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Topological operators for grayscale image processingMichel Couprie, Francisco Nivando Bezerra and Gilles BertrandLaboratoire A2SI, ESIEE Cit�e Descartes B.P. 9993162 Noisy-Le-Grand Cedex FranceABSTRACTIn a recent work, we introduced some topological notions for grayscale images based on a cross-section topology.In particular, the notion of destructible point, which corresponds to the classical notion of simple point, allows usto build operators that simplify a grayscale image while preserving its topology. In this paper, we introduce newnotions and operators in the framework of the cross-section topology. In particular, the notion of �-destructiblepoint allows us to selectively modify the topology, based on a local contrast parameter �. By combining homotopicand non-homotopic operators, we introduce new methods for �ltering, thinning, segmenting and enhancing grayscaleimages.Keywords: digital topology, cross-section topology, segmentation, grayscale skeleton, thinning, �ltering, crestrestoration. 1. INTRODUCTIONTopological properties of binary images have been extensively studied in the framework of digital topology,1 andmany algorithms based on these notions are now routinely used for 2D and 3D image processing.For grayscale images, i.e. maps from Z2 into Z , a fuzzy digital topology has been proposed.2 Another approachis based on the decomposition of a map into its di�erent sections3,4: let F be a map from Z2 into Z , the sectionof F at level k is the set Fk of points x in Z2 such that F (x) � k. Following this approach, a transformationis homotopic, i.e. preserves the topology of F , if it preserves the topology, in the binary sense, of every sectionFk. This requirement may seem a very strong one: in particular, it implies that every minimum and maximum ofF must remain at its original grayscale value. In fact, we show in this paper that this preservation of both thetopological and the grayscale information allows us to build transformations that selectively modify the topologyin a controlled manner. By combining homotopic and non-homotopic operators, we introduce methods for �ltering,thinning, segmenting and enhancing grayscale images.Skeletonization and thinning are major applications of topology in image processing. A great number of thinningalgorithms for binary images have been developed.5 The use of this kind of image assumes a prior segmentationwhich implies a loss of information. Some attention has been given to the development of thinning algorithmsacting directly over grayscale images. Dyer and Rosenfeld6 proposed an algorithm based on a notion of weightedconnectedness. The thinning is done directly over the graylevel values of the points but, as pointed out in thesame paper,6 the connectivity of objects is not always preserved. Thinning based on a fuzzy framework for imageprocessing has been proposed2,7 but also in this case object connectedness is not ensured in the �nal skeleton.More recent work8,9 use an implicit image binarization into a background and a grayscale foreground. The graylevelinformation guides the removal of points of the foreground that are simple, in the binary sense. This technique makesit possible to obtain certain desired geometric properties. In this paper, we propose grayscale thinning methods thatguarantee the preservation of the cross-section topology, based on the de�nition of destructible points,4 i.e., pointswhose grayscale value can be lowered without changing the topology. We also propose �ltered thinning methods thatallow to selectively simplify the topology, based on a local contrast parameter �. To achieve this simpli�cation, weintroduce the notion of �-destructible point which is more exible than the notion of destructible point.When dealing with thin and elongated objects in images, e.g. images obtained after using an edge detectionoperator, we often have to reconnect some lines that have been broken by noise. If we consider a grayscale image asa topographic relief, a thin object may be seen as a crest line, and solving this reconnection problem may be doneby detecting and eliminating narrow passes in the crest lines. In the framework of the cross-section topology, wepropose a crest restoration method which is both rigorously de�ned and e�cient.Correspondence: E-mail: coupriem,bezerraf,bertrand@esiee.fr; Web: www.esiee.fr/�coupriem/Sdi eng



2. TOPOLOGY OF BINARY IMAGESIn this section, we recall the basic notions of digital topology for binary images.1 We denote by Z the set of relativeintegers. A point x 2 Z2 is de�ned by (x1; x2) with xi 2 Z . We consider the two neighborhoods relations �4 and �8de�ned by, for each point x 2 Z2: �4(x) = fy 2 Z2; jy1�x1j+ jy2�x2j � 1g, �8(x) = fy 2 Z2; max(jy1�x1j; jy2�x2j) � 1g. In the following, we will denote by n a number such that n = 4 or n = 8. We de�ne ��n(x) = �n(x) n fxg.The point y 2 Z2 is n-adjacent to x 2 Z2 if y 2 ��n(x). A n-path is a sequence of points x0 : : : xk with xi n-adjacentto xi�1 for i = 1 : : : k.Let X � Z2, we denote by X the complementary set of X . We say that two points x, y of Z2 are n-connectedin X if there is an n-path in X between these two points. This de�nes an equivalence relation. The equivalenceclasses for this relation are the n-connected components of X . An object X � Z2 is said to be n-connected if itconsists of exactly one n-connected component. The set composed of all n-connected components of X n-adjacentto a point x is denoted by Cn[x;X ].In order to have a correspondence between the topology of X and the topology of X , we have to consider twodi�erent kinds of adjacency for X and X : if we use the n-adjacency for X , we must use the n-adjacency for X, with(n; n) = (8; 4) or (4; 8).For the sake of simplicity, we assume in the sequel that an adjacency pair has been chosen (eg. (n; n) = (8; 4))and we do not write the subscript n unless necessary.Let X � Z2 and x 2 Z2, the two connectivity numbers are de�ned as follows (#X stands for the cardinality ofX): T (x;X) = #Cn[x;��8(x) \X ]; T (x;X) = #Cn[x;��8(x) \X ].We say that x 2 X is an isolated point if T (x;X) = 0, a border point if T (x;X) > 0, an interior point if T (x;X) = 0.The point x 2 X is simple (for X) if there is a bijection between the n-components of X and those of X n fxg andalso between the n-components of X and those of X [ fxg. The following property allows us to locally characterizesimple points1,10: x 2 Z2 is simple for X � Z2 , T (x;X) = 1 and T (x;X) = 1.Let X;Y � Z2. The set Y is lower homotopic to X if Y = X or Y may be obtained from X by iterative deletionof simple points. The set Y is upper homotopic to X if Y = X or Y may be obtained from X by iterative additionof simple points. Two sets X and Y are homotopic if Y = X or Y may be obtained from X by iterative deletionsor additions of simple points.3. CROSS-SECTION TOPOLOGY FOR GRAYSCALE IMAGESIn this section, we recall the basic de�nitions and properties of the cross-section topology.4 First, we recall somebasic notions for grayscale images. A 2D grayscale image may be seen as a map F from Z2 to Z . For each pointx 2 Z2, F (x) is the (graylevel) value of x. We denote by F the set composed of all maps from Z2 to Z .Let F 2 F and k 2 Z , the section of F at the level k is the set Fk composed of all points x 2 Z2 such thatF (x) � k. Observe that a section is a set of points, i.e. a binary image. As for the binary case, if we use the n-adjacency for the sections Fk of F , we must use the n-adjacency for the complementary sets Fk , with (n; n) = (8; 4) or(4; 8). Let us consider the map �F , called the complementary map of F (for each point x in Z2, (�F )(x) = �F (x)).We note that the complementary sets of the sections of F are sections of �F . In all the examples and �gures of thispaper, we will choose n = 8 for the sections of F , thus we must use n = 4 for the sections of �F . A non-emptyconnected component X of a section Fk of F is a (regional) maximum for F if X \ Fk+1 = ;. A set X � Z2 is a(regional) minimum for F if it is a regional maximum for �F .3.1. HomotopyIntuitively, a transformation on F is said to be topology preserving if the topology of all the sections of F is preserved.Thus, the cross-section topology of maps (i.e. of grayscale images) may be directly derived from the topology ofbinary images. The following notions generalize the notion of simple point to grayscale images.Let F 2 F , the point x 2 Z2 is destructible (for F ) if x is simple for Fk, with k = F (x). The point x 2 Z2 isconstructible (for F ) if x is destructible for �F .We see that the grayscale value of a destructible (resp. constructible) point can be lowered (resp. raised) by 1 whilepreserving the topology of F . For example in Fig. 1 (a), the point at level 8 is both destructible and constructible;
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0 0 0 0 0 0 0 0 0(a) (b) (c) (d)Figure 1. Homotopic kernels. (a): original image; (b): a lower homotopic kernel of (a); (c): an upper homotopickernel of (a); (d): a non-thin lower homotopic kernel.the two points at level 2 are constructible, but only one of them may be raised because, afterwards, the other onewould become non-constructible.Let F 2 F and G 2 F . The map G is lower homotopic to F if G = F or G may be obtained from F by iterativelyselecting a destructible point and lowering its value by 1. The map G is upper homotopic to F if G = F or G maybe obtained from F by iteratively selecting a constructible point and raising its value by 1. The maps G and F arehomotopic if G = F or G may be obtained from F by iteratively selecting a destructible point and lowering its valueby 1, or selecting a constructible point and raising its value by 1.In Fig. 1, (b) is lower homotopic to (a) and (c) is upper homotopic to (a). Note that F and G are homotopic ifand only if every section Fk of F is homotopic, in the binary sense, to the corresponding section Gk of G.3.2. Local characterizationsLet F 2 F and x 2 Z2. We de�ne the four neighborhoods:�++(x; F ) = fy 2 ��8(x);F (y) > F (x)g; �+(x; F ) = fy 2 ��8(x);F (y) � F (x)g;���(x; F ) = fy 2 ��8(x);F (y) < F (x)g; ��(x; F ) = fy 2 ��8(x);F (y) � F (x)g.We de�ne ��(x; F ) = minfF (y); y 2 �(x)g; �+(x; F ) = maxfF (y); y 2 �(x)g, and��(x; F ) = � maxfF (y); y 2 ���(x; F )g; if ���(x; F ) 6= ;;F (x) otherwise;�+(x; F ) = � minfF (y); y 2 �++(x; F )g; if �++(x; F ) 6= ;;F (x) otherwise.For a point x, we de�ne the value ��(x; F ) which is the minimal value down to which the point x may be loweredwithout changing the topology of the sections. So, for a destructible point we have ��(x; F ) < F (x), and for anon-destructible point we have ��(x; F ) = F (x). The value �+(x; F ) is de�ned in a dual way.It is easy to prove that lowering a destructible point x down to the value ��(x; F ) is an homotopic transformation,i.e. that ��(x; F ) � ��(x; F ); and in a dual way, that �+(x; F ) � �+(x; F ). For example in Fig. 1 (a), the pointat level 9 in the third row can be lowered down to 7, then down to 4, and �nally down to 0 without changingthe cross-section topology. This property, in addition to the local characterization of destructible and constructiblepoints which will be presented in the next paragraphs, allows us to design e�cient algorithms to compute topologicaltransforms. Also, Arcelli11 gives a local condition which allows the checking of whether a point x can be lowereddown to the value ��(x; F ) without changing the topology of F , i.e. to check whether ��(x; F ) = ��(x; F ).We de�ne the four connectivity numbers:T++(x; F ) = #Cn[x;�++(x; F )]; T+(x; F ) = #Cn[x;�+(x; F )];T��(x; F ) = #Cn[x;���(x; F )]; T�(x; F ) = #Cn[x;��(x; F )].When there is no confusion, we write: T++ = T++(x; F ), T+ = T+(x; F ), T�� = T��(x; F ), T� = T�(x; F ).The following property may be directly derived from the above de�nitions and from the characterization ofsimple points in binary images. It shows that the connectivity numbers allow to locally characterize destructible andconstructible points.Let F 2 F and x 2 Z2.



x is destructible for F , T+ = 1 and T�� = 1; x is constructible for F , T� = 1 and T++ = 1.Furthermore, the connectivity numbers allow a classi�cation of the topological characteristics of a point:x is a peak if T+ = 0; x is minimal if T�� = 0; x is k-divergent if T�� = k with k > 1;x is a well if T� = 0; x is maximal if T++ = 0; x is k-convergent if T++ = k with k > 1;x is a lower point if it is not maximal; x is an upper point if it is not minimal;x is an interior point if it is both minimal and maximal;x is an simple side if it is both destructible and constructible;x is an saddle point if it is both convergent and divergent.By considering all the possible values of the four connectivity numbers it may be seen4 that, for F 2 F , a pointx 2 Z2 corresponds necessarily to one and only one of the following types: 1) a peak; 2) a well; 3) an interior point;4) a minimal constructible point; 5) a maximal destructible point; 6) a minimal convergent point; 7) a maximaldivergent point; 8) a simple side; 9) a destructible convergent point; 10) a constructible divergent point; 11) a saddlepoint. Figure 2 shows examples of seven of these types of points; the other four types can be obtained by duality(for example a well is the dual of a peak, etc).
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10 10 10(a) (b) (c) (d) (e) (f) (g)Figure 2. Topological type. The central point has the following type: (a): peak; (b): interior; (c): maximaldestructible; (d): maximal 2-divergent; (e): destructible 2-convergent; (f): simple side; (g): saddle.4. HOMOTOPIC AND LEVELING KERNELSWe are now able to de�ne operators that transform an image while preserving some topological properties. Thehomotopic kernel4 and homotopic reconstruction operators, presented in the next two sections, produce a resultthat is homotopic to the original image; while the leveling kernel4 modi�es the topology in a controlled manner. Adiscussion about some properties of these operators follows, and an application to impulse noise �ltering concludesthis section.4.1. Homotopic kernelLet F 2 F , F 0 2 F . The image F 0 is a lower (resp. upper) homotopic kernel of F if F 0 is lower (resp. upper)homotopic to F , and if there is no destructible (resp. constructible) point for F 0.In Fig. 1 for example, (b) shows a lower homotopic kernel of (a), (c) shows an upper homotopic kernel of (a). Alower homotopic kernel of an image F may be seen as an \ultimate grayscale thinning" of the image: see Fig. 3 (a)a grayscale image showing dark cells separated by lighter borders, and an homotopic kernel (b) of this image. Notethat (a) is a quite smooth image, in consequence its topology is simple: it contains only a few (regional) minima,each of which corresponds to a dark cell (see (a')). We will deal later with noisy images and with the problem ofsimplifying the topology of such images. In (a',b'), the spatial locations of the minima of (a,b) respectively appearin white: we see that in the homotopic kernel, these minima have been spread as much as possible, while preservingthe topology. The minima of the homotopic kernel are separated only by thin \crest lines".In fact, due to the discrete nature of the image representation, a lower homotopic kernel of an image may containnon-minimal regions that are not thin: this is the case, for example, if more than four line segments meet in onepoint (see Fig. 1 (d)), we also retrieve this con�guration in homotopic kernels of binary images. Other speci�ccon�gurations of thick non-minimal regions in grayscale homotopic kernels have been presented in a previous work.44.2. Homotopic reconstructionWe introduce the notion of homotopic reconstruction which will be used to recover the original values of certainpixels, after a modi�cation of the topology.Let F 2 F , G 2 F with F � G (i.e., 8x 2 Z2; F (x) � G(x)), and let F 0 2 F . The image F 0 is homotopic to Funder G if F 0 = F or if F 0 may be obtained from F by iteratively selecting a constructible point x such that the



(a) (b) (c)
(a') (b') (c')Figure 3. Kernels. (a): original image, (b): lower homotopic kernel, (c): lower leveling kernel, (a',b',c'): in white,the minima of (a,b,c) respectively.grayscale value of x is strictly lower than G(x), and raising its grayscale value by 1. The image F 0 is an (homotopic)reconstruction of F under G if F 0 is homotopic to F under G and if there is no point x 2 Z2 such that the grayscalevalue of x is strictly lower than G(x), and x is constructible for F 0. The dual notion of reconstruction of F over Gis de�ned in an analogous way. In applications of reconstruction operators, the image F is often called a \marker"image. In Fig. 4 we can see an example of reconstruction. We also show the corresponding result when using the wellknown reconstruction operator in the �eld of mathematical morphology.12 Note that the only di�erence betweenthe homotopic and the morphologic reconstruction is due to the preservation of the topology of the marker (in the�rst case).
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0 0 0 0 0(a) (b) (c)Figure 5. An image F which contains a simply connected component (a), an image G which contains a componentwithout holes (b), a lower leveling kernel for both images (c).4.3. Leveling kernelFor some applications, it is not desirable to preserve both the minima and the maxima of the original image. Forexample, if we want to extract the borders between the cells appearing Fig. 3 (a), then we would like to eliminatethe peak located in the central cell of (b), which corresponds to a light area in (a).Let F 2 F , F 0 2 F . The map F 0 is a lower leveling of F if F 0 = F or F 0 may be obtained from F by iterativelyselecting a destructible or a peak point and lowering its value by 1. The map F 0 is a lower leveling kernel of F if F 0is a lower leveling of F and if there is no destructible point and no peak for F 0. The dual notions of upper levelingand upper leveling kernel are de�ned in an analogous way.Let us illustrate the lower leveling operator with some basic examples. We �rst introduce the notions of componentwithout holes and simply connected component, that will help us to understand the action of the leveling operator.Let X be a �nite subset of Z2, the set X is without holes if X is connected. The set X is simply connected ifboth X and X are connected. Let F 2 F , let k 2 Z , a �nite connected component X of Fk is without holes (resp.simply connected) for F if 8k0 2 Z2; k0 � k, the set fx 2 X;F (x) � k0g is without holes (resp. simply connected).In Fig 5, consider the image F shown in (a) and the image G shown in (b). We see that the unique connectedcomponent of F5 is simply connected for F , and that the unique connected component of G5 is without holes for G.To compute a lower leveling kernel of F , we may �rst iteratively lower the values of the eight destructible pointsaround the central point down to 0, and then lower the value of the central peak. Thus we obtain the null image(c). To compute a lower leveling kernel of (b), we may �rst lower the values of the three peaks at levels 7, 8 and9 down to 6, then iteratively lower the values of the eight points around the central 6 (which are now destructible)down to 0, and �nally lower the value of the central peak. We also obtain the null image (c). We see that the lowerleveling kernel operator \deletes" a component which is simply connected for an image by reducing it to a peak, thenby lowering this peak; it also deletes a component without holes for an image by �rst deleting the simply connectedcomponents it may contain, then by proceeding recursively.4.4. Links with the notion of dynamicsWe will now discuss some properties of regional minima and maxima in homotopic and leveling kernels. Grimaud13introduced the notion of dynamics in order to formalize the intuitive notion of depth of a minimum: intuitively,the dynamics of a minimum m is the di�erence between the altitude of m and the altitude of the lowest pass thatseparates m from another minimum m0 lower than m.Let F 2 F , x 2 Z2; y 2 Z2, and let � be a path between x and y. The dynamics of the path � is thedi�erence between the values of a highest point and a lowest point of the path: dyn(�; F ) = maxfF (z); z in �g �minfF (z); z in �g. We de�ne the dynamics of an absolute minimum of the image F as in�nity. For a non-absoluteminimum m, we consider a path �m which has a minimal dynamics among all the possible paths between m anda point m0 strictly lower than m. We de�ne the dynamics of m as the di�erence between the value of m and thevalue of a highest point on �m. The dynamics of a minimum m for an image F will be denoted by dyn(m;F ). In asimilar way we can de�ne the dynamics of the maxima. Of course, the dynamics of a maximum (resp. a minimum)depends on the adjacency relation that has been chosen for F (resp. for �F ). For example, the dynamics of boththe minima at level 2 and 3 in Fig. 1 (a), (b) and (c) is 4, with the choice of the 4-adjacency for �F .



It may easily be seen that a lower homotopic transformation \preserves" the (regional) minima and maximaof the original image, and it also preserves their dynamics. On the other hand, a lower leveling preserves theminima of the original image and their dynamics. Dual statements holds for the upper homotopic and upper levelingtransformations, respectively. Let us state these properties more precisely:Let F 2 F , let F 0 be lower homotopic to F . For any minimum m of F , there is a unique minimum m0 of F 0 suchthat m � m0, furthermore dyn(m;F ) = dyn(m0; F 0); and for any maximum M of F , there is a unique maximum M 0of F 0 such that M 0 �M , furthermore dyn(M;F ) = dyn(M 0; F 0).Let F 2 F , let F 0 be a lower leveling of F , for any minimum m of F , there is a unique minimum m0 of F 0 suchthat m � m0, furthermore dyn(m;F ) = dyn(m0; F 0).In Fig. 3 (c), a lower leveling kernel of the image in Fig. 3 (a) is shown. The minima and their dynamics have beenpreserved, this means that the grayscale value on a crest line which separates two minima in the kernel correspondsto the grayscale value of the lowest pass between the corresponding minima in the original image. This property hasbeen used in a previous work4,14 to simplify the topology of an image, leading to a segmentation method which doesnot involve the need for de�ning and tuning parameters.4.5. Application to impulse noise �lteringTo conclude this section, we show an application of these topological transformations to impulse noise �ltering. Moredetails about the implementation can be found in the appendix A.A positive impulse may be seen as a narrow component which is without holes for the image F , and restricted to afew pixels. We can detect an impulse restricted to only one pixel x by testing the topological type of x: it correspondsto a peak. Deleting the peak x may be done by lowering its value down to the value ��(x; F ). For an impulse whichis made of several neighboring pixels, this procedure is not e�ective. Nevertheless, if we iteratively lower destructiblepoints, an impulse which is a simply connected component for F will eventually reduce to a peak. The peak can thenbe detected and lowered. Repeating this procedure allows the deletion of impulses which correspond to componentswithout holes as well. On the other hand, we do not want to destroy components that correspond to large, signi�cantobjects in the image. Thus, we need a parameter that controls the spatial expanse of the thinning process.In Fig. 6, we show the result (c) of 3 lower leveling steps applied to the image (b)(see the appendix A for thede�nition of this notion of step and a more complete description of the algorithm). The impulses, which correspond tonarrow components without holes, have been �ltered out. The leveling process also lowers pixels that do not belongto impulses. In order to recover the initial values of these pixels, we use the homotopic reconstruction operator.Fig. 6 (d) shows an upper reconstruction of (c) under (b). Negative impulses could also be �ltered out by a dualprocedure based on upper leveling and homotopic reconstruction. This �ltering method gives good results for impulsenoise: compared to a median �lter with a 3� 3 window, the thin details are better preserved.In the framework of mathematical morphology,15,16 a similar �ltering method may be constructed, using anerosion or an area opening operator in order to eliminate the noise under the control of a size parameter, and usingthe geodesic reconstruction operator to recover the original values of the non-noisy pixels. It would give resultssimilar to ours, except for thin and elongated regions: the erosion should �lter them out as well as the noise, and anarea opening could not make the di�erence between a disk-shaped region and an elongated region having the samearea. 5. FILTERED LEVELING AND GRAYSCALE SKELETONIn this section, we introduce another way of modifying the topology in order to �lter out the non-signi�cant infor-mation.5.1. The notion of �-destructible pointThe Fig. 7 (a) shows an image where the human eye perceives dark cells separated by lighter borders. Due to thenoise, this image contains a lot of regional minima: they appear in white in (a'). Both the homotopic kernel (b) andthe leveling kernel (c) preserve all these minima and spread them as much as possible (b', c'). Fig. 8 (a) shows a 1Dpro�le extracted from such a leveling kernel. In this pro�le, the points x, y and z correspond to passes (divergentpoints) between neighboring minima in the two-dimensional kernel. Some of these divergent points (x, y) may be



(a) (b) (c) (d)Figure 6. Impulse noise �ltering. (a): original image; (b): original image plus impulse noise; (c): after 3 steps oflower leveling; (d): reconstruction of (c) under (b).
(a) (b) (c) (d)
(a') (b') (c') (d')Figure 7. Filtered leveling kernel. (a): original image; (b): lower homotopic kernel; (c): lower leveling kernel; (d):�ltered leveling kernel with � = 40; (a'), (b'), (c'), (d'): in white, the minima of (a), (b), (c), (d) respectively.considered as \irregular points"4: we would like to lower them in order to eliminate some minima having a smalldepth.To perform this �ltering, we introduce the notion of �-destructible point, which allows us to selectively alter thetopology, based on a local contrast parameter �.Let F 2 F ; X � Z2, we de�ne F�(X) = minfF (x);x 2 Xg.The point x 2 Z2 is �-destructible, � being a positive integer, if it satis�es one of the two following conditions:i) x is destructible; orii) x is k-divergent and at least k � 1 connected components ci; i = 1; : : : ; k � 1 of ���(x; F ) aresuch that F (x) � F�(ci) � �.Intuitively, the condition ii) states that the point x lies on a crest which separates its neighborhood into k regions,and at most one of these regions lies at a graylevel distance from x greater to �.
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0 0 0 0 0 0 0(a) (b)Figure 8. Illustration of �-destructible points. (a): a 1D pro�le of a lower leveling kernel; (b): an image with two10-destructible points (levels 20 and 100) which are not destructible.For example, the points with values 20 and 100 in Fig. 8 (b) are both 10-destructible, but they are not destructible.Let us consider the point x at level 20: it is 2-divergent, and the set ���(x; F ) contains two connected componentsc1 and c2, such that F�(c1) = 0 and F�(c2) = 10.The notion of �-constructible point may be de�ned in a dual way.5.2. Filtered levelingThe lower �-leveling operator iteratively selects a �-destructible or peak point x and lowers it down to the value��(x; F ) . To obtain a �-leveling kernel, this procedure must be repeated until stability. More details on theimplementation of this operator are given in appendix B.In Fig 7 (d), we show the result given by the algorithm �-Leveling applied to the image of Fig 7 (a), with � = 40.A binary segmentation (d') is obtained by extracting the regional minima of (d).On this image, the same result should have been obtained by using a �ltered topological grayscale watershedtransform,17 or a watershed algorithm18,19 with the minima of dynamics greater than 40 as markers. Nevertheless,it is not true that lowering a �-destructible point x down to the value ��(x; F ) always preserves the dynamics ofminima which have a dynamics greater than �. A counter-example is given in Fig. 9 with �=2. The 10 at the rightside of the 8 in the middle row is 2-destructible. After this point has been lowered down to 8 the dynamics of theminima at level 3 is changed from 7 to 5. Furthermore, all the other 10s can be lowered down to 8 (b). Consequently,the 8 (previously 10) at the left side of the 6 in the middle row becomes 2-destructible and thus some 8s can belowered down to 6 as the iterations continue (c). The dynamics of the minimum at level 3 is now equal to 3. We seethat we can construct more complex con�gurations in which the dynamics of a minimum can be lowered arbitrarily.
0 0 0 0 0 0 0 0 0 0 0

0 0 8 0 0 10 0 0 6 0 0

0 8 1 8 10 3 10 6 2 6 0

0 0 8 8 10 3 10 6 6 0 0

0 8 1 8 10 3 10 6 2 6 0

0 0 8 0 0 10 0 0 6 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 8 0 0 8 0 0 6 0 0

0 8 1 8 8 3 8 6 2 6 0

0 0 8 3 3 3 8 6 6 0 0

0 8 1 8 8 3 8 6 2 6 0

0 0 8 0 0 8 0 0 6 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 8 0 0 6 0 0 6 0 0

0 8 1 8 6 3 6 6 2 6 0

0 0 8 3 3 3 3 3 6 0 0

0 8 1 8 6 3 6 6 2 6 0

0 0 8 0 0 6 0 0 6 0 0

0 0 0 0 0 0 0 0 0 0 0(a) (b) (c)Figure 9. Example of dynamics modi�cation.On the other hand, the notion of �-destructible point is purely local: it can be characterized by checking onlythe 8-neighborhood of a point.



5.3. Grayscale skeletonThe following notions are useful to introduce the notion of �ltered grayscale skeleton.Let X � Z2 and x 2 X , x is an end point (for X) if #(��n(x) \ X) = 1. Let F 2 F and x 2 Z2, x is an endpoint (for F ) if it is an end point for the set Fk with k = F (x). A point x is said to be a �-end point (for F ) if itis an end point for F and if F (x) � ��(x; F ) > �. A point x is said to be a �-deletable point (for F ) if it is eithera �-destructible point, or a peak point such that F (x) � ��(x; F ) � �. Figure 10 shows examples of �-end and�-deletable points.
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30 50 10(a) (b) (c)Figure 10. Example of �-end and �-deletable points. (a): the central point is a 29-end point; (b) and (c): thecentral point is a 20-deletable point.If X � Z2 represents a binary image, we can say that S � Z2 is a skeleton of X if S can be obtained from Xby iteratively selecting a simple, non-end point in X and deleting it from X , until stability. Similarly, if F 2 F ,we say that G 2 F is a skeleton of F if G can be obtained from F by iteratively selecting a destructible, non-endpoint in F and lowering it down to ��(x; F ), until stability. In order to get a �ltered skeleton, that is, to eliminatenon-signi�cant branches and regional minima, we will allow �-deletable, non �-end points to be lowered. More detailson the implementation of this operator are given in appendix C.Fig. 11 shows a part of a �ngerprint image and the corresponding skeletons. Fig. 11(b)-(c) show respectively anhomotopic skeleton (� = 0) and a skeleton obtained with � = 40. As we can see in this �ltered skeleton, a numberof crest lines, peaks and minima have been removed: there are 589 minima in both (a) and (b), and only 25 in (c).The interest of this method is that no prior segmentation is required, and that the skeleton contains useful grayscaleinformation that can be exploited. For example here, we can use both topological and grayscale informations toextract characteristic points, called minuti�, in the �ngerprint: they correspond to \forks" and to end points.6. A CREST RESTORATION METHODAll segmentation methods based on the dynamics13 (or equivalent notions) have a common drawback : if twoneighboring minima are separated by a high crest which contains a narrow and deep pass, the dynamics betweenthese two minima only depends on the altitude of the pass (see Fig. 12 (a)). Thus, any method that takes thiscriterion into account in order to decide whether two neighboring regions have to be merged or not, would select theaforementioned couple of regions with a high priority. Nevertheless, the human eye perceives a strong separationbetween the two dark regions. For a discussion about this problem and some alternative approaches, see the work ofC. Vachier.20An other class of segmentation methods is based on the extraction of the contours of the objects. These methodsinvolve the use of a derivative (or gradient) operator which gives a high response at the locations of the originalimage where sharp graylevel transitions occur. In the images produced by such operators, the contours appear asthin crests which are often irregular, due to the presence of noise (see Fig. 13 (b)).We propose a method for detecting and eliminating narrow passes in grayscale images. This method allows usto enhance segmentation schemes based on minima extraction and merging, and can also be used in contour-basedsegmentation schemes.The �rst step consists of an homotopic or �ltered thinning of the image, reducing the crests to thin lines (seeFig. 12 (b)). The number nt of thinning iterations (see appendix A) controls the width of the crests in which passesshould be eliminated. Note that the result obtained in (b) is not a lower homotopic kernel: two points at level 240are destructible. Now, we are able to detect points that belong to \thin crest lines" and should be raised in order toeliminate passes.Let X � Z2 and x 2 X , x is a separating point (for X) if T (x;X) � 2.



            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

(a) (b) (c)            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

(d) (e) (f)Figure 11. Filtered skeleton. (a): Original image; (b): homotopic skeleton; (c): �ltered skeleton with � = 40.(d,e,f): In white, the regional minima of (a,b,c) respectively.
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0 0 0(a) (b) (c) (d) (e)Figure 12. Crest restoration. (a): the dynamics of the minimum of level 50 is only 40, due to the narrow pass atlevel 90; (b): after 1 iteration of homotopic thinning; (c,d): after 1, 3 iterations of algorithm CrestRestoration; (e):the points at levels 15, 20 and 25 are separating points.Let F 2 F , a point x 2 Z2 is said to be a separating point (for F ) if there exists k 2 Z such that x is a separatingpoint for the set Fk .For example, in Fig. 12 (e) the points at levels 15, 20 and 25 are separating points.We see in Fig. 12 (b) that in order to eliminate the pass at level 90, we can raise constructible separating pointsuntil a saddle point appears, the saddle point can then be detected and raised.We also see in Fig. 12 (b) that iteratively raising constructible separating points without restriction would leadto the reinforcement of low crest lines that are due to noise. The points at level 60 illustrate this problem: forexample, the point at level 60 which neighbors some points at level 240 is a constructible separating point. We



cannot use �-Leveling to eliminate these crests by lowering them, because doing so could also lower some of thenarrow passes that we want to raise. In fact, a separating point x which is a good candidate for crest restorationmay be characterized by the presence, in its neighborhood, of a point y which is a separating point for the sectionat level k = F (x) but is not separating for higher sections. More precisely:Let F 2 F , a point x 2 Z2 which is a separating point for F is said to be extensible if it is either a constructiblepoint or a saddle point for F , and if x has at least one neighbor y which veri�es the two following conditions:i) y is a separating point (in the binary sense) for Fk, with k = F (x), andii) y is not a separating point (in the binary sense) for any Fj with j > k.The crest restoration method proceeds by detecting extensible separating points and by raising them. A moreprecise description of the algorithm is given in appendix D.In Fig. 12 (c), we see the result after 1 iteration of this algorithm, applied on (b). We see in particular that twopoints at level 90 in (b) have been raised up to 240, and that the point at level 60 which is an 8-neighbor of a 90 hasnot been modi�ed: for (b) it is a separating point, but it has no neighbor which is both separating for F60 and notseparating for F61. In (d), we see the result after 3 iterations: the crest line at 240 has been restored. Additionaliterations would not modify this result.In Fig. 13 we illustrate this method on a gradient image (b) obtained from (a) by the application of the Canny-Deriche21,22 gradient operator. For a better visualization, the lowest values appear in white. First, the crests havebeen reduced to thin lines (c) by a �ltered thinning with � = 5 (the algorithm is the same as algorithm �-Leveling,except that peak points are not modi�ed). If we apply a threshold to this image, either we loose many line segments(d), or we get too many irrelevant details. The image (e) was obtained from (c) by 10 steps of the algorithmCrestRestoration, and (g) was obtained from (c) by executing the algorithm CrestRestoration until stability. Thesame threshold has been applied on (c,e,g), giving (d,f,h) respectively. We see that many signi�cative line segmentshave been recovered, and that no artefacts have been introduced by our procedure, even when we iterated it untilstability. We compared our results with the popular method known as hysteresis thresholding,21 which is based inan upper and a lower thresholding. We can see in (i) and (j) the results obtained with the same higher thresholdand di�erent lower thresholds. In (i), the hysteresis thresholding misses many signi�cant edges compared with ourmethod. In (j), with a less strict lower threshold, the hysteresis threshold still misses some signi�cant edges that ourmethod recovers, and it also recovers some non signi�cant edges.7. CONCLUSIONWe have presented a series of image processing operators and algorithms in the framework of the cross-sectiontopology. This framework allows us to precisely de�ne transformations on grayscale images that preserve topology.Homotopic thinning, kernel, reconstruction and skeleton are examples of such transformations.Nevertheless, in many applications a strict preservation of the cross-section topology is not desirable: due to thepresence of noise, the topology of the original image is much more complex than the one of the desired result. Inorder to selectively simplify the topology, according to a local contrast criterion, we introduced the �ltered �-levelingand �-skeleton operators. We proposed a segmentation method based on the �-leveling operator, which gives resultscomparable to those of the methods based on the dynamics. The �-skeleton operator is a thinning operator actingdirectly on the grayscale image, which may be used to extract characteristic points in an image (forks, end points)without performing a prior binarization step.Also, we introduced a crest restoration method which allows us to recover thin crest lines that have been brokenby noise. This method may be used to enhance segmentation schemes based on the extraction of minima, and thosebased on contour extraction. It assumes no a-priori knowledge about direction or curvature of the lines. To ourknowledge, it performs better than all the previously introduced methods that share the same assumptions.This framework may be easily extended to other digital spaces, such as the hexagonal grid in 2D, the cubic gridin 3D. Also, Lohou and Bertrand23 have generalized these notions in the framework of orders (or partially orderedsets), and proposed new parallel thinning algorithms for grayscale images.
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(a) (b) (c) (d)
(e) (f) (g) (h)
(i) (j)Figure 13. Crest restoration. (a): original image; (b): after Deriche gradient operator (the lowest values appearin white); (c): after a �ltered thinning; (e): after 10 steps of CrestRestoration; (g): after iterating CrestRestorationuntil stability; (d,f,h): threshold at the same level of (c,e,g) resp.; (i,j): hysteresis thresholding.APPENDIX A. THE THINNING OPERATORIn section 4.5, we introduced a method for �ltering impulse noise. This method is based on a thinning operator thatmust be able to perform a \unitary shrinking" of the light objects in the image.The simplest homotopic thinning algorithm consists in iteratively selecting a destructible point x and loweringits value down to the value ��(x; F ). In order to control the spatial expanse of the thinning, a �rst idea is to builda list of all destructible points, and process only these ones before a next step:Algorithm: input F 2 F , n 2 N , output Frepeat n times:compute a list L of all the destructible points;for all x in L if x is destructible for F then F (x) := ��(x; F ).Note that it is not possible to process all the destructible points of L in parallel: this would not preserve thetopology. This is illustrated by the con�guration of Fig. 5 (a), where the three points at level 8 are destructible: if



0 40 30 20 10 0 0 40 20 10 0 0 0 40 0 0 0 0(a) (b) (c)Figure 14. Construction of the list of points L. (a): original image; (b): result obtained with constructing of Lwith left to right scanning; (c): result obtained with constructing of L with left to right scanning.we lower these three points in parallel the cross-section topology is modi�ed.The following 1D example shows the limits of this �rst idea: see Fig. 14(a). If the list L is constructed by scanningthe points from left to right, then the result of one step of the algorithm on the above data is (b). This correspondsto the desired e�ect of a \unitary shrinking" of a simply connected component. But if the list L is constructed byscanning the points from right to left, then the result of one step of the algorithm is (c), which is not the desirede�ect.In order to avoid this, we can memorize, in addition to each destructible point x, the value ��(x; F ). We recallthat ��(x; F ) is the minimal value down to which the point x may be lowered without changing the topology of thesections of F . When a point is extracted from L, it will not be allowed to go down below this memorized value. Thisleads to the following algorithm, which performs n \steps" of homotopic thinning:Algorithm Thinning : input F 2 F , n 2 N , output FG := F ;repeat n times:compute a list L of all the destructible points;for all x in L, if x is destructible for G then G(x) := max(��(x;G); ��(x; F ));F := G.Note that for each point x, the value ��(x; F ) may be stored in the list L together with the coordinates of x,instead of using an auxiliary image G. Furthermore, in order to compute the list L for the �rst iteration, we mustscan the image entirely, but for the following ones, only the neighbors of the points that have been modi�ed duringthe iteration n�1 need to be considered in the iteration n. Note also that, when iterated until stability, this algorithmproduces an homotopic kernel of the original image.By alternating thinning steps and peak deletion steps, we can achieve a leveling process in which the spatialexpanse is controled by the number of steps.This algorithm (as well as the two following ones) can only lower pixel values by integer steps, and the �nal resultis lower bounded; thus its convergence is guaranteed.APPENDIX B. THE �-LEVELING OPERATORThe lower �-leveling operator, introduced in section 5.2, iteratively selects a �-destructible or peak point x and lowersit down to the value ��(x; F ) . To obtain a �-leveling kernel, this procedure must be repeated until stability.The order according to which �-destructible points are lowered is important for the �nal result as we can seein the example of Fig. 15. This 1D �gure (a) corresponds to a pro�le of a 2D leveling kernel, and the points x, y,z and t are divergent points. Furthermore, x, y and z are �-destructible, while t is not. If we select the points inincreasing order of height, then the point x is lowered down to 0 �rst, followed by the lower points at the right of x.Afterwards, the point y is lowered down to 0, followed by the lower points at the left of y. The point z is no more�-destructible, thus the �nal result is the one depicted in (b). The e�ect is the elimination of minima of dynamicsinferior to �.On the other hand, if we select the points in decreasing order of height, then the point z is lowered �rst, then y,then x, and �nally all the points but t will be lowered down to 0 (see (c)). We see that minima of dynamics superiorto � may be a�ected by this procedure. Thus, we will choose the �rst strategy for our �ltered leveling algorithm:Algorithm �-Leveling : input F 2 F , � 2 N , output Frepeat until stability:among all the points which are �-destructible or peak points for F , select a point x of minimal value;F (x) := ��(x; F )This algorithm may be e�ciently implemented using a hierarchical queue.19
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PSfrag replacements� tPSfrag replacements�(a) (b) (c)Figure 15. E�ect of removing points in di�erent orders.APPENDIX C. THE �-SKELETON OPERATORIn section 5.3, we introduced the �-skeleton operator. We present here an algorithm that implements this operator.Let us �rst recall some useful de�nitions.Let X � Z2 and x 2 X , x is an end point (for X) if #(��n(x) \ X) = 1. Let F 2 F and x 2 Z2, x is an endpoint (for F ) if it is an end point for the set Fk with k = F (x). A point x is said to be a �-end point (for F ) if itis an end point for F and if F (x)� ��(x; F ) > �. A point x is said to be a �-deletable point (for F ) if it is either a�-destructible point, or a peak point such that F (x)� ��(x; F ) � �.Algorithm �-Skeleton : input F 2 F , � 2 N , output Frepeat until stability:among all the points which are �-deletable and not �-end for F , select a point x of minimal value;F (x) := ��(x; F )APPENDIX D. THE CREST RESTORATION OPERATORIn section 6, we introduced a crest restoration method. We present here an algorithm that implements the main stepof this method. Let us �rst recall some useful de�nitions.Let X � Z2 and x 2 X , x is a separating point (for X) if T (x;X) � 2. Let F 2 F , a point x 2 Z2 is said to bea separating point (for F ) if there exists k 2 Z such that x is a separating point for the set Fk.Let F 2 F , a point x 2 Z2 which is a separating point for F is said to be extensible if it is either a constructiblepoint or a saddle point for F , and if x has at least one neighbor y which veri�es the two following conditions:i) y is a separating point (in the binary sense) for Fk, with k = F (x), andii) y is not a separating point (in the binary sense) for any Fj with j > k.We recall that �+(x; F ) is the maximal value up to which the point x may be raised without changing the topologyof the sections of F .Algorithm CrestRestoration : input F 2 F , n 2 N , output FG := F ;repeat n times:compute a list L of all the extensible separating points;for all x in L doif x is constructible for G then G(x) := min(�+(x;G); �+(x; F ))else if x is a saddle point for G then G(x) := �+(x;G);F := G.A justi�cation for the use of the list L and some indications concerning the update of this list may be found inthe appendix A. REFERENCES1. T.Y. Kong and A. Rosenfeld: \Digital topology: introduction and survey", Comp. Vision, Graphics and ImageProc., No. 48, pp. 357-393, 1989.2. A. Rosenfeld: \The fuzzy geometry of image subsets", Pattern Recognition Letters, Vol. 2, pp. 311-317, 1984.
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