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The watershed segmentation is a popular tool in image prog 37, 51 31 57 3 3,567 31573
cessing. Starting from an initial map, the border thinning F Fi = 0,(F)

transformation produces a map whose minima constitute the

catchment basins of the watershed of the initial map. Aminte o0 o 5, 0,5, 0 0,5,0,5,0
ting feat fthet f d lled border kgimel
esting feature of the transformed map (called border kisie 01 33 5% 3u 30[ 01 0315§ 005§1§
(F)

to convey not only the watershed partition but also numeric i
formation relative to the initial map. In this paper, we picey Fy = 0,(F)

the space of all border kernels with a semi lattice and pro-

pose morphological operations (relative to this lattic@jok 0,5,5,5,0 0

allow for merging border kernels and building hierarchiés 001 03{ 5# 55‘ 5% QO 01 03‘ 0{

watersheds based in particular on connected filters.
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Index Terms— Watershed, border kernels, lattice, hierar-
chies, data merging, mathematical morphology
Fig. 1. Watershed and connected filtering in edge-weighted
graphs. The majp; is a border kernel of" and the dashed
1. INTRODUCTION edges a watershed @f. The mapF} is obtained fromFy
thanks to a connected filter (a flooding see Sec. 4). The
The watershed segmentation is a popular tool in image prapap £ is a border kernel of; and the dashed edges is a

cessing [1-3]. It is often combined with connected filtersyatershed of7,. Minima are depicted in bold.
[4,5] which simplify the considered function (also calledn

in this paper), and lead to watershed partitions with larger

classes. However, it is not only a matter of “partition grow-  Hereafter, the workspace is a finite family of edgeés
ing”: a connected filter by flat zones increases the partitiofi-€., £ is a set made of pairs of points), whose extremities
by flat zone®f the considered function, but it does not necesdefine the vertex spack”. Any elementX C E induces
sarily increase its watershed partition. Indeed, the dimss @ family of verticesX™ in E*. The class made of the maps
(thus, the watershed) of the map obtained after the filterind” : £ — K (whereK is any finite subset d) is denoted by
step may be “shifted” compared to the ones of the originaf - A mapF’ € F weights the edges df.

map (see Fig. 1, wherE is the initial map,F; a watershed Given a mapF’ € F, to define the border thinnings, it is
of F, F, afiltering of F;, andF; a watershed of}). convenient to also considét* : E* — K which maps each

On the other hand, there is an ambiguity in the very defélementz in E* to the minimal value of an edge if that
inition of a watershed. In some cases, we want to effectivelgontainsz, i.e., F*(z) = min{F(u) | u € E'andz € u}.
build the crest lines (divide lines). In some other cases, we€tu = {z,y} € E, we say that
are .intereste.d in .the partition of the space into it_s catghm_e o uis aseparating edge (foF) if F(u) > max(F*(z),
basins and, in this case, we do not know on which side lies F*(y));
the crest lines.

Recent works by J. Cousst al. [6, 7] allow us to make e u is aborder edge (forF) if F(u) = max(F (),
precise these notions at least in the discrete cases of finite £ (y)) andF'(u) > min(F* (), F*(y)); and that
edge-weighted graphs. Starting from the spatenade of . . R "
thegedgeég of a gragh rather thgn of its vert?ces, an original * uisaninner edge (for) if F*(z) = F*(y) = F(u).
idea consists of introducing the border thinnings on theeedg  The border thinningsare the idempotent applicatiofis
maps. Let us briefly recall these notions. acting onF and generated by compositions of the elementary



operato,,, with u € F: We callhierarchy (of border kernelsiny sequence
(Fo, ..., F,) of mapsinA suchthatFy < --- < F,.

(OuF)(w) = glelil{F ()} if wis a border edge fof For instanceF; (Fig. 1) is smaller thai; (Fig. 2) but it
(0,F)(u) = F(u)if uisnota borderedge far, is not smaller tha, (Fig. 1) sinceS(F3) 2 S(F5).

(0,F)(v) = F(v) ifv#u.

®, 0 O 5 o 5 O 5 O 0 O
The map(F) obtained by a border thinning is calletharder Em
Fs

0.5, 0.,5_0
EEEEE
kernel (of F). These notions are illustrated in Fig 1 by the O——0—"0—0->
mapskF, Fy, F» and F3. Any edge of a border kernel is either Fr
an inner edge (in this case, it belongs to a minimum) or a
separating edge (in t.h's case itis not in a minimum but Itﬁ:ig. 2. Map Fg is obtained fron¥, by a first step of thinning
extremities are both in a minimum). Therefore, any border . .
. e constrained by the kernél; and F’; is a border kernel of
kernel induces a (connected) partition ©f. Each class of

the partition is a set of vertices induced by all edges inglsin (obtained by a second step of thinning) constrainediy
minimum. It satisfies the strong following properties.

Theorem 1 ([6,7]) * If H is a border kernel of then:

1/ the setS of all edges inE' whose extremities are in two
distinct minima ofH is a watershed of" and furthermore for
anyu € S, H(u) = F(u); and

2/ the union of all minima off is a minimum spanning forest
for F relative to the minima of-.

Theorem 2 (Border kernel sup-semi lattice) The min or-
der generates ond a sup-semi lattice, denoted, whose
greatest element is the constant border ketfigl, for which
the weight of each edge equals to 0 (the minimal valug)of
For any two element$’; and F5» in A there exists a smallest
upper-bound?” = F; Y F;, or supremumdefined by:

This theorem invites us to study the structure of the set of Flu) = max{Fi(u), F5(u)} ifu e S(F1) N S(F)

all border kernels. Indeed, building a hierarchy of watedsh F(u) = 0 otherwise.

means that we are able to dgfine an_order relation over this set Furthermore, the partition ofs* induced byF; Y F is

Could we go further a_nd build a lattice? It would then allowsequal to the partitionD = D; V D,, whereD; (resp. D-)

us to construct pyramids of watersheds and to combine Wateirs- the partition induced by, (resp.) and wherev denotes

sheds stemming from several sources. How could we furthe{he supremum of partitions [8].

more describe basic operatioresd., dilations, closings) on

this lattice and study their properties? We begin in thisgpap 62050 0 640030 0 40000

to investigate such structures and operators. o—o-fo—o-To—o—0 o—o-o—o0—0-To—o o—o o—o—o—o0—0o
Gl G2 Gl Y G2

2. LATTICE OF BORDER KERNELS

i o ) o L Fig. 3. lllustration of the supremuny for themin order.
Even if two distinct serie$6,,, } can lead to two distinct limit

productsd; andd,, we always havé.f; (F) = 6, (F), since, This definition of a supremum id is illustrated Fig. 3.

by definition, there is no border edge fér(£). Similarly, On the other hand, two kernels andF, in .4 do not nec-
0102(F) = 05(F). It means that the invariance domain of essarily admit an infimum since the intersection of the elass
the thinnings; is the same for all thinning®;. It is the set  induced byF; andF, can lead to classes reduced to a single
of all border kernels, or said differently the mapsjnfor  vertex and there is no set of edges that induces such a class.
which there is no border edge. For the sake of simplicity, irHowever, if we set, by hypothesis, a smallest border kefpel

this paper, we will only consider the border kernels whosgthe zero element of a hierarchy), then the family of all bor-
minima are all of altitude O (the minimal value &) and we  der kernels greater thak, is a complete lattice (for thmin

will denote this set byA. order). Indeedy is still the supremum for this family and,

It is convenient to provide the spagewith the order by  sinceFy = F,, andF, = Fp, the set of the border kernels
minima or min order. Let F'andG < A. Denote byM(F')  less than botl¥, andF; is not empty and this family admits
and M(G) the sets of all edges lying in the minima 6f  a greater element®; A F.
andd respectively, and denote I8 F') andS(G) the sets of

their separating edges{(F)U S(F) = E). Map F is said Corollary 3 LetFy € A. The familyA, of the elements int
smallerthan mapG for themin order, writtenF” < G, if: greater thanfFy is a complete lattice whose supremum is the

one of A and whose infimum is defined by:
1/ M(F)C M(G), orequivalentlyS(F) 2 S(G) " - " . S(F ) SR
2/ F(u) < G(u) for any edge: € S(G). (w) = min{Fi(u), ()} if u€ S(F)NS(F)or

u e M(Fl) n M(Fg)
1The reader can refer to [6] for the precise definitions wigershed (cut) .
and of arelative minimum spanning forests considered in Theorem 1. (u) = max{Fi(u), F2(u)} otherwise.




3. RAISINGS The mapsFs, Fy (Fig. 1), Fg and F; (Fig. 2) illustrates the

four steps of the composition of a flooding, with a con-
Which operations can we build for acting on the sup-semi latstrained border thinning, whose product is indeed a raising
tice of border-kernelsi? The existence of a supremum ori- and thus allows for producing a hierarchy of border kernels.

ents us towards dilations, and, since this suprenvuemtends Hence, to produce a hierarchy of border kernels based on
the minima, we take as the basic operation ¢éfementary floodings and constrained border thinnings, one only needs
raising p,, defined below. a sequence of edges to parametrize successive floodings. To
Fix an edgeu that parametrizes the operatipp and de-  this end, given an initial border kernel, one may select one
fine, for anyF' € A, theelementary raising by edgéy: edge per minimum and order these edges thanks to attributes
S o o relative to the minima (area, dynamics, ..., [5,11,12])eith
puF'(u) = 0if uis adjacent to two distinct minima @ \ye can construct a hierarchy of border kernels, hence a hi-
puF(u) = F(u)if uis adjacentto one minimum df erarchy of watersheds. These watersheds can be stacked to
puF(v) = Fv)ifv#u build a new map so that each edge is weighted by the number

of watersheds it belongs to. Such a map is callsdlaency
Theorem 4 Letu € E. The raisingp, acts on4 and is both map[13]. Note that any saliency map is a border kernel.

a closing and a dilation with respect to thein order. The saliency map$; andS; obtained from Fig. 4 thanks

to dynamics and surface attributes are depicted in Fig. B. Th
In other wordsp,, satisfies the five following properties: saliency S; correctly discriminates the significant contours
i) pu(F) € A, but it also strongly delineates many small highly-contest
i) pu(F1 Y F) = pu(F1) Y pu(F2); regions which correspond to noise. On the other hdfd,
i) Iy < Fyimpliesp,(F1) = pu(F2); does not discriminates these noisy regions, but it divides
iv) F < p,(F); and some large homogeneous zones of the image into several
V) pupu(F) = pu(F). parts. How could we combine the advantages of these two

Furthermore, any produgj, obtained by successive com- hierarchies? The framework settled in this paper precisely
positions of a serie§p.,; | j € [1,k]} (.., pr = pu, ---pu;)  Provides an answer: the infimum of and S, (S1 A S2)
are still dilations and closings. Thus, by iv), the sucaassi is depicted in Fig. 5. In the second row of Fig. 5, we also
terms{,} generate a hierarchy of border kernels. show the segmentations into 100 regions obtained ffom
Sy andS; A Ss.

4. FLOODINGS

Thefloodingoperations, which we consider in this section,
is a connected operator and it constitutes an interesting wa
for obtaining araising. F. Meyer and L. Najman [9] define it
as any extensive operator acting6rsuch that:

[(MF)(u) > max[(nF)(v), vadjacentta:] (1)
= (1F)(u) = F(u). (@)

The previous property is rather a characteristic property
than a direct definition. In fact, we can show that any flood-
ing ) can be obtained as a composition produalefmentary
floodingsn, associated to any edgec F and defined by:

Fig. 4. A grayscale image.

5. CONCLUSION

(nuF)(v) = F(v)+1 if wandv belongtoasame
minimum In this paper, we associated a semi lattice structure tcatine f
(n.F)(v) = F(v)otherwise. ily of border kernels. Based on this, we showed how to merge

elements of this family and proposed a generic morpholégica

The floodings (see for instandg = 7,,(F3) in Fig. 1),  operation to build hierarchies of border kernels. We oatlin
that often give nice results, as connected filter§indo not  how to obtain interesting hierarchies based on the flooding
allow for producing a hierarchy of watersheds, even if we apeonnected-operator and how to merge these hierarchies.
ply them to a map irF" € A (see the counter-examplg in The floodings only deal with scalar functions (so that we
Figure 1). To obtain a hierarchy from floodings, we have tocan define minima). However, raisings are adapted to data
complete them with a class of constrained border thinningfusion, and can handle simultaneously several minima since
(more details will be provided in an extended version [10]).they are dilations. Future works will focus on this last goin
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Fig. 5. Saliency maps obtained from Fig. 4 (first row) and assodisggmentations into 100 regions (second row) [see text].
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