xjs1 andy’ = (xi){:oqiﬂfl!iﬂ. Anarcy isa
deformationof an arcy’ if there is a sequencg(; , of arcs inX such thago = x, xs = x’

and for anyi € [1, 5], eithery; is an elementary stretching gf_1 or yi_1 is an elementary
stretching ofy;.

We will also call elementary stretching the transformatimetween an arc and an el-
ementary stretching of this arc. Observe that it (x)_, is an elementary stretching of
X' = (X)i_g;4j» Necessarily the three point§_y, Xj, Xj.1 are mutually comparable. Bar-
mak and Minian in [3] use a similar notion which leads to theneadeformations: an arc
x = (X%)i_o (r > 2) isclose toan arcy’ if for somej < k< j in[1,r - 1], x' = (Xi)ir:O,ig[j,j']
andxj<... <X ... >Xj OF Xj>...>Xe<. .. <X

Proposition 3 Let p p’ be two finite paths with trackg y’. If y’ is a deformation of, then
p and p are equivalent.
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(@) (b)

(©

Fig. 1 (a) An arcy. The arrows give the ordering of the sequence. (b, ¢) Two efeany stretching of .

Proof Let p and p’ be two finite paths inX with tracksy, y’. Since a deformation is a
sequence of elementary stretchings and homotopy is anaeguooe relation, it is Sficient
to prove the result for an elementary stretching. So we assiimaty’ is an elementary
stretching ofy and, thanks to Lemma 4, we can also assumejilaatd p’ are regular. We
Setp = Xigixj XLl Or Xisgizj1izj %1y andp’ = ¥ oxl; 2 <rand 1< j<r-1).
If Xj_1<Xj<Xj41 OF Xj41<9Xj<Xj_1, We setpi(t) = p(t) if t € Uiz J and p1(J;) = {Xj-1}.
Otherwise Kj<iXj_1 andX;<iXj+1, Or Xj-1<X; andx;;1<X;), leta andg be the lower bound
and the upper bound af (o # g sincep’ is regular) andy = ”—Zﬁ. We setpy(t) = p(t) if

t € Uizj Jis po(t) = Xj-1 if t € [@, 9], pa(t) = Xj41 if t €]y, Bl and pu(y) = Xj-1 if Xj_1<9Xj41,
p1(y) = Xj+1if Xj+1<9Xj_1 (see Figure 2). In any case, we can derive from Lemma 2thist
a path. Since the tracks @f and p are the samep; and p are equivalent. Moreover, it can
easily be seen tha <p’ or p’<p;. Thusp; andp’ are equivalent and, by transitivitp,and
p’ are equivalent.

Tj—1 Tj—1
Tj+1 Lj+1
GV
Ti_1 Tj—1
Tj+1 Tj+1

(b)

Fig. 2 (a) Case Xj;1<Xj<Xj_1 (case Xj_1<Xj<Xj+1 is similar). () Case Xj<Xj_1,Xj<Xj+1 (case
Xj—1<Xj, Xj+1<X; is similar with an open intervalj). Note that in this case, it could happen that = Xj;1.

We can now state that the notion of deformation is the disaretinterpart of the con-
tinuous notion of homotopy equivalence.
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Theorem 3 Two finite paths pp’ in X with tracksy # x’ are equivalentff y is a deforma-
tion of y’.

Proof Let p andp’ be two distinct finite equivalent paths ¥from pointa to pointb and
I1,, be the poset of paths K from ato b. Sincep andp’ are equivalent, there is a path from
pto p’ in IT, (Proposition 6) and, thus, there is an ardig, from pto p’ (Property 4). Of
course we can suppose that this arc is minimal (otherwiseeletalthe superfluous paths).
Moreover, we claim that we can build a minimal arclig), from p to p’, the elements of
which are all finite. Suppose th&t= (pi)i_, (r > 2) is a minimal arc in7,, from pto p’,
thek first elements of which are finite & k < r —1). Case 1pc<pk-1. SinceP is minimal,
we havepc<pk.1. We derive from Theorem 2 that there is a finite pgtim /7, such that
a<pk. Thus, the sequend® = (q;)i_, whereqq = g andg; = p; otherwise, is a minimal
arc inIZ,p from p to p’, thek + 1 first elements of which are all finite. Case &.1<px,
and thuspy.1<px. Thanks to Corollary 3, we know there exist three finite patje,q”
such thaig<pe_1. of <px. 0 <Pes1 anda<q’, o’ <q. If ey # P we setP’ = (qi)_, where
Ok-1 = 0,0k = 0, 0ks1 = 97 andqg; = p; otherwise. ThenP”’ is a minimal arc in7,, from
pto p’, thek + 2 first elements of which are finite. fx,; = p’ we setP’ = (q; {:& where
g=pifi<k-—2,0kc1=0,0k =q,01 =q” andg,1 = p’. Then,P’ is a minimal arc in
I, from pto p/, the elements of which are all finite. This way, we build iteely an arc
in I, from pto p’, the elements of which are all finite.

Therefore, to prove that the tracks pfs a deformation of the track qf it is suficient
to do so for two finite and comparable paths, gayand p;. Moreover, thanks to Lemma 4
and Lemma 2, we can easily build two comparable regular éfirpaths fromato b, q =
Sioxil, Qg = J-S:O yj1,, with same tracks ag; and p; and such that the intervals(0 <
i < r) have no common bounds with the intervd|g0 < j < s). Thus, we denotea{){:*g"*l
the strictly increasing sequence the elements of whichheré&dunds of the intervals and
Jj: ao = 0, 14501 = 1, for each 1< i < r + seitherqor ¢, but not both, change its value
on «; and no others changes occur. For eaeh[0,r + s+ 1] and eachj € [0,r + s] we
define the step functiorcg andq’j by gi(t) = g'(t) if t < «,, g(t) otherwise andq’j =g
ift< “‘*% g(t) otherwise. In particulalgy = q andqgr.s1 = q (sinceq’(1) = q(1)). We
denote byy; and)(} the tracks ofy andq’j (ie[0,r+s+1],j€[O0,r+g]). From Lemma 2,
we easily derive that the step functioqsandq} are finite paths frona to b. We want now
to prove that, for all € [0, r + g, eitheryy (y«x+1) is equal toy; or is a stretching of, or the
converse. The proof consists in checking thefconfigurations relative tqc andg, and to
g, and gq.1. These 8 configurations are depicted in Figures 3 and 4 whégrlg establish
that in any case we have equality or stretching. Note thaterRigures 3 and 4 we denote
by f(t7) and f (t*) the values taken by a finite pathon some intervalst}- ,t[, ]t,t + £[
wheree > 0 is small enough to assume tHais constant on these intervals.

The converse part of the proof is given by Proposition 3.

To go further in the parallelism between paths and arcs, hopnes and deformations,
we will now study the arc product defined b¥s(. .., X).(Yo, - -»>¥Ys) = (X05 - - - » Xr» Y1, - - -, ¥s)-
More formally:

Definition 3 (Arcs product) Let y1 = (X)I_, andy2 = ()%, (. s > 0) be two arcs such
thatx, = yo. Thearc productis defined byy1.x2 = (z){Z5 wherez = x if i <r andz =y,
ifi>r.

Let x be a point inX. It is easy to check that being a deformation or equal is aivaqu
lence relation in the set of arcs ¥afrom x to x. We write [y] for the equivalence class of an
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P (ag)

p’(ag)
plaj) p(aj))
play) play)

(@)
p’(ag) p’(ay)
play) plaf)
pla) play)

Sk optogy
2
(b)
= K
P (a)) P ()
P (ag) P (o))
plag) p(ag)
Ak aptapiq
2

(©
P (o)) P (ay)
P (o)) P (af))
p(ag) p(a)

Xk optopqq
P

(d)

Fig. 3 (a) ok is a stretching oty (depending orp(e;;) = p’(ax) or not, we use one of the two cases in the
definition of elementary stretchingsh)(ak = d;. (€) g is a stretching oty . (d) If p'(ey) # plax), O is a
stretching oft, otherwisegy = g .

arcy and we denote by(X, x) the set of equivalence classes. It is not mofBdlilt to verify
that the arc product is well defined on classesyy.[x2] = [x1.x2] andp(X, X) equipped
with the arc product is a group (the identity element of whigh(x)] and the inverse of

[(X)izo] is [(%)i=rO)).-

Theorem 4 Let xe X. The fundamental group (X, x) of X with basepoint x is isomorphic
to the groupo(X;, X).

Proof By Theorem 2 we know that there are finite paths in any class (£, X) and by
Theorem 3, we may define a map 71(X, X) — p(X, X) by ¢([p]) = [x] wherey is the track

of any finite path equivalent tp. From Proposition 3, we derive thatis injective and from
Proposition 1 is surjective. Finallyy is a morphism since we can easily see that the track
of a product of two finite paths is the product of the trackshafse finite paths.

Remark 1Barmak and Minian in [3] have proved the same result infeecént way and in
the frame of finite spaces. They establish an isomorphismdmip(X, X) and a group of
loops composed with edges of the simplicial complgX) associated t&X (see section 4.1),
then invoke an isomorphism between the edge-paths grodf(XJ and the fundamental
group of its geometric realizatiofk(X)| (see section 4.1) described by Spanier [35] and
conclude thanks to the weak homotopy equivalence betWieed)| and X established by
McCord (see section 4.1).
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p'(ag) p'(ag)
p(aiyy) p(afyy)

plag )

P’ (ay)

LICTRY)

p(a:+1) P(D‘z+1>
Cktoptr Yktl
3
(b)
+
p'(ejy) P (o)
P (o) P(eg )
p(agy1) p(ag41)
aptagrr  Cktl optopir Ykt1
2 2
(c)
’ — —_
P oy y) P’ (ak41)
P (et ) P el )
p(aky1) pogy1)
Optoryr “k+1 Sptoppr Yk+l
3 3
(d)

Fig. 4 (@) q, = k1. (0) If p'(ax) # pleg,,) G is a stretching of.1, otherwiseq, = gks1. (€), (d)
q(( = Ok+1-

4 Reduction

In this section, we are interested in retractions, or moreeged decreasing transformations,
that minimally alter the topology of a poset and the topolofiya continuous analogue. In
particular, we will visit minimal modifications of such sdtsat do not change homotopy
type. But before thinking at transformations, we preserssction 4.1 the way we embed a
digital image in a poset and how the continuous analogueeddligiital image is defined.

4.1 Complexes

Complexes are topological sets whose combinatorial osgaion provide a way to link
digital images, namely subspacesz8f with the continuous Euclidean spak&

4.1.1 Simplicial complexes

Simplicial complexes are among the simplest combinatstraictures. They are commonly
used in the field of geometric modelling.

An abstract simplicial compleis a seK of non-empty subsets, callstmplices of a set
V, such that each non-empty subset of a simplex is a simplexelments oY are called
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vertices Each vertex must belong to at least one simplex. A non-erfgtyper) subset of
a simplex is agroper) face of the given simplex. For in this section we focus on digital
images, we assume that the simplices of a complex are finitéhe their cardinalities are
bounded. Thus, we can define thienensionof a simplex which is its number of vertices
minus one and the dimension of a complex which is the maximitheodimensions of its
simplices.

InR", a set of points argeometrically independeiftany k-hyperplane K < n) contains
no more thark + 1 of them. The geometri¢ simplex spanned by a set of geometrically
independent points is the convex hull of these points whiehtzeverticesof the geometric
simplex. Ak-faceof a simplex is a simplex spanned kyvertices of the simplex. Ageo-
metric) simplicial complex Ks a set of simplices ilR" such that any face of a simplex i
is a simplex inK and any intersection of two simplices khis a simplex inK. The faces of
the complex are the faces of its simplices. The vertices@ttimplex are the vertices of its
simplices. Note that the vertices of a complex need not bengéically independent. The
geometric realizationK| of the complexK is the union of its simplices equipped with the
topology the closed sets of which are the sets that inteessedt simplex in a closed set of
R". Because a union of closed sets is not always a closed setogulogy could be dlier-
ent from the usual topology dR". But here, aK is locally finite,i.e. any vertex belongs to
finitely many simplices, this topology is the usual topolamR". Theopen simplicesf |K|
are the interiors of it&-faces k > 1) and its O-faces. Each poirin |K| belongs to a unique
open simplex spanned by some vertiggs .., v (k > 1) and there exists a unigleuple
(by, ..., by in [0, 1] such thatx = Zi“:o b vi. Let f be a function between the set of vertices
of two complexeK andK’, the functionX (f)| which associates to each point Z!‘zo b v;
in |K| the pointy of |K’| defined byy = Zi“:o b f(v) is the simplicial map associated ta f
This map is continuous.

A realization of an abstract simplicial compleK is a geometric simplicial complex
whose vertices are in one to one correspondence with theegafK and whose simplices
are spanned by the images of the simpliceXofAny abstract simplicial compleX of
dimensiom can be realized i®2"1 [12].

There is a narrow link between posets and simplicial congdediscovered by Alexan-
droff [1]. Let X be a poset. The points K are the vertices of a simplicial compléx(X) the
simplices of which are the (finite) chains Xf(see figure 6). Conversely, it is plain that the
simplices of a given simplicial compld&, equipped with the inclusion relation, is a locally
finite poset denotetf (K). Note thatX (X (K)) is not equal tK but to a simplicial complex
called thebarycentric subdivisiorof the complexK. These correspondences are not only
algebraic and the topologies on the poset and the geomedilization of the complex are
concerned as well. The following theorem due to McCord giveskey-properties of the
mapeyx : 1K (X)] — X which associates to each point in the geometric realizatfaki(X),
the highest element of the unique open simplex it belongsetoémber that a simplex of
K(X) is a chain).

Theorem 5 (McCord [29]) Let X be a poset. There is a weak homotopy equivalerce
|K(X)] — X. Furthermore, one can associate to each continuous maX f> Y between
two posets the simplicial mag(f)| such that the following diagram is commutative:

X Y
f
X ’ . (24
1K X [KY)I

1)
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Observe that, as we have proved that the fundamental grgdfx) of a posetX with
basepointx is isomorphic to the group(X, x) of its arcs fromx to x (for any x € X),
Theorem 5 gives by transitivity an isomorphism betwpéX x) and the fundamental group
of the geometric realization df(X).

4.1.2 Cubical complexes

In digital images, grids are often cubical ones, so it isregéng in image analysis to replace
simplices in complexes by-cubes.

We setFl; = {{a} | a € Z} andF1; = {{a,a+ 1} | a € Z}. A subsetf of Z" which is the
Cartesian product ah elements of1; andn— melements of1, is afaceor anm-face(of
Z"), mis thedimensiorof f, and we write dim{) = m. We denote byF], the set composed
of all mfaces ofZ"and byF" the set composed of all faces Bf. Let f € F" be a face.
The set{g € F" | g € f}is acell and any union of cells is aabstract cubical complex
The geometric cubical complexese defined in the same manner, except we change the
definition of F1; by settingFl; = {[a,a+ 1] | a € Z}. The geometric realizatiofK| of a
geometric cubical compleX is the union of its faces (see figure 5).

@ (b) (©

Fig. 5 (a) An abstract (cubical) cel composed of one 2-face, four 1-faces and four O-faces Thresfoall
black squares represent four pointszith mutually 8-adjacent. (b) The geometric (cubical) ggll which is
the realization ofC. (c) The geometric realizatiolgC| of gC.

The points in a digital image are often a measure of a physjgahtity on a piece of
the Euclidean space. Then, the abstract cellular compéerdwork - and in particular the
cubical complexes - enable to model the adjacency relalietwgeen these pieces of the Eu-
clidean space in a topologically sound manner. Furthermasan abstract cellular complex
(equipped with the inclusion) is a poset, Theorem 5 enstiggshis complex is weakly ho-
motopy equivalent to its geometric realization (more Belyj, to the geometric realization
of the associated simplicial complex - see figure 6 -) which ®nceivable representation
of the tessellation of the Euclidean space captured by ttesuane device. We say that this
geometric realization is theontinuous analoguef the digital image. The second part of
Theorem 5 says that any continuous transformations of thgptex image has an equiva-
lent on the continuous analogue compatible with the weakdtopy equivalence.

4.1.3 Collapses

Whitehead has defined elementary transformations on complas follows. LeX be a
complex and X, y) a pair of faces inX such thatx is the only face oX includingy. Then,
(x,y) is afree pair, and the sety = X\ {x,y} is anelementary collapsef X, or X is
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(d) ()

Fig. 6 (a)An abstract cubical 2-cell which models a digital point ¢". (b) The Hasse diagramm 6€(f).
(c) The simplicial complex)(X(f)). (d) The geometric realization dK((f)).

an elementary expansioof Y. If a setY is obtained fromX by a sequence of elementary
collapses (a sequence of elementary collapses and expahptenY is acollapseof X (X
andY aresimple-homotopgquivalent) and one writd \, Y (X./\\Y). A set iscollapsible
if it collapses onto a singleton.

If Y is acollapseof X then|Y| is a strong deformation retract pf| (and thus|X| and|Y]
are homotopy equivalent)[38]. Figure 7 illustrates thisgarty.

@ (b) © (d)

Fig. 7 (a) A complexX. (d) A complexY which is an elementary collapse ¥f (b-c) Two steps in a strong
deformation retraction giX| onto|Y|.

4.2 Unipolar points

In the 60’s, Stong [36] introduced the notion (@D)linear pointsin order to classify finite
spaces with respect to homotopy type. More recently, May 28led thembeat points
and Bertrand [6lunipolar points We keep this last designation. In the same article, and for
the same goal, Stong also defined tioge of a finite space (see Definition 5) which is the
smallest subset ok homotopic toX. Most results in this subsection were first established
in Stong’s article for finite spaces. Most of his proofs carebsily adapted to posets so we
do not recall them.
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Definition 4 (Unipolar point) Let X be a poset.

— Apoint x € X is down unipolarif there isy<x such thatz<x implieszy (i.e. X* = y!).
— A point x € X is up unipolarif it is down unipolar for the dual order oX.
— A point isunipolar if it is either down unipolar or up unipolar.

Proposition 4 Let X be a poset. A point« X is unipolar jf X\ {x} is a strong deformation
retract of X.

Proof The “only if” part of this proof is in [36]. The "if” part is oginal and rely on our
Theorem 2.

Let us assume that = X\ {x} is a strong deformation retract of. Thus, there is an
homotopyh : X x [0,1] — X such thath(zt) = zfor all (zt) € Y x [0,1] andh(x,0) =
x,h(x,1) # x. The maph(x,.) : [0,1] — X s a path inX from x to h(x, 1) so, following
Theorem 2, we denotp = Y.i_, %1, (r > 1), with pgh(x,.), a regular finite path fronx to
h(x, 1) with property that in any intervdl of the interval sequence @, there is an element
t such thatp(t) = h(x,t). Letty € I3 verifying p(t1) = h(x,t1) = X, which is an element of
Y comparable tox (Proposition 1). The map(.,t;) : X — X is continuous and, therefore,
non-decreasing (Property 2) so for ang Y, y<ix = y<Ix; andx«y = x; <y (sinceh(., t;)
is the identity map orY). As x; is comparable tx, we derive thak is unipolar.

Definition 5 (Core) LetY C X. We say thal is a core ofX if it has no unipolar point and
it is a strong deformation retract of.

Property 7 1. Any finite poset has a core.
2. Two finite posets are homotopy equivaléfitiiey have homeomorphic cores.

Observe in particular that Property 7 implies that one caedily remove the unipolar
points of a finite poset in order to obtain a core which will erteomorphic to any other
core of the same poset. In particular, when the poset is actitite, we have the corollary
below.

Corollary 4 If X is finite and contractible, there is a sequer(gg;_,(r > 0) of points in X
such that X= {x,-}’].:0 and, for allie [1,r], % is unipolar in{xj}'].:O. Furthermore, if xe X is
unipolar, we can choose x X.

Proof The fact thatX is contractible means thatis homotopy equivalent to a point. Since
X is finite, X has a core and any core X¥fis a singleton (Property 7). It is notficult to see
that it implies that one can greedily construct a sequergg (r > 0) of points inX such
thatX = {x,—}gz0 and, for alli € [1,r], X is unipolar in{xj}'j:O.

Bertrand [6] has established that down (or up) unipolar {sotan be deleted in parallel,
that is, if x # y are down unipolar points iX theny is down unipolar inX \ {x}. It is no
longer true for unipolar points (forgetting “down”) as showy the example of Figure 8.
Nevertheless, we can state the next proposition.

Proposition 5 If x # y are unipolar points then eithér)y is unipolar in X\ {x} or (b), for
one order on X { or =), x is down-unipolar and covers y, for the other order y is dew
unipolar and covers x and the map: X \ {x} —» X\ {y} defined by(2) = zif z+ y and
¢(y) = x is an homeomorphism.
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Fig. 8 Left: a subseX of F". Right: its Hasse diagram. The 2-fagés down unipolar and the 1-fageis up
unipolar. Neitherxin X\ {y} oryin X\ {x} are unipolar.

Proof Let x # y be unipolar points irX. If x andy are not comparable, it is easy to see that
y is unipolar inX \ {x} since Definition 4 only involves comparable pointsxlandy are
comparable, we can s&ky. If y is up-unipolary is unipolar inX \ {x} since definition 4
applied toy only involves points such thaty<z. We suppose now thatis down unipolar
and we denote the maximum ofy‘*. Hence, for anyt € X, tay o t<z (1). If x # z,
obviously this inference is true for amye X\ {x} andy is unipolar inX\ {x}. If x = zandxis
down unipolar, we use the result established in [6k # zandx is up unipolar, necessarily
y is the minimum ofx™: for anyt € X, x<t © y<t (2). We definep : X\ {x} — X\ {y} by
(t) =tif t # yande(y) = x. Trivially, ¢ is a bijection and fron{1) and(2) we derive that

¢ andy™! are non-decreasing, that is, continuous.

4.3 Simple points

Simple points were first introduced by Bertrand in [6] in arde perform topologically
sound thinning algorithms in posets. They have been usedamn& and Minian [5] to
define a collapse operation in posets which correspondsalficta the collapse operation in
complexes associated to posets. The proofs of Property &la@okem 6, which are out of
scope of this paper, can be found in [5].

Definition 6 (Simple point)
A point x € X is down simple (in X)f x'* is contractible.
A point x € X is up simple (in X)f x™ is contractible.
A point issimple (in X)if it is either down simple or up simple.

Observe that unipolar points are simple points since & X is a down (up) unipolar
point, x'* (x™) has a maximum (minimum) and is therefore contractible gBrty 1). We
saw previously (Proposition 4) that the removal of a unipglaint is a strong deformation
retraction. It is no longer true for simple points. See Fegy@rfor a counterexample where
the removal of a simple point is not even a retraction. Nénadess, Property 8 states that
homotopy groups are not changed by such a deletion andefamtire, Theorem 6 ensure
that this deletion corresponds to a deformation retrachercontinuous analogue.

Property 8 [5] Let X be a finite poset. Lex € X be a simple point. Then, the inclusion
i1 X\ {x} - Xis aweak homotopy equivalence.

Theorem 6 (Barmak and Minian [5]) Let X be a finite poset. Let & X be a simple
point andK(X), K(X \ {x}) the simplicial complexes associated to X and ¥}. Then,
K(X) o KX\ {x}).
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@ (b)

Fig. 9 X is the subset df2 depicted in (a) and is the 2-face inX (note thatX = x!). The facex is simple
sincex‘*, depicted in (b), is clearly contractible. BMt\ {x} = x\* is not a retraction oK, for a retraction,
as any continuous function, preserves connectivity anslimpossible to find an image forin x\*, while
leaving unchanged the other pointsX¥nwithout disconnecting some connected subsét.of

From an algorithmic point of view, simple points have goodganrties since they can
be deleted in parallel. Obviously, ¥y are two points inX with dim(x) = dim(y), there
is no need to know wethex has been deleted frod or not to decide ify**, or x™ is
contractible. Moreover, as we have seen above, the deaisidhe contractibility can be
greedily performed. Thus, a topology-preserving thinngmgcedure consists of repeating
until stability the removal of th&dimensional simple points fd«= 0 ton. Figure 10 gives
an example of the result of such a procedure when applied B3gi@ure. A detailed study
of algorithms quite similar to the previous scheme can badan [24].

~r :
-

@ (b)

Fig. 10 Left: the original image. Right: a squeleton obtained byparllel removal of simple points of same
dimension until stability.

4.4 Free pairs and unipofaimple points

In this subsection, we suppoXec F". In order to perform thinning oiX, it is usual to do
collapses wheiX is a complex but, viewingK as a poset, it is possible to remove unipolar
or simple points. So we want to compare these three ways tweea subset d".

Lemma’ LetO< k< ms<nand xe Fl.. Letye x! be a k-face.

1. There exist exactly mk faces in % of dimensior(k + 1) which include y.

2. Let %, o be two(m — 1)-faces in % such that x= x; U X, and y intersects bothyxand
Xo. If k # 0, there exists inyexactly ongk — 1)-face which are included inpand one
(k — 1)-face which are included inyx
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Proof If k =m, Lemma 5 is trivial. Suppose now thait> k. Without loss of generality, we
can assume that= [, |; wherel; € F11if i < m, |; € Fol otherwise (see Section 4.1.2)
andy =[], Jy where@ c J c I; if i < m-kandJ; = I; otherwise.

1. Itis plain that the onlyK + 1)-faces included ix and includingy are them — k facesz;,
1< j < m-kdefined byz; = l—lin:l K with K; = J if i # j andK; = I;.

2. Sincey intersects bottx; andxp, there existg € [m— k + 1, m] such that; = [T{L; K1
andxz = HinleZi with Kil = Kj2 = |; if i # j, 0 c K]'l C |j andKJ-Z = |j \ Kjl.
Therefore, the only — 1)-facez included iny and inx; (resp.xg) is z = []L,; Li with
Li=Jifi# jandL; = K1 (resp.L; = K;2).

An easy consequence of Lemma 5, is that the bounstinyof a cell x! in B is not
contractible since for anlg-facey in x'*, there exist at least twd @+ 1)-faces includingy,
except ify is maximal inx!*, and two k — 1)-faces included ity, except ify is minimal in
x* | and therefored* has no unipolar point. Se'* is not contractible (Corollary 4).

Corollary 5 The boundary % of a cell ¥ in F" is not contractible.

Lemma6 Let xy € X, xdy, be two faces witllim(x) = dim(y) — 1. Then, y* \ {x} is
contractible.

Proof We setm = dim(y) andY = y** \ {x}. If m= 1, lemma 6 is trivial ¥ is a singleton).
Suppose now thah > 2. We denotex’ the face opposite trin y* : X’ = y\ x. We will shrink
Y to {x'}, removing unipolar points fronY. First, we remove the faces it* in decreasing
order relatively to their dimension. For anm{ 2)-facezin x! we derive from Lemma 5 that
there are tworfi— 1)-faces iny* including z, one of which isx. Hence zis up unipolar inY
and, thanks to Propositions 4 and 5, we deduce that thé sef{ze Y | z¢ x! or dim@) <
m — 2} is a strong deformation retract &t Since, according to Lemma 5, any ¢ k)-face
in x* is included in exactly onent — k + 1)-face iny* \ x!, we can inductively remove all
faces ofx! from Y with the same argumentation as above. Heice, Y \ x! is a strong
deformation retract o¥. In a second step, we are going to prove that the facgs, ik are
successively down unipolar if we remove them in an incregsider w.r.t. their dimension.
Note that, since’ = y\ x, there is no O-face iZ\ x*. So, suppose we have removed all faces
in Z \ x** of dimension less thak (1 < k < m- 2) and letz be ak-face inZ \ x'*. Lemma
5 ensures that there existshexactly one k — 1)-face inZ; = Z \ {t € Z | dim(t) < k}
(which belongs toct) sozis down unipolar irZ;. Hence, we can inductively prove theit
is a strong deformation retract ¥t As any cell is contractible (Property 1), we are done.

Remark 2The previous lemma is false if we omit the hypothesis dim{ dim(y) — 1 and

if dim(y) > 3. Indeed, when the dimensionyfs greater than 2, one can find a face y!,
with dim(x) < dim(y) — 1, such that there exists a subXatf Y = y!* \ {x} which contains at
least txo points but no unipolar point fof and the minimal (maximal) points of which are
minimal (maximal) points of**. Therefore any core of (and also any core gf*) include
X. S0,Y is not contractible (and neither y8*). Such a subseX is depicted in Figure 11 in
a three dimensional space.

Proposition 6 Let X be a subcomplex Bf.

a) If x e X is unipolar, then x is simple and there exists X such agy, X) is a free pair.
b) If x € X is simple, there exist g € X' such agly, 2) is a free pair.
¢) If (x,y) is a free pair, y is unipolar and x is simple in\¥qyj}.



hal-00512228, version 1 - 28 Aug 2010

25

ZaN\

®r— e
o r— g

SV

Fig. 11 The setX shown in this figure contains eighteen faces included in thentary of a 3-face: six 2-
faces (in green), six 1-faces (in red) and six O-faces (ie}bllihe subset oK composed of the 0-faces and
the 1-faces o is a closed arc as is the subsetX¢tomposed of the 1-faces and the 2-facesofrhus,
there are no unipolar points X and all minimal (maximal) points iX are minimal (maximal) points for the
boundary of the 3-face. Therefore, the boundary of the 8-faed any subset of this boundary includiXg
will not be contractible.

Proof a) Letx € X be a unipolar point. SincX is a complexx! ¢ X and thusx cannot be
down unipolar (for anface in a cubical complexe coverm2aces). Sox is up unipolar,
i.e. X* has a minimum (denotey) and is therefore contractible (Corollary 1). Henge,
is simple. Moreover, dimy = dim(x) + 1 (for X is a complex) andy being the only face
in x™ with this dimension, we deduce from Lemma 5-a that it doesem@t any face
z e x™ such that dind) > dim(y). Thus, ¢, X) is a free pair inX.

b) Let x € X be a simple face. Ther™ is contractible (forx'* is not contractible:
Corollary 5). Hence, eithed™ is a singleton or there is a fagaunipolar inx™ (Corollary
4). If X is a singletor{y}, (y, X) is a free pair. Otherwise, we derive from the previous
part of this proof that there is a fazén x™ such that#,y) is a free pair inx™ and thus
in X.

c) Let (x,y) be a free pair. The faceis the only face ity soy is up unipolar and, sinc¥
is a complex, dimf) = dim(x) — 1. Moreover, thanks to Lemma 6, we conclude that
simple inX \ {y} (for x* N (X\ {y}) = x** \ {y}).

4.5 w-simple points

The example of Figure 11 puts in evidence the need of a weakwlitton on points to be
deleted when processing the reduction of a digital image. folowing definition of a w-

simple point ("w” stands for "weak”) and their propertiesatue to Barmak and Minian [4]
who call themy-points. Bertrand in [6] defines a quite similar notion.

Definition 7 A point x of a poset is av-simple poinif the poseix'* is homotopically trivial,
i.e.if all its homotopy groups are trivial.

Property 9 gives several ways to prove that an element ofte fiiset is a w-point and
Property 10 ensures that the deletion of a w-point does ndifsnthe homotopy groups.

Property 9 Let X and Y be finite posets. Thext* is homotopically trivial ifx'* or x™ is
homotopically trivial.

Property 10 Let X be a finite poset. Lex € X be a w-simple point. Then, the inclusion
i : X\ {x} - Xis aweak homotopy equivalence.



hal-00512228, version 1 - 28 Aug 2010

26

Last, Theorem 7 states that, when deleting a w-point in a&fputset, the homotopy type
of the continuous analogue keeps unchanged.

Theorem 7 Let X be a finite poset and letexX be a w-simple point. Thafi((X \ {x})| and
|K(X)| are simple-homotopy equivalent.

In a 3D-image X, the cost to decide wether the ¥étis homotopically trivial is not
expensive. Indeed(x'*) is a 2-dimensional simplicial complex and it is enough tmpate
its connected components and its Euler characteristiceMar, the scheme proposed for
the deletion of simple points is still valid (same dimensiln-simple points can be remove
in parallel). An example of the use of this scheme on a 3-D griagjiven in Figure 12.

(@) (b)

Fig. 12 Reduction by w-points removal in 3D-space. Left: a hollomgbied torus whith five little holes.
Right: The same torus after the removal of w-points untabsitty.

5 Conclusion

We have studied the links between the standard notion of ipaghtopological space and
the notion of path in a graph (here, the Hasse diagram) andeshthat there are closer
that it could be thought. In particular, they lead to the sdomelamental group. It is a
new validation of the use of posets, as Kalimsky spaces oplos spaces, to analyse or
process digital images. In a further work in preparationwilestudy the relations between
the digital paths, and the digital fundamental groupg&fpas defined by [17], and the paths
and fundamental groups #'. Anyway, we hope we have succeeded to convince the reader
that continuity is also a rich concept when applied to digcee finite spaces. In fact, when
dealing with finites spaces, the problems arise from injégtirather than from continuity.
Such notions as Jordan curves, surfaces, manifolds whidivien homeomorphismg,e.
one-to-one correspondences, with pieceRbfcannot be used as-is in finite spaces and
must be adapted. Nevertheless, standard topolégysoa set of tools usable in finite spaces
and useful links between finite spaces and continuous ametog
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