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Abstract. We introduce a parallel thinning algorithm with directional
substeps based on the collapse operation, which is guaranteed to preserve
topology and to provide a thin result. Then, we propose two variants of
a surface-preserving thinning scheme, based on this parallel directional
thinning algorithm. Finally, we propose a methodology to produce fil-
tered surface skeletons, based on the above thinning methods and the
recently introduced discrete λ-medial axis.

1 Introduction

The notion of skeleton plays a major role in shape analysis and recognition.
Informally, the skeleton of an object X is a subset of X which is 1) thin, 2)
centered in X and 3) topologically equivalent1 to X . To extract skeletons from
geometric objects, different methods have been proposed, relying on different
frameworks: discrete geometry [8, 13, 19, 22, 14], digital topology [12, 28, 27, 21],
mathematical morphology [24, 26], computational geometry [2, 3, 20], and partial
differential equations [25].

In this paper, we focus on skeletons in the discrete 3-dimensional cubical
space. In such spaces, topology preservation is usually guaranteed by the use of
topology-preserving thinning methods, based e.g. on simple point deletion [15,
11]. The centering of the skeleton may be achieved to some extent by the use
of parallel thinning methods [6] or by imposing geometrical constraints such
as the preservation of the centers of maximal included balls [12]. However it is
generally difficult, in discrete spaces, to satisfy conditions 1), 2) and 3) together.
In particular, the methods evoked above fail to guarantee a thin result.

In order to overcome these limitations, we adopt in this article the frame-
work of cubical complexes. Abstract (cubical) complexes have been promoted in
particular by V. Kovalevsky [17] in order to provide a sound topological basis
for image analysis. Intuitively, a cubical complex may be thought of as a set of
elements having various dimensions (e.g. cubes, squares, edges, vertices) glued
together according to certain rules (see Fig. 3). In this framework, we can say
that a complex is “thin” if it does not contain any 3-dimensional element (cube).
The thinning methods that will be proposed in the sequel of this paper produce
thin results in this sense.

1 To be more precise, we say that a transformation Ψ “preserves topology” if X is
homotopy-equivalent to Ψ(X) for any X.



In the framework of cubical complexes, the notion of critical kernel intro-
duced by G. Bertrand constitutes a powerful tool to study parallel homotopic
thinning in any dimension, which unifies and encompasses previous works on
parallel thinning [4, 7]. Indeed, the very notion of critical kernel may be seen
as thinning scheme, which consists of iteratively computing the critical kernel
of the result of the previous step. Critical kernels may also be used to design
new algorithms, as well as to check the topological validity of existing ones [5,
6]. However, thinning algorithms based on critical kernels do not guarantee that
the result has a dimension strictly lower than the input. Early work on thinning
in cubical complexes with the aim of reducing dimension can be found in [18].

In our work, topology preservation will be ensured by the use of the collapse
operation, which is an elementary topology-preserving transformation that has
been introduced by J.H.C. Whitehead [29] and plays an important role in com-
binatorial topology. It can be seen as a discrete analogue of a retraction, that is,
a continuous deformation of an object onto itself.

The contributions of this article are the following. We introduce a parallel
thinning algorithm with directional substeps based on collapse, which is guar-
anteed to preserve topology and to provide a thin result. Then, we propose two
variants of a surface-preserving thinning scheme, based on this parallel direc-
tional thinning algorithm. Finally, we propose a methodology to produce fil-
tered surface skeletons, based on the above thinning methods and the recently
introduced discrete λ-medial axis [9].

2 Basic notions

2.1 Cubical complexes

Let Z be the set of integers, we consider the family of sets F
1
0 and F

1
1, such that

F
1
0 = {{a} | a ∈ Z} and F

1
1 = {{a, a + 1} | a ∈ Z}. Any subset f of Z

n such that
f is the cartesian product of m elements of F

1
1 and (n − m) elements of F

1
0 is

called a face or an m-face of Z
n, m is the dimension of f , we write dim(f) = m.

A 0-face is called a vertex, a 1-face is an edge, a 2-face is a square, and a 3-face
is a cube (see Fig. 1).

(a) (b) (c) (d)

Fig. 1. Graphical representations of: (a) a 0-face, (b) a 1-face, (c) a 2-face, (d) a 3-face.

We denote by F
n the set composed of all faces in Z

n.

Let f ∈ F
n. We set f̂ = {g ∈ F

n|g ⊆ f}, and f̂∗ = f̂ \ {f}. Any element of f̂

is a face of f , and any element of f̂∗ is a proper face of f . We call star of f the



set f̌ = {g ∈ F
n|f ⊆ g}, and we write f̌∗ = f̌ \ {f}: any element of f̌ is a coface

of f . It is plain that g ∈ f̂ iff f ∈ ǧ.

A set X of faces in F
n is a cell, or m-cell, if there exists an m-face f ∈ X

such that X = f̂ . The closure of a set of faces X is the set X− = ∪{f̂ |f ∈ X}.
The set X is F

n \ X .

A finite set X of faces in F
n is a cubical complex if X = X−, and we write

X � F
n. Any subset Y of X which is also a complex is a subcomplex of X , and

we write Y � X .

A face f ∈ X is a facet of X if f is not a proper face of any face of X .
We denote by X+ the set composed of all facets of X . A complex X is pure
if all its facets have the same dimension. The dimension of X is dim(X) =
max{dim(f) | f ∈ X}. If dim(X) = d, then we say that X is a d-complex.

2.2 From binary images to complexes

Traditionally, a binary image (see Fig. 2a) is represented as a subset of Z
2 (or Z

3

for 3D images). Let S ⊆ Z
n, the elements of S represent the pixels (or voxels)

of the image, often called object pixels or black pixels. The set S = Z
n \ S

represents the background (set of white pixels or voxels).
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Fig. 2. (a): A binary image, represented by a set S ⊆ Z
2 (black pixels). (b): The

complex X = Φ(S)−.

To obtain a complex from a subset of Z
n, we consider the following bijection

which associates, to each point of Z
n, a facet of F

n. Let x = (x1, . . . , xn) ∈ Z
n,

define Φ(x) = {x1, x1 + 1} × . . . × {xn, xn + 1}. See Fig. 2 an illustration in
2D, where the image of each pixel by Φ is a 2-face (a square). For example, the
black pixel x in the first row has coordinates (3, 0); the corresponding 2-face is
Φ(x) = {3, 4} × {0, 1} = {(3, 0), (3, 1), (4, 0), (4, 1)}. The map Φ is straightfor-
wardly extended to sets: Φ(S) = {Φ(x) | x ∈ S}. Then, the complex that we
associate to a set S is Φ(S)− (See Fig. 2b). Notice that the datum of an nD
binary image is equivalent to the datum of a pure n-complex in F

n.

2.3 Collapse

The collapse operation consists of removing two distinct elements (f, g) from a
complex X under the condition that g is contained in f and is not contained



in any other element of X . This operation may be repeated several times (see
Fig. 3). A more precise definition follows.

(a) (b) (c)

(d) (e)

Fig. 3. (a-e): A series of complexes that illustrate a sequence of collapse operations.

Let X � F
n, and let f, g be two faces of X . The face g is free for X , and the

pair (f, g) is a free pair for X if f is the only face of X such that g is a proper
face of f . In other terms, (f, g) is a free pair for X whenever ǧ∗ ∩ X = {f}. In
this case, we say that the complex X \ {f, g} is an elementary collapse of X . It
can be easily seen that if (f, g) is a free pair for X and dim(f) = m, then f is a
facet and dim(g) = (m − 1).

Let X � F
n and Y � F

n be two complexes. We say that X collapses onto
Y if there exists a sequence of complexes (X0, ..., Xℓ) of F

n such that X = X0,
Y = Xℓ and for all i ∈ {1, . . . , ℓ}, Xi is an elementary collapse of Xi−1 (see
Fig. 3).

Let f0, fℓ be two n-faces of F
n. An (n − 1)-path from f0 to fℓ is a sequence

π = (f0, ..., fℓ) of faces of F
n such that for all i ∈ {0, . . . , ℓ}, either i is even and

fi is an n-face, or i is odd and fi is an (n − 1)-face with f̌i
∗

= {fi−1, fi+1}.
The following proposition will serve us to prove the thinness of our skeletons.

Proposition 1. Let X � F
n be an n-complex, with n > 0. Then X has at least

one free (n − 1)-face.

Proof. Since X is an n-complex (hence X is finite) there exists an n-face a in X
and an n-face b in X . Obviously, there exists an (n − 1)-path from a to b. Let
h be the first n-face of π that is not in X , let k be the last n-face of π before
h (thus k is in X), and let e = k ∩ h be the (n − 1)-face of π between k and h.
Since k and h are the only two n-faces of F

n that contain e, we see that the pair
(k, e) is free for X . �

3 Parallel directional thinning based on collapse

The most “natural” way to thin an object consists of removing some of its border
elements in parallel, in a symmetrical manner. However, parallel deletion of
free pairs does not, in general, guarantee topology preservation: see for example



Fig. 4, where simultaneously removing all free pairs would split the object into
separate components.

(a) (b)

Fig. 4. (a): A 2-complex X, each free pair (fi, gi) is symbolized by an arrow from gi to
fi. (b): The complex obtained by removing simultaneously from X all the pairs that
are free for X.

In the framework of 2D digital topology, a popular method due to A. Rosen-
feld [23] consists of dividing each thinning step into directional substeps. In each
substep, only simple points that have no neighbor belonging to the object in one
of the four main directions (north, south, east, west) are candidates for deletion.

However, this method cannot be straightforwardly extended to 3D. In fact,
the question of knowing whether this strategy has a “natural extension” to 3D
was cited among three open questions relative to digital topology by Kong,
Litherland and Rosenfeld in [16] (question 547). An answer to this question was
recently given in [7], based on the critical kernels framework. Here, we show
that the directional strategy can be directly adapted in the framework of cubical
complexes, and provides interesting results.

First, we need to define the direction and the orientation of a free face.
Let f ∈ F

n, the center of f is the center of mass of the points in f , that is,
cf = 1

|f |

∑
a∈f a. The center of f is an element of [Z

2
]n, where Z

2
denotes the set

of half integers. Let X � F
n, let (f, g) be a free pair for X , and let cf and cg

be the respective centers of the faces f and g. We denote by V (f, g) the vector
(cf − cg) of [Z

2
]n.

Let (f, g) be a free pair, the vector V (f, g) has only one non-null coordinate.
We define Dir(f, g) as the index of the non-null coordinate of V (f, g). Thus,
Dir() is a surjective function from F

n × F
n to {1, . . . , n} such that, for all free

pairs (f, g) and (i, j) for X , Dir (f, g) = Dir(i, j) if and only if V (f, g) and V (i, j)
are collinear. The number Dir(f, g) is called the direction of the free pair (f, g).
The free pair (f, g) has a positive orientation, and we write Orient(f, g) = 1,
if the non-null coordinate of V (f, g) is positive; otherwise (f, g) has a negative
orientation, and we write Orient(f, g) = 0.

Let us now state an elementary property of collapse, which gives a necessary
and sufficient condition under which two collapse operations may be performed
in parallel while preserving topology.

Proposition 2. Let X � F
n, and let (f, g) and (k, ℓ) be two distinct free pairs

for X. The complex X collapses onto X \ {f, g, k, ℓ} if and only if f 6= k.

Proof. If f = k, then it is plain that (k, ℓ) is not a free pair for Y = X \ {f, g}
as k = f /∈ Y . Also, (f, g) is not free for X \ {k, ℓ}. If f 6= k, then we have g 6= ℓ,



ǧ∗ ∩X = {f} (g is free for X) and ℓ̌∗ ∩X = {k} (ℓ is free for X). Thus, we have
ℓ̌∗ ∩ Y = {k} as ℓ 6= g and k 6= f . Therefore, (k, ℓ) is a free pair for Y . �

From Prop. 2, the following corollary is immediate.

Corollary 3. Let X � F
n, and let (f1, g1), . . . , (fm, gm) be m distinct free pairs

for X such that, for all a, b ∈ {1, . . . , m} (with a 6= b), fa 6= fb. The complex X
collapses onto X \ {f1, g1, . . . , fm, gm}.

Considering two distinct free pairs (f, g) and (i, j) for X � F
n such that

Dir(f, g) = Dir(i, j) and Orient(f, g) = Orient(i, j), we have f 6= i. From this
observation and Cor. 3, we deduce the following property.

Corollary 4. Let X � F
n, and let (f1, g1), . . . , (fm, gm) be m distinct free pairs

for X having all the same direction and the same orientation. The complex X
collapses onto X \ {f1, g1, . . . , fm, gm}.

We say that a d-face of X is a border face if it contains a free (d − 1)-face.
Define Border (X) as the set of all border faces of X . We are now ready to
introduce our directional thinning algorithm (Alg. 1).

Algorithm 1: ParDirCollapse(X, W, ℓ)

Data: A cubical complex X � F
n, a subset W ⊆ X that contains faces of X

which should not be removed, and ℓ ∈ N, the number of layers of free
faces which should be removed from X

while there exists free pairs for X in X \ W and ℓ > 0 do1

L = Border (X)−;2

for t = 1 → n do3

for s = 0 → 1 do4

for d = n → 1 do5

E = {(f, g) free for X | g /∈ W,f /∈ W,6

Dir(f, g) = t, Orient(f, g) = s, dim(f) = d};
G = {(f, g) ∈ E | f ∈ L and g ∈ L};7

X = X \ G;8

l = l − 1;9

return X;10

Let us first comment on the notion of “layer” and the role of the sets L and
G (lines 2 and 7). Intuitively, we want a single execution of the loop line 1 to
only affect facets that were on the border of X at the beginning of the loop,
in order to ensure that the thinning will not reduce certain parts more quickly
than others due to the scanning of directions. Thus, by line 7 we ensure that
the layer which is removed in one iteration of the loop line 1 is included in L,
which contains all the border facets of the complex X and all the faces included
in those.



Remark that different definitions of the functions Dir() and Orient() could
be given, corresponding to different orders in which directions and orientations
are scanned in Alg. 1, and yielding different results. However in general some
arbitrary choices must be made in order to thin a 3-complex into a 2-complex.
The choice of these two functions is the only arbitrary choice to be made, after
which the results are uniquely defined.

For any complex X � F
n, any subset W ⊆ X and for any ℓ ∈ N, it follows

from Cor. 4 that X collapses onto ParDirCollapse(X, W, ℓ). Furthermore, if W
does not contain any n-face nor any (n− 1)-face that is not a facet of X , and if
ℓ = +∞, then by Prop. 1 it can easily be deduced that ParDirCollapse(X, W, ℓ)
contains no n-face.

Notice that checking whether a face is free or not, is quite easy to implement
and can be done in constant time, whatever the dimension of the face, if n is
considered as fixed. Indeed, Alg. 1 can be used to thin a cubical complex of any
dimension. When a free pair (f, g) is removed from X , it is sufficient to scan
the faces of f in order to check the appearance of new free faces, avoiding to
search the whole complex for free faces. Thus, Alg. 1 may be easily implemented
to run in linear time complexity (proportionally to the number of faces of the
complex).

As shown in Fig.5, when the input complex has a nearly constant thickness,
it is possible to obtain a surface skeleton of X by choosing a convenient value of
ℓ as the last parameter of Alg. 1. However, in most cases, it is not possible to find
a value of ℓ which is satisfying for the whole complex. In the next section, we
explain how to use the directional thinning strategy to obtain a surface skeleton
from a complex without having to tune any “thickness” parameter.

(a) (b) (c) (d)

Fig. 5. (a): A 3-complex X having the shape of a thick tube with a skewed axis.
(b): The result of ParDirCollapse(X, ∅, 10) is not thin, some 3-faces remain in the
object. (c): The result of ParDirCollapse(X, ∅, 15) is a 2-complex. (d): The result of
ParDirCollapse(X, ∅,∞) does not contain any cube nor any square, it is composed of
edges and points.



4 Detection of surfaces

In this section, two algorithms are proposed in order to perform a surface-
preserving thinning of a cubical complex. Both algorithms are based on the
same principle: a single layer of faces is removed using Alg. 1, then some 2-faces
are detected and kept safe from any future removal. This process is repeated
until stability.

For Alg. 2 (CollapseSurface), the detected 2-faces are simply those that are
not contained in any 3-face of the current complex, i.e., the 2-facets of X .

Algorithm 2: CollapseSurface(X, W )

Data: A three-dimensional cubical complex X � F
3, a subset W ⊆ X that

contains faces of X which should not be removed
while there exists free pairs for X in X\W do1

ParDirCollapse(X, W, 1);2

W = W ∪ {f ∈ X+ | dim(f) = 2};3

return X;4

Fig. 6a shows the result of CollapseSurface(X, ∅), where X is the tube shown
in Fig. 5a. The resulting complex is a 2-complex containing some “branches”
and “surface patches” (as shown on the detailed view) which do not represent
significant “surfacic features” of the original object. This motivates the intro-
duction of a variant of this method, which imposes a more restrictive condition
to preserve 2-facets from removal.

We say that a 2-facet f ∈ X+ is a 2d-isthmus of X if it contains no free
edge, in other words, if each edge in f is included in a facet of X distinct from f .
In Alg. 3 (CollapseIsthmus), the 2-facets that are detected and kept safe from
further removal are the 2d-isthmuses of X .

Algorithm 3: CollapseIsthmus(X, W )

Data: A three-dimensional cubical complex X � F
3, a subset W ⊆ X that

contains faces of X which should not be removed
while there exists free pairs for X in X\W do1

ParDirCollapse(X, W, 1);2

W = W ∪ {f ∈ X | f is a 2d-isthmus of X};3

return X;4

Notice that, following Prop. 1, the results of Alg. 2 and Alg. 3 are thin (they
do not contain any 3-face), provided that the input parameter W is set to ∅.
However, thanks to parameter W , it is possible to constrain these algorithms
to preserve selected parts of the original object, in addition to the surface parts
that are automatically detected.



(a) (b) (c) (d)

Fig. 6. Results of different algorithms performed on the complex X presented in Fig 5a.
(a) : CollapseSurface(X, ∅). (b) : CollapseIsthmus(X, ∅). (c) : The discrete λ-medial axis
(Sec. 5) of X, with λ = 18. (d) : Result of the method described in Sec. 5.3 performed
on X, with λ = 18.

Fig. 6b shows the result of CollapseIsthmus(X, ∅), where X is the skewed
tube shown in Fig. 5a. The resulting complex contains less branches and spu-
rious surfaces (as shown on the detailed view) than the complex obtained with
CollapseSurface(X, ∅).

The results obtained show that both algorithms presented above allows one to
obtain a 2-dimensional skeleton from a 3-complex, containing important “shape
information” from the initial object. However, even if Alg. 3 produces better
results than Alg. 2, it fails in obtaining a completely satisfactory skeleton. In the
next section, we introduce a methodology which includes a filtering step based
on the Euclidean distance, providing a better robustness to contour irregularities
and a lower sensitivity to the orientation of shape features in the space.

5 Skeleton filtering

A major difficulty when using the skeleton in applications (e.g., shape recogni-
tion, shape analysis), is its sensitivity to small contour perturbations, in other
words, its lack of stability. A recent survey [1] summarizes selected relevant stud-
ies dealing with this topic. This difficulty can be expressed mathematically: the
transformation which associates a shape to its skeleton (or medial axis) is only
semi-continuous. This fact, among others, explains why it is usually necessary to
add a filtering step (or pruning step) to any method that aims at computing a
skeleton. Hence, there is a rich literature devoted to skeleton pruning, in which
different criteria were proposed in order to discard “spurious” skeleton points or
branches.

In 2005, Chazal and Lieutier [10] introduced the λ-medial axis and studied
its properties, in particular those related to stability. A major outcome of [10]



is the following property: informally, for “regular” values of λ, the λ-medial axis
of X remains stable under perturbations of X that are small with regard to
the Hausdorff distance. Typical non-regular values are radii of locally largest
maximal balls.

5.1 Intuitive presentation of the λ-medial axis

Consider a bounded subset X of R
n, as for example, for n = 2, the region

enclosed by the solid curve depicted in Fig. 7 (left). The medial axis of X consists
of the points of X that have several closest points on the boundary of X . For
example in Fig. 7, the boundary points closest to x are a and b, the boundary
points closest to x′ are a′ and b′, and the only boundary point closest to x′′ is a′′.

Let λ be a non-negative real number, the λ-medial axis of X is the set of
points x of X such that the smallest ball including all boundary points that are
closest to x, has a radius greater than or equal to λ. Notice that the 0-medial
axis of X is equal to X , and that any λ-medial axis with λ > 0 is included in the
medial axis. We show in Fig. 7 (right) two λ-medial axes with different values
of λ.

a

b x’’

a’’

a’ b’

x
x’

Fig. 7. Illustration of the λ-medial axis. Left: Points x, x′ and x′′ and their respective
closest boundary points. Top right: λ-medial axis with λ = ǫ, a very small positive
real number. Bottom right: λ-medial axis with λ = d(a′, b′) + ǫ, where d(a′, b′) is the
distance between a′ and b′.

Intuitively, in 2D, every “bump” on the boundary of the object generates a
medial axis branch. The goal of the filtering is to eliminate those branches which
are due to unsignificant contour irregularities (noise). Roughly speaking, in the
λ-medial axis, the branches that remain correspond to contour features having
a “width” greater than the parameter value λ.

5.2 Definition of the discrete λ-medial axis

The original definition of the λ-medial axis holds and make sense in the con-
tinuous Euclidean n-dimensional space. In [9], we introduced the definition of a
discrete λ-medial axis (DLMA) in Z

n. We evaluated experimentally its stability
and rotation invariance. Furthermore, we introduced a variant of the DLMA



which may be computed in linear time, for which the results are very close to
those of the DLMA.

Notice that the DLMA applies on a binary image (i.e., a set of voxels or a
subset of Z

3), not on a complex.

Let x, y ∈ R
n, we denote by d(x, y) the Euclidean distance between x and

y, in other words, d(x, y) = (
∑n

k=1
(yk − xk)2)

1

2 . Let S ⊆ R
n, we set d(y, S) =

minx∈S{d(y, x)}.
Let x ∈ R

n, r ∈ R
+, we denote by Br(x) the ball of radius r centered on x,

defined by Br(x) = {y ∈ R
n | d(x, y) ≤ r}.

For each point x ∈ Z
n, we define the direct neighborhood of x as N(x) = {y ∈

Z
n | d(x, y) ≤ 1}. The direct neighborhood comprises 2n + 1 points.

Let S be a nonempty subset of Z
n, and let x ∈ Z

n. The projection of x on S,
denoted by ΠS(x), is the set of points y of S which are at minimal distance
from x ; more precisely,

ΠS(x) = {y ∈ S | ∀z ∈ S, d(y, x) ≤ d(z, x)}.
Let S be a finite subset of Z

n, we denote by R(S) the radius of the smallest
ball enclosing S, that is, R(S) = min{r ∈ R | ∃y ∈ R

n, Br(y) ⊇ S}.
Transposing directly the definition of the λ-medial axis to the discrete grid

Z
n would yield unsatisfactory results (see [9]), this is why we need the following

notion. Let S ⊆ Z
n, and let x ∈ S. The extended projection of x on S, denoted

by Πe

S
(x), is the union of the sets ΠS(y), for all y in N(x) such that d(y, S) ≤

d(x, S).

Let S be a finite subset of Z
n, and let λ ∈ R

+. We define the function FS

which associates, to each point x of S, the value FS(x) = R(Πe

S
(x)). The discrete

λ-medial axis of S, denoted by DLMA(S, λ), is the set of points x in S such
that FS(x) ≥ λ.

Fig. 6c shows the DLMA of the object presented in Fig. 5a, with λ = 18. For
more details, illustrations and performance analysis, see [9].

5.3 Surface skeleton based on the DLMA

Let us now describe our methodology to obtain a thin filtered surface skeleton
from a binary image (a set of voxels). Let S denote our original set, a finite
subset of Z

3.

First, we compute the discrete λ-medial axis of S for a chosen value of λ. From
here, we will consider the complex X = Φ(S)− and the set W = Φ(DLMA(S, λ)).

Notice that we have no guarantee that the complex W− be topologically
equivalent to the complex X (see counter-examples in [9]). Thus our next step
consists of computing, using Alg. 1, the complex Y = ParDirCollapse(X, W, +∞)
that contains W and that is topologically equivalent to X .

Now, as W is made of 3-faces (see the close-up of Fig. 6c), Y is a 3-complex
and cannot be seen as thin in a strict sense. Then to achieve our initial goal we
compute Z = CollapseIsthmus(Y, ∅) which is both thin (following Prop. 1 there
is no 3-face in this complex, see the close-up of Fig. 6d for an illustration) and
topologically equivalent to X (by Cor. 4). The centering of Z in X is achieved



thanks to the use of the DLMA, based on the Euclidean distance. The param-
eter λ can be tuned in order to adjust the filtering to the characteristics (size,
smoothness of contours . . .) of the input shape, and to the requirements of the
user.

Figures 6d and 8 show various results using this methodology. It can be
seen that the resulting 2-complexes indeed capture the main surfacic features of
the original objects, without spurious branches or surface patches. A significant
advantage of the 2D nature of the obtained skeletons, is to enable an easy analysis
of important shape features such as intersections of surface parts.

6 Conclusion

We introduced in this work a methodology for obtaining filtered, thin surface
skeletons of 3D objects. This methodology is based on a robust medial axis
extraction method (DLMA), a parallel directional thinning algorithm based
on collapse, and a surface detection strategy. The algorithms involved in this
methodology can be implemented to run in linear time complexity.
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20. R.L. Ogniewicz and O. Kübler. Hierarchic Voronoi skeletons. Pattern Recognition,
28(33):343–359, 1995.

21. C. Pudney. Distance-ordered homotopic thinning: a skeletonization algorithm for
3D digital images. Computer Vision and Image Understanding, 72(3):404–413,
1998.
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Fig. 8. Results of the methodology described in Sec. 5.3. On the left, the original
object; on the right, the result obtained by our method. First row: A bumped and
skewed tube, λ = 20. Second row: A rocker arm, λ = 8. Third row: A pelvis bone,
λ = 5.


